
 

Cosmological solutions and growth index of matter perturbations
in f ðQÞ gravity

Wompherdeiki Khyllep,1,2,† Andronikos Paliathanasis ,3,4,‡ and Jibitesh Dutta 5,6,*

1Department of Mathematics, North-Eastern Hill University, Shillong, Meghalaya 793022, India
2Department of Mathematics, St. Anthony’s College, Shillong, Meghalaya 793001, India

3Institute of Systems Science, Durban University of Technology, Durban 4000, South Africa
4Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia 5090000, Chile

5Mathematics Division, Department of Basic Sciences and Social Sciences, North-Eastern Hill University,
Shillong, Meghalaya 793022, India

6Inter University Centre for Astronomy and Astrophysics, Pune 411007, India

(Received 19 March 2021; accepted 27 April 2021; published 17 May 2021)

The present work studies one of Einstein’s alternative formulations based on the nonmetricity scalar Q
generalized as fðQÞ theory. More specifically, we consider the power-law form of fðQÞ gravity, i.e.,
fðQÞ ¼ Qþ αQn. Here, we analyze the behavior of the cosmological model at the background and
perturbation level. Using the dynamical system analysis, at the background level, we find the effective
evolution of the model is the same as that of the ΛCDM for jnj < 1. Interestingly, the geometric component
of the theory solely determined the late-time acceleration of the Universe. We also examine the integrability
of the model by employing the method of singularity analysis. In particular, we find the conditions under
which field equations pass the Painlevé test and hence possess the Painlevé property. While the equations
pass the Painlevé test in the presence of dust for any value of n, the test is valid after the addition of
radiation fluid only for n < 1. Finally, at the perturbation level, the behavior of matter growth index
signifies a deviation of the model from the ΛCDM even for jnj < 1.
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I. INTRODUCTION

A manifestation of gravity through spacetime curvature is
one of the most fundamental assumptions that stem from the
equivalence principle. Geometrically, besides the curvature,
torsion and nonmetricity are also the fundamental objects
associated with the manifold’s connection determining the
gravity [1]. Depending on the choice of connection, one can
classify the theories of gravity into three classes. The first
one uses the curvature, the free torsion, and metric com-
patible connection, e.g., general relativity (GR). The second
class uses the metric compatible, curvature-free connection
with torsion, e.g., teleparallel equivalent of GR [2]. The last
one uses a curvature and torsion-free connection, which is
not metric compatible, e.g., symmetric teleparallel equivalent
of GR [3]. These three equivalent formulations based on the
three different connections are commonly known as The
Geometrical Trinity of Gravity [1]. Even if these three
theories are equivalent at the level of field equations, their
modifications may not be equivalent at the fundamental
level [4].

A generalization of the symmetric teleparallel gravity
which has gained recent attention is the fðQÞ gravity theory
[5,6]. In this theory, one considers a flat and vanishing
torsion connection where gravity is described by a non-
metricity scalar Q and hence represents one of the
geometrical equivalent formulations of GR. Interestingly,
one can simplify the corresponding connection in partial
derivatives, which vanish for some coordinate choice called
the coincident gauge. One of the essential features of the
fðQÞ theory is that, unlike GR, we can also separate gravity
from the inertial effects. It is also worth mentioning that
while the field equations in fðRÞ gravity are fourth-order
[7], they are of second-order in fðQÞ gravity, and hence,
fðQÞ gravity is free from pathologies. Thus, the construc-
tion of this theory forms a novel starting point for various
modified gravity theories. It also presents a simple formu-
lation in which self-accelerating solutions arise naturally in
both the early and late Universe.
Various work in the literature suggest that the fðQÞ

theory is one of the promising alternative formulations of
gravity to explain cosmological observations [8–12].
Harko et al. constructed a class of fðQÞ theories where
Q is coupled non-minimally to the matter Lagrangian.
As a cosmological application they show that it can
represent an alternative approach to dark energy (DE)
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[13]. Observational constraints on the background behavior
of several fðQÞ models have been performed by testing
against various current background data such as Type Ia
Supernovae, Pantheon data, Hubble data, etc. [14,15].
These studies conclude that viable fðQÞmodels correspond
to model parameters’ values which resemble the GR-based
model viz. the lambda cold dark matter (ΛCDM) model.
Mandal et. al. analyzed the energy conditions to restrict the
parameters of the power-law and logarithmic fðQÞ models
compatible with the observed behavior of the Universe
[16]. In Ref. [17], Järv et al. introduced a class of theories
in which a scalar field and nonmetricity scalar Q coupled
nonminimally. They found that such a class of theories is
related to the fðQÞ theory. On perturbing around the
background Friedmann-Lemaître-Robertson-Walker space-
time, unlike fðTÞ gravity models, strong coupling issues
are absent in the case of fðQÞ gravity [6,18].
The interesting cosmological behavior of the fðQÞ

theory at the background level motivates us to investigate
its global dynamics from a dynamical system perspective.
Dynamical system tools have been extensively used in the
context of cosmology (see [19–28] for a few related recent
works and [29] for review). However, one of the drawbacks
of the dynamical system approach is that the resulting
dynamics depend on the choice of variables. The absence
of interesting cosmological solutions does not always
imply the inability of the theory to describe such solutions.
It may be because the associated dynamical system cannot
capture the desired dynamics with the specific choice of
variables. The importance of choice of variables has been
also highlighted in the study of fðRÞ gravity [30,31] and
fðTÞ gravity [32]. Another drawback is that the dynamical
system analysis cannot provide sufficient information on
the evolution far from the critical points. Therefore, if one
obtains the analytical solutions, one might even determine
the dynamics that the dynamical system analysis cannot
explain. Most cosmological equations are nonlinear; there-
fore, one usually prefer numerical tools to solve them. The
knowledge about integrability of the dynamical system is
important to relate numerical solutions and the real sol-
utions of the system [33]. Therefore, the determination of
the analytical solutions for the field equations is crucial to
study the integrability of the system. Such analysis will
provide a preliminary investigation on the viability of a
given theory.
The solution of a differential equation usually refers to an

explicit function connecting the dependent and independent
variables of the differential equation. However, this is not a
unique way to express the solution of differential equations.
Alternatively, one can write the differential equation into an
algebraic equation with the use of similarity transformations.
The use of such similarity transformations is true when there
exist a sufficient number of invariant functions or first
integrals. The latter definition of integrability is mainly
related to the concept of symmetry. An alternative approach

describing integrability based on movable singularities was
established by Kovalevskaya [34]. This pioneering approach
was applied to determine the third integrable case of Euler’s
equations for a spinning top. Based on this approach, the
French School of Painlevé at the beginning of the
last century established the method of singularity analysis
[35–38]. In this approach, the given differential equation is
deemed integrable if it possesses the Painlevé property. The
latter property is directly related to the existence of a Laurent
expansion about a movable polelike singularity in the
complex plane, describing the relations between the depen-
dent and independent variables of the differential equations.
Hence the solution is expressed in terms of power series. In
the last few years, the singularity analysis has been applied
extensively to investigate the integrability of gravitational
models with an emphasis on modern cosmology [39–51].
The existence of a movable singularity for the cosmological
field equations can be related to the existence of cosmo-
logical singularities or with the dominant factor from the
fluid components. Suppose the field equations possess the
Painlevé property. In that case, the analytic solution can be
written in terms of Laurent expansion or specifically with the
use of Puiseux series, where the dominant term can be seen
as an asymptotic solution. Thus, it is possible to extract
information for the existence of movable singularities from
the nature of the asymptotic solutions of the field equations.
Such a discussion can be found in [52] where the asymptotic
solutions of the Szekeres system are related with the
dominant terms of the Painlevé series describing the analytic
solution for the gravitational model. Furthermore, we can
determine the stability properties of the solution from the
nature of the series. In the present work, we shall attempt to
determine the cosmological analytical solutions of the
power-law model of fðQÞ theory motivated by previous
work on singularity analysis in cosmology.
After examining the gravity theory at the background

level, the next logical step is to test its viability at the
perturbation level. The study on the growth rate of matter
perturbations is an effective approach to estimate the
distribution of matter in the Universe [53] and also to
theoretically differentiate various gravity theories [54–56].
For instance, the growth index is approximately constant
throughout the evolution of GR-based DE models.
However, there is a significant variation in the value of
the growth index in the case of modified gravity theories. It
is important to note that the growth index of matter
perturbations is one of the observational tools to study
the matter’s growth history of a given model [57].
Therefore, studying the evolution of matter perturbations
will allow us to draw an overall impact of the fðQÞ gravity
at the cosmological level.
The background behavior of the specific fðQÞ model

(i.e., fðQÞ ¼ Qþ αQ
1
2) mimics that of the ΛCDM.

However, it shows deviation at the perturbative level by
testing against redshift space distortion data [58]. Further, a
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deviation of fðQÞ model from the ΛCDM at the linear
perturbation level is observed by analyzing their prediction
toward the matter power spectrum, lensing power spectrum,
and an enhanced integrated-Sachs-Wolfe effect. Thus it is
imperative to investigate the evolution behavior of the fðQÞ
model at the perturbation level by analyzing the nature of
the growth index of matter perturbations. Therefore, in this
work we shall investigate the dynamics of the power-law
fðQÞ model at the background level and the linear growth
index of matter perturbations.
The work plan is as follows: In Sec. II, we present the

basic cosmological equations of the general fðQÞ theory.
We performed the dynamical system analysis of the power-
law model of fðQÞ theory in Sec. III. We follow this by the
determination of the analytic solutions of the model using
the singularity analysis method in Sec. IV for two cases:
(a) dust fluid only in Sec. IVA, (b) dust fluid along with
radiation in Sec. IV B. We then investigate the implications
of the growth of linear matter perturbations within the
subhorizon scale in Sec. V. Finally, we draw our conclusion
in Sec. VI.

II. f ðQÞ COSMOLOGY

In the present work, we shall consider a modified gravity
theory in which the fundamental object is the nonmetricity
tensor given by [5]

Qαμν ¼ ∇αgμν; ð1Þ

where gμν is the metric. The two independent traces ofQαμν

are

Qα ¼ Qα
μ
μ; Q̃α ¼ Qμ

αμ: ð2Þ

The invariant nonmetricity scalar is defined as a contraction
of Qαμν given by

Q ¼ −QαμνPαμν; ð3Þ

where Pαμν is the nonmetricity conjugate and

4Pα
μν ¼ −Qα

μν þ 2Qα
ðμ νÞ −Qαgμν − Q̃αgμν − δαðμQνÞ: ð4Þ

Using the nonmetricity scalar, the action of the fðQÞ
gravity is given by [5]

S ¼
Z �

1

2
fðQÞ þ Lm

� ffiffiffiffiffiffi
−g

p
d4x; ð5Þ

where fðQÞ is an arbitrary function of the scalar Q, g is the
determinant of gμν and Lm is the matter Lagrangian density.
On varying the action (5) with respect to the metric, one

obtains the corresponding Einstein’s field equations

2ffiffiffiffiffiffi−gp ∇αð
ffiffiffiffiffiffi
−g

p
fQPα

μνÞ þ
1

2
gμνf

þ fQðPμαβQν
αβ − 2QαβμPαβ

νÞ ¼ −Tμν;

where fQ ¼ df
dQ and Tμν ¼ − 2ffiffiffiffi−gp δð ffiffiffiffi−gp

LmÞ
δgμν . We assume that

the matter is a perfect fluid whose energy-momentum
tensor Tμν is given by

Tμν ¼ ðρþ pÞuμuν þ pgμν;

where uμ is the four-velocity satisfying the normalization
condition uμuμ ¼ −1, ρ and p are the energy density and
pressure of a perfect fluid respectively. Under the homo-
geneous and isotropic universe described by the
Friedmann-Lemaítre-Robertson-Walker metric

ds2 ¼ −dt2 þ a2ðtÞδμνdxμdxν; ðμ; ν ¼ 0; 1; 2; 3Þ ð6Þ

the nonmetricity scalar is given by Q ¼ 6H2, where H ¼ _a
a

is the Hubble parameter with aðtÞ denoting scale factor
and the upper dot denotes derivative with respect to the
coordinate time t. On taking fðQÞ ¼ Qþ FðQÞ, the
corresponding field equations can be written as

3H2 ¼ ρþ F
2
−QFQ; ð7Þ

ð2QFQQ þ FQ þ 1Þ _H þ 1

4
ðQþ 2QFQ − FÞ ¼ −2p: ð8Þ

Here, we consider the case that the Universe is filled with
dust and radiation fluids, therefore

ρ ¼ ρm þ ρr; p ¼ 1

3
ρr; ð9Þ

where ρm and ρr are the energy densities of dust and
radiation, respectively. Then from Eqs. (7) and (8), we get

H2 ¼ 1

3
ðρm þ ρr þ ρdeÞ; ð10Þ

2 _H þ 3H2 ¼ −
ρr
3
− pde; ð11Þ

where ρde and pde are respectively the DE’s density and
pressure contribution due to the geometry given by

ρde ¼
F
2
−QFQ; ð12Þ

pde ¼ 2 _Hð2QFQQ þ FQÞ − ρde: ð13Þ

Therefore, the equation of state due to DE is given by
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wde ¼
pde

ρde
¼ −1þ 4 _Hð2QFQQ þ FQÞ

F − 2QFQ
: ð14Þ

Additionally, assuming that matter and radiation are not
interacting with each other, the conservation equation of the
energy-momentum tensor for pressureless matter and
radiation can be respectively written as

_ρm þ 3Hρm ¼ 0; _ρr þ 4Hρr ¼ 0: ð15Þ

From the above equations, we obtain ρm ¼ ρm0a−3 and
ρr ¼ ρr0a−4 where ρm0, ρr0 denote the matter and radiation
energy density at the present time. To better understand the
evolution of energy densities, we respectively introduce the
energy density parameters of a pressureless matter, radia-
tion, and DE as

Ωm ¼ ρm
3H2

; Ωr ¼
ρr
3H2

; Ωde ¼
ρde
3H2

: ð16Þ

The Friedman equation (10) relates the above-defined
quantities as

Ωm þ Ωr þ Ωde ¼ 1: ð17Þ

From (17), one can define the matter dominated universe as
a scenario where Ωm ¼ 1, Ωr ¼ 0, Ωde ¼ 0. Similarly, one
can also define radiation dominated universe or DE
dominated universe, when Ωr or Ωde dominates over the
others, respectively. From Eqs. (10) and (11), we can also
define the effective energy density ρeff and effective
pressure peff respectively as

ρeff ¼ ρm þ ρr þ
F
2
−QFQ; ð18Þ

peff ¼
ρr
3
þ
�
QFQ þ F

2

�

−
�
ρm þ 4

3
ρr

��
2QFQQ þ FQ

2QFQQ þ 1þ FQ

�
: ð19Þ

Therefore, the effective equation of state weff is given by

weff ¼
peff

ρeff
¼ −1þ Ωm þ 4

3
Ωr

2QFQQ þ 1þ FQ
: ð20Þ

Similarly, we can define the deceleration parameter q
which is directly related to weff as

q ¼ −1 −
_H
H2

¼ 1þ 3weff

2
: ð21Þ

The deceleration parameter is of fundamental importance as
it describes whether the universe undergoes acceleration
(q < 0 or weff < − 1

3
) or deceleration (q > 0 or weff > − 1

3
).

To obtain a qualitative information on the solution’s
dynamical features of the system of cosmological equa-
tions, in the next section, we shall analyze the dynamics
using the dynamical system techniques.

III. DYNAMICAL SYSTEM ANALYSIS

To analyze the dynamics of the fðQÞ model, we shall
transform the equations of motion (7), (8), and (15) into an
autonomous system of the first-order differential equations
using the following dimensionless variables:

x ¼ 2QFQ − F

6H2
; y ¼ ρr

3H2
: ð22Þ

Basically, by referring from the cosmological equations (7),
(8), and (15), we have four dynamical variables viz.
H; ρm; ρr and ρde. As we have considered the usual
H-normalized variables, the variable H is combined with
other variables, so we are left with three variables.
However, the remaining variables are connected by relation
)17 ), therefore, we are left with only two independent

variables which are expressed as x and y. As favored
by observations, we consider an expanding universe, i.e.,
H > 0 and hence, the above variables are well-defined.
Using the above variables, the cosmological equa-

tions (7), (8), and (15) can be transformed into the
following dynamical system:

x0 ¼ 2
_H
H2

½ðFQ − 2QFQQÞ − x�; ð23Þ

y0 ¼ −2y
�
2þ

_H
H2

�
; ð24Þ

where prime denotes a derivative with respect to ln a and

_H
H2

¼ −
1

2

3 − 3xþ y
2QFQQ þ FQ þ 1

:

To close the above system, one has to specify the function
FðQÞ. In case the system cannot be closed, one has to
introduce additional variables which increase the dimen-
sion of the system. In this work, we will focus on a power-
law form of function F given by

FðQÞ ¼ αQn; ð25Þ

where α and n are dimensionless parameters. We remark
here that for n ¼ 0, the model reduces to the standard
ΛCDM model with the quantity α

2
playing the role of the

cosmological constant [14,58]. The case n ¼ 1 is equiv-
alent to the symmetric teleparallel equivalent of general
relativity subject to the rescaling of Newton’s gravitational
constant by a factor of αþ 1 [6]. However, modification
from the GR evolution occurs at low curvatures regime for
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n < 1 and modification at high curvatures regime occurs
for n > 1. Hence, while models with n > 1 will be
applicable for the early Universe, models with n < 1 will
be applicable to the late-time DE dominated Universe.
Therefore, we shall focus on the case where n ≠ 1. For this
example, we have

FQ þ 2QFQQ ¼ nx; ð26Þ

and hence, the system (23)–(24) can be rewritten as

x0 ¼ ð1 − nÞð3 − 3xþ yÞx
nxþ 1

; ð27Þ

y0 ¼ −
y½ð4nþ 3Þx − yþ 1�

nxþ 1
: ð28Þ

Further, we can rewrite Ωr, Ωde, Ωm, weff and wde in terms
of variables x, y as

Ωr ¼ y; Ωde ¼ x; Ωm ¼ 1 − x − y;

weff ¼ −
1

3

3nxþ 3x − y
nxþ 1

;

wde ¼ −1 −
2n
3

_H
H2

¼ −1þ nð3 − 3xþ yÞ
3ðnxþ 1Þ :

Under a physical condition 0 ≤ Ωm, Ωr ≤ 1, the phase
space of the system (27)–(28) is given by

Ψ¼ fðx;yÞ ∈R2j0 ≤ xþ y ≤ 1;0 ≤ y ≤ 1;−y ≤ x ≤ 1− yg:

To analyze the cosmological dynamics of the model, we
extract the critical points of the system (27)–(28) by solving
the equations x0 ¼ 0 and y0 ¼ 0. The system contains three
critical points presented in Table I whose stability property
depends on the value of n. In what follows, we describe the
stability nature of each critical point by examining the
eigenvalues corresponding to the Jacobian matrix of a
system (27)–(28) at each point.

(i) Point A(0,1) corresponds to a decelerated, radiation
dominated universe (Ωr ¼ 1, weff ¼ 1

3
). In this case,

the eigenvalues are 1, 4ð1 − nÞ. Therefore, this point
is an unstable node when n < 1, saddle if n > 1.

(ii) Point B(0,0) corresponds to a decelerated, matter
dominated universe (Ωm ¼ 1, weff ¼ 0). As the
eigenvalues of this point are −1, 3ð1 − nÞ, therefore,

this point is a stable node when n > 1, saddle
if n < 1.

(iii) Point C(1,0) corresponds to an accelerated, DE
dominated universe (Ωde ¼ 1, weff ¼ −1). Note that
denominator of the right hand side of the equa-
tions (27)–(28) is nxþ 1, therefore, this point does
not exist for n ¼ −1. The eigenvalues evaluated at
this point are −4, 3ðn−1Þ

nþ1
. Therefore, this point is a

stable node when n < 1, saddle if n > 1.
Indeed, for n ¼ 0 one recover the ΛCDM model. From

the stability behavior of critical points, we see that for
−1 < n < 1, the Universe evolves from a radiation domi-
nated epoch toward a matter dominated epoch and even-
tually settles to an accelerated DE dominated epoch. The
phase space evolution describing the transition of the
Universe along with the evolution of the cosmological
parameters is given in Fig. 1. Additionally, we also require
a fine-tuning of the initial conditions to have a long matter
dominated epoch. Otherwise, we obtain an unusual early
behavior where the Universe evolves directly from radia-
tion dominated epoch to DE dominated one. So, for
jnj < 1, the present model’s background dynamics are
consistent with the present observational data, with the
effective evolution resembles that of the ΛCDM. It is
important to note that late-time acceleration is solely due to
the geometric sector of the action.

IV. ANALYTICAL SOLUTIONS BY SINGULARITY
ANALYSIS METHOD

To determine the analytical solution of the cosmologi-
cal equations, we apply the singularity analysis technique.
The method of singularity analysis has been extensively
applied to various cosmological models based on
the standard GR [39–46] or modified gravity theories
[47–51]. In the present work, we focus on a systematic
technique of singularity analysis known as the Ablowitz-
Ramani-Segur (ARS) algorithm [59–61]. The algorithm
allows us to determine whether a given differential
equation passes the Painlevé test and hence possesses
the Painlevé property i.e., the solution can be written as a
Painlevé series (or Laurent expansion) around a movable
singularity.
Consider the differential equation Hðt;a; _a;äðtÞ;…Þ¼0,

where aðtÞ is the dependent variable and t is the indepen-
dent variable. The application of the ARS algorithm is
summarized in the following three steps:

TABLE I. Critical points of the system (27)–(28).

Point ðx; yÞ Existence Ωm Ωr Ωde weff Acceleration Stability

Að0; 1Þ Always 0 1 0 1
3

No Unstable node if n < 1 saddle if n > 1

Bð0; 0Þ Always 1 0 0 0 No Saddle if n < 1 stable node if n > 1
Cð1; 0Þ n ≠ −1 0 0 1 −1 Always Stable node if n < 1 saddle if n > 1
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The first step of the ARS algorithm is to deter-
mine whether a movable singularity exists. We substitute
aðtÞ ¼ a0τp in the differential equation in which τ ¼ t − t0
and t0 is the location of the putative singularity. The
dominant powers which share a common scale symmetry
are selected, and we require them to be the dominant
behavior of the original differential equation. Hence, the
coefficient a0 and the exponent p are determined. The
exponent p should be a negative value for the singularity to
be a pole. However, nowadays, exponent p can be a
fractional number, even positive ones, as the derivative
of a positive fractional exponent eventually give a negative
exponent and so a singularity.
The second step of the ARS algorithm is determining the

resonances, which provides the integration constants’ loca-
tion for the differential equation. In order to do that, we
substitute aðtÞ ¼ a0τp þmτpþr into the dominant terms of
the equation and collect the terms linear inm as that is where
the coefficient firstly enters the expansion. If the multiplier of
m is zero, the value of m is arbitrary. The coefficient is a
polynomial in r. We then equate the coefficient to zero to
obtain the values of r. One of the solutions must be −1,
which is associated with the moveable singularity at t0.
Finally, the third step in the ARS algorithm is to perform

the consistency test by substituting the Painlevé series to
the original equation. We emphasize that the step of the
Painlevé series is determined by the leading order term and
the resonances. The idea is to check whether the series is
indeed a true solution.
Note that the consistency test determines the coefficients

of the Painlevé series. The nature of resonances determines
the type of series. The series can be expressed as a right
Laurent expansion; for negative resonances, the series is
left Laurent expansion; otherwise, the series is a mixed

Laurent expansion. In what follows, we perform the
analysis for the power-law model in the presence of (a) dust
fluid only, (b) dust with radiation fluid.

A. Dust fluid

For performing the first step of singularity analysis, we
substitute aðτÞ ¼ a0τσ in (8) (taking ρr ¼ 0 and hence
right-hand side of (8) vanishes), we then obtain

−2τ−2nασ2n−16n−1ð2n− 1Þð2n− 3σÞ þ 2τ−2σð3σ − 2Þ ¼ 0;

ð29Þ

where τ ¼ t − t0, t0 is a constant of integration which
determine the position of singularity. Then, we search for
the leading terms which determine the value of σ. As
discussed earlier, we focus our study to two different cases
n < 1 and n > 1.

1. n < 1 case

For the case n < 1, it follows from Eq. (29), that the
leading order behavior is obtained from the term
2τ−2σð3σ − 2Þ. Therefore, if the leading-order behavior
describes the solution at the singularity then we have
ð3σ − 2Þ ¼ 0, i.e., σ ¼ 2

3
, which is independent of n and

a0 is arbitrary. The leading term aðτÞ ¼ a0τ
2
3 implies that

near singularity, i.e., t → t0, we have aðtÞ → 0 but the
derivatives of aðtÞ diverge.
Next in order to find the resonances r, we substitute

aðτÞ ¼ a0τ
2
3 þmτ

2
3
þr in (8) and linearize around m ¼ 0.

From the remaining terms, we solve r from the coefficient
of the leading order term and obtain an equation

B

A

C
1.0 0.5 0.0

(a) (b)

0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

r

m

de

weff

5 0 5 10 15

1.0

0.5

0.0

0.5

1.0

ln 1 z

FIG. 1. (a) Phase portrait of the system (27)–(28) with n ¼ 0.2. The shaded area represents the region of accelerated expansion.
(b) Time evolution of Ωr, Ωm, Ωde and weff . Here, z denotes redshift given by z ¼ a0

a − 1 where a0 ¼ 1 is the scale factor at the
present time.
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rðrþ 1Þ ¼ 0; ð30Þ

giving two solutions r1 ¼ −1 and r2 ¼ 0. The value of r1
confirms the existence of singularity as one of the solutions
of resonances must be −1. The second resonance confirms
that the coefficient a0 of the leading-order term is arbitrary,
and it is another integration constant apart from t0. Since
the system contains two integration constants viz. t0 and a0,
therefore, the system passes Painlevé test. However, to
obtain some information on analytical solutions that are
physically interesting, in what follows, we perform the last
step of the singularity analysis. Due to the presence of
remainder terms arising from the substitution of a leading
term in (8), the leading term is not a solution of the system.
By inspecting the resonances, we can express the solution
in the right Laurent expansion with step 1

3
and so we have

aðτÞ ¼ a0τ
2
3 þ

Xþ∞

i¼1

aiτ
2þi
3 : ð31Þ

At this point, we have determined the two free parameters
of the problem, coefficient a0 and t0 representing the
position of the singularity. Hence, the consistency test is
not necessary to conclude that the cosmological system
possesses the Painlevé property. However, we perform the
consistency test in order to determine the values of
aiði ¼ 1; 2; 3;…Þ. Performing the consistency test for a
general n is difficult as comparison of terms is involved.
Therefore, for the sake of completeness, we shall fix the
value of n.
As an illustration, let us take n ¼ −1 and we substitute

the expression (31) in Eqs. (7) and (8). Then, we obtain
ρm0 ¼ 4

3
a30 and the nonzero coefficients are a12k

(k ¼ 1; 2; ::) with a12 ¼ 9
320

αa0,
a24
a12

¼ − 33
160

αa0 etc.

Similarly, on taking n ¼ −2, we obtain ρm0 ¼ 4
3
a30 and

the nonzero coefficients are a18k (k ∈ N) with
a18 ¼ 45

3584
αa0,

a36
a18

¼ − 12195
46592

a0 etc. In both the cases we
see that many coefficients close to the dominant terms
vanish and therefore the solution is approximated by the
leading order term a0τ

2
3, i.e., by a dust fluidlike solution.

Therefore, near singularity, the solution (31) corresponds to
a decelerated universe with q ¼ 1

2
. The presence of right

Laurent expansion (31) implies that the matter dominated
universe near singularity is not a stable solution. This can
also be confirmed from the saddle nature of a matter
dominated critical point B (see Sec. III).
Indeed, in the Laurent expansion (31) as we move far

from the singularity τ > 0, the terms right from the leading-
order behavior τ

2
3 dominates and describe the solution of the

differential equation. This type of property of the solution
has been observed before in previous cosmological studies
[47]. If the resonances were negative, then the analytic
solutions would be expressed by a left Painlevé Series

which indicates that the leading-order behavior describes
the attractor of a stable asymptotic solution.
One also may be interested in the investigation of the

analytical solution in terms of the Hubble function. Since,
the scale factor aðτÞ can be expressed in terms of the
Laurent expansion, the leading term of the solution ofHðτÞ
near the putative singularity is given by HðτÞ ¼ pτ−1

where p is the leading exponent of aðτÞ. Near singularity,
such solution describes the universe’s era dominated by an
ideal gas with weff ¼ −1þ 2

3p. For the present case, we

have p ¼ 2
3
, which indeed describes the matter dominated

era (weff ¼ 0). On substituting HðτÞ ¼ 2
3
τ−1 þmτ−1þr in

(8) and linearize around m ¼ 0, we obtain r ¼ −1, which
implies that the singularity is movable. Since the differ-
ential equation inH is first order, we do not need to proceed
with the analysis. However, for the sake of completeness,
we continue to perform the consistency test. For the test, we
choose n ¼ −1, then the solution can be expressed as a
Laurent expansion

HðτÞ ¼ 2

3
τ−1 þ

Xþ∞

i¼1

Hiτ
−1þi; ð32Þ

where the nonzero coefficients are H4k ðk ¼ 1; 2; ::Þ with
H4 ¼ 9

80
, H8 ¼ − 1269

25600
etc. We note here that the only

integration constant of Eq. (8) is t0, which is the location of
the singularity. Thus, in the present case, Eq. (8) possesses
the Painlevé property and hence deemed to be integrable.

2. n > 1 case

For the case n > 1, we found that the leading order
behavior is σ ¼ 2n

3
and a0 is arbitrary, i.e., aðτÞ ¼ a0τ

2n
3 .

Therefore, the dominant term comes from the geometric
term Qn of the action. Depending on the value of n, we
either have 2n

3
∉ N or 2n

3
∈ N.

First let us assume the case where 2n
3
∉ N. In this case, we

obtain resonances r1 ¼ −1, 0. Therefore, as in the case of
n < 1, the system passes the Painlevé test and the solution
can be expressed in terms of a right Laurent expansion. As
the step for the Laurent expansion depends on the value of
n therefore to find the series expansion we have to fix the
value of n. For the sake of illustration, let us take n ¼ 2,
then the right Laurent expansion is given by

aðτÞ ¼ a0τ
4
3 þ

Xþ∞

i¼1

aiτ
4þi
3 : ð33Þ

Performing a consistency test, we get ρm0 ¼ 512
3
αa30, i.e.,

α > 0 for ρm0 > 0 and the nonzero coefficients a6 ¼ − a0
288α,

a12 ¼ 17a6
2880α etc.

On the other hand, for 2n
3
∈ N, say 2n

3
¼ M, to determine a

movable singularity, we replace aðτÞ by b−1ðτÞ in the
cosmological equations (7)–(8). So, the dominant term is
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bðτÞ ¼ b0τ−M and resonances are 0;−1. If we take n ¼ 3
2
,

the analytical solution of the scale factor is

aðτÞ−1 ¼ b0τ−1 þ
Xþ∞

i¼1

biτ−1þi: ð34Þ

where b1 ¼ b0
12

ffiffi
6

p
α
, b2 ¼ − b0

864α2
etc., along with ρm0 ¼ 6

ffiffi
6

p
α

b3
0

which is positive for α > 0.
In general, for n > 1, the solution of the scale factor near

the singularity approximated by the dominant term is given
by the power-law solution aðτÞ ∝ τ

2n
3 , which corresponds to

an effective fluid of equation of state parameter weff ¼ 1−n
n .

Therefore, the solution near singularity describes a decel-
erated universe for 1 < n < 3

2
, an accelerated universe for

n > 3
2
, a Milne universe for n ¼ 3

2
and a cosmological

constant as n → ∞. We also note that the solution runs
fast from the scaling behavior as this solution does not
correspond to any asymptotic structure. For instance, by
comparing the scaling solution aðτÞ ¼ a0τ

2n
3 with the

effective equation of state parameter, one can find that
x ¼ n−1

2n (with y ¼ 0), which is indeed not a critical point of
the system (27)–(28).
As in the previous case, here, we find the behavior of the

Hubble function. For this case, the leading order behavior is
HðτÞ ¼ 2n

3
τ−1 and the resonance is r ¼ −1 which confirms

the existence of a movable singularity. For the consistency
test, we choose n ¼ 2 and the Laurent expansion for H is
given by

HðτÞ ¼ 2n
3
τ−1 þ

Xþ∞

i¼1

Hiτ
−1þi; ð35Þ

where the nonzero coefficients are H2k ðk ¼ 1; 2; ::Þ with
H2 ¼ − 1

144
, H4 ¼ 1

17280
etc. Thus, in summary, we find that

the present model possesses the Painlevé property in the
presence of dust fluid for any parameter n.

B. Dust with radiation fluid

In this section, we shall consider the case where the
matter component includes dust with radiation. As in the
previous case, we focus our study on two different cases:
n < 1 and n > 1.

1. n < 1 case

Following a similar procedure as earlier, it follows from
Eq. (29), that the leading term is aðτÞ ¼ a0τ

1
2. We note here

that a0 is not arbitrary, but it is given by a40 ¼ 4
3
ρr0.

Therefore, contrary to the case where only dust is present,
the dominant behavior is radiationlike.
Substituting aðτÞ ¼ a0τ

1
2 þmτ

1
2
þr in (8) and linearize

around m ¼ 0, we obtained resonances r1 ¼ −1 and
r2 ¼ 1

2
. The second resonance confirms that the coefficient

a0 is not arbitrary, instead, the coefficient a1 is arbitrary (an
integration constant). From the nature of resonances, the
Painlevé series can be expressed in a right Laurent
expansion with step 1

2
, i.e.,

aðτÞ ¼ a0τ
1
2 þ

Xþ∞

i¼1

aiτ
1þi
2 : ð36Þ

To determine the values of ai, we perform a consistency test
by substituting (36) in (7)–(8). As in the case of dust fluid

only, we take n ¼ −1 and obtain a2 ¼ − 7
8

a2
1

a0
, a3 ¼ 5

4

a3
1

a2
0

etc.,

and ρr0 ¼ 3
4
a40. Also, Eq. (7) yields ρm0 ¼ 9

2
a1a20. We have

checked that n ¼ −2 yields same values of coefficients ai
as in the n ¼ −1 case.
The connection with the critical points is similar to that

with the case of dust, where in here the leading order
behavior is that of the radiation fluid, that is, point A.
Therefore, the solution (36) corresponds to a decelerated
universe with weff ¼ 1

3
. The presence of right Laurent

expansion (36) implies the unstable nature of a radiation
dominated universe near a singularity, which accord with the
nature of radiation dominated critical point A (see Sec. III).

2. n > 1 case

For the case n > 1, we found that the leading order
behavior is σ ¼ 2n

3
. Therefore, the dominant term comes

from the geometric term Qn of the action. Similar to the
case of dust fluid case, we consider n such that 2n

3
∉ N or

2n
3
∈ N. In both cases, we obtain resonances 0 and −1.

However, the corresponding Painlevé series fails to satisfy
Eqs. (7) and (8). This result implies that the system does not
possess the Painlevé property for n > 1, which means we
cannot solve the solution in Laurent expansion.
Hence, in the presence of dust fluid with radiation, the

present model passes the Painlevé test when we work with
aðtÞ only for n < 1. We summarize the result of the
singularity analysis performed in this section for the case
of dust fluid and the dust fluid with radiation on Table II.
Before we conclude this section, we remark that the

system in the presence of dust with radiation fluid does not
admit the Painlevé property when we work with the Hubble
functionHðtÞ. This is a common problem in the singularity
analysis as the Painlevé property is coordinate dependent
and hence depends on the equation or variables we apply,
which is contrary to the symmetry analysis. For instance,
the well-known integrable oscillator, in general, does not
possess the Painlevé property, but one has to define
coordinates to satisfy the property [62]. Similarly, the
Starobinsky model of inflation admits the Painlevé property
only for a specific choice of coordinates [47,50]. To further
investigate the viability of the model, in the next section, we
shall analyze the model’s behavior at the linear perturba-
tion level.
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V. LINEAR GROWTH INDEX

In this section, we shall study the linear growth of dark
matter fluctuations for the power-law form model FðQÞ ¼
αQn in the matter dominated era (neglecting the radiation
component, i.e., ρr ¼ 0). From (10), one can find that the
present matter density parameter is

Ωm0 ¼
ρm0

3H2
0

¼ 1 −
FðQ0Þ
6H2

0

þ ð2FQÞQ¼Q0
; ð37Þ

where Q0 ¼ 6H2
0 (H0 is the Hubble constant) and so we

have

α ¼ ð6H2
0Þ1−n

1 −Ωm0

2n − 1
: ð38Þ

Now dividing Eq. (10) by H2
0, we get

E2ðaÞ ¼ H2

H2
0

¼ Ωm0a−3 þ ð1 −Ωm0ÞE2n: ð39Þ

The differential equation describing the evolution of matter
density perturbations δ defined by δ ¼ δρm

ρm
at smaller scale

compared to the Hubble radius is given by [63–65]

δ̈þ 2Hν_δ − 4πμρmδ ¼ 0: ð40Þ

The quantities μ and ν are associated with the physics of DE
and measure the deviation of GR’s theory. For DE models
within the framework of GR, one has μ ¼ ν ¼ 1. On the
other hand, for various modified gravity theories, we have
ν ¼ 1 and μ ≠ 1. Further, if the matter component is
allowed to couple with DE, we have ν ≠ 1 and μ ≠ 1.
Since, in our present model, there is no interaction between
dark sectors, we have [6]

ν ¼ 1; μ ¼ 1

1þ FQ
: ð41Þ

In order to have a better picture on the evolution of growth
of matter perturbation, it is convenient to consider the
growth factor f which is defined in terms of δ as [57]

f ≡ d ln δ
d ln a

: ð42Þ

In terms of E, we can rewrite Ωm as

Ωm ¼ Ωm0a−3

E2ðaÞ : ð43Þ

Differentiating (43) with respect to scale factor, we get

dΩm

da
¼ −3

Ωm

a

�
1þ 2

3

d lnE
d ln a

�
: ð44Þ

Using the definition (42) and Eq. (44), we can write
Eq. (40) as a first-order differential equation given by

df
d ln a

þ f2 þ
�
2þ d lnE

d ln a

�
f ¼ 3

2

1

1þ FQ
Ωm: ð45Þ

On differentiating (39) with respect to ln a and using (43)
we get

d lnE
d ln a

¼ −
3

2

1 − E2n−2ð1 − Ωm0Þ
1 − nE2n−2ð1 − Ωm0Þ

; ð46Þ

and so Eq. (45) becomes

df
d ln a

þ f2 þ f

�
2 −

3

2

1 − E2n−2ð1 −Ωm0Þ
1 − nE2n−2ð1 −Ωm0Þ

�

¼ 3

2

Ωm

1 − nð1−Ωm0ÞE2n−2

2n−1

: ð47Þ

As we are interested in the behavior of matter perturbations
in the matter dominated era, we shall use the common
parametrization of f in terms of Ωm given by [57]

f ¼ Ωγ
mðaÞ; ð48Þ

where γ is the growth index of matter perturbations. It is
worth mentioning that in the literature, there are various
theoretical speculations on the functional form of the
growth index. In the present work, we consider the
following phenomenologically interesting parametrization
of γ in terms of scale factor [66]:

γðaÞ ¼ γ0 þ γ1yðaÞ: ð49Þ

The above equation can be treated as a first-order Taylor
expansion of γ around some cosmological function yðaÞ

TABLE II. A summary on the result of singularity analysis.

Cases Range of n Painlevé Property Leading order of aðτÞ Nature of solutions in aðτÞ Dominant fluid

Dust fluid n < 1 Satisfied τ
2
3 Right Painlevé series Dust

n > 1 Satisfied τ
2n
3 Right Painlevé series FðQÞ

Dust fluid with radiation n < 1 Satisfied τ
1
2 Right Painlevé series Radiation

n > 1 Inconclusive Inconclusive Undetermined Undetermined
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with coefficients γ0, γ1. To determine the growth index’s
behavior, one has to specify the function yðaÞ. In what
follows, we shall investigate the growth index for two
different parametrizations of yðaÞ. First, we consider the
case where yðaÞ ¼ lnΩmðaÞ. Here, for z ≫ 1, i.e.,
ΩmðaÞ → 1, the growth index approach an asymptotic
value γ∞ with γ∞ ≈ γ0 which is redshift independent.
Such a form of γ is also called the constant growth index.
We consider another form of yðaÞ given by yðaÞ ¼ 1 − a.
In this case, the growth index is redshift-dependent, and
therefore, it is known as a time-varying growth index. We
note that the growth index’s redshift-dependent form can
provide a more accurate approximation for the growth rate
factor compared to a constant parametrization. In what
follows, we shall discuss the constant growth index’s
behavior and the time-varying growth index separately.

A. Constant growth index

In this subsection, we consider the simplest form of the
growth index known as the asymptotic or constant growth
index. For finding the value of the asymptotic growth
index, we use an analytical approach developed in [67].
Based on an analytical method, for high redshift z ≫ 1, i.e.,
Ωm → 1, the asymptotic growth index γ∞ is given by

γ∞ ¼ 3ðM0 þM1Þ − 2ðH1 þ N1Þ
2 − 4H1 þ 3M0

; ð50Þ

where

M0 ¼ μjΩm¼1; M1 ¼
dμ

d lnΩm

����
Ωm¼1

;

N1 ¼
dν

d lnΩm

����
Ωm¼1

; H1 ¼
dðd lnEd ln aÞ
d lnΩm

����
Ωm¼1

: ð51Þ

We note here that

dμ
d lnΩm

¼ Ωmnð1 − 2nÞ
Ωmnþ n − 1

:

After some algebraic calculations, we obtain

M0 ¼ 1; M1 ¼
(
0 if n ¼ 1

2

n
1−2n if n ≠ 1

2

;

N1 ¼ 0; H1 ¼
3ðn − 1Þ

2
: ð52Þ

Therefore, the value of the asymptotic growth index is
given by

γ∞ ¼
8<
:

9
16

if n ¼ 1
2
;

6ðn−1Þ2
ð2n−1Þð−11þ6nÞ if n ≠ 1

2
:

ð53Þ

Indeed, for n ¼ 0, one recover the standard value 6
11
for the

ΛCDM model. We note that the value of γ∞ is undefined
for n ¼ 11

6
. Interestingly, for n ¼ 1

2
, the value of γ∞ ¼ 9

16

which coincide with that of the Finsler-Randers cosmo-
logical model [68]. We found some differences in the value
of the growth index from the GR-based model, i.e., the
ΛCDM, while background cosmology for n ¼ 1

2
is the same

as that of GR for any matter content [6]. In Fig. 2, we plot
the asymptotic growth index as a function of a parameter n
and compare it with that of the ΛCDM model. The plot
shows that the value of the growth index for the power-law
model is greater than that of ΛCDM only for 0 < n < 1

2
or

11
6
< n < 6. As mentioned earlier, the varying growth index

contains more information about the growth of structures
described by gravity’s underlying theory; therefore, we
now proceed to analyze a time-varying growth index.

B. Varying growth index

For the redshift-dependent growth index, we consider the
parametrization introduced in [69] which is expressed as a
Taylor expansion around the present time, i.e., aðzÞ ¼ 1 as:

0.4 0.2 0.0

(a) (b)

0.2 0.4
0.4

0.5
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0.7

0.8

0.9

1.0

n
4 5 6 7 8 9 10

0.40

0.45

0.50

0.55

0.60

0.65

0.70

n

FIG. 2. The evolution of γ∞ for the power law model FðQÞ ¼ αQn as a function of parameter n (in dashed curve). The solid line
γ∞ ¼ 6

11
corresponds to the ΛCDM model, i.e., n ¼ 0.
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γðaÞ ¼ γ0 þ γ1ð1 − aÞ; ð54Þ

where γ0, γ1 are the coefficients. The parametrization (54)
is commonly used in the literature to approximate the
growth rate of matter perturbation. It provides a very good
approximation to the ΛCDM and DGP models. Here, we
shall analyze it for the power law form of fðQÞ gravity. On
substituting fðaÞ on (45) and using (44), yields

a lnðΩmÞ
dγ
da

þ Ωγ
m − 3

�
γ −

1

2

��
1þ 2

3

d lnE
d ln a

�

þ 1

2
−
3

2
μΩ1−γ

m ¼ 0: ð55Þ

At the present time which corresponds to a ¼ 1, i.e.,
redshift z ¼ 0, the above equation becomes

dγ
da

����
a¼1

lnΩm0 þ Ωγð1Þ
0 − 3

�
γð1Þ − 1

2

��
1þ 2

3

d lnE
d ln a

�
a¼1

þ 1

2
−
3

2
μ0Ω

1−γð1Þ
m0 ¼ 0; ð56Þ

where μ0¼μja¼1¼ 2n−1
nΩm0þn−1 and d lnE

d lna ja¼1¼−3
2

Ωm0

1−nð1−Ωm0Þ.
By employing the parametrization (54) in Eq. (56), we
obtain γ1 in terms of γ0 as

γ1 ¼
1

lnðΩm0Þ
�
Ωγ0

m0 − 3

�
γ0 −

1

2

��ðΩm0 − 1Þðn − 1Þ
nðΩm0 − 1Þ þ 1

�
þ 1

2
−
3

2
μ0Ω

1−γ0
m0

�
: ð57Þ

Again for large redshift z ≫ 1 (or aðzÞ → 0), we have
γ ¼ γ∞ and so from (54), it can be seen that γ∞ ≃ γ0 þ γ1.
Therefore, using the expression of γ∞ from Eq. (53),
one can find the expressions of γ0 and γ1 in terms of
Ωm0 and n.
In Fig. 3, we plot the variation of quantities γ0 and γ1 for

0.2 ≤ Ωm0 ≤ 0.4. We find that the values of γ0 and γ1 are
larger (or smaller) than those in the ΛCDM model (i.e.,
n ¼ 0) for n > 0 (or n < 0). This result implies that the
effective gravity of the fðQÞ theory is weaker for n > 0 and
stronger for n < 0 in comparison to GR. Such features
provide distinct signatures for the fðQÞ theory. It can be
also noted that for various GR based models, we have

jγ1ðz ¼ 0Þj≲ 0.02 and can be greater for models beyond
GR framework [70]. Hence in principle, one can discrimi-
nate the fðQÞ gravity from Einstein gravity through the
values of γ0, γ1.
Finally, in Fig. 4, we plot the growth index’s evolution

for positive and negative values of n. We can see that
throughout the evolution, the growth index is smaller in
comparison to that of ΛCDM for n < 0 and larger for
n > 0. Such behavior of the growth index can be related to
the nature of the effective Newton’s gravitational constant
[see Eq. (41)]. As the growth index’s evolution depends on
the value of parameter n, one needs to perform constraint on
γ0, γ1 concerning various observational growth rate data.
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n 0
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FIG. 3. Evolution of γ0 and γ1 against Ωm0 for n ¼ −0.2, 0.2 and n ¼ 0 which corresponds to the ΛCDM model.
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This exercise will restrict the possible values of n favorable
with the structure formation data.

VI. CONCLUSION

We studied the recently modified gravity theory’s
cosmological behavior known as the fðQÞ theory in
the present work. More accurately, we focussed the
analysis on the power-law form, i.e., fðQÞ ¼ Qþ αQn.
While the theory modifies high curvature regime for
n > 1, it modifies low curvature regime for n < 1.
Therefore, the theory applies to the early Universe for
n > 1 and to the late time Universe for n < 1. It is worth
mentioning that for n ¼ 1

2
, the background evolution is the

same as that of GR. However, Ref. [71] reported some
interesting observational signatures distinct from that of
the ΛCDM model at the perturbation level. Therefore, in
this work, we have investigated the behavior of the
power-law model of fðQÞ theory at the background level
and perturbation level.
At the background level, we perform a dynamical system

analysis and singularity analysis of the model. From the
dynamical system analysis performed in Sec. III, we see
that for jnj < 1, the model is cosmologically viable,
exhibiting a cosmological sequence: radiation era → dark
matter era→ DE era. Therefore, for such a case, the overall
background evolution is the same as that of theΛCDM. It is
worth mentioning that the DE behavior is solely due to the
geometry of the theory without the need to introduce an
exotic component.
A dynamical system usually contains model parameters

and initial conditions, which we require to fine-tune for
performing numerical analysis. In such a scenario, one may
not understand the system’s general properties defined by
the theory. Therefore, finding the analytical solutions for
given differential equations is crucial to understand their
properties further. In the present work, we determine the
analytical solutions of the scale factor and the Hubble
function by employing the singularity analysis techniques

in Sec. IV. We followed the ARS algorithm, which allows
us to determine whether the differential equation possesses
the Painlevé property. Further, we compared the Laurent
expansion with the nature of critical points obtained from
the dynamical system analysis. More precisely, we per-
formed the singularity analysis for two cases: (a) dust fluid
only in Sec. IVA (b) dust fluid along with radiation in
Sec. IV B.
In the case of dust only, the system passes the Painlevé

test for both n < 1 and n > 1. For n < 1, the solution
around singularity is approximated by a dust fluidlike
solution, and it is expressed as a right Painlevé series. The
nature of the series also confirmed the saddle behavior of a
matter dominated critical point B of the system (27)–(28).
If n > 1, the solution near singularity corresponds to a
scaling solution due to the geometric term Qn. It describes
decelerated Universe for 1 < n < 3

2
, an accelerated

Universe for n > 3
2
, a Milne universe for n ¼ 3

2
and a

cosmological constant as n → ∞. However, we note that
the solution does not correspond to any asymptotic struc-
ture of a dynamical system.
In the presence of dust and radiation, the system passes

the Painlevé test only for n < 1. In such a case, the solution
around singularity is approximated by a radiation-like
solution, and it is expressed as a right Painlevé series.
As before, the nature of the series also confirmed the
unstable nature of radiation dominated critical point A of
the system. Therefore, the singularity analysis results
complement the dynamical system analysis performed in
Sec. III. Failure of the Painlevé test in the presence of
radiation and matter for n > 1 suggests that the system is
likely to be nonintegrable. The nonintegrability of the
system may lead to the onset of chaotic behavior.
Therefore, we believe that the singularity analysis allows
us to understand the onset of chaos in gravity theories. Most
importantly, the present work contributes to the subject of
integrability of gravitational field equations in the context
of cosmology.

n 0.2

n 0.2

n 0
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FIG. 4. The evolution of growth index γ against redshift z for n ¼ −0.2, 0.2 and for the ΛCDM model, i.e., n ¼ 0 with Ωm0 ¼ 0.28.
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The singularity analysis for the power-law form of fðRÞ
gravity, i.e., fðRÞ ¼ Rþ qRn has been performed in
[47,50] for n > 1 and n ≠ 5

4
. The analysis is carried out

in the absence of radiation and for n > 1 only. However, no
such analysis have been reported for n < 1 or in the
presence of radiation for fðRÞ gravity. By comparing the
results of fðRÞ gravity with that obtained in the present
work, we find that both theories provide similar dominant
power-law solutions except n ¼ 2. Hence, both fðRÞ and
fðQÞ theories resemble near amovable singularity for n > 1.
The knowledge about the integrability of the field

equations is crucial for the existence and determining real
solutions. We note that apart from the singularity analysis,
the symmetry analysis which is coordinate independent is
another method that allows us to extract information if the
system is integrable. Therefore, in the future we aim to use
both approaches in other theories of gravity.
Apart from the background analysis, we studied the

growth rate of matter perturbations within the subhorizon
scale. In particular, we analyze the growth rate index’s
nature for two different choices: the asymptotic value of
growth index and varying form of growth index. We find
that the value of the asymptotic growth index depends on
parameter n. For n ¼ 0, we recover the standard value of
the ΛCDM which is 6

11
. For n ¼ 1

2
, it is well-known that at

the background level, the dynamics are the same as that of
GR [6]. Such a result is further confirmed by the dynamical
system analysis performed in Sec. III. However, we find

that the value of the asymptotic growth index for n ¼ 1
2
is 9

16

which interestingly deviates from that of theΛCDMmodel.
More specifically, the value of growth index for the present
model is greater than that of ΛCDM when 0 < n < 1

2
or

11
6
< n < 6, otherwise it is smaller than that of ΛCDM (see

Fig. 2). Finally, we generalized the analysis by considering
the growth index parametrization, which varies with red-
shift introduced in [69]. The investigation reveals that
throughout the evolution, the varying growth index is
smaller to that of the ΛCDM for n < 0 and larger for
n > 0, which can be related to the nature of gravity [see
parameter μ from Eq. (41)]. The results obtained here also
confirmed the possible peculiar or measurable signature at
the linear regime of cosmic perturbations investigated in
[71]. Hence, we require further analysis to test the theory’s
viability with upcoming precise observational data at the
perturbation level.
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