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We investigate clustering properties of dark matter halos and galaxies to search for optimal statistics and
scales where possible departures from general relativity (GR) could be found. We use large N-body
cosmological simulations to perform measurements based on the two-point correlation function (2PCF) in
GR and in selected modified gravity (MG) structure formation scenarios. As a test bed, we employ two
popular beyond-GR models: fðRÞ gravity and the normal branch of the Dvali-Gabadadze-Porrati (nDGP)
braneworld. We study a range of simulated halo and galaxy populations and reveal a noticeable MG signal
in the monopole and quadrupole moments of the redshift-space 2PCF and in the so-called clustering
wedges. However, once expressed in terms of the linear distortion parameter β, the statistical significance of
these signals largely diminishes due to a strong degeneracy between MG-enhanced clustering and modified
tracer bias. To circumvent this, we consider statistics less dependent on the bias: relative clustering ratios.
We generalize the monopole ratio proposed in earlier work to multipole moments and clustering wedges
and introduce a new estimator of the β parameter. The clustering ratios we extract foster noticeable
differences between MG and GR models, reaching a maximum deviation of 10% at 2σ significance for
specific variants of fðRÞ and the nDGP. We show that such departures could be measured for β if nonlinear
effects at intermediate scales are correctly modeled. Our study indicates that the clustering ratios give great
promise to search for signatures of MG in the large-scale structure. We also find that the selection of an
optimal tracer sample depends on a particular statistics and gravity model to be considered.
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I. INTRODUCTION

The standard cosmological model, lambda-cold dark
matter (ΛCDM), assumes general relativity (GR) as a
description of gravity on all scales and at all times.
A simple parametrization of ΛCDM in terms of just
six quantities provides an excellent fit to numerous obser-
vational data of various kinds collected over decades [e.g.,
[1–6]], but we are left with a puzzling outcome. According
to ΛCDM, the Universe, for the most of its evolution, is
dominated by dark components of yet unknown physical
nature: collisionless cold dark matter (DM), constituting
most of the cosmic mass, and a cosmological constant as
the source of dark energy that causes the observed accel-
eration of the cosmic expansion. The existence of the
cosmological constant, commonly associated to a negative-
pressure fluid, would have profound implications for
fundamental physics, however, there is no compelling
direct evidence for it yet [7–10].

The urgent need to explain the physical mechanism
behind the cosmic acceleration and, more generally, the
nature of the dark sector, gives motivation to investigate the
validity of GR on cosmological scales and to consider
models of gravity beyond Einstein’s theory. Such alter-
native frameworks may postulate, for instance, modifica-
tions in the theory of gravity on cosmological scales, but to
be viable they must be consistent with experiments. In
particular, they need to predict the same observationally
well-constrained expansion history as ΛCDM and, at the
same time, have to pass the stringent local and high-energy
tests of gravity, where GR has been shown to work very
well [11–15]. Among the proposed modifications of GR
that we will refer to as “modified gravity” (MG), sometimes
referred to in the literature as Extended Theories of Gravity
(for a detailed review see, e.g., [16]), the models based on
fðRÞ gravity and braneworld stand out because of their
generality and rich phenomenology [17–20].
The large-scale structure of the Universe is one of the

richest sources of cosmological information, available
chiefly in the clustering of matter tracers. Clustering is
an important probe of the underlying cosmological model
in which cosmic structures evolve, and therefore, it can be
used to test the gravity theory [21–26]. In fact, the growth
rate of structures, a parameter that describes the time
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evolution of matter overdensities, can be used to differ-
entiate from ΛCDM those alternative MG models that
otherwise have expansion history compatible to GR.
One of main statistical measures of clustering is the two-

point correlation function (2PCF), or the power spectrum,
its equivalent in the Fourier space. In this work we study the
former of these statistics, with the main focus on the
redshift space, in which a wealth of observations are made.
We also investigate the tracer (galaxy and halo) bias, which
is notoriously difficult to model and constitutes one of the
main sources of systematic errors plaguing the derivations
of cosmological parameters from galaxy redshift surveys
[e.g., [27,28]].
A specific feature suitable to test gravity models using

the galaxy distribution and, in particular, to measure the
growth rate, is redshift-space distortions (RSD) [29,30].
These appear naturally in observations due to radially-
projected peculiar velocities that are a direct consequence
of the growth of structure and the gravitational interaction.
RSD induce anisotropy in the observationally derived
2PCF and are directly accessible in surveys that provide
sky positions and spectroscopic redshifts of the tracers.
In view of the forthcoming and planned redshift surveys

offering much better statistics than possible so far [31,32],
challenges arise in using RSD for robust cosmological
constraints and reliable tests of gravity. In particular,
modeling of RSD is a paramount task, but not always
successful, in the estimation of the growth factor. Several
RSD models commonly extended from the linear theory
formalism have proven to perform well at large scales,
however, exploration of the nonlinear regime, where the
most cosmological information is contained, is crucial in
testing gravity. The commonly used modeling generally
fails to describe accurately the full dynamics of the tracers
at nonlinear and weakly nonlinear scales [33,34]. Over
time, more elaborated approaches than the standard linear
dispersion model have been proposed based on different
perturbation theory schemes [22,35–37]. In general, how-
ever, these more advanced approaches were not designed
for, nor thoroughly tested on, alternative gravity scenarios.
Only in recent years some progress in that aspect has been
made, but the developments apply only to RSD of a smooth
DM component, rather than to the full clustering of biased
tracers and, furthermore, they are available only for some
selected MG models [23,38–41].
The difficulties described above are often combated

thanks to high-resolution N-body simulations, which by
construction can probe deeply into the nonlinear regime.
They thus provide both a means to test the performance of
various RSD models and a way to better understand the
galaxy biasing and velocities in the full nonlinear regime.
Running and employing N-body simulations for RSD
studies has, therefore, become routine practice in the field.
However, high-resolution and fully nonlinear simulations
of MG are much more computationally expensive—by a

factor of a few to even one order of magnitude—than the
same resolution ΛCDM setup. As a consequence, MG
simulations of volumes and resolutions sufficient for galaxy
and halo RSD studies are usually prohibitively expensive.
However, with the recent advent of improved and accelerated
algorithms to solve for the additional MG physics, suitable
N-body simulations became available for beyond-GR mod-
els [e.g., [42–46]]. Thanks to this, systematic studies
comparing RSD signals and models in ΛCDM vs MG
scenarios have become possible [e.g., [47–51]].
In this paper, we investigateDMhalo and galaxy clustering

and the underlying growth rate of cosmic structures in two
beyond-GR scenarios: fðRÞ and the normal branch of the
Dvali-Gabadadze-Porrati (nDGP), and compare them with
ΛCDM. For that purpose we employ a set of mock catalogs
with number densities characteristic to those accessible in
today’s and the near-future spectroscopic redshift surveys,
such as SDSS (Sloan Digital Sky Survey), BOSS (Baryon
Oscillation Spectroscopic Survey) or DESI (Dark Energy
Spectroscopic Instrument).These catalogs arebasedona suite
of state-of-the-artN-body simulations: the Extended Lensing
Physics using Analytic ray Tracing project (ELEPHANT;
[51,52]). Our study is a continuation and extension of earlier
works that employed these simulations. In Ref. [53] DM halo
populations of ΛCDM and fðRÞ models were studied with a
novel clustering statistic called the halo clustering ratio R.
That analysis indicated that theclustering ratio haspotential of
discriminatingbetweenstandardgravityand thefðRÞmodels,
especially those with a milder departure from GR. More
recently, Ref. [54] investigated the clustering of ELEPHANT

mock galaxies using multipole moments and clustering
wedges of the 2PCF. Their results confirm that the RSD
measurements can help to distinguish between different
gravity models. However, they highlight that the distortion
parameter that obtained β with the linear RSD model is
significantly underestimated for all the MG models they
studied.
In our work we go beyond the scope of these previous

studies in a number of important aspects. First, from the N-
body simulations we use mock galaxies, as well as three
different halo populations, which allows us to study the
importance of tracer sampling density in searching for MG
signatures and analyze the behavior of the linear bias in
various gravity models. Second, we generalize the defi-
nition of the relative clustering ratio proposed in Ref. [53]
to the multipole moments and clustering wedges and
introduce a new estimator based on this ratio to constrain
the linear distortion parameter β from redshift-space
anisotropies. Although we only use the linear theory to
model RSD, the new estimator is powerful enough to
expose the impact of the scale at which measurements are
made on recovering β. We also shed light on the degeneracy
between the tracer bias and the growth rate, both encoded in
the β parameter. Finally, we alleviate the issue addressed in
[54] related to the efficacy of the linear model to recover the
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linear distortion parameter. We show that an appropriate
estimator of β based on linear theory can successfully
recover its true value in the linear regime.
The paper is organized as follows: in Sec. II we briefly

describe the cosmological models studied here. In Sec. III
we present the set of N-body simulations that have been
employed in the analysis and provide details on the selected
DM halo populations, as well as the simulated galaxy
sample. In Sec. IV we discuss the estimators used to
characterize the clustering measurements of different sam-
ples in both the real and redshift space. In Sec. V we present
the results and analysis of the clustering measurements for
different halo populations and the galaxy sample; we also
study the linear halo and galaxy bias in that Section. Then,
in Sec. VI we introduce the estimator for relative clustering
of multipole moments and wedges of the 2PCF and discuss
the results obtained for our samples. Finally, in Sec. VII we
conclude and discuss the implications of our findings.

II. MODIFIED GRAVITY MODELS

Beyond-GR alternatives to the ΛCDM cosmological
model are numerous (see, e.g., the reviews [55,56]), but
numerous are also the problems they have to struggle with.
Some of these MG models are plagued with theoretical
instabilities, and all of them obviously have to face
observational constraints, which often requires fine-tuning
of model parameters. One particularly simple extension of
GR is by including a single scalar field φ in the Einstein-
Hilbert Lagrangian, which sources gravity. However, when
coupled to matter, the scalar field gives rise to an additional
gravitational force—often referred to as the “fifth force.”
Such a fifth force can be quantified by γ ≡ jF5j=FN, where
FN is the standard Newtonian gravitational force that we
obtain in the weak-field limit of GR. Several experiments
[e.g., [57,58]] have constrained γ ≪ 1 on Earth, in the Solar
System, in neutron star binaries, and merging black holes.
This leaves two possibilities: either there is no room to
deviate from GR on all scales, i.e., γ ≡ 0, or γ is not a
constant but instead varies in space (and possibly time).
The latter scenario can be relatively easily realized if the
fifth force arises due to the propagation of extra degrees of
freedom of a dynamical field that varies in space and time.
Models where this is the case are dubbed “screened” MG
models since the fifth force is screened in high-curvature or
high-potential regions.
In this work we study two classes of MG models: the

fðRÞ gravity of Hu-Sawicki formulation [59] and the nDGP
braneworld gravity. In the former, the MG phenomenology
arises from a generalization of the Ricci’s scalar R in the
Einstein-Hilbert action to a functional of it fðRÞ, and the
fifth force is manifested due to an extra degree of freedom
of the scalaron field of R. In the latter, the so-called nDGP
model [60], the fifth force is a manifestation of an extra
degree of freedom that is due to the bending of a four-
dimensional brane in the five-dimensional bulk space-time.

In both cases, the arising fifth force can be modeled as a
gradient of an underlying phenomenological scalar field.
We choose the fðRÞ and the nDGP gravity models since

they constitute a very good test suite for a wider class of
MG theories. This is because most of the viable MGmodels
can be divided into two general categories, depending on
the physical mechanism of the fifth-force screening they
invoke. The screening can be either “environment depen-
dent” or “object-mass dependent.” The former responds to
the local value of the gravitational potential, and in the
latter (also called the Vainshtein mechanism [61,62]), the
effectiveness of the screening is usually moderated by
the local curvature of a given region of space. What is also
essential here is that the two classes of MG models we
consider pass the stringent tests from the first kilonova
gravitational wave event of GW170817 [63]. Below we
give a short description of the specific formulations and
settings of these two models. From the point of view of the
statistics and observables studied in this paper, the most
important characteristic of our models is that we choose
specific formulations of fðRÞ and the nDGP gravity
theories that follow closely the ΛCDM expansion history.
Thus, the first nonzero physical effect that emerges from
their extra degrees of freedom is imprinted in modified
history of the growth of structures.

A. Dvali-Gabadadze-Porrati model

The Dvali, Gabadadze & Porrati (DGP) model [60] is
inspired by string theory and assumes the existence of a
4þ 1-dimensional Minkowski space, within which the
ordinary 3þ 1-dimensional Minkowski space is
embedded. In other words, the DGP model is one of the
possible braneworld cosmology models, where the
Universe is described by a 4D-brane which is embedded
in a higher-dimensional space-time called the bulk [64]. In
this respect, the so-called normal branch DGP (nDGP)
gravity is a natural extension of the DGPmodel [60,65] that
provides an explanation why the force of gravity is much
weaker compared to the other fundamental forces [20].
This is possible because fundamental matter particles are
assumed to be confined to the brane, while gravity can
propagate through the extra spatial dimension(s).
The nDGP model introduces a free parameter, the so-

called crossing-over scale rc. It characterizes the scale at
which the four-dimensional gravity of the brane “leaks out”
to the five-dimensional bulk space-time. This scale is
simply obtained as half of the ratio of the five-dimensional
Newton constant Gð5Þ to the usual four-dimensional one,
denoted here simply as G:

rc ¼
1

2

Gð5Þ

G
: ð1Þ

The crossing-over scale limits the size of the fundamental
perturbation of the embedded 4D-brane (i.e., the maximum
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bending mode), and the extra degree of freedom of the
brane can be expressed by a free scalar field φ. On the
linear level, this translates to a maximum enhancement of
the growth rate of structures, compared to the usual ΛCDM
background. In the limit where the time derivatives of this
new scalar field are negligible compared to its spatial
derivatives, that is in the so-called quasistatic limit [65], the
model admits a modified Poisson equation for gravity

∇2Ψ ¼ 4πGa2ρδþ 1

2
∇2φ; ð2Þ

where Ψ is the classical Newtonian potential, G is the 4D
Newton constant, a is the scale factor, ρ is the matter
background density with its local density contrast δ, and
finally, φ is the scalar field describing the extra degrees of
freedom of the model. The new scalar field obeys its own
equation of motion [42,66,67]

∇2φþ r2c
3BðaÞa2 ½ð∇

2φÞ2 − ð∇i∇jφÞð∇i∇jφÞ�

¼ 8πGa2

3BðaÞ ρδ: ð3Þ

The new function BðaÞ is defined as

BðaÞ ¼ 1þ 2Hrc

�
1þ

_H
3H2

�
: ð4Þ

Here H ≡HðaÞ is the usual Hubble function of the
background model. It is convenient now to define a
dimensionless parameter Ωrc, which once specified will
determine any given nDGP model. Thus, we define

Ωrc ≡ 1

ð2rcH0Þ2
; ð5Þ

with H0 denoting the present-day value of the Hubble
parameter, and the above quantities are expressed assuming
c ¼ 1. In the phenomenological formulation presented
above, the nDGP model admits at large scales a constant
enhancement to the Newtonian gravity, which can be
evaluated in terms of an effective Newton constant,

Geff ¼ Gf1þ 1=½3BðaÞ�g: ð6Þ

This, therefore, leads to a constant enhancement in the
linear-theory growth rate of structure f, by a factor
Δf ¼ Geff=G. On the smaller nonlinear scales, the
enhancement of gravity is effectively suppressed by the
means of the Vainshtein screening [61,68]. We will study
two variants of the nDGP model, specified by rcH0 ¼ 5
(Ωrc ¼ 0.01) and rcH0 ¼ 1 (Ωrc ¼ 0.25), which we dub
N5 and N1, respectively.

B. f ðRÞ gravity
The fðRÞ gravity model is an extension of GR that has

been extensively studied in the literature in the past several
years (see, e.g., [69] for a detailed review). Some previous
works have explored this model in different and alternative
contexts, such as the internal properties of cosmic struc-
tures and their mass-to-light ratio [see, e.g., [70,71]],
signatures of fðRÞ gravity from thermodynamic equilib-
rium of the clustering of galaxies [72], as well as phenom-
enological scenarios than the chameleon, symmetron, and
fðRÞ gravity models that scale the local properties of
astrophysical systems [73]. The theory is obtained by
substituting the Ricci scalar R in the Einstein-Hilbert action
with an algebraic function fðRÞ. Here the accelerated
expansion of the Universe is produced by this extra term
replacing Λ in the action integral, without the need for any
form of dark energy. The resulting modified theory of
gravity is characterized by highly nonlinear equations of
motion for the scalar field, and environment-dependent
fifth-force screening is obtained via the so-called “chame-
leon mechanism” [18,74]. The presence and effectiveness
of the chameleon effect is very important for the viability of
the fðRÞ-class theories. We comment more on this later on.
One particularly interesting and useful formulation is the

so-called Hu & Sawicki [59] branch. Here the functional
form of fðRÞ is

fðRÞ ¼ −m2
c1ð−R=m2Þn

c2ð−R=m2Þn þ 1
; ð7Þ

where n > 0, c1, and c2 are dimensionless free model
parameters, and m is an extra mass-dimension parameter.
Now, the extra degree of freedom can be again expressed in
terms of a scalaron field fR ≡ dfðRÞ=dR, which is not
massless, unlike in the case of the nDGP. We can relate the
model parameters by writing [59]

fR ¼ −n
c1
c22

ð−R=m2Þn−1
½1þ ð−R=m2Þn�2 ; ð8Þ

where the mass scale m is defined as m2 ≡H2
0Ωm. For this

fðRÞ model, the background expansion history becomes
consistent with the ΛCDM case by choosing c1=c2 ¼
6ΩΛ=ΩM. The scalaron field fR adds an additional degree
of freedom to the model, whose dynamics in the limit of
jfRj ≪ 1 and jf=Rj ≪ 1 can be expressed in terms of
perturbations of the scalar curvature δR and matter over-
density δρ:

∇2fR ¼ 1

3
ðδR − 8πGδρÞ: ð9Þ

Comparing to the ΛCDM model expansion history, and
under the condition c2ðR=m2Þn ≫ 1, the scalaron field can
be approximated by
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fR ≈ −n
c1
c22

�
m2

−R

�
nþ1

: ð10Þ

Consistency experiments on local gravity such as Solar
System constraints, as well as weak and strong equivalence
principles constraints, have been set in the bound n > 0.5
[see, e.g., [74,75]]. In this paper we consider fðRÞ models
with n ¼ 1, which are consistent with the aforementioned
constraints.
By setting n ¼ 1, the model is fully specified by only

one free parameter c2, which in turn can be expressed in
terms of the dimensionless scalaron at present epoch fR0,
given by

fR0 ≡ −
1

c2

6ΩΛ

Ωm

�
m
2R0

�
2

: ð11Þ

Therefore, a particular choice of fR0 fully specifies the Hu-
Sawicki fðRÞ model. In this work we focus on the cases of
fR0 ¼ f−10−5;−10−6g, referred to from now on as F5 and
F6, respectively.
At the background level, the fðRÞ theory can produce

significant fifth forces at small noncosmological scales.
The presence of such forces is, however, tightly constrained
by Solar System and strong-field regime observational tests
[75–77]. Here, an essential role is played by the already
mentioned chameleon mechanism, which effectively sup-
presses the fifth force in high density regions. This intrinsi-
cally nonlinear mechanism traps the scalar field in high
curvature regions making it very massive and suppressing
deviations from GR dynamics. There are potentially many
interesting nonlinear effects related to the chameleon
mechanism that can affect stellar and galaxy evolution
[see, e.g., [78] ]. Here, we focus on cosmological scales and
galaxy clustering, and so the simulations we employ
implement self-consistently the chameleon mechanisms
only for dark matter clustering in the cosmological context.

III. HALO AND GALAXY MOCK CATALOGS

In this work we consider simulated cosmological data
originating from ELEPHANT, introduced in [51,52]. This is
based on a suite of dark-matter-only N-body simulations of
the standard cosmological model ΛCDM and of the two
families of modified gravity theories described above, the
nDGP and fðRÞ. The ELEPHANT simulations have been run
using the ECOSMOG code [79].
The simulations followed the dynamical evolution of

10243 particles placed in a box of 1024h−1 Mpc comoving
width. The evolution of DM phase space was traced from
the initial redshift zin ¼ 49 down to z ¼ 0, with the
comoving mass resolution of mp ¼ 7.798 × 1010 M⊙h−1

and comoving force resolution of ε ¼ 15h−1 kpc equiv-
alent of Plummer softening. For each model we consider
five independent phase realizations of the initial power

spectrum, which is derived for the ΛCDM model with the
WMAP9 collaboration best-fit parameters [80]: Ωm ¼
0.281 (total fractional nonrelativistic matter density), Ωb ¼
0.046 (fractional baryonic matter density), Ων ¼ 0.0 (frac-
tional relativistic matter species density), ΩΛ ¼ 1 −Ωm
(cosmological constant energy density), Ωk ¼ 0 (fractional
curvature energy density), h ¼ 0.697 (Hubble constant in
units of 100 km s−1Mpc−1), ns ¼ 0.971 (primordial power
spectrum slope), and σ8 ¼ 0.820 (linearly extrapolated
ΛCDM power spectrum normalization).
In this work we will deal with DM halos and mock

galaxies derived from the ELEPHANT simulations, saved at
three cosmic epochs, corresponding to redshifts z ¼ 0, 0.3,
and 0.5. This particular redshift range is very interesting
from both observations and theory vantage points. The
currently available redshift survey data, such as the BOSS
LOWZ [81], attain the highest galaxy number density in
this regime. These redshift ranges will be also probed by
future richer data from planned or already ongoing surveys
like DESI [32], or 4-metre Multi-Object Spectrograph
Telescope Cosmology Redshift Survey [82]. Also, from
the theoretical point of view, both the fðRÞ and nDGP
models exhibit the biggest deviations from ΛCDM cluster-
ing at low and intermediate redshifts, 0.3 ≤ z ≤ 0.7 [e.g.,
[44,50,83–88]].
The DM halos were identified in the simulations using

the ROCKSTAR [89,90] halo finder. It is important to note
that on top of using the friends-of-friends approach in 6D
phase space, the halo finder performed additionally the
gravitational unbinding procedure in which unbound par-
ticles are removed from a halo in iterative steps. The
standard implementation of this procedure assumes
Newtonian gravity for computing the potential and particle
binding energy. In fðRÞ and the nDGP, however, we can
arrive at a situation where some halos will be fully or
partially unscreened, thus the total fifth force should be
added to their binding energy budget. ROCKSTAR does not
consider this extra binding energy in its calculations.
However, ignoring this extra contribution presents a
conservative approach to unbinding: if a particle were
not bound in modified gravity, then it would be also
definitely unbound in ΛCDM. In addition, the fraction
of particles, for which neglecting the extra fifth-force
potential would be significant, is very small.
It has been shown that for all practical purposes relevant

for this study, one can neglect MG effects in the case of
fðRÞ theories and use the standard Newtonian unbinding
procedure [52,91,92]. For the nDGP case, the Vainshtein
radius is larger than the biggest objects in our simulations
for all the redshifts concerned [17,93], which means that
most of the halos should be self-screened.
The galaxy mock catalogs were built using a halo

occupation distribution (HOD) prescription [94–96]. The
HOD model parameters were tuned for each of the gravity
models independently to obtain a catalog matching the
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target number density and the projected real-space cluster-
ing of BOSS-CMASS galaxies [97]. These galaxy mock
catalogs have been exploited in different works, such as
[51,52,54,98,99]. In our analysis, we only consider central
galaxies, which are located at the center of potential of their
host halo. For more details please refer to the original
catalog release paper [51].
In our analysis, we adapt M200c as our main halo mass

definition. This is defined as the DMmass enclosed within
a sphere around the halo center, with the radius r200c, at
which the spherically averaged density inside drops down
to a value 200 times the critical density of the Universe,
i.e., ρc ≡ 3H2=8πG. Thus, whenever we refer to a halo
mass, we mean M200c, unless clearly stated otherwise.
Following Ref. [53], from all the raw halo catalogs, we
keep for further analysis the halos with at least 64 DM
particles. This sets our minimal halo mass to
Mmin ¼ 5 × 1012 M⊙h−1. An important notice here is
the fact that the ELEPHANT set is a pure N-body run
and, as such, treats all baryonic component as additional
collisionless mass. The inclusion of highly nonlinear
baryonic physics is fundamental for a proper modeling
and understanding in full the galaxy formation process.
However, the impact of the full baryonic hydrodynamics
for the halo and galaxy clustering and their peculiar
velocities has been shown to be minimal [see, e.g.,
[100]]. Thus, for our purposes here, exclusion of any
baryonic physics modeling should not affect our results.

A. Halo mass function and selection of halo populations

The number density of tracers, which in the real survey
situation are galaxies, for a volume-limited sample can be
simply related to the underlying halo mass function (HMF).
The HMF quantifies the comoving number density of DM
halos as a function of their mass for a given redshift and
cosmology. Since we observe galaxies rather than their host
halos, a usual approach is to apply a chosen method of
galaxy modeling to obtain the final mock galaxy catalog. In
this work, in addition to mock galaxies, we also consider
halo populations as tracers. This exercise will allow us to
study the modified gravity signal as a function of varying
tracer number density. In what follows, we use the halo
mass function to select our halo samples choosing their
number density to reflect some realistic observational
values when using data from the current and next gen-
eration of galaxy surveys.
In standard cosmology, HMF can be modeled by, to a

high-degree universal, halo multiplicity function giving the
number of collapsed objects as a function of the mass field
variance expressed at a corresponding scale. In modified
gravity the fifth force increases the mass field variance
compared to ΛCDM, and so we can expect that the HMF in
MG will exhibit differences compared to the fiducial case
[55,101–106]. In the cumulative form, the number density
of halos above a threshold is given by

nð> M200cÞ ¼
Z

∞

Mmin

dn
dM200c

dM200c: ð12Þ

Here, as a threshold, we choose a halo mass. The object
under the above integral is the differential mass function
dnðM; zÞ=dM, which encodes the number of halos per
mass interval.
Figure 1 shows the cumulative halo mass function

(cHMF) measured from the ELEPHANT simulations and
the lower panel shows the relative difference between the
MG and GR models at redshift z ¼ 0.3. We compare our
results from the ELEPHANT simulations to theoretical HMF
predictions from [107] (hereafter T08) for both MG models
studied. The T08 HMF was calibrated using a spherical
overdensity algorithm to identify DM halos in ΛCDM
numerical simulations, thus it is consistent with the
approach used in ROCKSTAR to identify halos [90].
The T08 HMFs for MG models are not drawn in Fig. 1
since they have the same behavior as that of GR but
shifted, following the data points of each model. As
shown by the trend of the T08 HMF in Fig. 1, fðRÞ
and the nDGP predict more halos than the ΛCDM model
for masses above 1012 M⊙=h, due to the enhancement of
gravity [53,84,103,108–111].
The cHMF is of particular interest since it allows us to

select different halo populations from the simulations by
defining thresholds in halo mass, i.e., selecting halos
with masses above a certain value Mmin [for details, see

FIG. 1. Cumulative halo mass function for the different
ELEPHANT MG models taken at redshift z ¼ 0.3. The horizontal
dotted lines signal the number densities we use to define our three
halo samples. The black solid line represents the theoretical
expectation for ΛCDM, given by Tinker et al. [107]. The bottom
panel shows the relative deviation with respect to the ΛCDM
(GR) model with lines connecting the datapoints to guide the eye.
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e.g., [53]]. For that we set a fixed number density n̄ðHÞ for
each of our halo samples and define Mmin in each gravity
model separately in such a way as to match these number
densities. We define three halo populationsH1,H2, andH3

with corresponding number densities n̄ ¼ 10−4, 5 × 10−4,
and 10−3h3 Mpc−3, respectively.
The galaxy sample, hereafter denoted as G, corresponds

to central galaxies inside DM halos, whose distribution can
be approximated by a steplike function parameterized in
terms of the properties of their host halos. A more detailed
description of the HOD modeling can be found in
Refs. [51,96]. Our galaxy sample has a number density
defined by n̄ ¼ 3.5 × 10−4h3 Mpc−3, which is close to that
of the H2 halo sample.
The above number densities have been chosen to be

representative of the samples used for cosmological analy-
ses of galaxy surveys such as the SDSS [112], BOSS [5]
and eBOSS [113]. We also take into account the resolution
limits of the simulations to make sure that the shot noise
would not dominate our results. Table I shows the values of
the minimum halo mass Mmin for each gravity model used
to obtain the required number density for a given redshift.

IV. CLUSTERING MEASUREMENTS

We characterize the spatial distribution of cosmic tracers
in the ELEPHANT simulations (DM particles, halos, and
galaxies), in both real and redshift space, with the 2PCF.
We use the publicly available code Correlation Utilities and
Two-point Estimation [114] to compute the 2D 2PCF with
the Landy-Szalay [115] estimator in the comoving range
1 < s ½h−1Mpc� < 80 for 20 linearly spaced bins with
constant separation Δs ¼ 4h−1 Mpc, in order to compare
with previous measurements performed at similar
scales [53,54].
In the nonlinear regime, the clustering is well charac-

terized by a much larger variance of the density fluctuations
with respect to the one at large scales. In this regime the
distortions due to peculiar velocities of the matter tracers

may even exceed the Hubble flow producing a smearing
effect known as the “Fingers of God” (FOG) [29]. To model
the redshift-space distortions, we construct mock catalogs
from the simulations using the distant-observer approxi-
mation. The positions in real space r are converted into
redshift space s after adding the contribution due to the
peculiar velocities of the tracers along the line of sight
(LOS). In order to reduce the impact of cosmic variance in
the redshift-space distortions measurements, we average
over three different LOSs (x̂, ŷ, ẑ), then, the errors on the
2PCF measurements are estimated by the standard
deviation over fifteen measurements, obtained from the
five realizations mentioned in Sec. III. All the models
studied here exhibit the same ΛCDM background expan-
sion history, therefore, all redshift-distance relations are the
same among them. Figure 2 shows a comparison of the
spatial distribution of tracers in real and redshift space for
both catalogs of halos and galaxies in a 100h−1 Mpc
thick slice.
The information about clustering anisotropies can be

analyzed by computing multipole moments [30,116] and
clustering wedges [117,118] from the full 2D 2PCF. In
particular, we characterize the clustering either with the first
two nonvanishing multipole moments, i.e., the monopole
and the quadrupole, or with two clustering wedges of the
2PCF. Considering the expansion only up to the hexadeca-
pole, we can express the 2D 2PCF as follows [116]:

ξðs; μÞ ¼ ξ0ðsÞL0ðμÞ þ ξ2ðsÞL2ðμÞ þ ξ4ðsÞL4ðμÞ; ð13Þ

with LlðμÞ being the Legendre polynomials of degree l and
the coefficient of the expansion corresponding to the lth
multipole moment of the 2PCF:

ξlðsÞ≡ 2lþ 1

2

Z þ1

−1
dμξðs; μÞLlðμÞ: ð14Þ

Here μ≡ cos ðjs⃗j=skÞ is the cosine of the angle between the
separation vector of the tracer pair and the LOS direction.

TABLE I. Properties of the halo samples used in this work. In each case, we list the minimum halo massMmin used
to obtain the required number density n̄ for a given redshift z and gravity model.

Mmin½1013h−1 M⊙�
z Halo population n̄ ½h3 Mpc−3� GR F5 F6 N1 N5

0 H1 10−3 0.319 0.371 0.377 0.326 0.322
H2 5 × 10−4 0.724 0.833 0.805 0.740 0.729
H3 10−4 3.42 4.05 3.51 3.56 3.46

0.3 H1 10−3 0.317 0.387 0.368 0.334 0.321
H2 5 × 10−4 0.705 0.817 0.744 0.728 0.710
H3 10−4 3.02 3.55 3.06 3.18 3.06

0.5 H1 10−3 0.284 0.366 0.323 0.310 0.290
H2 5 × 10−4 0.658 0.770 0.679 0.684 0.663
H3 10−4 2.64 3.10 2.65 2.80 2.67
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An alternative and complementary measure to the multi-
pole moments are the clustering wedges [117], which
correspond to the angle-averaged ξðs⊥; skÞ over wide bins
of μ such that

ξwðsÞ≡ 1

Δμ

Z
μ2

μ1

ξðs; μÞdμ; ð15Þ

where Δμ ¼ μ2 − μ1 is the wedge width. We consider two
clustering wedges, that is the “transverse” wedge ξ⊥ðsÞ≡
ξ1=2ðμmin ¼ 0; sÞ and the “radial” (or LOS) wedge
ξkðsÞ≡ ξ1=2ðμmin ¼ 0.5; sÞ, computed in the ranges 0 ≤
μ < 0.5 and 0.5 ≤ μ ≤ 1, respectively. In this work, both
multipole moments and wedges are measured via numerical
integration of the full 2D 2PCF in the plane-parallel
approximation according to Eqs. (14) and (15), respectively.
The deviations in clustering between GR and MG

models can be quantified through the linear distortion
parameter β≡ fðzÞ=bðzÞ ≈Ωγ

mðzÞ=bðzÞ, where γ is the
so-called growth index, fðzÞ is the linear growth rate,
and bðzÞ is the linear bias parameter, which relates the
cosmic tracers with the DM density field [33,47,119–125].
The linear distortion parameter is expressed in terms of the
amplitude of the distortions of the clustering. To obtain β,
one can use as an estimator the ratio between the redshift
space and real-space monopole, denoted as RðsÞ, as well as
the ratio between the redshift-space quadrupole and the
monopole, denoted as QðsÞ [55,126–129]. We note, how-
ever, that these estimators only perform well in the linear
regime. These quantities can be written as follows [21]:

RðsÞ ¼ ξ0ðsÞ
ξ0ðrÞ

¼ 1þ 2β

3
þ β2

5
; ð16Þ

QðsÞ ¼ ξ2ðsÞ
ξ0ðsÞ − 3

s3
R
s
0 ds

0ξ0ðs0Þs02
¼

4
3
β þ 4

7
β2

1þ 2β
3
þ β2

5

; ð17Þ

where ξ0 and ξ2 are the monopole and quadrupole of the
2PCF, respectively.

V. RESULTS

We now present the results of our analysis, accompanied
by a detailed discussion. A busy reader can skip to the
conclusions in Sec. VII, where we cover all the important
findings supplemented by the final discussion. The cluster-
ing analysis of the different halo populations and the galaxy
sample has been performed at three different cosmic times
as mentioned in Sec. IV. However, below we will focus on
z ¼ 0.3, which is compatible with the BOSS LOWZ galaxy
sample (z≲ 0.4), and we will only refer to the other
redshifts where relevant.

A. Clustering in real space

The distribution of matter and halos in the real space is
characterized by statistical isotropy among all spatial
directions, in a sense of an ensemble average. This means
that all the higher multipole moments of the 2PCF with
l > 0 vanish. Thus, the matter clustering is encoded in
the monopole moment of the 2PCF ξ0ðrÞ. Figure 3 shows
the real-space 2PCF of ELEPHANT at redshift z ¼ 0.3 for the

FIG. 2. Spatial distribution of DM halos (top panels) and HOD galaxies (bottom panels) in a 100h−1 Mpc thick slice from the
ELEPHANT simulations at redshift z ¼ 0. The data represented above (below) the diagonal of each box correspond to the redshift (real)
space distribution. DM halos are plotted in the mass range ½1012; 2 × 1015� M⊙=h.
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three different halo populations and the galaxy sample for
the considered gravity models. The galaxy correlation
function closely follows the result for the H2 population,
so it was shifted upwards by 10 units to facilitate a better
visualization. The lower panels show the relative difference
of MG models with respect to ΛCDM. The results for other
redshifts are qualitatively similar, and we do not show them
here in the interest of space. Quantitatively, by comparing
the 2PCFs, we observe that, for a given MG model, the
amplitude of the clustering increases with cosmic time, as
expected, being higher for lower the redshifts. The cluster-
ing amplitude depends strongly on the mass cut of the
tracer distribution, and as a consequence, denser samples
are much more sensitive to clustering, the extreme case
being the one given by the sampleH1. This variation in the
clustering is present in all the MG models investigated,
being also an expected feature since the models share the
background history and, therefore, reproduce a hierarchical
structure formation starting from the same initial conditions
[38,130,131].
For the most sparse sample ofH3, all MG models except

F5 exhibit the shape and amplitude consistent with that of
the GR case. For the higher number density samples,
differences among models start to become more apparent
and significant. For H2, the N1-case experiences enhanced
clustering, and this signal appears to be significant on
nearly all scales up to 70h−1 Mpc. This deviation attains a

maximum at r ≃ 50h−1 Mpc, where it amounts to a 5%
increase of the ξ0 amplitude. In contrast, the F6 model is
characterized by a lower correlation strength over the
separation range of 5 ≤ r½h−1 Mpc� ≤ 50. The N5 and
F5 models for this sample exhibit deviations from GR that
are typically smaller than 1%. Moving to our highest
density halo sample H1, we observe very similar trends
as for the other halo populations, but now the N1 and F6
models also foster small, but significant, deviations from
the GR case. The increased statistical significance of the
departures that we can appreciate for this sample show a
clear advantage of the increased number density, providing
better sampling of the density field. For N5 and F5, the
increase of the correlation amplitude over ΛCDM is small,
at the 2% level, but appears to be significant up to pair
separations of r ≃ 45h−1 Mpc.
Last but not least, for the galaxy sample G, the general

impression is that the MG-induced deviations are very
much suppressed for all the models. This is not surprising,
accounting for the fact that the HOD mock galaxy catalogs
were constructed to have the same (consistent with obser-
vations) amplitude of the projected correlation function
wpðrpÞ, up to a maximum 1% variation [51,52]. Despite
this, for F5 and F6 at r ≤ 30h−1 Mpc, we can still observe
some remaining minute differences below 2%. This is
related to the fact that significant differences prevail in the
real-space 3D correlation function, suggesting that the
chameleon mechanism (operating efficiently on small
nonlinear scales) leaves a lasting imprint on the fðRÞ
galaxy clustering on those scales (see also [83]).
The scalaron fifth force affects more significantly the

growth of structures in the F5 model than in F6, that itself
mostly agrees with the ΛCDM clustering signal, especially
for low number density samples, such as H3. This effect is
neither appreciable for higher number densities as in H1

nor in the galaxy sample as shown in Fig. 3. This behavior
is well understood considering the weak modifications
introduced to GR by the scalar field in the F6 model,
therefore, only deviations within a few percent are
expected. The above results are in agreement with the
analyses performed with different simulations that also
include the same MG models [53,54,110,111].

B. Linear halo and galaxy bias

The simplest way of expressing the relation between
biased tracers (halos and galaxies) and the underlying
smooth DM density field is given by the linear bias
parameter b. This is defined as b≡ δx=δ, where δ is the
DM density contrast, δx is the density contrast of the
tracers, and the subscript x ¼ fg; hg denotes galaxies or
halos, respectively. The linear bias can be estimated from
the ratio of the real-space autocorrelation functions of the
tracer and DM field as follows:

FIG. 3. Real-space monopole of the 2PCF of halos and galaxies
at redshift z ¼ 0.3 for tracers indicated by the labels. The lower
panels show the relative difference of MG models with respect to
ΛCDM. The grey-shaded areas indicate the propagated meas-
urement errors for ΛCDM over fifteen measurements.
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bðM; r; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξxðM; r; zÞ
ξDMðr; zÞ

s
: ð18Þ

From the above we can expect that the relation between the
density field of tracers and the smooth background can be
generalized to a more complicated form, usually involving
some scale dependency. In the following analysis we will
not attempt to model any such beyond-linear bias depend-
ence. We are motivated by the fact that the scale depend-
ence of the bias is weak on the large enough scales (i.e.,
≥30h−1 Mpc) [27,132–135].
In Fig. 4 we show the measured halo (galaxy) bias as a

function of the comoving scale. In each case the shaded
area corresponds to the mean value and 1σ scatter for the
ΛCDM model. The bottom panels illustrate the relative
difference for each sample and each model with respect to
the ΛCDM case. The data shown here support our
stipulation of very weak scale dependence of the linear
bias, which is confirmed for all our samples and models.
The trend shown in Fig. 4 indicates that the linear bias
decreases monotonically with the growing number density
for all the models. Moreover, the deviation with respect to
the ΛCDM model is more significant in high density halo
populations, such asH1 than in the low density ones, for all
models except N1, which exhibits a prominent deviation in

the H3 case. At the same time, the relative deviation in the
linear bias is almost constant in all the MG models for
scales up to 60h−1 Mpc.
Looking more closely at model-specific cases, it is clear

that for both F6 and N5 the differences from the ΛCDM are
minute and hence insignificant given our sample variance.
This is expected, considering that these two variants should
exhibit the weakest deviations from the standard structure
formation scenario. Consequently, the stronger variants of
fðRÞ and the nDGP models are characterized by much
clearer and more significant departures from the GR case.
This is especially highlighted for the bias of the N1 model,
which takes systematically lower values then GR for all the
probed scales. These differences appear relatively flat with
distance and amount steadily to about ∼ −5% for all the
samples, including galaxies. The F5 variant appears here as
the most variable and interesting one: its linear bias
difference with respect to the fiducial case exhibits clearly
both scale and sample dependence. For the low-density
sample H3, the difference is small and, except for the
smallest separations, nonsignificant. The situation is quite
the opposite for the high density samples, where we
observe a peak of ∼þ4% around r ∼ 40h−1 Mpc. This
relative difference appears to be strongly suppressed at r ∼
55h−1 Mpc (where for H3 it even takes a minus sign), to
again grow beyond þ5% at r ∼ 60h−1 Mpc. However, we
believe that the feature at 60h−1 Mpc is rather artificial than
due to any genuine physical effects. This is related to the
fact that the linear bias is a ratio of two estimators that, due
to the limited-volume effects, become more and more noisy
with the growing scale, while the relative difference with
respect to the ΛCDM case is itself based on a ratio. In
addition, we know that all the involved numbers are small.
These all affect significantly the ratio in question, making it
very noisy for r ≥ 50h−1 Mpc.
From the above analysis, illustrated in Fig. 4, a very

important picture emerges. The bias of galaxy and halo
fields in MG can be significantly different from the GR
case, and the effect in general can take both the positive and
negative sign. Moreover, the differences depend on the
sample density (hence implicitly on the tracer mass). This
has been already pointed out by some earlier work
[136,137]. The sample density could potentially introduce
a degeneracy of the MG effect with the growth rate,
therefore, the latter parameter could be much closer to
the GR expectation than it really is.
Following Eq. (18), we estimate the effective linear bias

b based on an χ2 fit to the square root of the ratio of the
tracer 2PCF and the DM 2PCF over the comoving range
40 < r½h−1 Mpc� < 80 for each model, sample, and red-
shift from ELEPHANT simulations. Table II shows a sum-
mary of the measured galaxy and halo bias for all the
considered gravity models at three different redshifts z ¼ 0,
0.3, and 0.5. Figure 5 displays the evolution of the effective
bias as a function of redshift with error bars that represent

FIG. 4. Effective linear halo and galaxy bias as a function of the
comoving scale at redshift z ¼ 0.3 for tracers indicated by the
labels. The lower panels show the relative difference of MG
models with respect to the ΛCDM model. The gray-shaded areas
indicate the propagated measurement errors for ΛCDM over
fifteen measurements.

GARCÍA-FARIETA, HELLWING, GUPTA, and BILICKI PHYS. REV. D 103, 103524 (2021)

103524-10



the 1σ statistical error. The solid lines correspond to the
theoretical prediction computed using the Tinker et al.
[138] formula and by averaging the linear bias bðM; zÞ of
the selected sample as follows:

beffðzÞ ¼
RMmax
Mmin

nðM; zÞbðM; zÞdMRMmax
Mmin

nðM; zÞdM ; ð19Þ

where the mass limits ½Mmin;Mmax� have been defined in
Sec. III, while nðM; zÞ and bðM; zÞ are estimated using the
Tinker et al. [107] mass function and the Tinker et al. [138]
bias model, respectively. The trend in the bias confirms that

the nDGP models differ the most from the standard model
predictions both for halo and galaxy samples. Instead, the
fðRÞ models are in good agreement with ΛCDM, and they
deviate less at low redshifts than the nDGP ones.

C. Clustering in redshift space

Figure 6 shows the full 2D 2PCF computed at a redshift
z ¼ 0.3 as a function of the transverse s⊥ and parallel sk
separations with respect to the LOS. The black line marks
the result for the ΛCDM model from ELEPHANT simula-
tions, while each MGmodel is depicted by a different color.
Each quadrant shows the 2PCF signal for a different tracer

FIG. 5. Effective halo (galaxy) bias averaged in the range 40 <
r½h−1 Mpc� < 80 as a function of redshift for the models
considered in this work. The plot shows the bias at redshifts
z ¼ 0, 0.3, and 0.5, however, for a better visualization the redshift
of the MG models has been shifted from the mean value. Solid
line shows the theoretical ΛCDM prediction computed according
to the Tinker et al. [138] formula. The error bars represent the
propagated statistical noise and the gray-shaded areas show
a 3% error.

TABLE II. The effective linear galaxy and halo bias bðzÞ estimated from Eq. (18) for all gravity models at three
different redshifts z ¼ 0, 0.3, and 0.5.

z Sample GR F5 F6 N1 N5

0 G 1.59� 0.04 1.61� 0.05 1.61� 0.05 1.50� 0.04 1.55� 0.04
H1 1.30� 0.03 1.33� 0.04 1.30� 0.04 1.27� 0.03 1.29� 0.03
H2 1.50� 0.04 1.52� 0.05 1.50� 0.05 1.45� 0.04 1.48� 0.04
H3 2.00� 0.07 2.02� 0.08 2.02� 0.08 1.91� 0.06 1.94� 0.07

0.3 G 1.80� 0.05 1.83� 0.05 1.77� 0.05 1.67� 0.05 1.76� 0.05
H1 1.49� 0.04 1.54� 0.04 1.47� 0.03 1.44� 0.04 1.49� 0.04
H2 1.75� 0.05 1.80� 0.05 1.72� 0.04 1.68� 0.05 1.74� 0.05
H3 2.35� 0.08 2.35� 0.08 2.34� 0.08 2.23� 0.08 2.34� 0.08

0.5 G 1.94� 0.06 1.95� 0.07 1.95� 0.06 1.85� 0.05 1.88� 0.07
H1 1.61� 0.05 1.63� 0.05 1.60� 0.04 1.56� 0.04 1.58� 0.05
H2 1.92� 0.06 1.93� 0.06 1.91� 0.05 1.84� 0.05 1.86� 0.06
H3 2.58� 0.11 2.52� 0.12 2.59� 0.10 2.47� 0.10 2.51� 0.10

FIG. 6. Isocorrelation contours of ξðs⊥; skÞ at the reference
redshift z ¼ 0.3 for the models indicated in the legend, shown for
correlation amplitude levels ξðs⊥; skÞ ¼ f0.25; 0.5; 1; 2; 5g. Each
quadrant corresponds to a different tracer sample (halos and
galaxies) as labeled. The color bar to the right and the background
color of the panels indicate the amplitude of ξðs⊥; skÞ for ΛCDM
as the reference model.
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sample (galaxies and halo populations) as labeled. The
isocorrelation contours of ξðs⊥; skÞ are measured in the
amplitude range [0.25, 5]. The resulting contours of galaxy
samples for the different gravity models are very close to
each other, with the slight exception of the N1 model. This
is not surprising, as the correlation in redshift space is
determined, to the first order, by the amplitude of real-space
correlations [30]. The latter are by design set to be equal
among all the mock catalogs. A more careful statistical
inspection of the moments of 2D 2PCF would be needed to
highlight MG effects for our galaxy samples.
Halo clustering, likewise to mock galaxies, shows slight

differences for all MGmodels. These are best visible for the
populations with medium H2 and high number densities
likeH1. The clustering signals from theH3 populations are
noise dominated at all scales, as expected, and therefore,
there is no visible distinction between the MG models and
GR. In the most abundant halo population H1, there is a
clear difference between the GR case and the N1 model,
which displays an excess in the clustering. On the contrary,
the fðRÞ gravity variants exhibit a slight suppression in the
clustering signal at all scales. This behavior can be also
seen, although to a lesser extent, at small comoving scales,
∼4h−1 Mpc, despite a very similar amplitude in the FOG
for all MGmodels. However, a conclusive analysis on these
scales would require high-resolution simulations plus the
implementation of additional physical processes, which are
relevant at those scales. In the three halo selections for all
our MG models, the 2PCF for N1 deviates the most from
the GR case. For the other models, the differences, albeit
noticeable in the 2PCF isocontours, are much harder to
depict. In general, as the halo number density decreases, the
differences between MG and GR get smaller. In addition,
the selection effects related to the changing number density
(which itself is here driven by the minimum mass cut)
shows how RSD are affected at all scales. The amplitude of
clustering varies more in the transverse direction than in the
LOS, indicating that the Kaiser squashing effect is more
sensitive to the coherent motion of the tracers than the FOG
under the same mass selection.
The complicated pattern and relatively small differences

among the models, as seen in the 2D 2PCF, suggest that a
more elaborate analysis is needed to robustly quantify MG
effects. As previously pointed out in Sec. IV, projecting
ξðs⊥; skÞ onto one-dimensional statistics (multipole
moments or wedges) increases the clustering signal and
disentangles the directional dependence on clustering. In
Fig. 7 we show the redshift-space multipole moments ξlðsÞ
(upper group of plots) and clustering wedges ξwðsÞ (lower
group of plots), measured for our halo and galaxy samples
at z ¼ 0.3 for the different MG models, as labeled. In each
case the lower subpanels show the relative differences with
respect to the ΛCDM measurements.
As far as the monopole ξ0ðsÞ is concerned, we firstly

observe that it decreases as the number density increases,

mainly due to the difference in the bias of each sample, as
expected. The clustering signal of the medium number
density halo sample H2, follows closely the monopole of
the galaxy sample, which in Fig. 7 has been shifted by 10
units for visual convenience. For all our samples, both the
nDGP models exhibit a rise in the correlation amplitude
seen at all probed scales. There is also a general trend of the
braneworld gravity enhanced clustering signal that is
dropping with decreasing sample number density. In
contrast, the situation for the fðRÞ-gravity family is quite
different. Here, the effect on the monopole amplitude goes
generally in the opposite direction, and the clustering at
fixed number density seems to be slightly suppressed. The
exception from this is F5 in the richest halo sample of H1.
Another observation regarding the correlation function
monopole is that the differences in this statistic between
the MG models and the fiducial ΛCDM case generally do
not correlate with the magnitude of deviations (e.g., level of
the fifth force) of the particular MG variants. While for the
nDGP, the monopole signal for N1 is always larger than for
N5, in the chameleon fðRÞ, for some samples (i.e., G and
H2), it is the F6 variant that departs more prominently,
while for others (i.e., H1 and H3) the F5 deviates more.
Finally, while for the braneworld models the excess
clustering signal is relatively flat with the pair-separation
scale, in fðRÞ the differences are scale dependent and
suppressed for s ≥ 60h−1 Mpc.
Overall, the behavior of ξ0ðsÞ that we described above

supports the known picture in which the fðRÞ gravity
models are characterized by a very high degree of non-
linearity, even at larger scales. This is a clear virtue of the
chameleon screening mechanism: its effectiveness is a
function of the local environment, so it operates in a more
complicated manner than the Vainshtein screening of the
nDGP. The nonlinear and nonmonotonic behavior of the
fðRÞ clustering signal, as compared to the nDGP, could be,
in principle, exploited for differentiating these two classes
of screening mechanisms in the data.
The quadrupole moment of the 2PCF ξ2ðsÞ, illustrated in

the upper-right panel of Fig. 7, encodes the degree of
anisotropy generated by RSD. For all our samples, there
is only one model, N1, which fosters clear deviations from
the fiducial GR case, while the effect for N5 is only
marginally significant. Taking into account the scatter, both
fðRÞ models exhibit a signal that is statistically consistent
with the GR case. The noisy behavior that we see at
s ≤ 20h−1 Mpc, rather than a real physical feature, is likely
a manifestation of sampling noise to which the quadrupole
moment is more susceptible. The noise at those small pair
separations is additionally increased, owing to the fact that
we consider only halos and central galaxies, and due to the
halo-exclusion effect, the pair number counts are suppressed
at small scales. There could be, in principle, a real physical
MGsignal encoded at those small scales, but the properties of
our simulations and catalogs are not designed to grant such
analysis at this time.
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The analysis of the clustering wedges (see Fig. 7, lower
panels) paints a picture complementary to the one offered
by the multipoles. It is worth noting that the clustering
anisotropies, as measured in each of the two angular
wedges, disclose stronger MG signals than it was in the
case for the multipole moments. Here, the relative deviation
from GR of the LOS wedge ξkðsÞ, for the nDGP models,

reaches 10% (5%) for N1 (N5). This is roughly a factor of
two more than we saw in the monopole analysis. What is
even more important is that the increased relative difference
is not affected by the statistical error, which remains at a
level similar to that of the monopole measurements. Our
results agree here with the earlier work of Barreira et al.
[50], who studied clustering wedges for similar variants of

FIG. 7. Redshift-space multipole moments of the 2PCF ξ0 and ξ2 (upper panels) and clustering wedges ξk and ξ⊥ (lower panels) for the
different gravity models and tracer samples used in this work as indicated by the labels. The lower subpanels in each row show the
difference of MG models with respect to the ΛCDM measurements. The gray-shaded areas correspond to the standard deviation for
ΛCDM over fifteen measurements obtained from five different realizations.
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the nDGP models. This opens up an exciting avenue of
using the clustering wedge statistics to hunt for the MG
signal in galaxy clustering.
The changes in the clustering are also manifested in the

transverse wedge ξ⊥ðsÞ, which gives valuable information
from an observational point of view, considering the
degeneracy between RSD and other observational phenom-
ena such as the Alcock-Paczyński effect [139]. The differ-
ence between GR and MG seen in the amplitude of the
transverse wedge reveals a few interesting facts. First, we
notice that for the perpendicular projection the deviations in
clustering of galaxy samples for all MG models are much
smaller than it was in the case for the LOS direction. This is
driven by the fact that the same projected clustering wpðrpÞ
was imposed in the construction of mock galaxy catalogs.
In contrast, different halo populations reveal somewhat larger
deviations from the GR case. Second, the MG effect seen in
ξ⊥ðsÞ seems to be contained only to small scales
s ≤ 40h−1 Mpc. Here, the maximal deviations are attained
at the highly nonlinear separations of 10h−1 Mpc.
Furthermore, the transverse wedge of the N1 model deviates
from GR by about 10% at small scales s < 20h−1 Mpc,
although this behavior is also displayed by the multipole
moments. In this case the angular clustering signal is well
characterized by a monotonically decreasing function, being
almost independent of the number density of the halo sample.

D. Linear distortion parameter β

All the effects revealed by our analysis of the multipoles
and wedges should lead to measurable differences in the
linear-theory growth-rate parameter f, as estimated by
various combinations of the clustering statistics. Since
we are measuring clustering of biased traces (i.e., halos
and galaxies), we cannot directly measure the growth rate.
Instead, we can estimate the linear distortion parameter β
by fitting the combinations of the measured multipole
momentsQðsÞ to the function given by Eq. (17). Following
earlier related studies [e.g., [51,54]], we only keep the
results derived from QðsÞ since it already contains the
information from RðsÞ in its denominator. The dependence
on the quadrupole suggests that theQðsÞ estimator could be
more prone to noise than the RðsÞ ratio alone. However, it is
more advantageous to use the former as it does not depend
on the shape of ξðrÞ [116,140]. Thus, when comparing with
observational data, no assumptions on the DM clustering
signal in the real space are required. To estimate βðzÞ from
the quadrupole ratio QðsÞ, we perform an χ2 minimization
for each of the models, samples, and redshifts separately.
Figure 8 shows our β measurements as a function of

redshift for all our samples and models. The 1σ error bars
on β have been estimated via direct propagation of the
uncertainties ofQðsÞ since it is a one-parameter model. The
solid line represents the linear theory prediction for GR
computed using the bias prescription of Ref. [138] and
growth rate of the fiducial cosmology, while the shaded

region corresponds to a 3%deviation from it. This percentage
is for reference, and it is well below the current errors on β
obtained from observations such as the 6-degree Field
Galaxy Survey (6dFGS). Adams et al. [141] have recently
reported statistical uncertainty on β of about 15% and
systematic one of ∼17% from this survey. Table III displays
the best-fit values of β for all the samples and models
investigated. As it can be appreciated, our constraint for the
linear distortionparameter at z ¼ 0 is in goodagreementwith
the value by [141], β ¼ 0.289þ0.044

−0.043ðstatÞ � 0.049ðsysÞ,
whichwas based on jointmeasurements of RSD and peculiar
velocities from the 6dFGS.
In Fig. 9 we additionally show the β parameter values as

a function of the number density of our samples. The results
are plotted for three different redshift snapshots z ¼ 0, 0.3,
and 0.5, as indicated by the labels. The solid black line
represents the linear-theory prediction for β at the given
number densities of the samples in the GR scenario. The
points that correspond to particular number densities are
connected using straight lines for visualization. The shaded
region also corresponds to a 3% deviation from the GR
prediction, as in Fig. 8. Beside synthesizing our previous
findings, Fig. 9 allows us to additionally describe the
behavior of β in terms of both the sample density (hence
corresponding tracer halo mass) and its redshift. In par-
ticular, we note a monotonic increase of β with increasing
number density. Although the changes in the predicted
slope are not dramatic when comparing the different
redshifts, the slight shift of β shows its sensitivity with

FIG. 8. Linear distortion parameter βðzÞ of halos (galaxies)
from ELEPHANT simulations as a function of redshift for the
models considered in this work. For better visualization the
datapoints for the MG models have been shifted horizontally
from the mean values z ¼ 0, 0.3, and 0.5. Solid lines show the
theoretical ΛCDM prediction computed according to the Tinker
et al. [138] bias prescription and growth rate of fiducial
cosmology. The error bars represent the propagated statistical
noise and the gray-shaded areas show a 3% error on β for
comparison.

GARCÍA-FARIETA, HELLWING, GUPTA, and BILICKI PHYS. REV. D 103, 103524 (2021)

103524-14



respect to the sample density and, consequently, the impact
of the degeneracy between the halo or galaxy bias and the
growth factor.

The Q estimator offers, in principle, also a possibility to
determine the growth rate. To do so, however, one needs to
either obtain information on the value of the sample galaxy
bias parameter or assume one. In general, it is not always
guaranteed that a simple linear theory prediction for the
bias will lead to an accurate growth rate estimate from the
distortion parameter. In some cases the linear bias relation
might not be an adequate description of the data, and
therefore, higher order bias approximations may be
required to account for the scale dependency [142–145].
In fact, the Kaiser [30] enhancement is sensitive to the
physics on nonlinear scales. Some of these effects might
not be captured entirely by our relatively low resolution N-
body simulations. In particular, when β is determined from
the quadrupole to monopole ratio, the systematic errors are
significant even at the scales considered. This can be well
appreciated by noticing that even our ΛCDM measure-
ments are not in perfect agreement with the linear theory
predictions. For this reason, we attempt to recover the true
value of the distortion parameter in a bias-independent
fashion. As described in the following Sec. VI, we general-
ize the clustering estimator initially proposed by Arnalte
et al. [53], which allows us to analyze the clustering signal
with less impact of halo and galaxy bias and, at the same
time, increase the signal-to-noise ratio of the correlation
function.

VI. RELATIVE CLUSTERING ANALYSIS

The above-discussed estimators of the distortion param-
eter β, based on the QðsÞ and RðsÞ ratios, depend strongly
on the bias, and therefore, the straightforward interpretation
of the clustering is limited by the degeneracy between the
growth rate and the bias, both encoded in β. Those ratios
might also suffer from a theoretical model bias since they
ignore the effects of the LOS velocity dispersion [see, e.g.,
[41]]. To foster analysis of clustering observables that
would be less dependent on the bias model, we will now
consider an estimator inspired by Arnalte-Mur et al. [53],

TABLE III. Best-fitting values of the linear distortion parameter βðzÞ of halos and galaxies, obtained using the
QðsÞ estimator, Eq. (17).

z Sample GR F5 F6 N1 N5

0 G 0.279� 0.017 0.283� 0.018 0.279� 0.019 0.321� 0.021 0.289� 0.017
H1 0.349� 0.017 0.352� 0.016 0.351� 0.018 0.385� 0.016 0.361� 0.017
H2 0.304� 0.020 0.307� 0.018 0.305� 0.019 0.340� 0.018 0.316� 0.018
H3 0.234� 0.028 0.233� 0.027 0.231� 0.031 0.266� 0.029 0.239� 0.031

0.3 G 0.328� 0.019 0.334� 0.018 0.330� 0.019 0.377� 0.019 0.342� 0.018
H1 0.405� 0.016 0.403� 0.016 0.407� 0.017 0.449� 0.016 0.422� 0.019
H2 0.346� 0.019 0.351� 0.020 0.354� 0.020 0.391� 0.019 0.363� 0.018
H3 0.266� 0.030 0.264� 0.024 0.266� 0.030 0.305� 0.026 0.265� 0.029

0.5 G 0.340� 0.020 0.345� 0.021 0.342� 0.020 0.388� 0.022 0.353� 0.021
H1 0.419� 0.017 0.421� 0.016 0.426� 0.018 0.466� 0.019 0.427� 0.017
H2 0.357� 0.018 0.360� 0.020 0.359� 0.017 0.403� 0.020 0.363� 0.018
H3 0.272� 0.030 0.276� 0.028 0.275� 0.025 0.302� 0.034 0.282� 0.028

FIG. 9. Linear distortion parameter βðzÞ, as a function of the
number density of the tracer samples used in this work (halos and
galaxies). Results for three different redshifts z ¼ 0, 0.3, and 0.5
are shown as indicated by the labels. The error bars represent the
propagated statistical noise and the gray-shaded areas show
a 3% error.
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where a ratio between 2PCFs of different halo populations at a
chosen scale was studied. In that work, the relative clustering
ratioR for themonopole of the 2PCFof halo populationswas
introduced. Taking the ratio of the two amplitudes of 2PCFs
eliminates the linear bias contribution to the first order. Here
we extend that definition to the quadrupole moment and
clustering wedges of the 2PCF. This will allow us to look for
signatures of MG encoded also in the higher-order multipole
moments of the anisotropy produced by RSD.
The clustering ratio of multipole moments of order l, or

clustering wedges w, Rl;w, is defined as follows:

Rl;wðs;HjHref ; srefÞ ¼
s2ξl;wðsjHÞ

s2refξl;wðsref jHrefÞ
; ð20Þ

whereHref is a reference halo (galaxy) sample, and sref is a
fixed reference (comoving) scale. The choice of the
reference halo/galaxy sample should be made in a way
to minimize the effect of noise. In general, a population
with the highest abundance would seem best suited here.
However, in the case of data from real galaxy surveys, an
optimal galaxy population could be the one with the best
completeness or the largest sky coverage. Nevertheless, in
our calculations, we use uniformly selected halo and galaxy
samples considered in a distant observer approximation.
Thus, we opt for a simple criterion of the highest sampling
rate for our choice of the reference halo population, i.e., in
our case,Href ¼ H1 of number density n̄ ¼ 10−3h3 Mpc−3.
Sincewe deal with only one galaxy sample, it will requite

special treatment. The reference and target populations will
be identical, so the clustering ratios will reduce to a
normalization of the signal by its amplitude at the reference
scale s ¼ sref . This will also be the case whenever we
computeR for the reference halo sample itself. Therefore, in

all these cases, the relative clustering maximizes the
differences between the MG models depending on the
reference scale sref . Inwhat follows,we explore the behavior
of the relative clustering ratios by considering two different
reference scales, i.e., sref ¼ 16 and 64h−1 Mpc. These are
the same values as used by [53]. Table IV gives the
amplitudes of the multipole moments (top) and clustering
wedges (bottom) of the 2PCF for GR at these reference
scales. The four panels of Fig. 10 show the relative
differences in the clustering ratio for the monopole R0

(left-hand panels) and the quadrupole R2 (right-hand
panels) for all our halo and galaxy samples taken at the
discussed reference scales, upper panels for sref ¼ 16 and
lower panels for 64h−1 Mpc. Similarly, Fig. 11 displays the
relative difference between the clustering ratio defined
for wedges, parallel Rk (left-hand panels) and transverse
R⊥ (right-hand panels), again for sref ¼ 16 at the top and
64h−1 Mpc at the bottom.
The analysis of the generalized clustering ratio that we

have introduced in Eq. (20) leads to interesting conclusions.
In general, no single ratio is the “smoking gun” for the MG
imprint and various models exhibit beyond-GR signals, if
any, in various statistics and for different tracer populations.
Looking first at Fig. 10, for the monopole ratio R0, we see
that for the H3 halos both F5 and N1 show clear deviations
with respect to ΛCDM of ∼ −5%, for both reference scales.
Some signal can be also observed for these models inH2 for
sref ¼ 16h−1 Mpc, and for N1 only in theH2 and G tracers if
sref ¼ 64h−1 Mpc. Also the F6 model exhibits some depar-
tures from GR in this statistic, namely forH2 andH3 for the
smallest reference scale, and for G with the 64h−1 Mpc
reference. For all other combinations of MGmodels, tracers,
and reference scales, the differences in R0 with respect to
ΛCDM are mostly within the statistical noise.

TABLE IV. The amplitude of the multipole moments (upper part) and clustering wedges (lower part) of the 2PCF
for GR at the reference scale sref used in the clustering ratios.

ξ0ðsrefÞ ξ2ðsrefÞ
z Sample 16h−1 Mpc 64h−1 Mpc 16h−1 Mpc 64h−1 Mpc

0 Href 0.314� 0.001 0.011� 0.001 −0.141� 0.001 −0.018� 0.001
Gref 0.449� 0.001 0.015� 0.001 −0.109� 0.002 −0.021� 0.001

0.3 Href 0.317� 0.001 0.011� 0.001 −0.165� 0.001 −0.021� 0.001
Gref 0.441� 0.002 0.0140� 0.0004 −0.145� 0.003 −0.024� 0.001

0.5 Href 0.313� 0.001 0.0100� 0.0003 −0.174� 0.001 −0.021� 0.001
Gref 0.436� 0.001 0.014� 0.001 −0.165� 0.002 −0.024� 0.001

ξ⊥ðsrefÞ ξkðsrefÞ
z Sample 16h−1 Mpc 64h−1 Mpc 16h−1 Mpc 64h−1 Mpc

0 Href 0.261� 0.001 0.0040� 0.0004 0.367� 0.001 0.0180� 0.0004
Gref 0.408� 0.002 0.490� 0.001 0.490� 0.002 0.023� 0.001

0.3 Href 0.255� 0.001 0.0030� 0.0004 0.379� 0.001 0.0190� 0.0004
Gref 0.387� 0.002 0.496� 0.001 0.496� 0.002 0.023� 0.001

0.5 Href 0.248� 0.001 0.0020� 0.0004 0.378� 0.001 0.0180� 0.0004
Gref 0.374� 0.002 0.498� 0.001 0.498� 0.002 0.023� 0.001
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The quadrupole clustering ratio R2 seems to be less
sensitive than R0 as a discriminant of gravity models. For
the 64h−1 Mpc reference scale, most of the MG model-
population combinations do not show differences from GR
that would stand out from statistical scatter, only N1 offers

a strong signal at 20 < s½h−1 Mpc� < 30. The situation is
better for sref ¼ 16h−1 Mpc, where for all the tracer
populations, the N1 model exhibits significant, of
∼þ 10% or larger, deviations from ΛCDM in this statistic.
For G, H1, and (less significantly) H2, also N5 could be

FIG. 10. Relative difference of the MG clustering ratios with respect to the ΛCDM measurements for both the monopole (left) and
quadrupole (right) of the 2PCF of halos (galaxies), as indicated by the labels, at two different reference scales sref ¼ 16h−1 Mpc (upper
panels) and sref ¼ 16h−1 Mpc (lower panels). The gray-shaded areas correspond to the standard deviation for GR over 15 measurements
of the 2PCF estimation.
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possibly discriminated from GR using R2 with the smaller
reference scale; in fact, for galaxies, the signal is in this case
of the same strength for both the nDGP models. Some
signal is visible also for F6 for the middle tracer popula-
tions (H1 and H2), but its amount of ∼ −2% is hardly
outside the statistical errors.
In Fig. 11 we illustrate the differences between MG and

GR for the clustering ratios computed for the parallel and

perpendicular redshift-space wedges. For both wedge types
and the two reference scales, N1 generally departs from GR
by several percent, although there are exceptions for some
of the populations where the signal is not significant. While
the mass selection of H3 seems to be make it possible to
distinguish the effects of MG in the F5 model, which
departs from GR by up to 5% up to 60h−1 Mpc, for the
denser samples this is no longer possible in general,

FIG. 11. Same as Fig. 10 but for the ratios of the redshift-space clustering wedges (parallel and perpendicular) of the 2PCF.
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therefore, this behavior is somewhat reverse with respect to
N1. Furthermore, the ratio of the parallel wedge evaluated
for both reference scales shows that the relative differences
of the clustering of N5 increase monotonically with scale,
while these appreciable differences do not appear in the
conventional analysis of wedges when comparing with
respect to the ΛCDM model. Next, for the clustering ratio
of the transverse wedge, it is not efficient to use a large
reference scale sref ¼ 64h−1 Mpc to disentangle the screen-
ing effects of modifications of gravity. Although the
relative clustering attempts to eliminate the dependence
on the linear bias in the correlations, the F6 model shows a
trend that tracks closely the standard model, not being
distinguishable even when the densest halo population is
considered. This means there are other features of the
structure growth predicted by MG models, especially in
fðRÞ-based models such as F6, that are strongly degenerate
with ΛCDM and that do not allow us to unveil the effects of
modified gravity with RSD, and we cannot even fully
remove the issue of the linear bias when using the
clustering ratios.

A. Estimation of β from clustering ratios

We propose a new estimator for the redshift-space
distortion parameter β based on linear theory results and
the above-introduced relative clustering ratio, given a
reference sample and scale. It is defined via the following
equation:

PðsÞ ¼ ξDMðrÞ
ξDMðrrefÞ

β2refðsÞ
1þ 2

3
βref þ 1

5
β2ref

s2

s2refR0ðsÞ
;

¼ ξDMðrÞ
ξDMðrrefÞ

β2refðsÞ
Rðβref ; sÞ

s2

s2refR0ðsÞ
: ð21Þ

Here, RðsÞ is given by Eq. (16), and this PðsÞ estimator is
an extension of the Q and R statistics discussed in Sec. IV.
Although, for a theoretical analysis, the real space 2PCF
can be obtained from Boltzmann solvers that implement
HALOFIT [146], such as CAMB [147] or CLASS [148]; we
focus instead on the expected values that can be measured
from observables in redshift space. The real-space con-
tribution in Eq. (21) can be canceled out by evaluating
PðsÞjsref , which gives:

PðsÞjsref ≡
β2ref

RðβrefÞ
1

R0ðsrefÞ
¼ β2

RðβÞ : ð22Þ

As P can be obtained directly from the measured 2PCF, this
provides a natural scaling of the distortion parameter for
MG cosmologies, both for halo and galaxy samples. As the
main consequence of implementing the P estimator, we
highlight that the accuracy in the resulting β value for a
given number density, different from the reference sample,
will depend strongly on how well βref ≡ βðsref ;HrefÞ is

FIG. 12. Linear distortion parameter βðzÞ obtained from the
clustering ratios of halos (galaxies). The different symbols
correspond to different βref values used in the P estimator
Eq. (22), as illustrated in the legend. For better visualization,
the redshift of the MG models has been shifted from the mean
values z ¼ 0, 0.3, and 0.5. The solid line shows the theoretical
ΛCDM prediction computed according to Tinker et al. [138]. The
error bars represent propagated statistical noise and the gray-
shaded areas show a 3% error for reference.
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constrained, i.e., the distortion parameter obtained from the
reference sample and scale. Figure 12 shows the linear
distortion parameter obtained from the P estimator, for all
MG models and samples, in both reference scales in which
the clustering ratio was evaluated, i.e., sref ¼ 16 and
64h−1 Mpc, as well as for the linear prediction, as indicated
by the different symbols. As previously pointed out in
Sec. VI, the H1 population exhibits self-consistent results
since it corresponds to the reference sample.
For all tracers, using βref for sref ¼ 16h−1 Mpc leads to

significantly underestimated β, when compared to the
linear theory. This effect gets more pronounced at low
redshifts z ≤ 0.3. The amount of this bias varies from up to
45% for the galaxy population, down to 15% for H3. This
underestimation is not surprising, as at 16h−1 Mpc the
amplitudes of the 2PCF are significantly affected by the
FOG effect and other potential issues connected to small
nonlinear scales. Since we do not attempt to model the
velocity damping term, our estimation of linear-theory β
using the PðsÞ estimator must give a result biased low. In
contrast, using βref for sref ¼ 64h−1 Mpc yields much more
self-consistent results. This is expected since the impact of
the random virialized motions of halos and galaxies onto
the clustering is much weaker at those scales when
compared to the weakly nonlinear regime at 16h−1 Mpc
[22,127,149].
Assuming that all the relevant effects are modeled

precisely, the P-based estimator for β would foster a
significant measurement of the distortion parameter. In
principle, it would offer precision that should allow to
distinguish between ΛCDM and at least the F5 and N1
models. We can emulate such a situation by using a linear-
theory prediction for each model as our βref. In that case, we
obtain a much better accuracy of the extracted βðzÞ than
from theQðsÞmeasurements. Of course, an actual real-data
measurement cannot assume a value of the parameter that is
to be measured. However, our exercise with taking βref ≡
βlinear illustrates a theoretical accuracy limit, which one can
approach by carefully modeling all the relevant nonlinear
effects, such as velocity damping and scale-dependent
galaxy bias. This will be explored in future work.

VII. DISCUSSION

In this paper we have performed a systematic search for
modified gravity signals that would be encoded in various
halo and galaxy clustering statistics. Starting from linear
theory, we considered a set of basic predictions, such as
halo mass function, linear growth rate parameter, and
effective linear bias. We have employed a set of N-body
simulations, the ELEPHANT suite, and used mock halo and
galaxy catalogs to construct three halo (H1;2;3) and one
galaxy (G) samples. We then proceeded to measure the full
2D two-point correlation function using a distant observer
approximation for redshift-space distortions modeling.

Next, we have studied various moments of the full 2D
2PCF and other related statistics against their potential
sensitivity to the underlying gravity model. Our main focus
was on the z ¼ 0.3 snapshot. This epoch, from all the
available snapshots, should be the closest representation of
the BOSS LOWZ (z≲ 0.4) data, the characteristics of
which were used to construct galaxy mock catalogs in
ELEPHANT. We can summarize our most important findings
as follows.

A. Clustering in the real space

The amplitudes of the matter 2PCF and power spectrum
are enhanced in MG models, compared to the GR baseline
prediction. This is a result of a continued action of the fifth
force on the DM fluid. The net effect seen in simulations
agrees well with the enhancement of the linear growth-rate
parameter as predicted from the perturbation theory.
However, this effect is not translated straightforwardly to
the measured galaxy and halo 2PCFs. We have shown that
here the additional factors, like biasing and population
selection criteria, affect the resulting correlation ampli-
tudes. These all add up to produce sometimes counter-
intuitive or surprising results. For example, the N1 model is
characterized by an excess over the ΛCDM amplitude for
H1 andH2 samples but shows no significant difference for
H3 and G. In contrast, the F5 model predicts weaker
clustering for the H2 sample, while for all the other
populations it is close to GR predictions. In addition, there
is no clear trend with the MG signal and the sample density;
as for the F5 case, our sparsest population H3 can exhibit
similarly strong deviations as N1 forH1. For all models, the
galaxy sample exhibits a clustering amplitude consistent
with each other with a typical scatter of 1–2%. This result is
expected, as by construction the amplitude of the projected
correlation function was enforced when building the HOD
mocks. The overall picture emerging from our analysis of
the real-space clustering points to significant nonlinear
behavior across various samples and models. This empha-
sizes the need to use carefully designed simulations for
predicting halo and galaxy clustering in MG.

B. Halo and galaxy bias

Our study clearly shows that the linear bias parameter in
MG can differ significantly from the GR one for mass-
selected samples. The departure from GR of the linear bias
at the fixed halo mass has been already indicated by
previous studies [see, e.g., [49,50,149,150]]. Here, we also
showed that the effective bias, representative of the fixed
number-density samples, varies across models for the same
sample selection. Our results also confirm that for all the
studied MG models, as well as for the GR case, the scale
dependence of the linear bias is weak. The resulting relative
differences of the bias with respect to ΛCDM
is also relatively flat and only slightly changing with
scale. The F5 model is a clear exception here, however.
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The deviation of the F5 bias for all but H3 samples
experiences visible nonlinear scale dependence.
Noticeably, for this fðRÞ model the bias usually takes
values higher than in ΛCDM. In contrast, for the N1 case it
is always lower than for GR for all our samples. F6 and N5
show much smaller differences that are typically not
significant, given the scatter. We also studied the redshift
evolution of the bias parameter in the range of 0 < z < 0.5.
We found that the differences from GR are larger at higher
redshift, indicating that bias modeling accounting for MG-
related physics should be really important for all z > 0
galaxy data.
In general, we find that the bias of galaxy and halo

samples can take significantly different values in MG than
in the fiducial ΛCDM model. The net effect can have both
positive and negative signs and additionally depends on the
sample number density. This indicates that there is an
important degeneracy between the enhanced structure
formation, as predicted by the increased growth rate of
MG models, and their bias values, different than in GR.
This degeneracy needs to be carefully considered in all MG
growth-rate measurements employing biased tracers, and
therefore, its impact on the growth-rate estimation must be
eliminated or at least minimized.

C. Clustering in the redshift space

The isocorrelation contours of the MG 2D 2PCF exhibit
visible deviations from the GR case for the three halo
samples. For the case of the galaxy sample, the deviations
of the contour lines are much milder than in GR. The
modulation of MG effects with the changing number
density, from H3 to H1 samples, highlights that the
amplitude of real space clustering varies more in the
transverse than the LOS direction.

1. Monopole moment of the 2PCF

We find that the clustering amplitudes of the H2 and G
samples are very close to each other when paired consis-
tently for all MG models. This results in very similar, albeit
not identical, trends of departures from GR in those two
samples. For all samples, N1 shows a clustering excess in
the ξ0ðsÞ amplitude at all probed scales. The magnitude of
this excess is also correlated with the number density of the
sample. The signal for N5 follows qualitatively the same
trends but with moderately smaller excess amplitude. The
fðRÞ family exhibits quite different behavior. Here, typi-
cally the monopole amplitude takes lower values than in the
ΛCDM case. However, the F5 model for the H1 sample
departs from this trend as ξ0ðsÞ takes here values higher
than GR. For the nDGP models, the observed excess of the
clustering amplitude is relatively flat with scale, while the
fðRÞ family show some weak scale dependence, with
smaller scales usually showing a stronger signal. We can
attribute this latter behavior to the chameleon screening

mechanism that, due to its environmental dependence, adds
additional variability with scale in this class of models.

2. Quadrupole moment of the 2PCF

The analysis of the quadrupole moments yields one clear
prediction: only the N1 model shows a signal of deviation
from GR that is strong and statistically significant. The net
amplitude boost is quite large and takes up to 20% for all
four samples. N5 also shows some deviations, but they are
much more minor in the amplitude and hence only margin-
ally significant. Both of our fðRÞ variants show virtually no
signal here, as their quadrupole moments take values that
are very close to the fiducial GR case.

3. Clustering wedges

The signal of the MG-enhanced structure formation
appears to be better visible in the analysis of the clustering
wedges than of the multipoles. The net effect on the
amplitude boost of the LOS wedge reaches 10% and 5%
for N1 and N5 variants, respectively. The significance of
this signal is also prominent since the statistical uncertainty
levels remain comparable with the one for the monopoles.
This shows promise of using the LOS clustering wedges for
rendering stronger constraints on the nDGP class of
models. On the other hand, for the perpendicular sky
direction, the galaxy sample was much less sensitive to
MG effects. The effect was still prominently present in the
halo samples but now contained only to small nonlinear
scales. Thus, we argue that the perpendicular clustering
wedge is not well suited for testing growth-rate deviations.
Interestingly, for both parallel and perpendicular wedges
the amplitudes for fðRÞ samples are close to the ΛCDM
case, deviating by no more than ∼2%. These indicate that
the wide-angle integration over the 2D 2PCF results in a
statistic that is rather insensitive to the fðRÞ-model effects.

4. Linear distortion parameter β

Our measurements of βðzÞ performed with the quadru-
pole-based estimator QðsÞ clearly illustrate that the
beyond-GR modified bias and the modified growth rate
are combined in a way that is not straightforward to model
nor account for it, at best. In the case of N1, where the
increased fðzÞ is accompanied by a decrease of the galaxy/
halo bias, the net effect on βðzÞ is always positive. This is
reflected in the estimated β values that clearly, for all
redshifts and samples, lie systematically above the ΛCDM
case. The N5 model should, in principle, exhibit a similarly
combined trend, but the net effect is small given our
statistical uncertainties. Therefore, our results here are only
offering a hint in this direction.
For both fðRÞ variants we find, however, that the

resulting distortion parameter for all samples and redshifts
is always very close to the fiducial GR case. The weak and
nonsignificant result for F6 is actually expected as this
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model, in general, is characterized by only a very weak
departure from the GR structure formation. For the F5
model, the increased bias conspires against the enhanced
growth rate. In this case the total effect brings β values
much closer to the ΛCDM scenario. This might be some-
what surprising given the fact that the F5 variant in the
linear regime deviates rather significantly from GR.
The overall picture emerging is this: while the quadru-

pole growth rate estimator offers good sensitivity to the
nDGP models, it performs very poorly as a method to
differentiate between GR and F5 or F6.

D. Measurements of the clustering ratios

The relative clustering ratios promise to be less suscep-
tible to the growth rate-bias degeneracy, as revealed by our
analysis of the estimators based on correlation function
moments. This is related to the fact that, in the ratio, the
effect of the first-order linear bias contribution is reduced.

1. Ratios of multipole moments

The analysis revealed that the smaller of our two
reference scales, i.e., 16h−1 Mpc, in general, fosters bigger
differences of the MG clustering ratios versus the ΛCDM
case than for sref ¼ 64h−1 Mpc. For halos, on top of the
notoriously strong signal of N1, only the monopole ratio
taken from theH3 population contained a significant signal
for another model, F5 in this case. We find, however, a very
promising result for the galaxy population and the quadru-
pole ratios. In this case, both N1 and F5 are characterized
by a clear and significant signal attaining nearly a ∼10%
difference from GR with ∼2σ significance. The results
taken for the reference scale at 64h−1 Mpc are character-
ized by a much bigger scatter. This has diminished the
significance of nearly all the signals, with two notable
exceptions for the monopole ratios of H3 and G samples.
The H3 population of N1 and F5 models presents a ∼5%
deviation but with a marginal 1σ significance. Among the
exciting results for the galaxy sample, we find a clear signal
of 5% for the F6 model with statistical significance ≥1.5σ,
which emerges at s≲ 40h−1 Mpc for R0. The G sample
yields also marginally significant deviation for N1 at the
3% level.

2. Ratios of clustering wedges

The landscape is largely similar for the case of the
clustering wedge ratios. Although the MG effects are now
typically smaller at sref ¼ 16h−1 Mpc than at 64h−1 Mpc,
the significance behaves actually inversely. From the
combination of the scales and models, we showed that
the ratios of the clustering wedges can actually accom-
modate significant deviations for N1 and F5 MG variants.
Looking at smaller scales, also the F6 and N5 models
manifest departures from GR. Here, an especially interest-
ing aspect is a large deviation of 12% deviation pertaining

for scales up to 50h−1 Mpc that the F6 model shows in the
galaxy sample. This signal maintains a nearly 1σ signifi-
cance for all the scales.

3. Estimation of βðzÞ
Using the definition of the clustering ratios, we have

formulated a new estimator for β based on the ratio of two
monopoles in redshift space, i.e.,R0. Applying this estimator
for ratios taken at sref ¼ 64h−1 Mpc results in a similar
performance, as in the case of the standard Q-based β-
estimator. For the small reference scale sref ¼ 16h−1 Mpc,
the distortion parameter values are largely underestimated,
which indicates that the nonlinear effects at those scales, both
in the velocity and the density field, are significant. Ignoring
this leads to a severe bias in the β-parameter estimation.
Using additional information, in our case the value of the
linear-theory predicted βref , greatly improves the accuracy
and the performance of the new estimator. Now, for most
redshifts and samples the results for all MG variants are
clearly separated; this illustrates the power of more thorough
modeling. Using the linear theory prediction allows one to
break the bias-growth-rate degeneracy. This exercise yields,
therefore, a theoretical maximal sensitivity of the R0-based
estimator, which could be achieved in the case of accurate
small-scale modeling. This modeling would potentially
include scale-dependent nonlinear bias and velocity
damping.

VIII. CONCLUSIONS

The enhanced structure formation, fostered to a various
degree by all MG scenarios we considered, leads to clear
predictions in the linear regime. However, the presence of
highly nonlinear fifth-force screening mechanisms, i.e., the
Vainshtein and the chameleon effects, in general, increase
significantly the total degree of nonlinearity in such
scenarios. Our analysis of the redshift-space clustering
of four different samples across five variants of structure
formation scenarios clearly confirms that there is rich
potential in using such clustering statistics, both for testing
the self-consistency of GR, as well as for searching for
alternative MG signals. We have unveiled MG signals
present in the various statistics, such as multipole moments,
clustering wedges, and clustering ratios, across our halo
and galaxy samples. Similar results for some of the
statistics considered here were previously found by other
authors [see, e.g., [47–49,51,53,54,85,88]].
The deviations from the GR baseline of the various

clustering statistics should manifest themselves as meas-
urable differences in the linear growth-rate f. A common
procedure to measure it involves extracting the fσ8 product
from the best-fit model of the data. This combination is
treated as a convenient single parameter to be compared
across different data sets and different models. What is
actually measured, however, is βσG8 , a product of the linear
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distortion parameter normalized by a given galaxy sample
linear variance σG8 , taken at s ¼ 8h−1 Mpc. Therefore,
marginalization over bσ8 needs to be done in order to
obtain an fσ8 measurement. Our analysis is indicating
potential dangers of this procedure if the resulting con-
straints on fσ8 are to be used for testing gravity. Due to
highly nonlinear behavior of tracer bias in modified
gravity, especially in the case of chameleon fðRÞ theories,
such naive marginalization may lead to a biased fσ8 result.
Only when the scale dependence of MG, GR bias, and
other sources of degeneracy are well mapped, can a
comparison of fσ8 for different gravity models and galaxy
samples be regarded as self-consistent and free of severe
systematics.
The effective galaxy/halo bias in the MG models we

studied here can differ from the GR baseline by at least
σb=bMG ≃�0.05. Such variability, if unaccounted for, will
add a systematic effect into the growth-rate measurement.
A robust study based on high-resolution simulations for
each inquired MGmodel is needed to chart the growth-rate-
bias degeneracy and add such modeling into fσ8 determi-
nation. In case such robust modeling is not yet available for
a given MG model, we advocate a safer approach consist-
ing of using the linear distortion parameter instead. In
addition, βðzÞ can be readily measured for each galaxy
sample separately and used for constraining and comparing
GR and MG consistently within the given dataset. The
trade-off is that the resulting β parameter is less sensitive to
a modified growth rate in the models, where the galaxy bias
can be modified in a nonlinear way, such as fðRÞ. When

dealing with models that accommodate more predictive
bias modifications, such as the nDGP class, βðzÞ already
could be used for obtaining robust constraints on strongly
deviating variants, such as N1 tested here. If the nuisances
are controlled and viably modeled, this parameter can yield
competitive constraints on MG models from the current
and, especially, future spectroscopic galaxy surveys.
Our study also indicates that smaller scales contain much

more constraining power when using RSD for testing
gravity. While this is a relatively well-known and appre-
ciated fact for the case of the standard ΛCDM analysis, it is
even more vital to tap the small-scale potential for con-
ducting competitive and stringent MG tests with the use of
clustering data. A natural next step to exploit this potential
would be a systematic study of the nonlinear small-scale
bias and the effects of galaxy pairwise velocity dispersion
in the context of RSD and MG physics. Such a program is
already underway, and we will present its results in a
forthcoming study.
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