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We investigate the cosmological stability of light bosonic dark matter carrying a tiny electric charge. In
the wavelike regime of high occupation numbers, annihilation into gauge bosons can be drastically
enhanced by parametric resonance. The millicharged particle can either be minimally coupled to photons,
or its electromagnetic interaction can be mediated via kinetic mixing with a massless hidden photon. In the
case of a direct coupling, current observational constraints on the millicharge are stronger than those arising
from parametric resonance. For the (theoretically preferred) case of kinetic mixing, large regions of
parameter space are affected by the parametric resonance, leading at least to a fragmentation of the dark
matter field, if not its outright destruction.
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I. INTRODUCTION

Very light (sub-eV) dark matter (DM) must consist of
bosonic particles. Common examples are axions, axionlike
particles, or dark photons [1–5]. By virtue of their tiny
couplings and very low masses, it is often taken for granted
that they make good and cosmologically stable candidates
for DM. However, the fact that very light bosonic DM is
long lived is far from trivial. Due to their low mass and low
velocity, DM made from light bosons features very high
occupation numbers, which can dramatically enhance
interaction rates with other particles and lead to parametric
resonance phenomena [6–9]. For example, in significant
parts of the parameter space, the stability of axionlike
particles toward their decay into photons requires a non-
trivial interplay of the expansion of the Universe, as well as
plasma effects [1,2,10] (cf. [11–30], for some situations
where Bose enhancement from high occupation numbers
may lead to interesting signatures for axionlike particles).
Of course, these particles do not carry a conserved charge
that would naturally render them stable toward decay. One
may, therefore, wonder what happens if the light DM
particles are charged and only annihilations with suitable
antiparticles are possible.
To be concrete, in this work, we want to address the

question of cosmological “stability” for the case that DM
carries a tiny electromagnetic charge [31–35], often called

millicharge. Ample motivation for millicharged particles is
provided by Standard Model extensions and, in particular,
string theory constructions [36–50]. At the same time, such
scenarios may also offer interesting new opportunities for
direct detection [51] (for an overview of various detection
strategies, see [52]).
In general, having a conserved electric charge, stability

toward particle decay is ensured. However, DM should not
carry any net electric charge.1 Therefore, it should be
composed of an equal number of particles and antiparticles,
opening up the possibility of annihilations, for example,
into radiation.2 Naively, this seems to be strongly sup-
pressed by the tiny value of the relevant charge that is
required by phenomenology (for a review see, e.g., [55]),
independent of the question of cosmological stability.
However, for low masses, enhancements due to high
occupation numbers may set in. Indeed, in this work, we
argue that the coherent nature of the very light DM particles
can drastically enhance the interaction rates with gauge
bosons. This, in turn, can cause an annihilation into
photons, even for tiny electromagnetic charges.
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1In a scenario where very light bosonic DM does carry an
approximately conserved global charge, however, today’s net
charge density may be nonvanishing [53].

2In principle, a spatial separation of positive and negative
charges may be possible [54]. While we do not have a conclusive
argument excluding this possibility, we strongly suspect that such
a situation is not viable in the case where the particles in question
carry a gauge charge and are supposed to be the dominant form of
DM (e.g., the presence of long range gauge interactions between
the regions may modify the equation of state). Moreover, we note
that this is, by definition, connected to a very inhomogeneous
situation.
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The basic reason for such an annihilation is that the DM
coupling acts as an oscillating mass term for the photons in
the coherent DM background. This can drive the gauge
bosons into a parametric resonance [6–9], such that certain
momentum modes are excited quite rapidly. The enhance-
ment of the momentum modes then corresponds to an
explosive production of photons. This phenomenon can
lead to an efficient depletion of the DM energy density that
seriously challenges the cosmological stability of the DM
candidate.3

This work is structured as follows. In Sec. II, we discuss
the phenomenon of rapid photon production in a milli-
charged DM background via a parametric resonance.
Furthermore, we carefully examine plasma effects in the
early Universe that are able to stop the depletion of the DM
energy density. In Sec. III, we consider the theoretically
preferred situation where the millicharge arises from a
hidden (or dark) photon kinetically mixed with its electro-
magnetic counterpart. A brief summary and discussion can
be found in Sec. IV.

II. RESONANT DEPLETION OF MILLICHARGED
DARK MATTER

In a scenario where DM carries electromagnetic charge,
it is subject to annihilating into visible particles and, in
particular, photons. In this section, we discuss that this
depletion of the DM energy density can be drastically
enhanced by parametric resonance phenomena [6–9], even
for tiny charges. This implies that it is necessary to
reconsider the cosmological stability of a millicharged
DM candidate.
Let us illustrate the underlying mechanism in a simple

setup where a scalar DM candidate is minimally coupled to
the photon,

L ¼ −
1

4
F2 þ ðDμϕÞ†Dμϕ −m2ϕ†ϕ: ð1Þ

Here, Fμν is the electromagnetic field strength associated to
the photon Aμ, ϕ is the DM of mass m and charge q, and
Dμ ¼ ∂μ þ iqAμ denotes the gauge-covariant derivative.4

We are interested in very light, possibly sub-eV, DM
particles, which, due to their extremely high occupation
numbers, can be described by classical fields. They
furthermore require a nonthermal production which is,
for instance, provided by the misalignment mechanism [1–
5,57] (but other mechanisms such as, e.g., [58–77] may
also give suitable DM densities).

In the first approximation, the observed DM energy
density can be understood as coherent oscillations of a
spatially homogeneous5 complex scalar field ϕ in the
expanding Universe. We can decompose the field,

ϕ ¼ φ exp ðiχÞ=
ffiffiffi
2

p
: ð2Þ

In these coordinates, charge neutrality is ensured by trivial
dynamics for the angular degree of freedom,6 χ ¼ const,
and without loss of generality, we can take χ ¼ 0. The
radial mode then oscillates with decreasing amplitude,

φðtÞ ¼ φ0

�
a0
aðtÞ

�3
2

cosðmðt − t0ÞÞ

¼ ΦðtÞ cosðmðt − t0ÞÞ: ð3Þ
Here, aðtÞ is the scale factor, and t0 denotes the time today
with scale factor a0. Moreover,

φ0 ¼
ffiffiffiffiffiffiffi
2ρ0

p
m

¼ 4.5 × 10−6 eV

�
eV
m

��
ρ0
ρDM

�1
2 ð4Þ

is the (average) oscillation amplitude today, where we use
ρDM ¼ 1.3 keV=cm3 [78] as a reference value. The energy
density associated to the scalar field then dilutes as
ρϕ ∼ a−3, as appropriate for a cold DM particle.

A. Rapid photon production via parametric resonance

Obviously, the requirement that the energy density of ϕ
scales like that of pressureless matter is not entirely
sufficient for making it the DM. In addition, a viable
DM candidate also has to be cosmologically stable.
Crucially, since in our scenario, ϕ carries electromagnetic
charge, annihilation channels to photons are open, even-
tually challenging its stability. In the simple theory (1), the
main example of a depletion mechanism would be the
pairwise annihilation of DM particles, ϕϕ → AA. As we
will now show, even for tiny electromagnetic charges, the
interaction rates of this channel can be significantly
enhanced by resonance effects that lead to an explosive
production of photons. To see this, let us consider photon
modes in the classical DM background during the evolution
of the Universe. These satisfy

ÄþH _Aþ
�
k2

a2
þ q2φ2

�
A ¼ 0; ð5Þ

where A denotes a polarization mode of momentum k, and
H is the Hubble parameter. A collectively describes the

3The amplification of gauge fields in the expanding Universe
by a parametric resonance from charged scalars has also been
considered as a source of large-scale primordial magnetic fields
[56].

4Here, we absorbed the gauge coupling into the definition of
the charge, as there is only a single field involved.

5Indeed, in the case of the misalignment mechanism and if the
field already exists during inflation, any fluctuation is stretched
out by inflation, thereby providing for homogeneity.

6During inflation, any nontrivial dynamics of χ is diluted
quickly, _χ ∝ a−3.
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spatial components of the gauge potential Aμ, while we fix
the temporal components by the Lorentz gauge condition
∂μð ffiffiffiffiffiffi−gp

AμÞ ¼ 0. Once the DM field has overcome the
Hubble friction, H ≲m, it oscillates according to Eq. (3)
with amplitude ΦðtÞ. In this scenario, the equation of
motion (5) can be rewritten as a differential equation of
Mathieu type [79],

d2

dx2
Aþ ðAk − 2Q cos ð2xÞÞA ¼ 0; ð6Þ

with x ¼ mt, and we have defined

Ak ¼
k2

a2m2
þ 3

4

H2

m2
þ 2Q; Q ¼ q2Φ2

4m2
: ð7Þ

The interaction with the millicharged DM acts as an
oscillating mass term for the photons. It is, therefore,
possible that some mode functions are enhanced by
resonance effects, known as parametric resonance [6–9].
As the mode functions determine the occupation number of
the gauge bosons,

nk ¼
ωk

2

�j _Aj2
ω2
k

þ jAj2
�
; ð8Þ

this process corresponds to a resonant production of
photons.
Crucially, the solution of (6) contains an exponential

factor, A ∝ exp ðμkxÞ, with Floquet exponent μk. This
exponent is, in general, a complex number which, impor-
tantly, can have a positive real part.7 For the purpose of our
work, we will exclusively focus on the case where μk is
purely real and positive. This corresponds to an exponential
growth of the respective momentum modes,

nk ∝ exp ð2μkmtÞ: ð9Þ

That is, the rate of photon production is governed by the
Floquet exponent μk, which, in general, is a function of Ak
and Q. Depending on the dynamics of the Mathieu
equation, a parametric resonance can be considered in
two different regimes. In a narrow resonance (Q ≪ 1), only
very few momentum modes are enhanced, while the
opposite is true in a broad resonance (Q ≫ 1). Both
regimes feature resonant instabilities, which ultimately
lead to an explosive production of photons. For simplicity,
let us collect a few important properties of these resonance
bands for our discussion. For details on the dynamics of the
Mathieu equation in general and its instability bands in
particular, we refer the reader to [79].

1. Narrow vs broad resonance

Let us first understand the characteristic behavior of the
Mathieu equation, while neglecting the expansion of the
Universe. This serves as the basis on top of which we can
later include the consequences of expansion.
In the narrow resonance regime, where Q ≪ 1, the

instability bands of the Mathieu equation feature a small
width. In our case, this means that only a limited range of
momentum modes is resonantly enhanced. The first insta-
bility band is the dominant one, as it contributes to the
exponential growth with the largest Floquet exponent. The
latter is given by [79]

μk ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 −

�
k2

m2
− 1þ 2Q

�
2

s
: ð10Þ

Furthermore, to good approximation, in momentum space,
the resonance bandwidth reads [79]

Δk ∼mQ: ð11Þ

In combination with the requirement Q ≪ 1, this justifies
the name narrow resonance. Up to corrections of order Q,
the Floquet exponent is maximal for momenta of the order
of the DM mass, k� ≃m, such that μk� ¼ Q=2. This is
essentially the same result that one would obtain from a
perturbative approach to interaction rates in ϕϕ → AA
processes if Bose enhancement is taken into account
(see, e.g., [80]).
In the broad resonance regime, where Q ≫ 1, the

situation is more complicated. Here, exact expressions
for the Floquet exponents are not available. Therefore,
we will use analytic approximations of μk given in [81,82].
As their precise form is not very enlightening, we do not
quote the full expressions here. Instead, we give some
approximate numbers and behaviors to facilitate the dis-
cussion. That is, typical values of the exponent for a wide
range of momenta are μk ∼ 0.15, and it can obtain a
maximum value of μk� ∼ log ð1þ ffiffiffi

2
p Þ=π ≈ 0.28 [81,82].

As a rough approximation, one can therefore estimate
[81,82]

μk ∼ 0.15–0.28; ð12Þ

within the resonance bandwidth. Importantly, this does not
strongly depend on Q. The width of the instability band is
then typically of the order [8],

Δk ∼mQ
1
4; ð13Þ

which can be parametrically large for Q ≫ 1.
Moreover, we note that in the broad resonance regime,

we typically have to take multiple instability bands into
account, once the expansion of the Universe is considered.

7This can, for instance, be read off from the instability chart of
Ak and Q of the Mathieu equation (see, e.g., [79]).
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Luckily, the above rough expressions hold for all of them.
In addition, we remark that the typical distance in Q
between resonance bands of the exponent μkðAkðQÞ;QÞ
for momenta of the order k≲ Δk is

ΔQ ∼
ffiffiffiffi
Q

p
: ð14Þ

The narrow and broad resonance regime can behave very
differently with respect to the depletion of the DM energy
density. Generally speaking, a broad resonance is typically
more efficient, as more momentum modes are within the
resonance band at the same time, and the exponent is
typically larger. That said, for our discussion, the depend-
ence of the rate of exponential growth, given by μk, as well
as the width of the resonance Δk on the parameter Q, is
important. In the narrow resonance regime, the former is
parametrically given by μk ∼Q, while for a broad reso-
nance, it is typically of the order μk ∼ 0.15, largely
independent of Q. The bandwidth of both regimes is also
considerably modified, i.e., Δk ∼mQ for a narrow and
Δk ∼mQ1=4 for a broad resonance, respectively. As wewill
see in the following section, both aspects are crucial for an
explosive production of photons.

2. Including the expansion of the Universe

The previous discussion of the dynamics of the Mathieu
equation only applies to a static situation. However, in the
early Universe, the expansion cannot be neglected. In this
case, the parameters Ak and Q explicitly depend on the
scale factor. Strictly speaking, the concept of (static)
resonance bands then ceases to be meaningful.
Nevertheless, if the changes are sufficiently slow (com-
pared to the timescale of the DM oscillations), we can still
get a reasonable picture by imagining the movement of a
given momentummode k along the trajectory ðAkðtÞ;QðtÞÞ
through the instability chart. For instance, the system might
start to evolve within a broad resonance, but asQ decreases
with time, it eventually ends up in a narrow resonance
regime before it terminates.
In a situation whereQmay change significantly between

consecutive oscillations of the driving DM field ϕ, one
would instead have to move from a parametric resonance to
a so-called stochastic resonance [8]. Here, with a single
oscillation of ϕ, the phase of each photon mode is
drastically altered, such that they are practically uncorre-
lated at any stage of photon production. Therefore, due to
interferences, the number of photons produced typically
increases but can also decrease with progressing DM
oscillations, thereby slightly reducing the efficiency of
the resonance. For a detailed discussion of the phenomenon
of a stochastic resonance in an expanding Universe, we
refer the reader to [8].
Such a thorough treatment of stochastic resonance is

beyond the scope of this work. We, therefore, follow the
more intuitive approximate approach outlined above, which

has already been pursued in [10]. For our purpose, the most
important difference between the static and the dynamical
situation is that the photons experience a redshift as the
Universe expands. Mathematically, the Mathieu parameter
Ak directly depends on the physical momentum of the
mode, ∝ k=a, which changes with time. Each mode,
therefore, only spends a finite amount of time in the
resonant region. This can prevent the DM from efficiently
annihilating into photons if the latter are shifted out of a
resonance quickly enough.
After a short amount of time δt, the momentum of a

photon mode is shifted by [10]

δk
k
≃Hδt; ð15Þ

where δt is thought to be differential on cosmological
scales, δt ≪ H−1. That is, the momentum modes of the
photons can only grow exponentially for a short amount of
time, δtexp ∼ 1=ð2μkmÞ, before they get shifted out of the
resonance band, δtexp ≲ δt. While this is a universal feature
that eventually terminates the resonant production of gauge
bosons, its physical manifestation within the Mathieu
dynamics has to be established carefully. In particular,
there can be differences between a narrow and a broad
resonance due to the significant modifications of the
instability chart in these regions. Hence, we will discuss
both scenarios separately.

Narrow resonance.—In a narrow resonance, the Floquet
instabilities occur at integer values of k=m (see also Fig. 3).
In this regime, the lowest instability band, corresponding to
the momentum k� ≃m, is the most effective, and we focus
on this in our analysis. Hence, effectively, there is only a
single resonance band that can induce an exponential
growth of the photon modes. At the same time, the
expansion of the Universe can redshift the photons out
of this instability, thereby preventing their resonant
enhancement. That is, naively, there is a competition
between the characteristic time of exponential growth
determined by the Floquet exponent and the time the
photon modes spend inside the resonance band.
Reversing this argument, it can be written as a naive
condition to avoid the rapid production of photons in
the DM background,

1

2μk�m
≳ δk
k�

1

H
: ð16Þ

Obviously, this requirement is time dependent. Loosely
speaking, the condition has to be satisfied at all times in the
narrow resonance regime in order to avoid the complete
fragmentation of the DM field and thereby to guarantee the
cosmological stability of the DM candidate.
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The stability condition (16), so far, only takes into
account the growing exponential factor of the photon mode
functions. However, as there can still be a small prefactor in
front, a single short burst of rapid photon production may
not be sufficient to trigger a complete annihilation of the
DM field. Instead, the latter is only effective if a significant
amount of energy is transferred from the DM to the
photons, i.e., if ρA=ρϕ grows sufficiently that it becomes
of order unity.8 This, in turn, can be used to obtain a more
precise condition for its cosmological stability. While the
DM energy density schematically reads ρϕ ≃m2Φ2=2, the
energy density of the photons can be obtained by summing
over all modes,9

ρA ¼ 1

ð2πaÞ3
Z

d3kωknk; ð17Þ

where ωk denotes the energy of each momentum mode.
Indeed, if the subexponential prefactor of nk in (9) is small,
the resonance needs to be active for a considerable amount
of time to transfer a significant amount of energy from the
DM field into photons,

δT ¼ ζ

2μkm
: ð18Þ

In practice, the factor ζ depends on the initial conditions
associated to the photon mode functions. Following [10],
the subexponential correction can be estimated via a
saddle-point approximation of (17). It schematically reads

ζ ∼ log

�
1

n0

ffiffiffiffi
m
H

r
Φ
qm

�
; ð19Þ

where n0 is the initial occupation number of the photon
modes, which can be determined by vacuum fluctuations or
CMB photons, n0 ¼ 1=2 or n0 ≃ 2TCMB=m, respectively.
The prefactor ζ can then be chosen conservatively, i.e.,
corresponding to the larger of both options.
Finally, requiring that the photons are redshifted out of

the resonance quickly enough to avoid a complete frag-
mentation of the DM field yields a condition for the
stability of the DM candidate,

ζ ≳ 2
Δk
k�

m
H
μk� : ð20Þ

UsingΔk=k� ¼ Q and μk� ¼ Q=2, this condition reads ζ ≳
ðm=HÞQ2 (see also [8]). Therefore, in a narrow resonance,
to avoid a fragmentation of the DM field, its electromag-
netic charge q has to satisfy

log

�
1

n0

ffiffiffiffi
m
H

r
Φ
qm

�
≳ m
H

�
qΦ
2m

�
4

: ð21Þ

In principle, to guarantee stability, this inequality must hold
at all times of the cosmic evolution. However, to ensure
consistency, the system has to be in the narrow resonance
regime, Q ≪ 1. In general, this is not necessarily the case.
For example, as typically ζ ∼ 10–100, this condition is not
consistent with the narrow resonance regime for m=H ∼
Oð1Þ [8]. It is, therefore, worthwhile to also consider the
broad resonance regime.

Broad resonance.—In a broad resonance, the instability
chart of the Mathieu equation is more complicated. In
contrast to the case of a narrow resonance, the instability
bands are not sharply localized around integer values of
k=m. Instead, for a fixed Q, they can extend from a typical
scale of k� ∼mQ1=4 down to possibly even vanishing
momentum (see also Fig. 3). This means that, as the
Universe expands, a given momentum within a certain
instability band is not redshifted out of a single resonance,
but, because Q decreases similarly as Q ∼ a−3, it can cross
multiple instability bands before it enters the regime of a
narrow resonance. Therefore, the photon mode can expe-
rience multiple resonant enhancements on its trajectory
through the instability chart. As an approximation, we can
model this by summing up all resonances that a given k-
mode crosses,

nk ∝ exp

�
2m

Z
dtμkðtÞ

�
: ð22Þ

Since theMathieu parameterQ is now a function of time, in
a radiation-dominated Universe, the exponent can be
written as

m
Z

dtμkðtÞ ¼
1

3

m
H

�
qΦ
2m

�4
3

Z
dQ

μkðQÞ
Q

5
3

: ð23Þ

As pointed out above, within the instability bands for the
range of momenta k ≤ Δk ∼mQ1=4, the Floquet exponent
takes typical values of μk ∼ 0.15–0.28, which are mostly
independent of Q to good approximation. In this case, the
bands can be assumed to be of width and distance of orderffiffiffiffi
Q

p
in Q. Hence, the integration of μk is dominated by

small values of Q. As a rough approximation we can,
therefore, choose the integration boundaries to be Q− ¼ 1

8When ρA=ρϕ ∼ 1, we expect our description of the coherent
DM field to break down and backreaction effects to become
important. We will comment more on this later. For now, we note
that this is the reason we often use the word “fragmentation”
indicating the loss of the coherent condensate instead of speaking
of “annihilation.”

9Here, we consider one polarization mode. In principle, the
two polarizations of the photons grow equally fast, leading to a
factor of 2 in the energy density, which, however, has only a
negligible effect on the limits we will derive.
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(beginning of the broad resonance region) and Qþ ¼ ∞.
Evaluating this numerically, we find

κðkÞ ¼
Z

∞

1

dQ
μkðQÞ
Q

5
3

≈
�
0.13; k ¼ 0

0.046; k ¼ mQ1=4
; ð24Þ

with monotonically decreasing values within those limit-
ing cases.
Similar to the case of a narrow resonance, the fragmen-

tation of the DM field is efficient (ultimately leading to a
breakdown of our description of the DM oscillations) if a
significant fraction of energy is transferred from the DM to
the photons, ρA=ρΦ ∼ 1. Again, this requirement can be
translated into a stability condition for the DM candidate,

log

�
8π3=2ffiffiffi
3

p
n0

ffiffiffiffi
m
H

r
κ

q2ϵ3

�
≳ 2κ

3

m
H

�
qΦ
2m

�4
3

; ð25Þ

where we take account of modes up to k ¼ ϵmQ1=4 in the
energy density. This is the broad resonance equivalent to
the stability requirement (21), which is applicable in the
narrow resonance regime.
Note that, in determining this expression, we have made

several rough approximations. As already stated above, we
have neglected the dependence on the upper integration
boundary in (24). This ignores contributions suppressed by
an inverse power ofQ. We have also used the fact that, due
to the exponential growth in the modes, the biggest drain in
energy occurs at late times, and therefore, evaluated the
energy drain only at the end of the broad resonance regime.
Moreover, using a fixed κ, we have neglected that during
the evolution, the physical momentum of each mode
decreases as k ∼ a−1 and, therefore, the exponent changes.
Finally, in line with all these approximations, we have
simply dropped terms logarithmic in Q.

Discussion.—The stability conditions (21) and (25) put
strong constraints on the value of the electromagnetic
charge of the DM. Before explicitly evaluating them, let
us first get some analytical understanding. In principle, in
order to avoid the resonant depletion of the DM, both
conditions have to complement each other such that either
one of them is satisfied at all times of the cosmic evolution.
As we have pointed out before, we expect the fragmenta-
tion of the DM field to first be governed by a broad
resonance. Then, asQ decreases with time in an expanding
Universe, Q ∼ a−3, the system will enter the narrow
resonance regime before the fragmentation eventually
terminates (given that the coherent field is not completely
destroyed at that point). Therefore, in practice, one has to
carefully establish which stability condition gives the
correct, i.e., self-consistent, constraint on the millicharge
at each time. This depends on the charge, as well as on the
time when the stability condition is evaluated.

In general, it is a priori not at all obvious what time gives
the strongest possible constraint on q. In fact, both regimes
(21) and (25) behave very differently with the scale factor.
To see this, we insert the evolution of the DM amplitude,
Φ ∼ a−3=2, and the behavior of the Hubble constant during
radiation domination, H ∼ a−2, into the exponential factor
(i.e., the right-hand side) of both stability conditions. For a
narrow resonance, we obtain

m
H

�
qΦ
2m

�
4

∼ a−4; ð26Þ

while, in contrast, the broad resonance regime behaves as

2κ

3

m
H

�
qΦ
2m

�4
3

∼ const: ð27Þ

This suggests that, in the narrow resonance regime, the
strongest constraint arises when evaluating at the earliest
possible time, whereas the broad resonance case appears to
be independent of the scale factor.
Let us consider both scenarios. In case of a narrow

resonance, Eq. (26) suggests that we should evaluate the
stability condition when ϕ just starts to oscillate, i.e., at t�
whenH ≃m. However, as noted before, fulfilling (21) with
ζ ∼ 10–100 is inconsistent with the narrow resonance
regime at t�. Hence, we either have to evaluate at a
somewhat later time when H ≪ m or go into the regime
of a broad resonance. For the strongest self-consistent
constraint on the millicharge in the narrow resonance
regime, we can evaluate at t ≈ 1000t�.
In contrast, in the broad resonance regime, Eq. (27)

suggests that the constraint on the millicharge is indepen-
dent of the time when the stability condition is evaluated.
This suggests that the limit does not strengthen much when
approaching the broad resonance regime.10 Indeed, we have
checked that (25) roughly provides for the same limit as
(21) evaluated at t ≈ 1000t�.
A numerical evaluation of the stability condition (21) at

t1 ≡ 1000t� is shown as the dotted blue line in Fig. 1.
However, this estimate is probably too optimistic as we still
need to include plasma effects, which we will do next.

B. Photons inside the early Universe plasma

So far, we have assumed that the photons are moving
freely through the Universe. However, during the cosmo-
logical evolution, the early Universe is filled with a hot
plasma that modifies their propagation. Indeed, for exam-
ple, in the case of axionlike particles, this is the dominant
effect ensuring their stability [1,2,10]. Therefore, it is
sensible to also consider this effect for the case of

10We note that the complete independence of the evaluation
time is, of course, due to the simplistic approximations we
employ.
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millicharged DM (a discussion of parametric resonance in
charged cosmological scalars can also be found in [56], but
they were focused on primordial magnetic fields rather
than DM).
Naively, the photons interact with the charged particles

of the medium such that they acquire a modified dispersion
relation (and wavefunction renormalization); see, e.g., [89].
Effectively, they acquire a mass, mA. In Eqs. (6) and (7),
this leads to the replacement k2=a2 → k2=a2 þm2

A.
Therefore, Ak is larger and, if the plasma mass is too
high, the resonance becomes inefficient. In particular, in a
narrow resonance regime, the instabilities become ineffec-
tive if the plasma mass exceeds the mass of the DM
candidate, mA ≳m. For nearly all k, the rate of exponential
growth μk becomes imaginary, corresponding to an oscil-
lating rather than a growing mode function. In contrast,
in a broad resonance, the production of photons with
masses mA ≫ m is, in principle, possible.11 However, this
process requires comparatively large couplings in general.

In particular, photon production in this regime can only be
efficient for charges satisfying [8]

q ≳ 4
m2

A

mΦ
: ð28Þ

Overall, we, therefore, expect that this possibility will result
in a weaker constraint on the electromagnetic millicharge
(see also the example below).
The plasma mass of the photon depends on the temper-

ature of the medium. That is, in an expanding Universe, it is
time dependent.12 As noted above, in practice, the condition
mA ≲m sets the earliest time at which the (narrow
resonance) stability condition (21) can be evaluated and
turns out to stabilize the scalar DM candidate in large parts
of parameter space of the vanilla theory of millicharged
DM. We show this as a solid blue line in Fig. 1.
In the broad resonance regime, the production of

photons with masses above the DM mass is possible,
but for this, larger charges are needed. In particular, as a
minimal requirement, the broad resonance must be strong
enough to overcome the mass threshold. This requires
fulfilling the condition (28). This is usually already a
weaker requirement than evaluating the narrow resonance
stability condition at the point at which the photon mass is
small enough for the narrow resonance to be active. As an
example, this is demonstrated by a dashed and a dash-
dotted blue line in Fig. 1, where we choose times when the
plasma mass is of the order of mA=m ¼ 1 and
mA=m ¼ 100, respectively.
Looking at Fig. 1, we can see the drastic impact of the

plasma effects. Comparing the naive estimate that com-
pletely neglects plasma effects (dotted blue line) with the
constraint taking into account the plasma effects (solid blue
line), the former turns out to be many orders of magnitude
stronger. Indeed, we observe that in the regime of very low
masses, the stability condition on millicharged DM is a
weaker requirement than current observational constraints
[83–88].13 While this is desirable from a physical point of
view, the simple model we have considered in this section is
disfavored from a theoretical point of view, as quantization
of electromagnetic charge would be hard to justify. Let us,
therefore, turn to a more realistic and appealing theory
involving a hidden photon that is kinetically mixed with the
visible sector.

FIG. 1. Allowed electromagnetic charge q of the scalar DM
candidate as a function of its mass m. The solid blue line
corresponds to the stability condition due to parametric reso-
nance, evaluated at the time where plasma effects terminate the
latter, i.e., where mA ≃m. The dashed and dash-dotted blue lines
illustrate an estimate of where plasma photons with mA > m may
be produced due to a broad resonance, Eq. (28), evaluated when
mA=m ¼ 1 and mA=m ¼ 100, respectively. For comparison, the
dotted blue line shows the narrow resonance condition evaluated
close to the earliest possible time, 1000t�, while plasma effects
are neglected,mA ¼ 0. The observational constraints are given by
CMB observations [83], SN1987A [84] and stellar cooling (SC)
[85], pulsar timing arrays [86], or by interactions with magnetic
fields in galaxies and clusters [87,88]. In these limits, the dashing
indicates regions where we have used very naive extrapolations
from the high-mass regime.

11We thank Paola Arias, Ariel Arza, and Diego Vargas for very
useful discussions (triggered by the helpful comments of an
anonymous referee for [90]) on this issue in a similar system.

12We use the cosmological evolution of mA as given in [10],
which is based on [89,91–94].

13As indicated also in the figure, for some constraints, we have
extremely naively extrapolated to very small masses. Moreover,
we note that most of the DM constraints have been derived having
at least implicitly particles in mind. It may, therefore, be
worthwhile to rethink and check their validity in the fully
wavelike regime. In this sense, the stability constraints may even
find some nontrivial application in this model. In this case, the
caveats on coherence and backreaction discussed in the next
section should, however, also be taken into account.
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III. MILLICHARGED PARTICLES ARISING FROM
A KINETIC MIXING OF A HIDDEN PHOTON

WITH THE VISIBLE SECTOR

From a theoretical point of view, a fundamental milli-
charge is unappealing with respect to charge quantization.
A well-motivated alternative is provided by kinetic mixing
[38]. A simple example of this scenario is an additional
massless hidden photon Xμ that is kinetically mixed with
the electromagnetic photon Aμ [38],

Lϵ ¼ −
ϵ

2
FμνXμν: ð29Þ

For a hidden sector matter particle ϕ (in our case the DM
candidate) carrying a (quantized) charge q under Xμ, a
small effective electromagnetic charge appears after diag-
onalizing the kinetic term. To see this, one can rotate the
gauge fields by Aμ → Aμ and Xμ → Xμ þ ϵAμ. While this
redefinition leads to canonically normalized kinetic terms
of the gauge fields, it also appears in the gauge-covariant
derivatives of the hidden sector matter field,

Dμϕ ¼ ð∂μ þ qgXμÞϕ → ð∂μ þ qgXμ þ ϵqgAμÞϕ; ð30Þ

where g is the hidden sector gauge coupling. As a
consequence, the DM carries an effective electromagnetic
charge [38],

qeff ¼ ϵqg; ð31Þ

where we have again absorbed the factor of the electro-
magnetic coupling e into the charge. In this way, a small ϵ
(and possibly also g) can lead to a tiny electromagnetic
charge, even if q is integer.14

In general, the amount of kinetic mixing is a free
parameter, and ϵ may even be of order one. However, if
we consider the hidden photon to be part of a hidden sector,
we usually expect that the mixing is small. For instance, the
hidden gauge group may be understood as a low-energy
remnant of a UV theory with a unified gauge symmetry
broken at some high scale [48]. After symmetry breaking,
some degrees of freedom, for instance, a heavy fermion,
usually carry a charge both under electromagnetism, as well
as the hidden gauge group. Quantum mechanically, a
kinetic mixing between both gauge fields is then induced
by a fermion loop of the UV theory. At low energies, the
kinetic mixing parameter is determined by the correspond-
ing one-loop Feynman diagram and parametrically reads
(see, e.g., [38,48])

ϵ ∼
eg
6π2

log

�
mψ

μ

�
; ð32Þ

where mψ is the mass of the heavy fermion, and μ is the
regularization scale of the loop integral. This typically gives
a small kinetic mixing, which is particularly tiny if the
hidden sector gauge coupling is also small, g ≪ 1.
We can now apply the arguments of the previous section

to this scenario. As we assume no plasma to be present in
the hidden sector, we expect that annihilation into hidden
photons remains possible, and therefore, guaranteeing
stability may put stronger constraints on the millicharge.
We will examine this scenario in two separate steps.

First, we completely neglect the (small) kinetic mixing
effects; i.e., we consider a secluded hidden sector without
kinetic mixing, ϵ ¼ 0. Then, we argue that the main
conclusions also hold in the phenomenologically more
interesting case with a small but nonvanishing kinetic
mixing parameter.

A. Secluded hidden sector

In the case ϵ ¼ 0, our discussion in Sec. II completely
carries over. In particular, the DM stability conditions (21)
and (25) in the narrow and the broad resonance regime can
be applied at all times of the cosmic evolution. Most
importantly, as there is no effective mass of the hidden
photon that could block the resonant enhancements, they
can, in principle, be satisfied at the earliest possible time.
As discussed in the previous Sec. II, a reasonable estimate
is obtained by evaluating the stability condition from the
narrow resonance regime at t1 ≈ 1000t�. This is shown as
the solid blue line in Fig. 2, where we display the allowed
value of g as a function of the DM mass m. (Note that here,
we have normalized the field to unit charge, q ¼ 1.) The
requirement of avoiding a resonant depletion of the DM
energy density into hidden photons puts severe constraints
on the hidden gauge coupling for small masses.

1. Backreaction effects

The above evaluation might be an overestimation of the
constraint posed by the DM stability requirement. This is
because, so far, we have neglected the backreaction of the
parametric resonance on the DM field. Obviously, a first
effect is the depletion of the DM field. This is what we have
implicitly used to set our constraint, i.e., using energy
conservation to determine the depletion from the produced
gauge bosons. However, if the energy density in the hidden
photons is comparable to that in the DM field, ρA ∼ ρϕ, it is
conceivable that energy starts to be transferred back to the
DM field, slowing down the depletion. Although this is
nontrivial due to the fact that most of the produced hidden
photons have momenta k ≃m, processes involving multi-
ple hidden photons may be possible due to the high
occupation numbers and the resonantly enhanced

14Such a situation has, for instance, been explored in order to
mediate long-range forces between hidden sector particles (see,
e.g., [95,96]).
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interaction rates. With the present analysis, we cannot
exclude this possibility. A thorough analysis of this effect
would need to involve some careful numerical simulations,
which is beyond the scope of this work. The overall
allowed value of the hidden gauge coupling might, there-
fore, be higher.
That said, let us obtain a very conservative estimate of the

point where the resonance should shut off. Allowing for the
backreaction effect, we nevertheless expect that in such a
situation, a significant fraction of the total energy in the DM-
hidden photon system, possibly ∼1=2, will be in hidden
photons and, therefore, in the form of dark radiation. At
matter-radiation equality, such a large fraction of dark
radiation is certainly excluded (cf. [97]). Therefore, we
can evaluate the DM stability condition at matter-radiation
equality. At this stage, at the latest,ϕ is required to behave as
standard cold DM.At the same time, we expect the system to
be in a narrow resonance regime, such that the stability
condition (21) is valid. The resulting constraint on the hidden
gauge coupling is shown as a dashed blue line in Fig. 2. It is
considerably weaker than the original estimate but still
affects an appreciable region of parameter space, bearing
in mind that this estimate is probably overly conservative.

2. Nontrivial initial momentum distribution

In addition to the fragmentation of the light scalar DM
field via parametric resonance, there is another physical
effect that may modify the interaction rate between the DM

and the hidden photons. Crucially, in our analysis, we treat ϕ
as a spatially homogeneous classical field. While such a
situation arises naturally in the misalignment [1–5,57] effect
when the field is extremely homogenized by inflation, other
production mechanisms (see, e.g., [58–77]) typically feature
a nontrivial momentum distribution15 for the millicharged
particles. Hence, in such a scenario, the field exhibits spatial
variations. This can be approximately taken into account by
ensuring that there is a sufficient amount of coherence.
This has been discussed in detail in [90] (see also

[17,22,24,29,30] for discussions in the context of DM
structures), from which we summarize the main implica-
tions. In order to preserve coherence of the hidden photons
produced by the resonance, the width of the resonance in
momentum space has to be larger than the momentum
spread of the DM,Δk≳ Δkϕ. The latter can be estimated to
be Δkϕ ∼mvmrðamr=aÞ, where we require that ϕ should be
nonrelativistic at matter-radiation equality, vmr ∼ 10−3

(cf. e.g., [98–101]). Therefore, the condition for preserving
coherence can be written as

Δk≳mvmr

�
amr

a

�
: ð33Þ

As pointed out in Sec. II, the width of the resonance bands
in momentum space; i.e., the left-hand side of this inequal-
ity, depends on the value of the Mathieu parameter Q.
Evaluating (33) at matter-radiation equality, we see that the
required width is much smaller than the massm. Therefore,
we can use the narrow resonance regime where Δk ∼mQ.
This can be immediately translated into a constraint on the
hidden gauge coupling, which we similarly evaluate at
matter-radiation equality. This is shown in red in Fig. 2.

3. Discussion

In general, our results, shown in Fig. 2, demonstrate that
the stability requirement for a very light DM candidate in a
secluded hidden sector affects sizeable regions of parameter
space. The strongest constraint is posed by the parametric
resonance stability condition evaluated close to the time,
when the DM field starts to oscillate (solid blue). However,
this neglects backreaction effects and, therefore, needs to be
taken with caution. A more conservative estimate is given
by evaluating the stability condition at matter-radiation
equality (dashed blue). We expect that a more careful
numerical analysis would most likely reveal a stability
condition that lies in between those possibilities. Aside
from backreaction effects, additionally, a nontrivial initial
velocity distribution of the DM particles, possible in some
models for their production, may allow one to weaken the
constraint as the resonance requires a sufficient amount of

FIG. 2. Allowed hidden gauge coupling g to the scalar DM
candidate as a function of its mass m. The blue lines correspond
to the stability condition due to the parametric resonance,
evaluated close to the time where the field starts to oscillate,
t1 ≈ 1000t�, (solid), and at matter-radiation equality (dashed).
The red line is given by a coherence condition, discussed in the
main text. For comparison, the right axis shows the typical
corresponding effective millicharge induced by a fermion-loop of
a UV theory, qeff ∼ ϵg ∼ eg2=ð6π2Þ. Along the same lines, the
light-shaded gray area in the upper region corresponds to
observational constraints provided by interactions with a mag-
netized intergalactic stellar medium [87,88]; see Fig. 1.

15Alternatively, this could also be due to the backreaction
effect, which likely produces DM particles of nonvanishing
momentum.
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coherence. Taking into account that the DM velocity must
be small enough to allow for successful structure formation,
we find the most conservative constraint shown as the red
line. Intriguingly, we are still able to probe large regions of
parameter space. In fact, it seems challenging to motivate or
construct models featuring gauge groups with such tiny
gauge couplings. A famous example allowing for small
gauge couplings is provided by the large volume scenario
(LVS) of type IIB string compactifications [102,103]. Here,
the gauge theory is supported on D-branes wrapping cycles
of the internal Calabi-Yau manifold of 10-dimensional
spacetime. The volume of these internal cycles, in turn,
determines the gauge coupling, g ∼ V−1=3 [104]. Therefore,
hyperweakly coupled gauge theories can be engineered by
choosing an appropriate Calabi-Yau geometry that supports
large D-brane world volumes. In Fig. 2, we show typical
values of the gauge coupling achieved in a generic (orange)
and low string-scale, MS ∼ 1 TeV, (green) LVS [104].
Strikingly, even the extreme case of TeV-scale strings is
rendered unstable for a wide range of masses even using the
most conservative constraint. We note, however, that the
bound provided by the weak gravity conjecture [105],
shown in gray, is not reached. It would, therefore, be
interesting to see whether consistent models with such
small gauge couplings can be constructed.
As we will argue in the following section, similar

conclusions still hold if the hidden sector is not completely
secluded but has a small kinetic mixing parameter con-
necting it to the visible world.

B. Nonvanishing kinetic mixing

Along the lines discussed at the beginning of the section,
we focus on a situation with small kinetic mixing. In a
homogeneous background φ, the equations of motion are
linear in the photon A and hidden photon X and, therefore,
couple distinct momentum modes of both fields. In fact,
after having redefined the gauge fields by Aμ → Aμ and
Xμ → Xμ þ ϵAμ, their mode functions satisfy

ÄþH _Aþ
�
k2

a2
þm2

A þ ϵ2g2φ2

�
A ¼ ϵg2φ2X;

Ẍ þH _X þ
�
k2

a2
þ g2φ2

�
X ¼ ϵg2φ2A: ð34Þ

Here, we have already included an effective mass for the
photon, mA. Naively, the equations of motion imply that
both the photon, as well as the hidden photon modes, can
be enhanced by a parametric resonance induced by the
oscillating DM background. However, a resonant enhance-
ment of A is now parametrically weaker as compared to X,
because its coupling contains an additional factor of the
mixing parameter ϵ. This means that, for instance, modes of
the hidden photons might be growing rapidly due to a broad
resonance, while the photon modes already are in a very
narrow resonance regime and not amplified efficiently.

At the same time, this amplification might also act as an
oscillating driving force on the right hand side of (34).
Eventually, the growing modes of both fields will converge
to the same resonance frequency after a certain period of
time. Therefore, in general, the DM may largely annihilate
into hidden photons and also, to a smaller fraction, into
visible photons, which follow shortly after.
The above observations suggest that an efficient

depletion of the DM energy density is possible in a theory
featuring kinetic mixing. In practice, this is important, as
the visible photon can obtain a non-negligible plasma mass,
mA ≠ 0, while the hidden photon is still massless. However,
as the DM mainly annihilates into hidden photons, we are
able to avoid plasma effects of the visible photons in the
early Universe almost entirely. This is illustrated in Fig. 3,
where we compare the instability chart of a completely
secluded hidden photon (blue) with that for nonvanishing
kinetic mixing, ϵ ¼ 0.1 and mA=m ¼ 100 (orange points
denoting the boundary). We obtain these by numerically
solving the coupled equations of motion for X and A for
different momenta. As an example, we choose a DMmass of
m ¼ 10−3 eV, and both instabilities are evaluated when the
DM field starts to oscillate, t�. Inside the instability bands, an
exponential growth of the momentummodes ofX; i.e., rapid
production of hidden photons is possible.We can see that the
unstable regions are almost identical. The plasmamass in the
visible sector does not prevent the resonant annihilation of
DM into hidden photons. We expect this to be true every-
where in parameter space for kinetic mixing parameters
smaller16 than ϵ≲ 0.1. Therefore, the allowed values of the

FIG. 3. Floquet instabilities of the Mathieu equation for X with
m ¼ 10−3 eV evaluated at t� (blue). The orange dots illustrate an
approximation of the same instabilities for the kinetic mixing
case, with ϵ ¼ 0.1 andmA=m ¼ 100. Inside the blue bands and in
between the orange points, the mode functions can grow
exponentially.

16We have also checked examples with large kinetic mixing,
ϵ ∼ 1. In this case, the exponential growth may be absent.
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hidden gauge coupling are almost identical to what is shown
in Fig. 2. To give an impression of the constraints of the
effective millicharge, we show on the right-hand axis of
Fig. 2 indicative values of the millicharge obtained by
combiningEqs. (31) and (32). The light gray region indicates
the experimental and observational constraints on the effec-
tive charge, as also shown in Fig. 1. There are large regions
where even our most conservative estimate of the unstable
region poses a stronger constraint on the effectivemillicharge
than current observational bounds.

IV. CONCLUSIONS

The microscopic nature of DM that comprises large parts
of the cosmic fabric remains elusive. As suggested by its
name, so far, there is no experimental evidence of DM
interacting with electromagnetism. While this naively rules
out any sizable electric charge assigned to DM particles, it
is still possible that their charge is tiny, thereby strongly
suppressing interactions with photons. In this work, we
have investigated the cosmological longevity of such DM
particles in the sub-eV mass regime. In this mass range, the
DM particles must be bosonic, and, for concreteness, we
have chosen them to be scalar.
The millicharged particles are either minimally coupled

to photons, or their electromagnetic interaction is mediated
via kinetic mixing with a massless hidden photon. In both
cases, due to the large occupation numbers of the light DM
field, even for tiny charges, the DM may efficiently
annihilate into gauge bosons via a parametric resonance
[6–9].
We find that, in the case of a direct coupling to photons,

current observational constraints on the millicharge are
stronger than those arising from parametric resonance, as
shown in Fig. 1. This is mainly due to the plasma mass that

the photons acquire in the hot medium of the early
Universe, which essentially terminates the resonance if it
is larger than the DM mass. In contrast, in the case of a
theory featuring kinetic mixing, plasma effects are practi-
cally absent. Therefore, even employing conservative
estimates, large regions of parameter space are affected
by the parametric resonance as illustrated in Fig. 2. In fact,
in particular, for very low DM masses, its electric milli-
charge has to be orders of magnitude below what has been
typically obtained in UV models, e.g., in type IIB string
compactifications in the large volume limit [102–104] (we
note that, indeed, already the experimental and observa-
tional constraints rule out this region of parameter space for
loop-induced kinetic mixing). That said, the limits do not
yet reach the smallest possible values suggested by the
weak gravity conjecture [105], which are many orders of
magnitude below the smallest values found in the concrete
realizations discussed above.
We conclude that it is far from trivial that very light

bosonic DM carrying a tiny electric charge is long lived.
Instead, its high occupation numbers can dramatically
enhance interaction rates with gauge bosons leading to
parametric resonance phenomena. Therefore, its cosmo-
logical stability cannot be taken for granted but has to be
considered carefully.
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