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The energy budget of cosmological first-order phase transition is essential for the gravitational wave
spectra. Most of the previous studies are based on the bag model with same sound velocity in the symmetric
and broken phase. We study the energy budget and the corresponding gravitational wave spectra beyond
the bag model, where the sound velocities could be different in the symmetric and broken phase. Taking the
Higgs sextic effective model as a representative model, we calculate the sound velocities in different phase,
the gravitational wave spectra, and the signal-to-noise ratio for different combinations of phase transition
parameters beyond the bag model. We compare these new results with the ones obtained from the bag
model. The proper sound velocities and phase transition parameters at the appropriate temperature are
important to obtain more precise predictions.
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I. INTRODUCTION

First-order phase transition (FOPT) in the early Universe
might play important roles in the physical processes of
baryogenesis, darkmatter, primordial magnetic field, primor-
dial black hole, cosmic string, gravitational wave (GW), etc.
The GWs generated during a strong FOPT through bubble
collision, turbulence, and sound wave mechanisms could
provide new signals to unravel the above problems, and can
be potentially detected by the future GW experiments,
such as LISA [1–4], TianQin [5–7], Taiji [8,9], Decihertz
Interferometer Gravitational Wave Observatory (DECIGO)
[10,11], Ultimate-DECIGO(U-DECIGO) [12], andBigBang
Observer (BBO) [13]. Therefore, to clearly understand these
fundamental issues in particle physics and cosmology, it is
crucial to precisely predict the GW spectra produced by the
FOPTprocess. And the energy budget of cosmological FOPT
is essential for precise calculations ofGWspectra [14–21]. To
obtain the energy budget, it is key to calculate the kinetic
energy fraction, which is determined by hydrodynamics of
expanding bubble, the phase transition strength, the sound
velocity in the plasma, and the bubble wall velocity. For
simplicity, most of previous studies use the bag model
[14–18,20], which assumes the symmetric and broken phase
share the same constant sound velocity c2s ¼ 1=3, to describe

the phase transition. However, the phase transition process of
a given new physics model could deviate from the bag
model, if some extra particle contents obtain field-dependent
masses that are comparable with the phase transition temper-
ature, and this situation could be general in many extensions
of the standard model of particle physics. Therefore, some
recent studies consider a situation beyond the bag model
[19,21]. In those works, the symmetric and broken phase can
be quantified by a phenomenological equation of state
(EOS), and the sound velocities in the two phases could
be different. In this work, we study the different sound
velocities model (DSVM) of EOS, which is one simple and
natural generalization of the bag model, to explore more
reliable energy budget and hydrodynamical processes of
this EOS, and the corresponding profiles of the DSVM
for different hydrodynamical modes are obtained by
solving the fluid equations with different sound velocities
in the symmetric and broken phase. Taking the Higgs sextic
effective model as an example, we consider the effect of
different sound velocities in broken and symmetric phase.
Then, based on this effective model we show a concrete
calculation of sound velocity, the kinetic energy fraction and
other phase transition parameters. For different combination
of these phase transition parameters, which are obtained by
the bag model of EOS and the DSVM of EOS at different
characteristic temperatures, we calculate the GW spectra and
observe differences of different parameter combinations.
And according to these GW spectra, we also compare
signal-to-noise ratio (SNR) of different combinations of
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phase transition parameters for different models of EOS,
which are essential for a more reliable prediction.
This paper is organized as the following: In Sec. II, we

discuss the hydrodynamics of the plasma and the corre-
sponding EOS to quantify it. Then, we discuss how to
calculate the kinetic energy fraction in Sec. III. In Sec. IV,
we study the Higgs sextic model to perform the concrete
calculations, and the corresponding GW spectra and signal-
to-noise ratio (SNR) of different parameter combinations
are investigated in Sec. V. Discussions and conclusions are
given in Sec. VI and Sec. VII. The Appendixes give fluid
profiles of three hydrodynamical modes and the efficiency
parameter.

II. THE HYDRODYNAMICS AND THE
EQUATION OF STATE

To calculate the kinetic energy fraction, we should firstly
solve the hydrodynamical equations to get the fluid profile.
Assuming the plasma as ideal fluid, we begin our dis-
cussions from the energy-momentum tensor of the perfect
fluid

Tμν ¼ ðeþ pÞuμuν − pgμν ¼ wuμuν − pgμν; ð1Þ

where p and e are the pressure and energy density, and
uμ ¼ γð1; vÞ with γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is the four-velocity. The

enthalpy w ¼ eþ p. These quantities can be obtained from
the equilibrium free energy density F in each phase, which
is just the finite-temperature effective potential. The pres-
sure is obtained by p ¼ −F. Further, we can obtain the
entropy density by s ¼ ∂p=∂T, the energy density by
e ¼ Ts − p, and the enthalpy by w ¼ eþ p ¼ Ts.
From the energy-momentum conservation ∂μTμν ¼ 0,

we can obtain the matching conditions (in the reference
frame of the bubble wall) [14–18]

w−v2−γ2− þ p− ¼ wþv2þγ2þ þ pþ;

w−v−γ2− ¼ wþvþγ2þ: ð2Þ

Equivalently, we can obtain the following relations:

vþv− ¼ pþ − p−

eþ − e−
;
vþ
v−

¼ e− þ pþ
eþ þ p−

: ð3Þ

Here subscripts þ and − indicate the quantities in the
symmetric and broken phase, respectively. In the literature,
one usually assumes the bag model of EOS to continue the
analysis. For the bag model, the EOS can be written as

pþ ¼ 1

3
aþT4þ − ϵþ; eþ ¼ aþT4þ þ ϵþ;

p− ¼ 1

3
a−T4

− − ϵ−; e− ¼ a−T4
− þ ϵ−; ð4Þ

and this introduces the conventional definition of the phase
transition strength parameter [17]

αθ ¼
4

3

Δϵ
wþ

; ϵ� ¼ 1

4
ðe� − 3p�Þ: ð5Þ

We use natural units with c ¼ ℏ ¼ kB ¼ 1. In the bag
model, the sound velocity of symmetric phase and broken
phase both equal 1=

ffiffiffi
3

p
. However, the sound velocity can

basically deviate from this value in a realistic FOPT
process. In general, the sound velocity should also be
temperature-dependent.
To more precisely describe the phase transition process,

we can assume the sound velocities in both phases are
constants that can deviate from 1=

ffiffiffi
3

p
, and we can have a

relation as ∂p=∂e ¼ c2s ¼ constant. Hence the bag model
of EOS can be generalized as a DSVM of EOS (which is
firstly studied by Ref. [19] with the planar approximation,
and also called the ν model [21]). The generalized EOS is

pþ ¼ c2þaþT
νþþ − ϵþ; eþ ¼ aþT

νþþ þ ϵþ;

p− ¼ c2−a−Tν−− − ϵ−; e− ¼ a−Tν−− þ ϵ−; ð6Þ

where ν� ¼ 1þ 1=c2�. For c
2
− ¼ c2þ ¼ 1=3 (i.e., the bag

model), a− and aþ are dimensionless and well defined.
However, for c2� ≠ 1=3, the coefficient a� is dimensional.
Since the bag model of EOS is a special situation of this
general model, the temperature-dependent coefficient
a�ðTÞ can be defined as a�ðTÞ ¼ a�T4−ν� , where the
dimensionless constant a� is the same as the bag model of
EOS. Hence when c2� ¼ 1=3, this model can return to the
bag model of EOS, and this model can be rewritten as
follows:

pþ ¼ c2þaþT4þ − ϵþ; eþ ¼ aþT4þ þ ϵþ;

p− ¼ c2−a−T4
− − ϵ−; e− ¼ a−T4

− þ ϵ−; ð7Þ

with a� ¼ g�π2=30 (g� is degree of freedom for the
symmetric and broken phase) just like the bag model
of EOS.
The strength parameter defined in the bag model actually

depends on Tþ and T−. That is, Δϵ ¼ ϵþðTþÞ − ϵ−ðT−Þ.
However, one always uses the same temperature (e.g.,
the nucleation temperature) to calculate this quantity. To
generalize αθ without encountering the dependence on the
temperature in the broken phase T−, Ref. [21] expands
the thermodynamic quantities around the symmetric
phase to derive the corresponding values in the broken
phase, and the constant sound velocity gives the following
relation:

vþ
v−

¼ wþðvþv−=c2− − 1Þ þ Δðe − p=c2−Þ
wþðvþv−=c2− − 1Þ þ vþv−Δðe − p=c2−Þ

: ð8Þ
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Note the Δ represents the differences of various quantities
at the temperature Tþ henceforth. Therefore the pseudo-
trace definition of the strength parameter is given
as [21]

αθ̄ ¼
Δθ̄
3wþ

; θ̄ ¼ e − p=c2−; ð9Þ

and this can be combinedwith thematching condition to give

v− ¼ 1

2vþðν− − 1Þ
h
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4v2þð1 − ν−Þ

q i
;

a ¼ 1 − 3αθ̄ þ v2þðν− þ 3αθ̄ − 1Þ; ð10Þ

and

vþ ¼ 1 − v2−ð1 − ν−Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − v2−ð1 − ν−ÞÞ2 − 4v2−ð1 − 3αθ̄Þðν− − 1þ 3αθ̄Þ

p
2v−ðν− − 1þ 3αθ̄Þ

: ð11Þ

Hence the � signs in Eq. (11) indicate two branches of
solutions, and the two branches of solutions indicate two
kinds of hydrodynamical processes may occur during the
phase transition process. In the reference frame of the
bubble wall, a detonation mode, which is the upper right
part of both panels in Fig. 1, means the incoming flow is
faster than the outgoing flow, v− < vþ, and a deflagration
mode, which is the bottom left part of both panels in Fig. 1,
indicates the outgoing flow is faster than the ingoing flow,
vþ < v−. Figure 1 shows that vþ has a minimum at v− ¼
c− in the upper right part of both panels, and maximum at
v− ¼ c− in the bottom left part of both panels, and a mode
with v− ¼ c− is called Jouguet detonation or deflagration.
The corresponding Jouguet velocity is

vJ ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3αθ̄ð1 − c2− þ 3c2−αθ̄Þ

p
1=c− þ 3c−αθ̄

; ð12Þ

where þ indicates a Jouguet detonation velocity vdetJ and
− denotes the Jouguet deflagration velocity vdefJ .
A further analysis needs to deal with the hydrodynamics

of the fluid, which is described by the fluid equation. Based
on the energy-momentum conservation ∂μTμν ¼ 0, we can
also derive the fluid equation as [14,18]

∂t½ðeþpv2Þγ2�þ∂r½ðeþpÞγ2v� ¼−
j
r
½ðeþpÞγ2v�;

∂t½ðeþpÞγ2v�þ∂r½ðev2þpÞγ2� ¼−
j
r
½ðeþpÞγ2v2�; ð13Þ

where r denotes the distance from the symmetry plane,
axis, or point, and t is the duration since nucleation, and
j ¼ 0, 1, 2 for the planar, cylindrical, or spherical bubble
configuration, respectively. Since there is no characteristic
distance scale in this problem, the solution is a similarity
solution which depends only on ξ ¼ r=t. Thus, we can
derive

ðξ − vÞ ∂ξe
w

¼ j
v
ξ
þ γ2ð1 − vξÞ∂ξv;

ð1 − vξÞ ∂ξp
w

¼ γ2ðξ − vÞ∂ξv: ð14Þ

We assume a spherically symmetric configuration in this
work,

ðξ − vÞ ∂ξe
w

¼ 2
v
ξ
þ γ2ð1 − vξÞ∂ξv;

ð1 − vξÞ ∂ξp
w

¼ γ2ðξ − vÞ∂ξv: ð15Þ

FIG. 1. The fluid velocities vþ and v− in the reference frame of bubble wall for different definitions and values of phase transition
strength parameter. The horizontal and vertical gray lines indicate the sound velocities of symmetric and broken phase. Left panel: the
bag model. Right panel: the DSVM with c2þ ¼ 1=3 and c2− ¼ 0.25.
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Therefore, the equation that can describe the velocity
profile is

2
v
ξ
¼ γ2ð1 − vξÞ

�
μ2

c2s
− 1

�
∂ξv; ð16Þ

where

μðξ; vÞ ¼ ξ − v
1 − ξv

: ð17Þ

From Eq. (15) we can also derive the equation for the
enthalpy profile,

∂ξw
w

¼
�
1þ 1

c2s

�
μγ2∂ξv; ð18Þ

and the equation for temperature profile

∂ξT
T

¼ γ2μ∂ξv: ð19Þ

Then we can obtain the enthalpy profile

wðξÞ ¼ w0 exp

�Z
vðξÞ

v0

�
1þ 1

c2s

�
γ2μdv

�
; ð20Þ

and the temperature profile

TðξÞ ¼ T0 exp

�Z
vðξÞ

v0

γ2μdv

�
: ð21Þ

By solving the above fluid equations and obtaining the
fluid profiles, we can classify hydrodynamical processes of
FOPT into three stable modes: weak detonation, weak
deflagration, and hybrid [16–18]. When the bubble wall
velocity (vw) is smaller than the sound velocity of the
broken phase (c−), namely vw < c−, it is called deflagration
mode, which forms a shock in front of the bubble walls.
This mode is favored by the electroweak baryogenesis to
guarantee sufficient diffusion time. If the bubble wall
velocity is larger than sound velocity of broken phase
and smaller than the so-called Jouguet detonation velocity,
c− < vw < vdetJ ðαθ̄nÞ, it is called the hybrid mode. If the
bubble wall velocity is even larger than the Jouguet
detonation velocity, it is called the detonation mode, which
produces a rarefaction wave behind the bubble walls.
Detonation mode usually produces a stronger GW signal.
The detailed analysis of fluid profile of various hydrody-
namical modes are presented in Appendix A.

III. KINETIC ENERGY FRACTION

After solving the hydrodynamical equations and hence
obtaining the fluid profile for a given EOS, we can further
predict the kinetic energy fraction. The kinetic energy

fractionK can be defined as a fraction of the total energy eþ
that is contained in the bubble [3],

K ≡ ρfl
eþ

¼ 3

eþv3w

Z
wðξÞv2γ2ξ2dξ;

ρfl ¼
3

v3w

Z
ξ2v2γ2wdξ: ð22Þ

In general, the energy spectra of GWs from sound wave
mechanism scales as h2ΩGW ∝ K2 or h2ΩGW ∝ K3=2. In
most cases, the kinetic energy fraction K for single bubble
could be a good approximation for the whole phase
transition process. Since from the detailed discussion in
the previous section, the enthalpy profile wðξÞ and the fluid
velocity profile vðξÞ depend on both the phase transition
strength α and the bubble wall velocity vw, the single
bubble kinetic energy fraction also depends on these
parameters. According to Ref. [21], we choose the pseu-
dotrace definition of the strength parameter, hence the
efficiency parameter can be expressed as

κθ̄ ¼
4ρfl
Δθ̄

; ð23Þ

and the K can be approximated as

K ≈
�
Δθ̄
4eþ

κθ̄

�
: ð24Þ

To obtain the energy fraction, we need perform a model
dependent calculation of the prefactor.

IV. THE REPRESENTATIVE
EFFECTIVE MODEL

In this section, we take a representative effective model,
the Higgs sextic model [22–26] with the tree-level potential
VðϕÞ ¼ μ2

2
ϕ2 þ λ

4
ϕ4 þ κ

8Λ2 ϕ6, to make precise predictions
on the sound velocity, the phase transition dynamics and
parameters. This effective model is a generic prediction for
many new physics models motivated by dark matter,
baryogenesis, and so on. From the perspective of standard
model effective field theory, this Higgs sextic operator
could naturally appear after the heavy degrees of freedom
are integrated out in the new physics model, such as scalar
extended Higgs model or composite Higgs model [22].
This Higgs sextic effective model is still favored by the
collider data and electroweak precise measurements after
considering other dimension-six operator induced simulta-
neously with the Higgs sextic term. Basically, the free
energy (or effective potential) of a given model can be
divided into the following two parts:

F ðϕ; TÞ ¼ Veffðϕ; TÞ ¼ VT¼0ðϕÞ þ VTðϕ; TÞ; ð25Þ
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where VT¼0ðϕÞ is zero-temperature effective potential,
which contains the tree-level potential and the Coleman-
Weinberg potential; the one-loop thermal correction in the
effective potential is

VTðϕ; TÞ ¼ �T
Z

d3k
ð2πÞ3 lnð1 ∓ e−ωk=TÞ

¼ � T4

2π2
Jb=f

�
m
T

�
; ð26Þ

where ω2
k ¼ m2 þ k2 and the thermal function is

Jb=fðy2Þ ¼
Z

∞

0

dxx2 ln
�
1 ∓ e−

ffiffiffiffiffiffiffiffiffi
x2þy2

p �
: ð27Þ

For bosons, at high temperature limit, m=T ≪ 1, one can
expand it as

Jbðy2Þ ≈ −
π4

45
þ π2

12
y2 −

π

6
ðy2Þ3=2 − 1

32
y4 ln

y2

ab
;

ab ¼ 16π2 exp

�
3

2
− 2γE

�
: ð28Þ

For fermions, the high temperature expansion is

Jfðy2Þ ≈
7π4

360
−
π2

24
y2 −

1

32
y4 ln

y2

af
;

af ¼ π2 exp
�
3

2
− 2γE

�
; ð29Þ

where y2 ¼ m2=T2, ln ab ¼ 5.4076, ln af ¼ 2.6351, and
ζ is Riemann ζ-function. We usually omit the field-
independent term in the calculation of phase transition
dynamics. However, in this work we should include the
field-independent term − a�

3
T4, which is the contribution of

the zero-order term of the high-temperature expansion. This
is the most important term for the calculation of the sound
velocity. For simplicity, we only study the Higgs sextic
term with the leading-order thermal corrections

F ðϕ;TÞ ¼ Veffðϕ;TÞ

≈−
a�
3
T4þ μ2þ cT2

2
ϕ2þ λ

4
ϕ4þ κ

8Λ2
ϕ6; ð30Þ

where Λ=
ffiffiffi
κ

p
is the effective cutoff scale and c is the

thermal correction

c ¼ 1

16

�
g02 þ 3g2 þ 4y2t þ 4

m2
h

v2
− 12

κv2

Λ2

�
: ð31Þ

g0, g, yt, v is the Uð1Þ gauge coupling, SUð2Þ gauge
coupling, top quark Yukawa coupling, and electroweak
vacuum expectation value (VEV), respectively.

We can obtain the sound velocity of broken and
symmetric phase, then match this to the DSVM. In general,
the sound velocity is given as

c2s ¼
∂p=∂T
∂e=∂T ; ð32Þ

where p ¼ −Veff and e ¼ T ∂p
∂T − p. For this model, we can

derive the sound velocity

c2s ¼
4a�T3 − 3cTϕ2

12a�T3 − 3cTϕ2
; ð33Þ

where the value of ϕ is zero in symmetric phase. However,
the value for broken phase is

ϕtrue ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2λΛ2 þ 2Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2Λ2 − 3κðμ2 þ cT2Þ

p
3κ

s
: ð34Þ

Then the sound velocity of symmetric phase is

c2þ ¼ 4aþT3

12a2þT3
¼ 1

3
: ð35Þ

For the broken phase, the corresponding sound velocity is

c2− ¼ 4a−T3 − 3cTϕ2
true

12a−T3 − 3cTϕ2
true

; ð36Þ

and the phase transition strength parameter can be
obtained as

αθ̄n ¼
ð1þ 1=c2−ÞΔVeff − T ∂ΔVeff∂T

3ð1þ c2þÞρR
; ρR ¼ aþT4þ: ð37Þ

From the above equations, we find the sound velocity is
actually temperature-dependent. Hence choosing a differ-
ent temperature can give a different efficiency parameter.
The conventional definition of the phase transition

strength parameter based on the bag model of EOS can
be written as

αθ ¼
ΔVeff − T

4
∂ΔVeff∂T

ρR
: ð38Þ

This definition is based on the same sound velocity (i.e.,
c� ¼ 1=

ffiffiffi
3

p
) approximation in the broken and symmetric

phase. For the bag model and the corresponding definition
of phase transition strength parameter, we can derive the
kinetic energy fraction as

Kθ ¼
αθκθ
1þ αθ

: ð39Þ
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Considering different sound velocities in both phases, the
more realistic kinetic energy fraction should be modified as
Eq. (24). For the Higgs sextic model, eþ ¼ aþT4 in
symmetric phase, we can obtain

Kθ̄ ¼
3

4
ð1þ c2þÞαθ̄κθ̄; ð40Þ

where c2þ ¼ 1=3. Hereafter, we use θ to represent the
parameters calculated using the bag model with c2� ¼ 1=3,
and we use θ̄ to represent the quantities derived from the
DSVM of EOS with different sound velocities in the
symmetric and broken phase.
In Table I, we list the important phase transition

parameters of different benchmark points. We only con-
sider the detonation case for simplicity with the bubble wall
velocity vw ¼ 0.95. From this table, we can observe that the
sound velocity of the broken phase is different for different
cutoff scales. Basically, lower cutoff gives smaller sound
velocity, and the deviation from the bag model is more
obvious. The precise definition of these phase transition
parameters can be found in our previous study [27], and we
give a brief explanation of these parameters in the
following.
Tn is the nucleation temperature at which one bubble is

nucleated in one Hubble radius. 34% of false vacuum has
been converted to true vacuum at the percolation temper-
ature Tp, at which large numbers of bubbles have collided

and percolated. αθ̄n is the phase transition strength given by
the DSVM of EOS at the nucleation temperature. αθn is the
phase transition strength given by the bag model at the
nucleation temperature. At the percolation temperature, αθ̄p
and αθp are the phase transition strength derived by the
DSVM and the bag model, respectively. β̃n and β̃p
represent the values of phase transition duration that are
obtained at the nucleation and percolation temperature,
respectively. HRp quantifies the mean bubble separation at
the percolation temperature. We can basically use the time
duration parameter β̃ to approximate it [27]. In the broken
phase, the values of sound velocity square for nucleation
and percolation temperature are denoted by c2−n and c2−p.
According to the DSVM, we can derive the efficiency
parameter at nucleation and percolation temperature as κθ̄n
and κθ̄p. Then we can subsequently obtain the correspond-
ing kinetic energy fraction, Kθ̄n and Kθ̄p. For the bag
model, we can also derive the efficiency parameter, κθn and
κθp, and the kinetic fraction, Kθn and Kθp, at the nucleation
and percolation temperature.
In Fig. 2, for this Higgs sextic effective model, we show

the evolution of the sound velocity with the temperature in
the broken phase for different cutoff scales. For lower
cutoff scales, the supercooling is more significant. Hence
the nucleation temperature and percolation temperature
become much lower than the masses of W boson, Z boson
and Higgs boson for strong supercooling and ultra

TABLE I. Phase transition parameters of different benchmark points for different definitions and different models
of EOS. We only consider the detonation case with the bubble wall velocity vw ¼ 0.95 for simplicity.

BP1 BP2 BP3 BP4 BP5 BP6

Λ=
ffiffiffi
κ

p
[GeV] 620 610 600 590 587 586

Tn [GeV] 65.286 60.153 53.581 43.454 38.118 35.399
Tp [GeV] 64.032 58.751 51.738 40.538 34.364 30.795
αθ̄n 0.0442 0.0634 0.106 0.269 0.490 0.693
αθn 0.0435 0.0617 0.101 0.247 0.430 0.588
αθ̄p 0.0491 0.0717 0.126 0.375 0.808 1.378
αθp 0.0481 0.0695 0.120 0.336 0.674 1.066
β̃n 1023.948 722.848 438.429 177.375 97.708 62.392

β̃p 799.409 652.238 326.527 129.352 50.517 11.879
HRp 0.00490 0.00884 0.0117 0.0276 0.0628 0.114
c2þn 1=3 1=3 1=3 1=3 1=3 1=3
c2þp 1=3 1=3 1=3 1=3 1=3 1=3
c2−n 0.3155 0.3115 0.3048 0.2875 0.2716 0.2602
c2−p 0.3145 0.3102 0.3024 0.2795 0.2548 0.2317
κθ̄n 0.0578 0.0784 0.118 0.224 0.306 0.352
κθ̄p 0.0633 0.0869 0.135 0.269 0.372 0.424
Kθ̄n 0.00255 0.00497 0.0125 0.0603 0.150 0.244
Kθ̄p 0.00311 0.00623 0.0170 0.101 0.301 0.584
κθn 0.0626 0.0865 0.134 0.276 0.403 0.485
κθp 0.0688 0.0964 0.156 0.344 0.521 0.641
Kθn 0.00261 0.00503 0.0123 0.0548 0.121 0.179
Kθp 0.00316 0.00626 0.0167 0.0864 0.210 0.330
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supercooling cases. These situation would lead to deviation
from pure radiation phase. Thus, with the decreasing of the
temperature, the sound velocity also decreases, and is
smaller than the sound velocity in pure radiation phase
(i.e., cs ¼ 1=

ffiffiffi
3

p
). Since the kinetic energy fraction or EOS

depends on the sound velocity in two phases, any deviation
from 1=

ffiffiffi
3

p
might have some effects on the kinetic energy

fraction. In our previous study [27], we classify the FOPT
into four classes, slight supercooling for α < 0.1, mild
supercooling for 0.1 < α < 0.5, strong supercooling for
0.5 < α < 1, and ultra supercooling for α > 1. For strong
supercooling and ultra supercooling, the nucleation temper-
ature is obviously smaller than the critical temperature.
Therefore, the sound velocity deviation, which can be
observed in Table I, becomes more obvious for strong
supercooling and ultra supercooling.

V. GRAVITATIONAL WAVE SIGNALS AND
SIGNAL-TO-NOISE RATIO

In this section, we precisely calculate the GW spectra for
the Higgs sextic effective scenario with the accurate results
of the kinetic energy fraction in the bag model and the
DSVM. According to previous studies, there are three
known mechanisms to produce GWs during a FOPT,
namely, the bubble collision, turbulence, and sound wave.
In most realistic models, sound wave mechanism produces
stronger signals than bubble collision and turbulence.
For sound wave, the energy spectrum of GW scales as
ΩGW ∝ K2 or ΩGW ∝ K3=2 for H�τsh < 1, where τsh is the
shock formation time [3,27,28].
More precisely, for bubble wall velocity away from the

Jouguet detonation velocity, we have [3,28]

dΩGW

d ln f
¼ 0.687FGWK2ðH�R�=csÞC

�
f
fp

�
η; ð41Þ

where the coefficient η ∼ 10−2, and

FGW ¼ ð3.57� 0.05Þ × 10−5
�
100

g�

�1
3

: ð42Þ

The spectral shape function is

CðsÞ ¼ s3
�

7

4þ 3s2

�7
2

; ð43Þ

with the peak frequency

fp ≃ 26

�
1

H�R�

��
zp
10

��
T�

100 GeV

��
g�
100

�1
6

μHz: ð44Þ

T� is the characteristic temperature of the GW production.
It should be the percolation temperature Tp and could be
approximated as the nucleation temperature Tn if the
supercooling is not strong [27]. H� and R� is the
Hubble parameter and the mean bubble separation calcu-
lated at the nucleation temperature Tn or the percolation
temperature Tp. The quantity zp ≈ 10 is determined from
simulations [3,28]. g� is the effective degree of freedom at
T�. When we consider the sound wave contribution, the
contributions from bubble collision and turbulence are
much smaller and can be neglected.
If τshH� < 1, the GW spectra is suppressed and can be

written as [3,28]

dΩGW

d ln f
¼ 0.687FGWK3=2ðH�R�=

ffiffiffiffiffi
cs

p Þ2C
�
f
fp

�
η: ð45Þ

For the suppressed sound wave spectra, the contributions
from turbulence and bubble collision may not be negligible.
Recent study [29] shows another possible suppression for
the sound wave spectra. Then we might include the GW
spectra from turbulence and bubble collisions.
According to the numerical calculations, we find

τshH� < 1 for all benchmark points of the Higgs sextic
model. Thus, we should use the suppressed GW spectra in
Eq. (45), and we find the turbulence can have non-
negligible contribution. The GW spectrum from bubble
collision is too small and can be neglected in our numerical
results. Based on the kinetic energy fraction and other
phase transition parameters derived from the bag model and
the DSVM, we show the GW spectra of the six different
benchmark points, which are derived by different combi-
nations of the phase transition parameters and models of
EOS, in Fig. 3. The colored regions represent the expected
sensitivity of the future GW experiments, LISA [1–4],
TianQin [5–7], Taiji [8,9], DECIGO [10,11], U-DECIGO
[12], and BBO [13], respectively. The signals for most of
the benchmark are within the sensitivities of LISA, Taiji,

FIG. 2. The evolution of the sound velocity with the temper-
ature in the broken phase for different cutoff scales. The
horizontal gray line represents c2− ¼ 1=3 and the sound velocity
of the symmetric phase is c2þ ¼ 1=3.
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DECIGO, U-DECIGO, and BBO. The GW spectra, derived
with different combinations of phase transition parameters
at different characteristic temperatures, could have a
hierarchy that can reach at most two orders of magnitude.
However the spectra show that there are slight differences
between the same parameter combinations that are derived
by different EOS for the same temperature.
To clearly quantify whether the signal is detectable for a

given GWexperiment, we should also estimate the SNR for
each case with the following formula:

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T
Z

fmax

fmin

df

�
h2ΩGWðfÞ
h2ΩdetðfÞ

�
2

s
; ð46Þ

where T is the total observation time and h2ΩdetðfÞ is the
nominal sensitivity of a given GW experiment configura-
tion to cosmological sources. For simplicity, we assume
4 years mission duration time with a duty cycle of 75%T ,
and take T ≃ 9.46 × 107 s. In Table II and Table III, we
list the SNR of BP5 and BP6 for different experiment

FIG. 3. GW spectra for the six benchmark points with different definitions of phase transition parameters and different models of EOS.
The colored regions represent the expected sensitivities for the future GW experiments, LISA, TianQin, Taiji, DECIGO, U-DECIGO,
and BBO.

XIAO WANG, FA PENG HUANG, and XINMIN ZHANG PHYS. REV. D 103, 103520 (2021)

103520-8



configurations with different combinations of phase tran-
sition parameters, respectively. We can see that LISA,
TianQin, Taiji are capable of detecting the signals for
enough observation time. The SNR of BP6 is larger than
the SNR in BP5. For each benchmark point, there exists
obvious modification to the SNR for different parameter

combination. Therefore, to obtain more precise predictions
on the SNR of the GW signal, it is important to choose a
proper phenomenological EOS of the plasma, which can
approximately describe the phase transition process, and
the parameter combinations at appropriate temperature.

VI. DISCUSSION

A. The effect of reheating

During a FOPT process, the liberated energy is not fully
converted into the kinetic energy of the surrounding fluid.
Hence the kinetic energy fraction is smaller than Oð1Þ. In
fact the rest of the liberated energy reheats the fluid that
surrounding the expanding bubble wall. Based on the
DSVM, we can derive the temperature profile with
Eq. (21). Figure 4 depicts the temperature profile of three
hydrodynamical modes which are weak deflagration,
hybrid, and weak detonation, respectively, and show reheat-
ing phenomenon of the expanding bubble wall. The two
upper plots of Fig. 4 represent the temperature profiles of
deflagration (vw ¼ 0.4) and hybrid (vw ¼ 0.6)with different
sound velocities of the symmetric and broken phase for a
given strength parameter αθ̄n ¼ 0.3, and these plots show
how the lower sound velocity of the broken phase could
reduce the reheating effects in front of the bubble wall.
However, lower sound velocity of the symmetric phase
could enhance the reheating effects. The bottom panel of

TABLE II. The SNR of BP5 for different experiment configu-
rations with different combinations of phase transition parameters
and models of EOS.

αθn β̃n αθp β̃p αθ̄n β̃n αθ̄p β̃p αθp HRp αθ̄p HRp

SNRðLISAÞ 7.949 16.930 10.913 28.836 16.009 27.468
SNRðTaijiÞ 14.760 58.607 20.271 100.343 66.216 113.609
SNRðTianQinÞ 0.452 1.506 0.620 2.576 1.629 2.794

TABLE III. The SNR of BP6 for different experiment con-
figurations with different combinations of phase transition
parameters and models of EOS.

αθn β̃n αθp β̃p αθ̄n β̃n αθ̄p β̃p αθp HRp αθ̄p HRp

SNRðLISAÞ 14.230 15.368 22.470 26.382 17.367 40.816
SNRðTaijiÞ 38.666 427.813 61.208 1000.501 213.123 500.668
SNRðTianQinÞ 1.060 5.569 1.678 12.934 3.973 9.333

FIG. 4. The temperature profile of the three hydrodynamical modes: the weak deflagration (upper left vw ¼ 0.4), hybrid (upper right
vw ¼ 0.6), and weak detonation (bottom vw ¼ 0.9) with αθ̄n ¼ 0.3.
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Fig. 4 shows the temperature profile of detonation mode
with αθ̄n ¼ 0.3, and we find the reheating effect can only be
altered by changing the sound velocity of the broken phase.
Decreasing the sound velocity of the broken phase weakens
the reheating effect of detonation mode. In Sec. IV, we have
calculated the sound velocity of the broken phase with
nucleation and percolation temperature for simplicity.
A more precise approach to compute the sound velocity
is to use the temperature far behind the wall, which can be
derived by solving the temperature profile. However, Fig. 4
shows that the temperature far behind the wall is not
significantly different from the nucleation temperature for
detonation mode. Therefore, we can use nucleation temper-
ature or the percolation temperature as a proper approxi-
mation of the temperature of the broken phase. For the
deflagration mode, the reheating effect just in front of the
wall may give some influences to the baryogenesis, which is
studied in Ref. [30].

B. A fully model-dependent analysis

The key point of the analysis shown in Sec. IV is to match
a realistic model on a benchmark EOS (theDSVMof EOS is
applied in this work); this can give a model-independent
approach that simplifies the study of phase transition.
However, the accuracy of this method depends on whether
the benchmark EOS can describe the phase transition
process appropriately. In a realistic phase transition process,
the sound velocity should be temperature dependent. This
temperature-dependent behavior can be observed from
Eqs. (28) and (29), which are the high-temperature expan-
sion of thermal correction, and the definition of the sound
velocity. In the massless limit, namely y ¼ m=T ¼ 0, the
square of sound velocity is 1=3. However, with the increas-
ing of the mass, the deviation gradually increases.
Specifically, when the mass becomes comparable to the
phase transition temperature, the deviation becomes non-
negligible, and, from this aspect of thermal expansion terms,
the daisy resummation might alleviate the sound velocity
deviation. There exist two daisy resummation schemes, the
Arnold-Espinosa scheme [31] and the Parwani scheme [32],
and they usually give different predictions. Thus, the precise
study of the resummation effects on the sound velocity
deviation is left in our futurework.Obviously, the strong and
ultra supercooling cases could give a significant modifica-
tion to the sound velocity. The models with extra massive
fermions might lead to large deviation as discussed in
Ref. [19]. The two-step phase transition and the standard
model-like phase transition could also lead to sound velocity
deviation [21,33].
Due to the reheating effect, the temperature is position

dependent, hence the sound velocity is eventually position
dependent, and this should make the fluid equation more
complicated, but we can use a fully numerical calculation to
derive corresponding quantities. Here we exemplify this
model-dependent analysis, and leave a further study to a

future work. For a given model, its free energy can be
expressed as Eq. (25) and according to the free energy we
can obtain the EOS

p ¼ −VTðϕ; TÞ − VT¼0ðϕÞ;

e ¼ −T
∂VTðϕ; TÞ

∂T þ VTðϕ; TÞ þ VT¼0ðϕ; TÞ: ð47Þ

Based on this EOS we can perform the same analysis in this
work, and give the corresponding prediction of GW signals
and SNR.
For the precise calculations of the GW spectra, there is

another important parameter, the bubble wall velocity,
which affects the results significantly. Since in most
studies, the bubble wall velocity is taken as an input
parameter, and the GW spectra strongly depend on the
bubble wall velocity, namely, the kinetic energy is strongly
related to the bubble wall velocity. In principle, this bubble
wall velocity can be calculated by solving the equation of
motion of the phase transition order-parameter fields and
the collision terms for a given new physics model. It is also
model dependent. For this Higgs sextic model, our recent
study [34] calculates the bubble wall velocity beyond
leading-log approximation.

C. Multistep phase transition

For a given new physics model with N scalar fields
(N > 1), each scalar field could obtain a VEV and there
could occur multistep FOPTs in the N scalar space. Here
we take a two-step phase transition as an example, the first
step phase transition is the same as the one-step phase
transition. Illustration of the two-step phase transition
process is shown in Fig. 5. However, the second phase
transition shows some differences. For example, the sound
velocity in ϕB1 phase deviates from 1=

ffiffiffi
3

p
. Specifically, for

the phase transitions with bubbles nucleated inside the
bubbles [35,36], the effects of different sound velocity may
be even more important. In this case, the EOS and sound
velocities in each phase may have significant differences.

Two-step phase transition

FIG. 5. Illustration of the two-step phase transition process.
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VII. CONCLUSION

Taking the Higgs sextic effective model as a representative
model for generic new physics models, we have calculated
the kinetic energy fraction by solving the hydrodynamics
equations and the fluid profile beyond the bag model
approximation for the two phases of the plasma. For strong
supercooling and ultra supercooling cases, the deviation of
the sound velocity in the broken phase from 1=

ffiffiffi
3

p
is

significant. In these two cases, the nucleation temperature
or percolation temperature is much lower than the masses of
the Higgs and gauge bosons. This would lead to deviation
from the pure radiation phase. Based on the different sound
velocities model, which is more realistic than the bag model,
different sound velocities could occur in symmetric and
broken phase. Choosing proper phase transition parameters,
characteristic temperature and more realistic model of EOS,
we can give more precise and reliable predictions of the GW
signal. The sound velocity of broken phase can significantly
affect the detectability of the GW signal. The approach
shown in this work could help the future GWexperiments to
unravel the underlying physics by matching the precise
spectra prediction to the data, and could be directly used in
other new physics models with a strong FOPT.
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APPENDIX A: FLUID PROFILE

As shown in Fig. 1, the hydrodynamical processes can be
roughly divided into two kinds, which are detonation
(v− < vþ) and deflagration (v− > vþ), and we can further
divide these two kinds into six modes, which are weak
detonation, strong detonation, Jouguet detonation, weak
deflagration, strong deflagration, and hybrid. However, the
stability analysis [37–39] shows only three kinds of modes
can be realized in a FOPT process, namely, weak deto-
nation, weak deflagration, and hybrid. In the following, we
describe these modes and show the velocity and enthalpy
profiles with αθ̄n ¼ 0.3 in Fig. 6.

1. Detonation

For the bubble wall moves with vw > vdetJ ðαθ̄nÞ, we have
a weak detonation mode. In this the case, the fluid is
unperturbed in front of the bubble wall with respect to the
reference frame of the plasma; we have ṽþ ¼ 0 (v and ṽ
represent the fluid velocity in the wall frame and the plasma
frame, respectively). Hence we have vw ¼ vþ, and the fluid
velocity behind the wall must have a velocity ṽ− > 0.
Therefore, the boundary conditions to solve the profile of
detonation mode can be obtained as

ṽþ ¼ 0; vþ ¼ vw;

v− ¼ v−ðαθ̄þ; vþÞ; vðvwÞ ¼ ṽ− ¼ μðvw; v−Þ; ðA1Þ

and here we have αθ̄n ¼ αθ̄þ. Using the boundary con-
ditions for the enthalpy profile wþ ¼ wn and the velocity
v−, vþ derived above, based on the second equations of the
matching condition, we can obtain the enthalpy just behind
the bubble wall as

w− ¼ wþ

�
vw

1 − v2w

��
1 − v2−
v−

�
; ðA2Þ

and from Eqs. (7), we can derive

wþ ¼ ð1þ c2þÞaþT4þ: ðA3Þ

Since Tþ ¼ Tn for the detonation mode, we need use the
following relations to obtain T−:

wn

w−
¼ aþT4þ

a−T4
−
: ðA4Þ

To determine T−, aþ and a− should be fixed. Based on the
Higgs sextic effective model we assume the particle content
in the symmetric phase is the standard model particles and
the top quark and Higgs boson decouple from the plasma in
the broken phase. Hence we have aþ ¼ 106.75π2=30 and
a− ¼ 95.25π2=30. The velocity and enthalpy profile of
detonation mode with different sound velocities are shown
in bottom panel of Fig. 6.

2. Deflagration

If the bubble wall is subsonic with respect to the
reference frame of plasma, vw < c−, we have a deflagration
mode. As shown in Fig. 7, the deflagration mode should
form a shock front which is in front of the bubble wall. Here
v1 and v2 is the fluid velocity behind and in front of the
shock front with respect to the shock front frame. The index
1 is for quantities behind the shock and the index 2 is for
quantities in front of the shock. From Eqs. (7), we have the
following relations:
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v1v2 ¼
p2 − p1

e2 − e1
;

v1
v2

¼ e2 þ p1

e1 þ p2

: ðA5Þ

Since the shock wave is in the symmetric phase, the EOS is
the same on the both side of shock front, we have

v1v2 ¼ c2þ;
v1
v2

¼ T4
2 þ c2þT4

1

T4
1 þ c2þT4

2

; ðA6Þ

and for the shock front it has been proven that v1 < cþ <
v2 [17–19]. Hence in the plasma frame, we have

ṽ1 ¼ μðvsh; v1Þ > ṽ2 ¼ μðvsh; v2Þ. Since in the plasma
frame the fluid velocity should vanish in front of the
shock, we have v2 ¼ vsh. Hence, the following relation can
be derived from Eqs. (A6):

vsh ¼
1 − c2þ

2
ṽ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − c2þ

2
ṽ1

�
þ c2þ

s
: ðA7Þ

This condition determines the position of the shock front,
which occurs before the singular point μðξ; vÞ ¼ cþ is

FIG. 6. Velocity and enthalpy profiles for the weak deflagration (top vw ¼ 0.4), hybrid (middle vw ¼ 0.6), and weak detonation
(bottom vw ¼ 0.9) with αθ̄n ¼ 0.3.
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reached, and show that vsh > cþ. From the second equation
of Eqs. (A6), we can derive

�
T2

T1

�
4

¼ w2

w1

¼ c2þð1 − v2shÞ
v2sh − c4þ

; ðA8Þ

where T2 ¼ Tn, wn ¼ w2.
As shown in the above, the bubble wall of the defla-

gration mode is preceded with a shock front, hence behind
the wall the fluid velocity should also vanish with respect
to the plasma frame. Therefore, we have ṽ− ¼ 0 and
vþ < v− ¼ vw < c−. We can choose the fluid velocity
ṽþ (just in front of the bubble wall) and ṽ1 (behind the
shock front) as the initial condition for the fluid equation.
Here we choose ṽþ as the initial condition, and it can be
derived form the following relations:

ṽ− ¼ 0; v− ¼ vw;

vþ ¼ vþðαθ̄þ; v−Þ; ṽþ ¼ μðvw; vþÞ: ðA9Þ

Note that αθ̄þ ≠ αθ̄n for deflagration mode, since the shock
wave reheats the plasma in front of the bubble wall, and for
the DSVM of EOS, we have

αθ̄þ ¼ 1

3

�
1 − c2þ=c2−
1þ c2þ

þ ð1þ 1=c2−ÞΔϵ
wþ

�
: ðA10Þ

Hence we can firstly find vsh and αθ̄þ with

αθ̄þ − b
αθ̄n − b

¼ wn

wþ
; b ¼ 1

3

�
1 − c2þ=c2−
1þ c2þ

�
; ðA11Þ

and wþ can be given by Eq. (21),

w1

wþ
¼ exp

�Z
ṽ1

ṽþ

�
1þ 1

c2þ

�
γ2μdv

�
; ðA12Þ

where w1 can be obtain by Eq. (A8). The velocity and
enthalpy profile of deflagration mode are shown in top
panel of Fig. 6.

3. Hybrid

For the different sound velocity model, the hybrid can be
further divided into two modes, which are supersonic
deflagration and subsonic detonation. The subsonic deto-
nation is only possible for the model with c− < cþ, and
both modes should fulfill that the bubble wall velocity vw is
higher than both vþ and v−. The velocity and enthalpy
profile of hybrid mode are shown in middle panel of Fig. 6.

a. Supersonic deflagration

Usually, if c− < vw < vdetJ ðαθ̄nÞ the fluid propagates with
a supersonic deflagrationmode. It should fill the gapbetween
c− and vdetJ ðαθ̄nÞ. The supersonic deflagration mode can be
treated as a superposition of detonation and deflagration,
provided the bubble wall is supersonic with respect to the
broken phase. The entropy consideration, which combines
with the hydrodynamic constrains for deflagration and
detonation mode, enforces v− ¼ c−. Hence the rarefaction
wave behind the bubblewall has to be a Jouguet type.We can
derive the following relation to solve Eq. (16):

v− ¼ c−; ṽ− ¼ μðvw; v−Þ;
vþ ¼ vdefJ ðαθ̄þÞ; ṽþ ¼ μðvw; vþÞ: ðA13Þ

In our numerical strategy, we first perform the calculation
of the deflagration part to give αθ̄þ and corresponding
profiles, then calculate the profile of detonation part as
mentioned above.

Broken phase
Symmetric 

phase
Symmetric 

phase

Bubble wall Shock front

FIG. 7. An illustration of the deflagration mode. For the detonation mode, the shock front should disappear.
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b. Subsonic detonation

For the sound velocity of the broken phase c− is smaller
than the sound velocity of the symmetric phase cþ, we
may observe a hydrodynamical mode with ṽ− > ṽþ
(ie. vþ > v−), and vþ < cþ, hence in the reference
frame of the plasma, the fluid profile propagates with a
subsonic mode. Since the constraints of deflagration and
detonation and the entropy consideration still apply,
we also have the following relation v− ¼ c−. Therefore
the rarefaction wave still propagates with a Jouguet
type. From right panel of Fig. 1, we can observe that only
when αθ̄þ is small enough this hydrodynamical mode
can occur, and the stability [37–39] of this mode is still
controversial; hence we do not consider this possibility in
this study.

APPENDIX B: EFFICIENCY PARAMETER

In Fig. 8, we show the efficiency parameter dependence
on bubble wall velocity for different phase transition

strength and sound velocities. The red lines and the blues
lines correspond to αθ̄n ¼ 0.3 and αθ̄n ¼ 0.1, respectively.
The solid lines represent c2þ ¼ c2− ¼ 1=3 (i.e., the bag
model case), the dashed lines show c2þ ¼ 1=3 and
c2− ¼ 0.25, the dash-dotted lines denote c2þ ¼ 0.25
and c2− ¼ 1=3, the dotted lines depict c2þ ¼ 0.25 and
c2− ¼ 0.25. As shown in this figure, the lower sound
velocity of the broken phase gives a smaller efficiency
parameter. However, the lower sound velocity of the
symmetric phase induces a larger efficiency parameter.
The differences of the efficiency parameter between the bag
model and the DSVM is smaller for the deflagration mode,
while for the hybrid mode and detonation mode, the
corresponding differences become much larger. Since
detonation mode can generally trigger a relatively strong
gravitational wave signal, it is crucial to give a correct EOS
(i.e., proper sound velocity of both phase) to describe the
phase transition process. Then we can get more precise
prediction for the GW.
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