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In the present work, we adopt a nonlinear scalar field theory coupled to the gravity sector to model
galactic dark matter. We find analytical solutions for the scalar field considering the weak field gravity
limit, which is usually done in galaxy rotation curves analysis and in order to do so we assume an isotropic
spacetime and a field potential, with a position dependent form of the superpotential, which entails the
nonlinear dynamics of the model with self-interactions. The model introduces a position dependent
enhancement of the self-interaction of the scalar fields toward the galaxy center, and while going toward the
galaxy border the interaction tends to vanish building a non–self-interacting DM scenario. The developed
approach is able to provide a reasonable analytical description of the rotation curves in both dwarf and low
surface brightness late-type galaxies, with parameters associated with the dynamics of the scalar field.
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I. INTRODUCTION

Dark matter (DM) is one of the most important open
problems in physics. It does not seem to interact with
electromagnetic force and, therefore, it cannot be directly
seen. However, its gravitational effects are essential to
explain the structure formation and mass distribution of
galaxies.
The existence of DM is well established by several

experimental cosmological observations (e.g., see [1,2]
for a review) and it is necessary, for instance, to explain
the spiral galaxy rotation curves. While the classical
Newtonian gravity theory requires that the orbital circular
velocity vs distance to galactic center curve after attaining
its maximum decreases as one moves away from the
galactic center, observations carried out along decades
have found that the velocity remains approximately con-
stant in this interval [3–7]. In order to explain such a
phenomenon, a DM halo is supposed to exist and to be
responsible for most of the galaxies mass [8–10].
Moreover, DM has also a fundamental role in the large-
scale structure formation in the universe [11,12].
Although the gravitational effects of DM are notorious,

despite several efforts, no particle associated with DM has

ever been detected [13,14]. This fact has led some
theoretical physicists to claim that DM does not exist
and its observational effects are due to some geometrical
correction terms to general relativity. From this perspective,
it was shown that it is indeed possible to describe structure
formation [15–19] and rotation curves of galaxies [20–23]
through extended theories of gravity. Here we will attain to
the several observational evidences of DM existence, which
besides the aforementioned cases, refers to gravitational
lensing [24] and to the well-known bullet cluster [25].
Nowadays, there is a plethora of DM particle candidates.

For instance: (i) axions, which are hypothetical particles
whose existence was postulated to solve the strong CP
problem of quantum chromodynamics [26]; (ii) sterile
neutrinos, which interact only gravitationally with ordinary
matter [27]; (iii) WIMPs (weakly interactive massive
particles), which arise naturally from theories that seek
to extend the standard model of particle physics, such as
supersymmetry [28]. In particular, although WIMPs are the
most studied class of DM particle candidates, current DM
direct and indirect detection experiments have not yet
discovered compelling signals of them [29]. In fact, recent
data from the Large Hadron Collider have found no
evidence of a deviation from the standard model on
GeV scales [30]. It is evident that the microscopic nature
of DM is sufficiently unsettled as to justify the consid-
eration of alternative candidates.
Among these candidates one can quote the Bose-

Einstein condensate (BEC) coupled to gravity. In this
model, the nature of DM is completely determined by a
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fundamental scalar field endowed with a scalar potential
[31–38]. In such a context, DM halos can be described as a
condensate made up of ultralight bosons.
In the next section we will introduce the mathematical

framework in which DM is described by a scalar field. For
now it is interesting to quote that BEC DM provides a good
fit to the evolution of cosmological densities [39] and
acoustic peaks of the cosmic microwave background [40].
It has also been applied to the rotation curves of galaxies
[41–44]. The growth of perturbations in an expanding
Newtonian universe with BEC DM was studied in [45]. In
[46], the possibility of wormhole formation in the galactic
halo due to BEC DM was investigated.
It is very important to remark that recently BEC was

observed in the Cold Atom Laboratory [47], which is
orbiting Earth on board the International Space Station. The
microgravity environment of such an experiment allowed
for the observation of BEC during approximately 1s,
instead of ∼ms, which is the case of ground experiments.
The continuous and increasing observations of BEC will
naturally allow for the understanding its properties and the
viability to represent DM on a galaxy environment.
For our purposes in the present work it is fundamental

to remark that some classes of important physical systems
are intrinsically nonlinear, specially those systems that
supports topological defects [48–51]. Nonlinear structures
play an important role in the development of several
branches of physics, such as cosmology [52], field theory
[53,54], condensed matter physics [55] and others [56].
For example, we can find nonlinear configurations in
various contexts, as the oscillons in the standard model-
extension [57–59], during the formation of the aforemen-
tioned BECs [60,61], in supersymmetric sigma models
[62], in Yang-Mills theory [63] and in Lorentz breaking
systems [64].
Particularly, in a cosmological context, we know that

nonlinear scalar field theories play a significant role in our
understanding of the cosmological dynamics and structure
formation. Both the inflationary epoch and the current
phase of dark energy domination can be modeled using
nonlinear scalar field models. For example, in a cosmo-
logical scenario coming from multicomponent scalar field
models, it was shown in [65] that nonlinear interactions
are responsible for providing a complete analytical cos-
mological scenario, which describes the inflationary,
radiation, matter, and dark energy eras. Also within a
cosmological context, recently, Adam and Varela [66]
have introduced a very interesting concept of inflationary
twin models, where generalized K-inflation theories can
be controlled in a simple way, thereby allowing us to
describe the cosmological evolution during the inflation
period.
On the subject of BEC DM in nonlinear models, it is

well known that dark matter halos can be modeled with
the so-called solitons [67–70]. In this case, nonlinear

configurations can provide a powerful description of the
currently observed rotation curves. However, as a conse-
quence of the nonlinearity, in several BEC DM models we
lose the ability to obtain a complete set of analytical
solutions. Therefore, new insights and methods to solve
BEC DM problems analytically in nonlinear backgrounds
are a major challenge that needs to be considered in order
to deepen and enlarge our understanding of the physics
brought by this framework.
The main goal of this work is to show an analytical

approach that can be used in general to study BEC DM
within nonlinear scenarios. Our aim is to investigate
possible galactic DM models based on nonlinear scalar
field theories coupled to the gravity sector. The validation
of these models is obtained by comparing predictions for
galaxy rotation curves with observational data.
This work is organized as follows: in Sec. II we

introduce the framework which will be studied here. In
Sec. III we present our approach and analytical solutions. In
Sec. IV DM halos are analyzed. Finally, Sec. V provides
our conclusions.

II. FRAMEWORK

In this section, we introduce the scenario which will be
studied in this work. Let us assume a theoretical framework
where DM consists of a complex scalar field [67], which is
responsible for producing galactic halos through the Bose-
condensed state coupled to gravity. In this case, we can
write the Einstein-Hilbert action in the following form [68]

S ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
R

16πGc−4
þ L

�
; ð1Þ

where R is the curvature scalar, G is the gravitational
constant, c is the speed of light in vacuum, g corresponds to
the determinant of the metric gμν, and L is the Lagrangian
density in units of energy density, written as

L ¼ ℏ2

2m
gμν∂μψ∂νψ

� − Vðψψ�Þ: ð2Þ

wherem is the DM boson mass and ℏ is the Planck constant.
In this case, ψ is the complex scalar field and V its potential.
For the complex scalar field model, the DM density results
from the difference between the number density of bosons
and of their antiparticles [69]. Moreover, there are some
reasons for considering a complex field rather than a real
one. Among those is the U(1) symmetry corresponding to
the DM particle number conservation [71].
Since ψ is a complex scalar field, we will break ψ up into

two real fields, one associated with the real part and another
one associated with the imaginary part:

ψðr; tÞ ¼ ϕðr; tÞ þ iχðr; tÞ: ð3Þ
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One can see that Eq. (1) becomes

S ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
R

16πGc−4
þ ℏ2

2m
gμνð∂μϕ∂νϕ

þ ∂μχ∂νχÞ − Vðϕ; χÞ
�
: ð4Þ

Now the scalar sector behaves like a two-field theory,
where ϕ and χ are real fields. Therefore, from the principle
of least action δS ¼ 0, we obtain both Einstein and motion
equations for the system. First, let us apply the variation of
Eq. (4) in regard to the metric gμν. In this case, we obtain the
Einstein equation for the system

Rμν −
1

2
gμνR ¼ kTμν: ð5Þ

Moreover, we are using the definition κ ¼ 8πGc−4 and Tμν

is the energy momentum tensor, represented by

Tμν ¼
ℏ2

2m
ð∂μϕ∂νϕþ ∂μχ∂νχÞ − gμνL; ð6Þ

where L represents the Lagrangian density of the scalar
field, that reads

L ¼ ℏ2

2m
ðgμν∂μϕ∂νϕþ gμν∂μχ∂νχÞ − Vðϕ; χÞ: ð7Þ

Second, applying the variation regarding the scalar
fields, we have

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ þ

m
ℏ2

∂V
∂ϕ ¼ 0 ð8Þ

and

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νχÞ þ

m
ℏ2

∂V
∂χ ¼ 0: ð9Þ

Our purpose in this work is to derive analytical solutions
for the equations of motion considering spherically sym-
metric system. Therefore, we can write the line element as

ds2 ¼ eαðrÞc2dt2 − eβðrÞdr2 − r2ðdθ2 þ sin2 θdφ2Þ; ð10Þ

being α and β the metric potentials.
From the above metric, the stress-energy tensor (6)

becomes diagonal and is given by

Tμ
μ ¼ diagðcρ;−pr;−p⊥;−p⊥Þ; ð11Þ

where ρ is the energy density, pr and p⊥ are the radial and
tangential components of the pressure. Thus, using Eq. (10)
into Eq. (6), we obtain

cρ ¼ ℏ2

2mc2
e−α½ð∂tϕÞ2 þ ð∂tχÞ2�

þ ℏ2

2m
e−β½ð∂rϕÞ2 þ ð∂rχÞ2� þ Vðϕ; χÞ; ð12Þ

pr ¼
ℏ2

2mc2
e−α½ð∂tϕÞ2 þ ð∂tχÞ2�

þ ℏ2

2m
e−β½ð∂rϕÞ2 þ ð∂rχÞ2� − Vðϕ; χÞ; ð13Þ

p⊥ ¼ ℏ2

2m
e−β½ð∂tϕÞ2 þ ð∂tχÞ2�

−
ℏ2

2m
e−β½ð∂rϕÞ2 þ ð∂rχÞ2� − Vðϕ; χÞ; ð14Þ

where we are using the notation ∂t ≡ ∂=∂t and ∂r ≡ ∂=∂r.
After straightforward manipulations, the nonvanishing

components of the Einstein equations can be put in the form

α0 þ β0 ¼ κðρþ prÞreβ ð15Þ

and

β0β −
1

r
ðeβ − 1Þ: ð16Þ

Finally, using Eq. (10) into Eqs. (8) and (9), we find the
following equations of motion

eβ−α

c2
ϕ̈ − ϕ00 −

�
α0 − β0

2
þ 2

r

�
ϕ0 þ m

ℏ2
eβVϕ ¼ 0 ð17Þ

and

eβ−α

c2
χ̈ − χ00 −

�
α0 − β0

2
þ 2

r

�
χ0 þ m

ℏ2
eβVχ ¼ 0; ð18Þ

where dot represents derivative with respect to t and prime
derivative with respect to r. Moreover, Vϕ ≡ ∂V=∂ϕ and
Vχ ≡ ∂V=∂χ.
Our main goal in the next sections will be to generate

analytical solutions for the equations above in the
Newtonian limit, i.e., when we have low velocity, weak
interaction, and weak gravitational field. Furthermore, we
also propose a procedure which is general when applied
to study scalar field DM in a spherically symmetric
space-time.

III. THE METHOD

In this section, in order to obtain analytical solutions for
the system under analysis, we will demonstrate a general
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approach which allows to reduce the second-order
differential equations (17) and (18) to first-order ones,
whose general solution can be constructed by means of
standard methods.
A DM halo comprising a BEC has a relatively low mean

mass density so that we can use the Newtonian approxi-
mation. In this limit, the metric potentials α and β are
constants ≪ 1 so that eα ≃ eβ ≃ 1. Then, the equations of
motion (17) and (18) become

ϕ̈

c2
− ϕ00 −

2

r
ϕ0 þ m

ℏ2
Vϕ ¼ 0 ð19Þ

and

χ̈

c2
− χ00 −

2

r
χ0 þ m

ℏ2
Vχ ¼ 0: ð20Þ

Wewill focus our analysis in static configurations, where
ϕ ¼ ϕðrÞ and χ ¼ χðrÞ. However, we emphasize that,
given the static solution, one can apply a Lorentz boost
in order to obtain a moving solution. Therefore, using the
above assumption into Eqs. (19) and (20), we obtain the
following coupled second-order differential equations

ϕ00 þ 2

r
ϕ0 ¼ m

ℏ2
Vϕ ð21Þ

and

χ00 þ 2

r
χ0 ¼ m

ℏ2
Vχ : ð22Þ

In this way, let us impose that the potential Vðϕ; χÞ can
be represented in terms of a position dependent formula and
a superpotential Wðϕ; χÞ as

Vðϕ; χÞ ¼ ℏ2

2mr4

��∂Wðϕ; χÞ
∂ϕ

�
2

þ
�∂Wðϕ; χÞ

∂χ
�

2
�
: ð23Þ

This proposed form to relate the superpotential to the scalar
field potential is one of the key dynamical assumptions to
allow analytical solution of the gravity and field equations.
Note, that the factor 1=r4 enhances the strength of the
potential toward the galaxy center, which can be a natural
assumption if the center of the galaxy has a particular
property and it encompasses a more complex dynamical
situation with the self-interaction of the DM field and its
structure. For example, the increase of the effective
interaction strength can be associate with fields of more
complex structure, e.g., more components, vector/tensor
fields, and group structure. Of course, such speculative
assumption of our model can only be substantiated by the
results we will show for the galaxy rotation curves.
However, it seems improbable that the interaction of the
DM with visible matter is the source of such enhancement,

as if this direct interaction beyond gravity exists it should
be much weaker than the weak force, and even on the
galaxy scenario it is unlikely that it could eventually make
some difference to justify the enhancement factor of the
self-interaction toward the center of the galaxies. On the
other side, going toward the galaxy border the DM self-
interactions tend to vanish and results in a non–
self-interacting DM scenario. Important to say that, the
particular enhancement factor 1=r4 was chosen to allow
analytical solutions of the field equations in the Newtonian
gravity scenario.
Thus, using the above representation, the following set of

first-order differential equations are those that satisfy
Eqs. (21) and (22)

dϕ
dr

¼ 1

r2
∂Wðϕ; χÞ

∂ϕ and
dχ
dr

¼ 1

r2
∂Wðϕ; χÞ

∂χ : ð24Þ

It is possible from the above equation to formally write
the equation

dϕ
Wϕ

¼ dr
r2

¼ dχ
Wχ

; ð25Þ

which leads to [72]

dϕ
dχ

¼ Wϕ

Wχ
: ð26Þ

It is worth to note that, the above equation is a nonlinear
differential equation relating the scalar fields ϕ and χ of the
model so that ϕ ¼ ϕðχÞ. Then, once this function is known,
Eqs. (24) become uncoupled and can be solved.
As one can see, using this approach, solutions of the

second-order differential equations (21) and (22) can be
obtained through the corresponding first-order differential
equations. In the next section, from the above equations, we
will study a consistent nonlinear model which has analyti-
cal solutions.

IV. ANALYTICAL MODEL

In order to work with analytical solutions we will
propose a modified version of the so-called BNRT model
[73–78]. In this case, we will consider a superpotential with
explicit dependence in the spatial coordinate, which will be
specifically written in the following form

Wðϕ; χÞ ¼ br2e−ar
�
−λn2ϕþ λ

3
ϕ3 þ μϕχ2

�
; ð27Þ

where λ and μ are real and positive dimensionless
coupling constants. Moreover, a, b, and n are arbitrary
constants, where a has the dimension of length inverse
(L−1), b brings dimension the dimension of the square root
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of the length (L1=2), and n with the same dimension of the
fields, which has dimension of L−3=2.
We would like to remark that the motivation for working

with the above superpotential comes from the fact that in
order to find solitons solutions, the above form enables us
to evade the so-called Derrick’s theorem [79], which states
that there can be no static, finite energy solutions in scalar
field theories in more than one spatial dimension.
Therefore, as shown in Ref. [80], using models described
by Vðr;ϕÞ ¼ fðrÞUðϕÞ we can circumvent that argument
and obtain stable defects. Similar potentials can be found in
the Bose-Einstein condensation of dilute gases [81], in the
band structure context [82], and in a system of a domain
wall coupled to a scalar field [83].
From Eq. (25), and as pointed out in [72], general

solutions of the first-order differential equations can be
found for the scalar fields, by first integrating the relation

dϕ
dχ

¼ Wϕ

Wχ
¼ λðϕ2 − n2Þ þ μχ2

2μϕχ
ð28Þ

and then by rewriting one of the fields in terms of the other.
Now, it is necessary to introduce the new variable

ρ ¼ ϕ2 − n2. Then, we can rewrite the above equation as

dρ
dχ

−
λρ

μχ
¼ χ: ð29Þ

Solving the above equation, we obtain the corresponding
general solutions

ρðχÞ ¼ ϕ2 − n2 ¼ c0χλ=μ −
μ

λ − 2μ
χ2; ðλ ≠ 2μÞ; ð30Þ

ρðχÞ ¼ ϕ2 − n2 ¼ χ2½lnðχÞ þ c1�; ðλ ¼ 2μÞ; ð31Þ

where c0 and c1 are arbitrary integration constants.
Substituting the above solutions in the first-order differ-
ential equation for the field χ, we have

dχ
dr

¼ �2μχϑðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ c0χλ=μ −

μ

λ − 2μ
χ2

r
; ðλ ≠ 2μÞ

ð32Þ

and

dχ
dr

¼ �2μχϑðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ χ2½lnðχÞ þ c1�

q
; ðλ ¼ 2μÞ; ð33Þ

where we are using ϑðrÞ ¼ be−σr.
Therefore, after straightforward manipulations, we can

conclude that there are two classes of analytical solutions
for the model under investigation, which we present below.

A. Solution type-I

The first class of analytical solution takes place when
c0 < −2n and λ ¼ μ. In this case, we have

χIðrÞ ¼
2n2

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 − 4n2

p Þ coshð2μnbe−ara Þ − c0
ð34Þ

and

ϕIðrÞ ¼
nð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 − 4n2

p
Þ sinhð2μnbe−ara Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 − 4n2

p
Þ coshð2μnbe−ara Þ − c0

: ð35Þ

Note that c0 has the same dimension of n.

B. Solution type-II

On the other hand, for λ ¼ μ and c0 ¼ −2d, we have the
second type of solution, which is given by

χIIðrÞ ¼
n2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − d2

p
Þ sinhð2μnbe−ara Þ þ d

ð36Þ

and

FIG. 1. Type-I solutions with μ ¼ 1, c0 ¼ −2.001, n ¼ 1, a ¼
0.18 and b ¼ 1.
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ϕIIðrÞ ¼
nð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − d2

p
Þ coshð2μnbe−ara Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − d2

p
Þ sinhð2μnbe−ara Þ þ d

: ð37Þ

In Fig. 1 above we show some typical profiles of the
type-I and type-II solutions. Note that both solutions have a
kink profile, where its asymptotic values are connecting the
vacua of the potential.
Subsequently, we will use the above model to describe

the profile of rotation curves of galaxies. In particular,
our goal is to find successful fittings of the models to the
rotation curves obtained through observations of dwarf and
low surface brightness (LSB) late-type galaxies [84].

V. ROTATION CURVES

In this section, we will study the rotation curves for
galaxies in the presence of the models described in the
previous section. Our aim is to show that it is possible to
find a robust theoretical fit for such curves. In view of this,
let us begin by writing the equation that describes the
general rotation curve of galaxies [67]

v2ðrÞ ≃ k
2

�
MðrÞ
r

þ prr2
�
; ð38Þ

where MðrÞ is the resulting mass function

MðrÞ ¼
Z

r

0

dyy2ρðyÞ: ð39Þ

Considering the Newtonian limit, we can rewrite the
above equation as

MðrÞ ¼
Z

r

0

dyy2
�
1

2

��
ϕ0 ∓ Wϕ

y2

�
2

þ
�
χ0 ∓ Wχ

y2

�
2
�

∓ Wϕϕ
0

y2
∓ Wχχ

0

y2

�
: ð40Þ

Then, making use of the relation given by Eqs. (24) of
the superpotential with the fields, one finds that

MðrÞ ¼ �fW½ϕðrÞ; χðrÞ� −W½ϕð0Þ; χð0Þ�g: ð41Þ

It can be seen that by applying this approach the mass
function depends only on the superpotential, thereby
allowing us to calculate in a simple way the analytical
expression for the rotation curve of a disc galaxy.
Therefore, for the model under analyses, we obtain the
following rotation velocities.

A-rotation velocity: Type-I solution

vIðrÞ ¼
be−arnrμ sinhð2be−arnμa Þ

3½c0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 − 4n2

p
coshð2be−arnμa Þ�3

�
6c0ðc20 − 4n2Þ cosh

�
2be−arnμ

a

�

− 3ðc20 − 4n2Þ3=2cosh2
�
2be−arnμ

a

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 − 4n2

q �
−3ðc20 − 4n4Þ þ n2ðc20 − 4n2Þsinh2

�
2be−arnμ

a

���
: ð42Þ

B-rotation velocity: Type-II solution

vIIðrÞ ¼
be−arnrμ cosh½2be−arnμa �

3½dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−d2 þ n2

p
sinhð2be−arnμa Þ�3

�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−d2 þ n2

p
ð−d2 þ n4Þ

− ðd2 − n2Þ
�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−d2 þ n2

p �
3þ n2 þ ð−3þ n2Þ cosh

�
4be−arnμ

a

��
− 6d sinh

�
2be−arnμ

a

���
: ð43Þ

The profiles of the rotation curves from these model are
shown in Figs. 2 and 3. From those figures, we see that the
observational rotation curves taken from [85] can be fitted
by our analytical solutions. Here it is important to remark
that the empirical density profile proposed in [85] reads

ρDM ¼ ρ0r30
ðrþ r0Þðr2 þ r20Þ

; ð44Þ

with ρ0 being the central DM density. (49) was proposed
in [85] to successfully fit the rotation curves of four
DM dominated dwarf galaxies. This sample was then
extended to seventeen dwarf irregular and brightness
galaxies in [86,87], which have all confirmed (49).
Later, in [88], (49) was confronted against ∼1100 rotation
curves, also confirming its validity.
Now, let us calculate the goodness of our theoretical

fit with respect to the analytical fit of observational
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data showed by Burkert [85]. In order to do so, we
will use the so-called chi-squared test, which is given
by [89]

χ̃2 ¼
XN
j¼1

ðOj −Oobv
j Þ2

ΔO2
j

; ð45Þ

where Oj are the theoretical values, Oobv
j represent the

observational data values, and ΔOj are the adopted errors.
When we are dealing with observables that change by
orders of magnitude, one must use logðOÞ rather than O.
Taking into account that the observational data error is

∼10% [90], we obtain that the rotation curve type-I has
χ̃2 ¼ 3.68. On the other hand, for the type-II velocity, we
found χ̃2 ¼ 4.94. This shows that the type-I solution has a
better agreement with the observational data than the type-
II curve. Moreover, we can note that our results are within
the tolerance range when compared with other results in the
literature.

VI. CONCLUSIONS

DM is one of the greatest mysteries of physics. Nowadays
there is a plethora of possibilities to model DM (check also
[91–94]). The difficulty in understanding the DMnature has
even led to some attempts to substitute it by purely
geometrical effects coming from extensions of general
theory of relativity (besides [20–23], check also [95–98]).
In the present work, we have adopted the BEC DM

scenario of a complex scalar field coupled to gravity. We
have shown that splitting the complex scalar field, which is
responsible for the nucleation of the bosonic condensate, in
its real and imaginary parts allows us to map the problem in
an effective theory with two fields. Here, in the Newtonian
approach, we developed an analogous technique to the orbit
procedure [72], where the second-order field equations
were reduced to a pair of coupled first-order equations.
By analyzing the model given by Eqs. (24) and the

superpotential from Eq. (27), we presented a rich class of
analytical solutions for the scalar fields, which describe
reasonably the observational fit proposed by Burkert [85]
for the DM halos of dwarf spiral galaxies. Moreover, since
Burkert empirical fitting formula is nearly identical to
rotation curves of a sample of DM dominated dwarf and
LSB late-type galaxies [84], our analytical solutions are
also well matched with those observational results.
Important to point out that the key dynamical assumption

to allow analytical solution of the gravity and field equa-
tions, is the assumed form of the relation between the
superpotential and the field potential, which presents a
position dependent relation with an enhancement of the
self-interaction of the scalar fields toward the galaxy center.
On the other side, going toward the galaxy border the
interaction tends to vanish building a non–self-interacting
DM scenario. The dependence of the effective interaction
strength presumably should be originated from a more
complex structure of the fields, e.g., more components,
vector/tensor fields and group structure. Our speculative
assumptions were substantiated by the reasonable repro-
duction of the galaxy rotation curves. We deem that it is

FIG. 2. Type-II solutions with μ ¼ 1, c0 ¼ −2.001, d ¼ 1,
n ¼ 1.1, a ¼ 0.1 and b ¼ 1.

FIG. 3. Rotation curves in dimensional units. Blue continuous
line are the solutions for type-I and type-II solutions. Orange
dashed lines are the observational fit showed by Bukert [85]. Top
figure is the rotation curve for the type-I solution with μ ¼ 0.4,
c0 ¼ −2.1, n ¼ 1, a ¼ 0.1, and b ¼ 0.409. On the other hand,
the bottom figure is the solution type-II, with μ ¼ 0.35,
c0 ¼ −2.001, d ¼ 0.95, n ¼ 1.27, a ¼ 0.3, and b ¼ 0.25.
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unlikely that the interaction of the DMwith visible matter is
the source of such position dependent strength, as even if this
direct interaction beyond gravity exists it should be much
weaker than the weak force, and on the galaxy density
scenario it is unlikely that it could eventually make some
difference to justify the enhancement factor of the self
interaction toward the center of the galaxies.
We stress here that our approach presents a good fit to the

analytical observational curve even for larger values of r
(check, for instance, [67]), while for small radius the free
parameters of our model can deal with eventual discrep-
ancies. Furthermore, comparing to previous studies within
the BEC scenario of DM galaxy halos, our results are based
on a fully analytical solution of a consistent dynamical
nonlinear approach within the Newtonian gravity and its
BEC matter source. As we can see, the approach shown in

our work is general, thus paving the way to investigate new
theoretical models in DM scenarios.
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