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The large-scale structure (LSS) of the Universe has the potential to provide decisive answers to the
remaining open questions in cosmology. Early attempts at modeling it analytically focused on using
perturbation theory. However, small-scale effects introduced by gravitational collapse cannot be described
perturbatively and this failure of perturbation theory is reflected even on the largest scales. The effective
field theory (EFT) of LSS has emerged as a consistent method for describing LSS on large scales by
introducing counterterms that account for the effects of small-scale dynamics. So far studies of the EFT
have mostly focused on the two and three point functions with little attention devoted to the four point
function or trispectrum. The trispectrum probes cubic interactions arising from nonlinear clustering,
biasing, and primordial non-Gaussianities, and constitutes a key element of the covariance matrix of the
power spectrum. In this paper, we present explicit calibrations of the EFT counterterms for the one-loop
trispectrum. Specifically, we find clear evidence for nonzero EFT corrections. We define two one-
parameter ansatz for the counterterm of the one-loop propagator and show that they provide a good
correction to the residual at scales below k ∼ 0.07h Mpc−1. We then take the amplitudes of the linear and
quadratic counterkernels calculated in our previous paper on the bispectrum and use them in the remaining
counterterms, establishing consistency of the counterterms in the two, three, and four point function. We
also show that the commonly used Einstein–de Sitter approximation for the growth of the density fields
leads to errors that are of the same magnitude as loop corrections to the trispectrum on large scales.
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I. INTRODUCTION

The cosmic microwave background (CMB) has provided
us with detailed information on the history and composition
of the Universe [1,2]. While the analysis of the mostly
linear primary CMB fluctuations is fairly straightforward,
its information content has now been almost exhausted due
to its two-dimensional nature. The large-scale structure
(LSS) of the Universe, the distribution of dark and baryonic
matter on scales larger than ∼10 Mpc, is going to be the
next major probe in cosmology, with its three-dimensional
nature promising orders of magnitude more information
than the CMB. The analysis of LSS is complicated by its
nonlinear nature. N-body simulations can be used to
calculate the nonlinear clustering statistics for a given
cosmological model but only provide a sparse sampling
of parameter space due to their computational cost. The
simulations are also affected by numerical errors and
usually do not include baryonic effects. A more time
efficient manner of evaluating theory is to establish an
analytical description of nonlinear LSS. Traditionally, the
most common such technique was standard perturbation

theory (SPT) [3]. However, SPT assumes that LSS can be
described perturbatively even down to the smallest scales,
which is unrealistic due to the highly nonlinear effects of
gravitational collapse. Indeed, these effects not only make
perturbative descriptions of small scales impossible but
resonate up to larger scales and make any perturbative
model that does not explicitly take them into account
inherently inaccurate. This has been addressed with the
development of a modified form of SPT known as the
effective field theory (EFT) of LSS [4–8].
As the seeds of cosmological structures arise from

stochastic processes, the main objects of study in LSS
are statistics, specifically the Fourier transforms of the two,
three, and four point correlation functions of the over-
density fields δ: the power spectrum,

hδAðk1ÞδBðk2Þi ¼ ð2πÞ3δðDÞðk1 þ k2ÞPABðk1Þ; ð1Þ

bispectrum,

hδAðk1ÞδBðk2ÞδCðk3Þi
¼ ð2πÞ3δðDÞðk1 þ k2 þ k3ÞBABCðk1; k2; k3Þ; ð2Þ*ts715@cam.ac.uk
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and trispectrum,

hδAðk1ÞδBðk2ÞδCðk3ÞδDðk4Þi
¼ ð2πÞ3δðDÞðk1 þ k2 þ k3 þ k4Þ
× TABCDðk1; k2; k3; k4; k5; k6Þ; ð3Þ

where k5 ¼ jk1 þ k2j and k6 ¼ jk2 þ k3j.
The power spectrum is the principle object of study in

LSS perturbation theory and has been widely investigated
[5,6,9], while less attention has been paid to higher order
correlators such as the bispectrum [10–13] and trispectrum
[14–17]. However, these higher order correlators provide
the opportunity to break parameter degeneracies that may
arise when using only the power spectrum to place
constraints on fundamental parameters.
With four density fields one may also construct the

covariance matrix of the power spectra between two
momentum shells centered at ki and kj,

CABCD;ij ¼ hδAðkiÞδBðkiÞδCðkjÞδDðkjÞi
− hδAðkiÞδBðkiÞihδCðkjÞδDðkjÞi: ð4Þ

This can be decomposed into Gaussian and non-Gaussian
components: CABCD;ij ¼ CG

ABCD;ij þ CNG
ABCD;ij, which can

be defined in terms of the power spectrum

CG
ABCD;ij ¼

2

V
ð2πÞ3
Vk

δðKÞij PABðkiÞPCDðkjÞ ð5Þ

and connected trispectrum

CNG
ABCD;ij ¼

1

V
T̄ABCDðki;−ki; kj;−kjÞ; ð6Þ

where V is the overall volume of the space being surveyed.
We have divided Fourier space into measurement shells of
volume Vk and T̄ is the trispectrum averaged over the
volume of a chosen such shell [16].
From a practical point of view, modelling the trispectrum

is essential for a complete calculation of the covariance
matrix describing the correlations between power spectra.
Besides its direct relevance for understanding the covari-
ance matrix, the trispectrum also provides interesting
insights into cubic counterterms in the EFT itself as well
as cubic bias terms in the EFT for biased tracers [14]. Like
the bispectrum, the trispectrum can thus be used to break
parameter the degeneracies present in the power spectrum.
This information can also be extracted with simplified
“cubic field” estimators [18], but to obtain insights on the
full scale dependence, we decide to study the full trispec-
trum. Trispectrum estimators have been presented in
[14,17,19] but have not been used to constrain the EFT
counterterms. The trispectrum is also the natural statistic to

study cubic primordial non-Gaussianities [20–22] such as
for instance the cubic local gNL model [23,24].
The cubic gravitational interactions probed by the

trispectrum also provide connections with higher loops
in the bispectrum and power spectrum. Figure 1 shows the
connection between the leading UV-sensitive diagrams in
the one-loop bispectrum and trispectrum and how they are
connected to UV-sensitive contributions in the two-loop
power spectrum. To highlight this connection we will
consider the loop momentum in B411 and T5111 to be hard,
i.e., q1 ≫ k. This hard loop which only contains one single
F kernel is highlighted by a dashed line and referred to as a
daisy diagram or free loop. When the two external legs in
B411 are then connected by an F2 kernel to form a soft loop
(loop momentum q2 ∼ k), they contribute to the single-hard
limit of P42. Likewise, if two of the external legs in T5111

are connected with each other to form a soft loop, we obtain
the single-hard limit of P51. In [9] these single-hard
diagrams were identified as the relevant templates for
the two-loop power spectrum counterterms.
A previous study of the EFT of LSS trispectrum which

focused on the covariance of the power spectrum found
inconsistent results when comparing analytic theory to two
different simulation suites [15]. While one of the simulation
suites showed evidence for EFT corrections the other one
did not. This apparently contradictory result is probably
caused by incomplete convergence of the estimated covari-
ance matrices. Measurements of the power spectrum
covariance require large suites of simulations and even

FIG. 1. Feynman diagram representations of one-loop bispec-
trum and trispectrum, showing their connection to the two-loop
power spectrum. Hard loops for which q=k → ∞ are shown as
dashed lines. We refer to these loops connected to only one kernel
as daisy diagrams or free loops. The bispectrum propagator term
B411 is connected to the P42 contribution in the two-loop power
spectrum. When two of the external legs in T5111 are connected to
each other to form a soft loop, it can be connected to P15.
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then convergence is slow. Here we aim to improve upon
these results and resolve these inconsistencies such that
future covariance matrix calculations can be used for
data analysis and putting accurate constraints on funda-
mental physical parameters. We hypothesize that these
systematics may be avoided if one were to explicitly study
the trispectrum rather than the covariance of the power
spectrum, particularly when taking into account the various
lessons learned relating to the study of higher order
correlators in [13].
The recent publication [17] made predictions regarding

the trispectrum’s potential to improve constraints on
primordial non-Gaussianity. Averaging over 5000 simula-
tion realizations and comparing their results to perturbation
theory, they showed that they had obtained good measure-
ments of the trispectra on the grid. Constructing a covari-
ance matrix from power spectra, bispectra, and their newly
measured trispectra, they quantified the corrections made
by the inclusion of trispectra and the extent to which these
can be used to provide improved constraints on primordial
non-Gaussianity. They found a significant improvement
in their constraining potential and that the trispectrum was
the only correlator able to offer meaningful constraints at
k > 0.1h Mpc−1 at z ¼ 0.5. However, they restricted the
perturbative modeling to tree level, placing no constraints
on EFT parameters.
In our recent paper [13] we studied the one-loop

bispectrum using the technique of realization perturbation
theory (referred to as gridPT by [25,26], a name we shall
adopt hereafter). This technique had previously been used
to assess SPT [25–27] but until recently has not been used
to constrain the EFT counterterms. Using this technique,
we are able to provide precise calibrations of the one-loop
counterterms with a minimal number of numerical real-
izations. We also tested two commonly used approxima-
tions: the use of simpler Einstein–de Sitter (EdS) growth
factors instead of the correct ΛCDM growth factors and the
notion that the UV limits of one-loop terms can be taken as
approximations for the corresponding counterterms. We
showed that neither of these approximations was sufficiently
accurate for studies of loop corrections to the bispectrum.
Here we expand upon that research, showing that the EdS
approximation is insufficiently accurate for studies of loop
corrections to the trispectrum and applying gridPT to the
study of the trispectrum and obtaining one of the first
constraints of the one-loop trispectrum counterterms.
This paper is structured as follows: we begin by

introducing SPT and the EFT of LSS before moving on
to more detailed discussions of the power spectrum,
bispectrum, and trispectrum, and their respective counter-
terms. We discuss how they can be measured and how their
counterterms can be connected. We then move on to discuss
how we have regularized the one-loop trispectrum, showing
that the results from our bispectrum paper can be applied to
the regularization of three of the four relevant counterterms

while the fourth requires a new parametrization to regu-
larize. Finally, we summarize and discuss our results and
note on possible directions for future research.

A. Standard perturbation theory

Cosmological perturbation theory is based on treating
dark matter as a collection of collisionless point particles
which interact only gravitationally [3], the one-particle
phase space density of which is defined as

fnðx; pÞ ¼ δðDÞðx − xnÞδðDÞðp −mavnÞ; ð7Þ

such that fnðx; pÞd3xd3p is the probability of finding the
particle n in the infinitesimal phase space volume defined
by d3xd3p. The distribution of such a particle obeys the
Boltzmann equation

Dfn
Dt

¼ ∂fn
∂t þ p

ma2
·
∂fn
∂x −m

X
n̄≠n

∂ϕn̄

∂x ·
∂fn
∂p ¼ 0; ð8Þ

where ϕn is the Newtonian gravitational potential for a
single particle. This Newtonian approximation is valid on
large scales as relativistic effects only become noticeable on
scale below that of gravitational collapse, which are out of
range for perturbation theory.
For a given number of particles, the total phase space is

defined as

fðx; pÞ ¼
X
n

fnðx; pÞ; ð9Þ

such that fðx; pÞd3xd3p is the probability of finding any
particle in the phase space volume d3xd3p. Equation (8) can
be summed over to give the Boltzmann equation for such an
ensemble of particles

Df
Dt

¼ ∂f
∂t þ

p
ma2

·
∂f
∂x −m

X
n;n̄;n̄≠n

∂ϕn̄

∂x ·
∂fn
∂p ¼ 0: ð10Þ

We can define the first three moments of the phase space
distribution function as

ρðx; aÞ ¼ m
a3

Z
d3pfðx; p; aÞ; ð11Þ

πiðx; aÞ ¼ 1

a4

Z
d3pfðx; p; aÞpi; ð12Þ

and

σijðx; aÞ ¼ 1

m

Z
d3pfðx; p; aÞpipj −

πiπj

ρ
; ð13Þ

where ρðx; aÞ is the comoving mass density, πiðx; aÞ is
the comoving momentum density, and σijðx; aÞ is the
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comoving velocity dispersion tensor which vanishes in our
Universe due to homogeneity on large scales. Setting σij

to zero and taking the first three moments of Eq. (10)
allows one to find the Eulerian equations of motion for a
perfect fluid:

∂ηδþ∇ · ½ð1þ δÞvi� ¼ 0; ð14Þ

∂ηvi þHvil þ ∂iϕþ vil∂jvi ¼ −
1

aρ
∂jτ

ij; ð15Þ

△ϕ ¼ 3

2
H2Ωmδ; ð16Þ

where η is the conformal time defined by adη ¼ dt, ϕ is the
Newtonian gravitational potential, H ¼ aH is the con-
formal Hubble parameter, τij is the stress-energy tensor,
which contains terms which account for the effects of small
scale gravitational collapse and in SPT is taken to vanish,
δ ¼ ρ=ρ̄ − 1 is a perturbation in the density field with
background ρ̄, and v is the velocity field of the fluid defined
such that vi ¼ πi=ρ [8]. One may define the velocity
divergence field as θ ¼ ∂ivi and the vorticity of the velocity
field as ωi ¼ ϵijk∂jvk such that

vi ¼ ∂i

∂2
θ − ϵijk

∂j

∂2
ωk: ð17Þ

Observations indicate that our Universe has negligible
vorticity on large scales, so we can set ωi ¼ 0 and write
the Euler equation in terms of the velocity divergence
field as

∂ηθ þHθ þ vj∂jθ þ ∂ivj∂jvi þ△ϕ ¼ τθ; ð18Þ

where

τθ ¼ −∂i

�
1

ρ
∂jτ

ij

�
ð19Þ

vanishes in SPT. On large scales Fourier modes evolve
mostly independently of one another, preserving primordial
statistics. This is what makes large scale structure such an
effective way of probing the non-Gaussianities of inflation
and also makes it convenient to Fourier transform
Eqs. (14)–(18) as

∂ηδðk; aÞ þ θðk; aÞ ¼ Sαðk; aÞ; ð20Þ

and

∂ηθðk; aÞ þHθðk; aÞ þ 3

2
ΩmH2δðk; aÞ ¼ Sβðk; aÞ; ð21Þ

where the two nonlinear source terms Sα and Sβ may be
defined as

Sαðk; aÞ ¼ −
Z

d3q
ð2πÞ3 αðq; k − qÞθðq; τÞδðk − q; τÞ; ð22Þ

Sβðk;aÞ¼−
Z

d3q
ð2πÞ3βðq;k−qÞθðq;τÞθðk−q;τÞþτθðk;aÞ:

ð23Þ

The kernels α and β, defined as

αðk1; k2Þ ¼
k1 · ðk1 þ k2Þ

k21
ð24Þ

and

βðk1; k2Þ ¼
1

2
ðk1 þ k2Þ2

k1 · k2
k21k

2
2

; ð25Þ

encapsulate the coupling between modes. Assuming an
Einstein–de Sitter universe, Eqs. (20) and (21) can be
solved by a power series ansatz in the density and velocity
fields:

δðk; aÞ ¼
X∞
n¼1

anðtÞδnðkÞ; ð26Þ

θðk; aÞ ¼ −H
X∞
n¼1

anðtÞθnðkÞ: ð27Þ

as in an EdS universe the linear density field evolves
linearly with the cosmological scale factor a and the nth-
order perturbations evolve as an. These can be generalized
to other cosmological models such as ΛCDM by replacing
the scale factor with an appropriate growth factor Dn as we
described in detail in [13].
Inserting Eqs. (26) and (27) into Eqs. (20) and (21)

shows that, at a given time, the momentum dependence of
the two fields can be given by convolutions in terms of the
linear density field:

δnðkÞ ¼
Z
q1

…

Z
qn

ð2πÞ3δðDÞðk − q1… − qnÞFnðq1;…; qnÞδ1ðq1Þ…δ1ðqnÞ; ð28Þ

θnðkÞ ¼
Z
q1

…

Z
qn

ð2πÞ3δðDÞðk − q1… − qnÞGnðq1;…; qnÞδ1ðq1Þ…δ1ðqnÞ; ð29Þ
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where
R
qn
¼ R∞

0 d3qn=ð2πÞ3, for kernels F and G given by

Fnðk1;…; knÞ ¼
Xn−1
m¼1

Gmðk1;…; kmÞ
ð2nþ 3Þðn − 1Þ ½ð2nþ 1Þαðκm1 ; κnmþ1ÞFn−mðkmþ1;…; knÞ

þ 2βðκm1 ; κnmþ1ÞGn−mðkmþ1;…; knÞ�; ð30Þ

Gnðk1;…; knÞ ¼
Xn−1
m¼1

Gmðk1;…; kmÞ
ð2nþ 3Þðn − 1Þ ½3αðκ

m
1 ; κ

n
mþ1ÞFn−mðkmþ1;…; knÞ

þ 2nβðκm1 ; κnmþ1ÞGn−mðkmþ1;…; knÞ�; ð31Þ

where κba ¼
P

b
i¼a ki and F1 ¼ G1 ¼ 1. These kernels are

generally used in their symmetrized forms, FðsÞ and GðsÞ,
which can be obtained by summing the kernels over all
possible permutations of their variables.

B. The effective fluid approach

As with SPT, the EFTof LSS [4,5,7,8] approach is based
on treating dark matter as a fluid whose behavior can be
described by a Boltzmann equation

Df
Dt

¼ ∂f
∂t þ

p
ma2

·
∂f
∂x −m

X
n;n̄;n̄≠n

∂ϕn̄

∂x ·
∂fn
∂p ¼ 0: ð32Þ

Because the perturbative approach only works at low
momenta, a cutoff must be introduced to turn the dark matter
distribution into a low-energy effective fluid. This cutoff
takes the form of a smoothing function,

WΛðkÞ ¼ e−
1
2
k2

Λ2 ; ð33Þ

whose purpose is to smooth out quantities with a wave
number k ≥ Λ. Incorporating this cutoff into the Boltzmann
equation, we end up with the smoothed Boltzmann equation

Df
Dt

¼ ∂f
∂t þ

p
ma2

·
∂f
∂x

−m
X

n;n̄;n̄≠n

Z
d3x0WΛðx − x0Þ ∂ϕn̄

∂x ·
∂fn
∂p ¼ 0; ð34Þ

from which SPT is recovered when Λ → ∞. For practical
reasons described in Sec. I D we choose to use the cutoff
Λ ≈ 0.3h Mpc−1. Taking only the first two moments of
Eq. (34) gives us the equations of motion

∂ηρþ 3Hρþ ∂iðρviÞ ¼ 0 ð35Þ

and

∂ηvi þHvi þ vj∂jvi þ ∂iϕ ¼ −
1

ρ
∂j½τij�Λ; ð36Þ

which are the same as Eqs. (14) and (15) but for the
incorporation of the nonzero stress-energy tensor τij, which
accounts for the nonperturbative effects beyond the chosen
cutoff. It is ultimately this stress tensor that we study in order
to regularize the effective fluid and come up with a complete
description of large scale structure beyond our chosen cutoff.
We do this by deriving analytic forms for the counterterms
and fitting these to data from simulations.
All correlators featuring density fields of higher order

than δ1 are cutoff dependent. For the remainder of this
paper, we do not explicitly include the cutoffs in the
correlators’ arguments unless it is required to illustrate a
specific point.

1. The stress tensor

The explicit form of τij can be found by summing all
terms which are compatible with the symmetries of the
model and finding appropriate parameters from simulations
by which to multiply them [4,5]. In this case, we must allow
for Galilean invariance, homogeneity, isotropy, conserva-
tion of momentum, and conservation of mass. The second
derivatives of the gravitational potential, ∂i∂jϕ are com-
patible with all of these symmetries and are therefore our
natural building blocks. Constructing all possible combi-
nations gives

τij ¼ c11δ
ðKÞ
ij ∂2ϕþ c12∂i∂jϕþ c21δ

ðKÞ
ij ð∂2ϕÞ2 þ c22∂2ϕ∂i∂jϕþ c23ð∂i∂jϕÞ2 þ c24∂i∂jϕ∂k∂lϕ

þ c31δ
ðKÞ
ij ð∂2ϕÞ3 þ c32ð∂2ϕÞ2∂i∂jϕþ c33∂2ϕð∂i∂jϕÞ2 þ c34∂2ϕ∂i∂jϕ∂j∂kϕ

þ c35ð∂i∂jϕÞ2∂k∂lϕþ c36∂i∂jϕ∂j∂kϕ∂k∂lϕþ c37∂i∂jϕ∂j∂kϕ∂k∂iϕþ � � � ; ð37Þ
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for constants cmn , where the upper index specifies the
number of building blocks attached to the constant and
by extension its order in perturbation theory, due to the
power series basis of PT.
The various terms in the stress-energy tensor can be

grouped into two categories: viscosity terms, which provide
the correlated corrections to the perturbative terms, and
subleading noise terms, which account for the self-coupling
of nonperturbative (strongly coupled) small scale modes
analogous to the one-halo term in the halo model. In this
paper we focus on the viscosity terms and leave the noise
terms for future work.
At cubic order, where we regularize δ3, there are two

viscosity terms, such that

τiθj1 ¼ −d2ϕ∂i∂iϕþ d2u
Hf

∂i∂iu; ð38Þ

where u is the velocity potential such that ∂iu ¼ vi, for free
parameters d2ϕ and d2u, which we combine in the new
variable d2 ≡ d2ϕ þ d2u.
At quartic order, where we regularize δ4, this expands to

become

τijθ j2 ¼ −d2δijðKÞδ2 þ c1δ
ij
ðKÞð∂l∂lϕÞ2

þ c2∂i∂jϕ∂l∂lϕþ c3∂i∂kϕ∂j∂kϕ: ð39Þ

Defining the tidal tensor

sij ≡ ∂i∂jϕ −
1

3
δijðKÞ∂l∂lϕ; ð40Þ

and s2 ¼ sijsij one can obtain

τθj1 ¼ −d2Δδ1; ð41Þ

τθj2 ¼ −d2Δδ2 − e1Δδ21 − e2Δs2 − e3∂i½sij∂jδ1�; ð42Þ

where ei are functions of ci and d2u, leaving us with four
free parameters: d2, e1, e2, and e3, and the counterterm
density fields which regularize our model are given
by δ̃n ¼ τθjn.
We wish to relate these terms to perturbation theory as

defined above. As such, we can formulate a definition for
the present time counterterm density field in terms of
kernels and products of the linear field analogously to
Eq. (28) by defining a set of counterkernels F̃, such that

δ̃nðkÞ≡
Z
q1

…

Z
qn

δðDÞ
�
k−

Xn
i¼1

qi

�
F̃nðq1;…;qnÞ

Yn
i¼1

δ1ðqiÞ:

ð43Þ

The parameters d2 and e1;2;3 in Eq. (42) are time
dependent. Splitting them into time dependent and

independent components and integrating to the present
time, we can generate the new parameters ϵ1;2;3 and γ1;2,
such that we can define the first two present time counter
kernels as

F̃1ðkÞ ¼ −γ1k2; ð44Þ

F̃2ðk1; k2Þ ¼ −
�X3
i¼1

ϵiEiðk1; k2Þ þ γ2Γðk1; k2Þ
�
; ð45Þ

for momentum dependent kernels E1;2;3 and Γ (see [13] for
explicit forms and derivation). In much of the literature, γ1
is referred to as the speed of sound, c2s , when calculated
from the power spectrum.

2. The power spectrum

In the case of a Gaussian field, the ensemble average of
an odd number of variables vanishes and that of an even
number of variables can be rewritten as a product of
ensemble averages of all possible pairs of variables in
accordance with Wick’s theorem:

hδðk1Þ…δðknþ1Þi ¼ 0; ð46Þ

hδðk1Þ…δðknÞi ¼
X

pairings

Y
pairs

hδðkiÞδðkjÞi; ð47Þ

for even n. This makes the power spectrum the only
spectrum of interest in a truly Gaussian field and the
simplest and most common object of study in a field
which is only weakly non-Gaussian. As our Universe is
primarily Gaussian on large scales, the power spectrum
provides the majority of our understanding of LSS with the
bispectrum and trispectrum providing further statistics to
help us understand the non-Gaussianities in the fields and
extract the full information content.
There are four contributions to the one-loop power

spectrum: the linear power spectrum P11, and the three
one-loop contributions P13, P31, and P22, where P13 ¼ P31

and

P31ðkÞ ¼ 3

Z
q
FðsÞ
3 ðk; q;−qÞP11ðkÞP11ðqÞ; ð48Þ

P22ðkÞ ¼ 2

Z
q
jFðsÞ

2 ðk − q; qÞj2P11ðjk − qjÞP11ðqÞ; ð49Þ

all of which are represented diagrammatically in Fig. 2.
P22 can be regularized by a subleading noise term which

makes a contribution substantially smaller than the viscosity
term that regularizes P31 and which will not be addressed
here. For a given cutoff Λ, P31 can be regularized with the
counterterm P1̃1 ¼ F̃1ðkÞP11 where F̃1ðkÞ ¼ −c2s ðΛÞk2,
such that
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PnnðkÞ ¼ P11ðkÞ þ P22ðkÞ þ 2P31ðkÞ − 2c2s ðΛÞk2P11ðkÞ;
ð50Þ

for nonlinear power spectrum Pnn. In theory c2s should be a
constant, but studies up to any given order in perturbation
theory will inevitably result in estimators of this quantity to
be scale dependent due to higher order terms which have not

been accounted for. In [9], it was shown that c2s becomes
roughly constant for all scales of interest to the EFT of LSS
when two-loop terms are taken into account.

3. The bispectrum

As non-Gaussianities appear in LSS, it becomes neces-
sary to look beyond the power spectrum and study higher
order correlators. The tree-level bispectrum is given by

B211ðk1;k2;k3Þ¼2P11ðk2ÞP11ðk3ÞFðsÞ
2 ðk2;k3Þþ2perms;

ð51Þ

and the one-loop contributions are

B222ðk1; k2; k3Þ ¼ 8

Z
q
P11ðqÞP11ðjk2 − qjÞP11ðjk3 − qjÞFðsÞ

2 ð−q; k3 þ qÞ

× FðsÞ
2 ðk3 þ q; k2 − qÞFðsÞ

2 ðk2 − q; qÞ; ð52Þ

B321aðk1; k2; k3Þ ¼ 6P11ðk3Þ
Z
q
P11ðqÞP11ðjk2 þ qjÞFðsÞ

3 ð−q;−k2 þ q;−k3Þ

× FðsÞ
2 ðq; k2 − qÞ þ 5 perms; ð53Þ

B321bðk1; k2; k3Þ ¼ 6P11ðk2ÞP11ðk3ÞFðsÞ
2 ðk2; k3Þ

Z
q
P11ðqÞFðsÞ

3 ðk3; q;−qÞ þ 5 perms; ð54Þ

B411ðk1; k2; k3Þ ¼ 12P11ðk2ÞP11ðk3Þ
Z
q
P11ðqÞFðsÞ

4 ðq;−q;−k2;−k3Þ þ 2 perms; ð55Þ

such that at one-loop order, the bispectrum is given by

FIG. 2. Feynman diagram representations of the linear and one-loop contributions to the power spectra of LSS together with the P1̃1

one-loop counterterm.
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Btreeþ1-loop ¼ B211 þ B222 þ B321a þ B321b þ B411: ð56Þ

Each loop term needs regularization, but the counterterms for B222 and B321a are subleading noise terms such that for
most purposes we can focus on the remaining two counterterms,

B2̃11ðk1; k2; k3Þ ¼ 2!F̃ðsÞ
2 ðk2; k3ÞP11ðk2ÞP11ðk3Þ; ð57Þ

which regularizes B411, and

B1̃21ðk1; k2; k3Þ ¼ 2!F̃ðsÞ
1 ð−k1ÞFðsÞ

2 ðk1; k3ÞP11ðk1ÞP11ðk3Þ; ð58Þ

which regularizes B321b. These counterterms are shown diagrammatically alongside the tree-level and one-loop terms
in Fig. 3.
In [13] we employed a variety of methods to constrain F̃1 and F̃2 from simulations using gridPT; in Sec. II D we will use

these constraints for the regularization of the corresponding interactions in the trispectra.

FIG. 3. Feynman diagram representations of the tree-level and one-loop contributions to the bispectrum together with the one-loop
counterterms.
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4. The trispectrum

The trispectrum contains the non-Gaussian information in the covariance matrix of the power spectrum. As the
covariance matrix of the power spectrum is a key component of cosmological parameter inference and the power spectrum
is already well understood up to two-loop level, it is important to develop our understanding of the trispectrum in
preparation for upcoming surveys.
Up to one-loop order the trispectrum is given by

T treeþ1-loop ¼ T3111 þ T2211 þ T5111 þ T4211a þ T4211b þ T3221a þ T3221b þ T3221c

þ T3311a þ T3311b þ T2222; ð59Þ

where T3111 and T2211 are the tree-level contributions. The contribution are given by

T3111ðk1; k2; k3; k4Þ ¼ 3!FðsÞ
3 ðk2; k3; k4ÞP11ðk2ÞP11ðk3ÞP11ðk4Þ þ 3 perms; ð60Þ

T2211ðk1; k2; k3; k4Þ ¼ ð2!Þ2FðsÞ
2 ð−k3 − k4; k4ÞFðsÞ

2 ðk3 þ k4; k2ÞP11ðjk3 þ k4jÞP11ðk2ÞP11ðk3Þ þ 11 perms; ð61Þ

T5111ðk1; k2; k3; k4Þ ¼
5!

2!

Z
q
FðsÞ
5 ðq;−q; k2; k3; k4ÞP11ðqÞP11ðk2ÞP11ðk3ÞP11ðk4Þ þ 3 perms; ð62Þ

T4211aðk1; k2; k3; k4Þ ¼ 4!

Z
q
FðsÞ
4 ðq;−q; k2 þ k3; k4ÞFðsÞ

2 ð−k2 − k3; k3Þ

× P11ðqÞP11ðjk2 þ k3jÞP11ðk3ÞP11ðk4Þ þ 23 perms; ð63Þ

T4211bðk1; k2; k3; k4Þ ¼ 4!

Z
q
FðsÞ
4 ðk1 þ q;−q; k3; k4ÞFðsÞ

2 ð−q − k1; qÞP11ðjqþ k1jÞ

× P11ðqÞP11ðk3ÞP11ðk4Þ þ 11 perms; ð64Þ

T3221aðk1; k2; k3; k4Þ ¼ 3!2!

Z
q
FðsÞ
3 ðq;−q;−k1ÞFðsÞ

2 ðk1; k3 þ k4ÞFðsÞ
2 ð−k3 − k4; k4Þ

× P11ðqÞP11ðk1ÞP11ðjk3 þ k4jÞP11ðk4Þ þ 23 perms; ð65Þ

T3221bðk1; k2; k3; k4Þ ¼ 3!2!

Z
q
FðsÞ
3 ðqþ k1;−q; k3 þ k4ÞFðsÞ

2 ð−k1 − q; qÞFðsÞ
2 ð−k3 − k4; k4Þ

× P11ðqÞP11ðjk1 þ qjÞP11ðjk3 þ k4jÞP11ðk4Þ þ 23 perms; ð66Þ

T3221cðk1; k2; k3; k4Þ ¼ 3!ð2!Þ2
Z
q
FðsÞ
3 ðq;−k1 − k4 − q; k4ÞFðsÞ

2 ð−q; q − k2ÞFðsÞ
2 ðk2 − q; k1 þ k4 þ qÞ

× P11ðqÞP11ðjk1 þ k4 þ qjÞP11ðjq − k2jÞP11ðk4Þ þ 11 perms; ð67Þ

T3311aðk1; k2; k3; k4Þ ¼
ð3!Þ2
2!

Z
q
FðsÞ
3 ðq;−q;−k1ÞFðsÞ

3 ðk1; k3; k4ÞP11ðqÞ

× P11ðk2ÞP11ðk3ÞP11ðk4Þ þ 11 perms; ð68Þ

T3311bðk1; k2; k3; k4Þ ¼
ð3!Þ2
2!

Z
q
FðsÞ
3 ðq;−q − k1 − k4; k4ÞFðsÞ

3 ð−q; qþ k1 þ k4; k3Þ

× P11ðqÞP11ðjqþ k1 þ k4jÞP11ðk3ÞP11ðk4Þ þ 11 perms; ð69Þ
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T2222ðk1; k2; k3; k4Þ ¼ ð2!Þ4
Z
q
FðsÞ
2 ðq;−k1 − qÞFðsÞ

2 ð−q; q − k2ÞFðsÞ
2 ðk2 − q; q − k2 − k3Þ

× FðsÞ
2 ðk2 þ k3 − q; qþ k1ÞP11ðqÞP11ðjq − k2jÞP11ðjq − k2 − k3jÞ

× P11ðjqþ k1jÞ þ 2 perms; ð70Þ

each of which is shown diagrammatically in Fig. 4.

FIG. 4. The tree-level (top row) and one-loop (other rows) contributions to the trispectrum. Note that T5111, T3221a, T4211a, and T3311a
contain free loops. This results in them constituting the leading UV-sensitive terms in the trispectrum. Most of them can be related to
UV-sensitive interactions already encountered in the one-loop power spectrum and bispectrum, but T5111 constitutes a new UV-sensitive
interaction.
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As with other correlators, each one-loop term requires regularization. However, the counterterms for T2222, T4211b, T3221b,
T3221c, and T3311b are subleading noise terms and we focus on the remaining four, which are given by

T 3̃111ðk1; k2; k3; k4Þ ¼ 3!F̃ðsÞ
3 ðk2; k3; k4ÞP11ðk2ÞP11ðk3ÞP11ðk4Þ þ 3 perms; ð71Þ

T 2̃211ðk1; k2; k3; k4Þ ¼ ð2!Þ2F̃ðsÞ
2 ðk2 þ k3; k4ÞFðsÞ

2 ð−k2 − k3; k3ÞP11ðjk2 þ k3jÞP11ðk3ÞP11ðk4Þ
þ 11 perms; ð72Þ

T 1̃311ðk1; k2; k3; k4Þ ¼ 3!F̃ðsÞ
1 ð−k1ÞFðsÞ

3 ðk2; k3; k4ÞP11ðk2ÞP11ðk3ÞP11ðk4Þ þ 3 perms; ð73Þ

T 1̃221ðk1; k2; k3; k4Þ ¼ ð2!Þ2F̃ðsÞ
1 ð−k1ÞFðsÞ

2 ðk1; k3 þ k4ÞFðsÞ
2 ð−k3 − k4; k4Þ

× P11ðk1ÞP11ðjk3 þ k4jÞP11ðk4Þ þ 11 perms; ð74Þ

Feynman diagrams for each of which are shown in Fig. 5.
Notice that each counterterm depends upon one counter-
kernel and three of them depend upon F̃1 and F̃2, the same
counterkernels found in the counterterms to the one-loop
bispectrum which we studied in [13]. This gives us the
opportunity to model T 2̃211, T 1̃311, and T 1̃221 using the
amplitudes of the counterparameters calibrated from
the bispectrum. This leaves only T 3̃111 left to be calibrated,
which we shall discuss in Sec. II E. It is also notable that
the UV limit of T5111 scales as k21P11ðk2ÞP11ðk3ÞP11ðk4Þ
implying that, when fitted to an amplitude, it could be used

as an estimator for T 3̃111. We do not use explicitly use the
UV limit of T5111 as an estimator for T 3̃111 in this paper but
do define two one-parameter estimators that scale as
k21P11ðk2ÞP11ðk3ÞP11ðk4Þ, which in theory should differ
from T5111;UV only by a constant that will be accounted for
in the fitted parameter (see Sec. II E).
Note that in previous studies of LSS trispectra, an

approximate EdS cosmology has been assumed. In
Fig. 6 we show that the difference between the tree level
propagator term for EdS and ΛCDM growth factors
exceeds the one-loop terms and the one-loop counterterm

FIG. 5. The leading counterterm diagrams for the one-loop trispectrum. Note that T 2̃211 contains the counterkernel F̃2, which
regularizes the one-loop bispectrum, and T 1̃221 and T 1̃311 contain the counterkernel F̃2, which regularizes the one-loop power spectrum
(and some bispectrum terms). This leads to the opportunity of a consistency check by using counterterm amplitudes constrained in the
power spectrum and bispectrum and assessing their ability to regularize the trispectrum.
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on large scales, highlighting the importance of using the
correct growth factors when studying loop corrections to
the trispectrum (for details on the derivation of the ΛCDM
growth factors see [13,28,29]).

C. Theoretical errors

Calculating higher and higher loops becomes more
and more complicated, yet it is beneficial to estimate the
size of subleading corrections. Such an estimation is
possible in scale-free universes [7], where the nonlinear
scale is the only nontrivial reference scale and the initial
power spectrum thus can be expressed as ðk=kNLÞn. Our
Universe is not a scaling universe, but its power spectrum
can be approximated by a power law with slope nNL ≈
−3=2 around the nonlinear scale kNL. At l-loop order we
can estimate the size of the loop corrections to the power
spectrum as

ΔPlðkÞ ¼ PtreeðkÞ
�

k
kNL

�ð3þnNLÞl
; ð75Þ

where for our analysis, kNL is taken to be 0.3h Mpc−1. For
the bispectrum one can generalize this to [13,30]

ΔBlðk1; k2; k3Þ ¼ Btreeðk1; k2; k3Þ
�
kext
kNL

�ð3þnNLÞl
; ð76Þ

where kext is the mean external momentum magnitude
of the kernel featuring the loop and is averaged as
kext ¼ ðk1 þ k2 þ k3Þ=3 when we are studying the entire
configuration space of the bispectrum.
Extrapolating from Eq. (76), we can generate an estimator

for the theoretical error of the trispectrum at l loops in

ΔTlðk1; k2; k3; k4Þ ¼ T treeðk1; k2; k3; k4Þ
�
kext
kNL

�ð3þnNLÞl
:

ð77Þ

D. Simulations and PT on the grid

Initially, a random realization δ1 of a Gaussian density
field is generated on a grid.We then simulate the evolution of
this field until the present day, allowing for the generation of
nonlinearities; this gives us a representation of the real
Universe to which we can compare our theory. We employ
GADGET II [31], a tree-PM hybrid N-body simulation code.
Once the simulations have been run, we sample the resulting
density fields on a grid generated using the cloud-in-cell
(CIC) mass assignment scheme. On this grid, we then
measure correlators by averaging the complex products of
density fields in spherical shells i ¼ 1;…; Nbin withmomen-
tum magnitudes ranging from a chosen ki;min to a chosen
ki;max. We refer to our choices of minimum and maximum
momenta for these shells as the momentum binning.
From the realization of the Gaussian field δ1, one can

then calculate the higher order fields using the recursion
relations [13,25–27]

δn ¼
Xn−1
m¼1

1

ð2nþ 3Þðn − 1Þ ½ð2nþ 1Þðθmδn−m −Ψm · ∇δn−mÞ

þ 2ð−Ψm · ∇θn−m=2 −Ψn−m · ∇θm=2þ Km;ijKn−m;ij þ θmθn−m=3Þ�; ð78Þ

θn ¼
Xn−1
m¼1

1

ð2nþ 3Þðn − 1Þ ½3ðθmδn−m −Ψm · ∇δn−mÞ

þ 2nð−Ψm · ∇θn−m=2 −Ψn−m · ∇θm=2þ Km;ijKn−m;ij þ θmθn−m=3Þ�: ð79Þ

The displacement fields are given by

ΨθmðkÞ ¼ i
k
k2

θmðkÞ ð80Þ

FIG. 6. The one-loop contributions to the equilateral trispec-
trum propagator. On large scales the difference between the
ΛCDM and EdS (red dashed) tree-level terms exceeds the one-
loop trispectrum contribution from T5111 (blue solid) and the
counterterm T 3̃111 (gray) by up to three orders of magnitude. The
blue dashed line shows the UV limit of T5111.
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and equivalently the tidal tensor is given by

Kθm;ijðkÞ ¼
�
kikj
k2

−
1

3
δðKÞij

�
θmðkÞ: ð81Þ

This allows us to perform perturbation theory on the grid,
making it possible to compare the individual contributions
to their theoretical predictions, rather than simply calculat-
ing the fully nonlinear field and comparing it to the full
predicted spectrum.
In most studies to date, analyses of LSS correlators have

relied upon measuring the fully nonlinear correlators and
comparing them to SPT. Thus, the residual of the power
spectrum up to one-loop would be defined as Pnn −
P11;SPT − 2P31;SPT − P22;SPT and this is what is used to
calculate the counterterms. We make use of gridPT, in
which we calculate individual contributions to the non-
linear correlator up to a given order explicitly on the
grid using Eqs. (78) and (79). We can then subtract
these correlators from the nonlinear correlator. This gives
significantly smaller error bars for a given number of
numerical realizations for a number of reasons. Namely,
SPT calculations would ordinarily be done at the center of a
momentum shell rather than integrating over its entire
volume as is done on the grid and the fact that terms which
should not be contributing to the nonlinear correlator
are not being correctly removed, as will be discussed in
Sec. II B. Furthermore, gridPT uses the same phases of the
modes and accounts for the discreteness of the largest
modes present in the box. gridPTalso offers the opportunity
for components of counterterms to be explicitly calculated
on the grid, such as the Γ and Ei components of F̃2 as
shown in Eq. (45), which we will use for some of our
counterterm calibrations in Sec. II D.

II. REGULARIZING THE ONE-LOOP
TRISPECTRUM

In order to perform an analysis of the one-loop tri-
spectrum we must create both a perturbative calculation
and a nonperturbative measurement of the trispectrum.
Employing gridPT, we measure the individual contribu-
tions to the trispectrum such as T3111 and T5111 on the same
grid used to analyze the simulation results; this allows
much greater precision than could have been achieved by
comparing the measured fully nonlinear trispectrum to
analytically calculated one-loop PT, both because it ensures
that there is identical momentum shell averaging between
the perturbative and nonlinear density fields and because it
allows us to reduce the noise by comparing perturbative and
nonlinear modes that arise from the same seeds. This leads
to a number of interesting results which affect the counter-
term calculations, as detailed in Secs. II B and II E. We also
evaluate regular numerical PT using a routine that relies
upon the CUBA Vegas numerical integrator [32] and use

this for comparative purposes as well as for some of our
counterterm calculations, as will be discussed in Sec. II D.
All of the trispectra listed in Sec. I B 4 contribute to the

auto trispectrum Tnnnn. However, we can also isolate
individual counterterms by studying the partially nonlinear
trispectra:

Tn111 ¼ T3111 þ T5111 þ T 3̃111; ð82Þ

Tn211 ¼ T2211 þ T4211 þ T 2̃211; ð83Þ

Tn221 ¼ T1221 þ T3221 þ T 1̃221; ð84Þ

Tn311 ¼ T1311 þ T3311 þ T 1̃311; ð85Þ

where the subscript n represents a nonlinear density field.
This allows us to constrain each counterterm separately,
potentially increasing the precision of our calculations
compared to calibrating all parameters of the four counter-
terms simultaneously from the nonlinear trispectrum Tnnnn.
By convention, Tn111 is referred to as the trispectrum

propagator. In this paper, we expand upon this convention
and refer to all correlators which feature only one nonlinear
field as propagators. It is these four propagator terms that
we shall study in the analysis described below.

A. Estimating the trispectrum

The space of possible shapes a correlator can take in real
or momentum space is called its configuration space.
Ordinarily, we study correlators in momentum space with
the magnitudes of their vectors chosen in bins ranging from
a chosen kmin to a chosen kmax, thus defining the shells in
which we perform measurements. The power spectrum is
the correlator of two fields and so takes the form of a single
line which can be entirely defined by its magnitude, k.
Thus, it has a one-dimensional configuration space which
is numerically simple to study in full. The bispectrum is
the correlator of three fields and so takes the form of a
triangle, with each density field represented by a vector.
By convention, we refer to the vector defining the first
density field as k1, that defining the second density field as
k2, and that defining the third density field as k3. We can
entirely define the configuration of a bispectrum using
three parameters; if we take the magnitudes of k1 and k2
together with the enclosed angle ϕ, we can calculate k3
from the requirement that these two vectors are connected
into a closed triangle. Alternatively, we could take the
magnitudes of all three vectors and calculate ϕ using basic
trigonometry. Thus, the bispectrum has a three-dimensional
configuration space. Sampling the entire space is more
computationally intensive than working with fixed con-
figurations but is not unfeasible; in [13] we studied the full
configuration space of the bispectrum. The momentum
space shapes of the power spectrum and bispectrum are
shown in Fig. 7.
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The trispectrum is the correlator of four fields and so
takes the shape of a tetrahedron, as shown in Fig. 8. This
shape has six momentum vectors defining the four fields;
four of them we label the external legs and the remaining
two we call diagonal legs. When we come to studying
individual configurations, we will see that this distinction
allows us to define trispectra using only their external legs
and averaging over their diagonals.
We can parametrize the trispectrum as

k1 ¼ ðk1; 0; 0Þ; ð86Þ

k2 ¼ k2
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − μ21

q
; 0; μ1

�
; ð87Þ

k3 ¼ k3
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − μ22

q
cosðϕ2Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ22

q
sinðϕ2Þ; μ2

�
; ð88Þ

k4 ¼ −k1 − k2 − k3; ð89Þ

k5 ¼ k1 þ k2; ð90Þ

k6 ¼ k2 þ k3: ð91Þ

withk5 and k6 being referred to hereafter as the diagonal legs.
The choice of these two as the diagonal legs is arbitrary, with
the only requirement being that the external legs form a
closed quadrilateral. With three legs defined, the remaining
three can be inferred from the requirement that every point be
connected to every other in a closed tetrahedron; thus,we can
define a configuration fully with six scalar parameters; those
are usually chosen to be either themagnitude of three vectors
and the three angles that separate them from one another in
3D space ðk1; k2; k3; μ1; μ2;ϕ2Þ or the magnitudes of all six
legs ðk1; k2; k3; k4; k5; k6Þ. The shape of the trispectrum in
momentum space is shown in Fig. 8.
For the trispectrum, studying the full configuration space

would be numerically nontrivial and we leave such a study
to a future paper. We choose to focus on configurations in
which the external four legs are specified and the diagonals
are allowed to vary. In our CUBA calculations of the SPT
contributions to the EFT, this takes the form of inputting the
k binning of three momenta, integrating over all possible
values of the three angles, and calculating the resultant
vectors k1, k2, and k3 within the integrand. We use these
and Eq. (89) to calculate k4 and its magnitude, k4. An if
statement then determines whether or not k4 is within the
desired bin: if it is, then we calculate the trispectrum with
those external leg parameters and add it to the integral; if
not, then we simply do not. In our analysis on the grid, we
rely upon Dirac delta functions and their integral repre-
sentations to ensure the validity of the configurations. In
both cases, the diagonal legs are implicitly integrated over
as they are not required to fit into any particular k bin.
We use a trispectrum estimator, rather than relying upon

calculations of the covariance matrix of measured power
spectra. Naïvely, one might try tomeasure the trispectrum by
directly summing density fields in momentum space [14]:

T̂ ¼ 1

N

Z
d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3

Z
d3k3
ð2πÞ3

×
Z

d3k4
ð2πÞ3 ð2πÞ

3δðDÞðk1 þ k2 þ k3 þ k4Þ

× δðk1Þδðk2Þδðk3Þδðk4Þ; ð92Þ

where the normalization factorN is the volume of the space
being integrated over, where the integrals have as their limits
the boundaries of the appropriate momentum bins for our
chosen configurations. Here we are binning the magnitudes
of k1, k2, k3, k4 and leave the diagonals unconstrained. We
hereafter refer to this trispectrum estimator as the direct
summation method.
However, this requires studying the entire 3D volume of

the sampled space for each of three legs, giving a total of

FIG. 7. Left: the shape of the power spectrum in momentum
space. As we are only connecting two points in a homogeneous
and isotropic space, we can entirely define the power spectrum
with one parameter: the momentum, k. Right: the shape of the
bispectrum in momentum space. It can be entirely defined by
three parameters; either the magnitudes of two vectors and the
angle that separates them, or the magnitudes of all three vectors.
The requirement that the vectors connect to form a closed triangle
allows us to deduce the remaining parameters defining all three
vectors from basic trigonometry.

FIG. 8. The shape of the trispectrum in momentum space. The
four density perturbations are connected by six legs to form a
tetrahedron; by convention, we refer to four of those legs as the
external legs, shown by solid lines, and two as diagonal legs,
shown by dotted lines.
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N9
c measurements, where Nc is the number of cells per

dimension. The Dirac function would then give us k4. This
is of course numerically intensive to the point of being
unfeasible. Instead, we use the integral representation of the
Dirac function to give us

T̂ ¼ 1

N

Z
d3x

Z
d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3

Z
d3k3
ð2πÞ3

×
Z

d3k4
ð2πÞ3 e

ix·ðk1þk2þk3þk4Þδðk1Þδðk2Þδðk3Þδðk4Þ;

¼ 1

N

Z
d3x

Z
d3k1
ð2πÞ3 e

ix·k1δðk1Þ
Z

d3k2
ð2πÞ3 e

ix·k2δðk2Þ

×
Z

d3k3
ð2πÞ3 e

ix·k3δðk3Þ
Z

d3k4
ð2πÞ3 e

ix·k4δðk4Þ;

≡ 1

N

Z
d3xf1ðxÞf2ðxÞf3ðxÞf4ðxÞ; ð93Þ

where f is the Fourier transform of δ restricted to a
momentum bin and each of the integrals has as its limits
the boundaries of the chosen momentum bins for our
chosen configurations. In practice this means setting the
field to zero everywhere but in a shell in Fourier space and

then Fourier transforming the resulting field. Our routine
based upon this method works significantly faster than the
direct summation routine and allows us to average over the
diagonal legs of our configurations with minimal computa-
tional cost. In Appendix B we show how this method can be
extended to account for a fixed length of the diagonals.

FIG. 9. The measured T5111 in the four sampled configurations with both the direct summation (DS) routine and the Fourier transform
routine (FFT). Notice that the DS routine only sampled a small fraction of the overall momentum space, resulting in it only measuring a
few points for each configuration and each of those points being less precise than those measured by the FFT routine, which studied the
entire grid.

FIG. 10. The measured residual of the trispectrum propagator
Tn111 in configuration PPM with and without subtracting off the
mean zero terms, together with a curve which scales as the
countertermwouldbeexpected to, beingk21P11ðk2ÞP11ðk3ÞP11ðk4Þ.

PRECISE CALIBRATION OF THE ONE-LOOP TRISPECTRUM … PHYS. REV. D 103, 103518 (2021)

103518-15



FIG. 11. The contributions to the one-loop trispectrum after undergoing cosmic variance cancellation through the removal of power
spectra as measured in gridPT (points) against the calculations from standard perturbation theory (lines) with a cutoff of
Λ ¼ 0.3h Mpc−1. The blue line is configuration PPM, the yellow line is PMM, the green line is MMM, and the red line is PPP.
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Four momentum-space configurations were studied for
this initial analysis of the trispectrum:

PPM hδðkiÞδðkiþ1Þδðkiþ1Þδðki−1Þi
PMM hδðkiÞδðkiþ1Þδðki−1Þδðki−1Þi
MMM hδðkiÞδðki−1Þδðki−1Þδðki−1Þi
PPP hδðkiÞδðkiþ1Þδðkiþ1Þδðkiþ1Þi

where ki represents the ith momentum bin, such that in all
configurations one of the density fields was used as a
reference while the others were positioned in the k bins
immediately above or below the reference. Specifically, it is
the nonlinear density field in the propagator terms that is
chosen to be in the reference bin. We did not use
configurations in which all four of the fields had the same
momenta as allowing the diagonal legs to vary in this
configuration leads to the intrusive inclusion of discon-
nected trispectra, i.e., pairs of antiparallel power spectra in
the measurement of the trispectra.
In Fig. 9 we plot the measured T5111 from both the direct

summation and fast Fourier transform routines. Due to the
computational intensity of the direct summation method,
we were only able to sample a small fraction of the overall

space, resulting in fewer data points with larger errors. This
clearly demonstrates the benefits of using the Fourier
transform method, which we use throughout the remainder
of the paper to the complete exclusion of the direct
summation method.

B. Cosmic variance cancellation

In the infinite-volume limit, terms which describe dis-
connected pairs of power spectra, such as T1111, should not
contribute to the measured off-diagonal connected trispec-
trum. Likewise, termswhich contain an odd number of linear
density fields such as T2111 and T4111, should vanish in
accordance with Wick’s theorem. However, although their
meanvalueswill be zero, in a finite sample size theywill have
a nonzero variance. Using gridPT, we were able to generate
the correlators for these terms and found that they made a
significant contribution to the measured nonlinear trispectra.
With themexplicitlymeasured,wewere able to subtract them
from the residuals, giving a significant reduction in cosmic
variance. We hereafter refer to terms with a vanishing mean
and nonzero variance as mean zero terms.

FIG. 12. The theoretical errors at one (black), two (gray), and three (white) loops for the ratios one loop terms and their corresponding
tree-level terms in the four configurations considered. In the case of T3311, the loop momentum is an average of k1 and k2 such that the
configurations PPM, PMM, and PPP have the same theoretical errors while those of MMM differ; those for MMM are shown as dotted
lines while those for the other configurations are shown as solid.
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When removing mean zero terms, we only remove those
that have an highest order density field at most as high in
order as the highest order density field in the corresponding
one-loop contribution, such that we have

Tn111;grid → Tn111;grid − T4111;grid − T2111;grid − T1111;grid;

ð94Þ

Tn211;grid → Tn211;grid − T3211;grid − T1211;grid; ð95Þ

Tn221;grid → Tn221;grid − T2221;grid; ð96Þ

Tn311;grid → Tn311;grid − T2311;grid: ð97Þ

In the left hand panel of Fig. 10 we plot the residual of Tn111
with and without subtraction of the mean zero terms, which
we refer to as a form of cosmic variance cancellation.
In studying the trispectrum we are interested in the

kernels Fn. Any measurement of the trispectrum will
include measurements of the included power spectra and
these power spectra are the source of the majority of any
measurement’s variance. As such, we can significantly

reduce the variance of our measurements by enacting
cosmic variance cancellation on each of our trispectrum
measurements by redefining

Q ¼ T̂

P̂n
11

ð98Þ

for some product of linear power spectra Pn
11 measured on

the grid and corresponding to the power spectra found in
the definitions of the trispectra. We perform this on a
realization by realization basis, dividing by power spectra
from the same realization and grid as each measured
trispectrum, before averaging our results. This isolates
the kernels, effectively giving us a simulation measurement
of the kernel itself, and in doing so removes all of the
variance that came from the linear density fields.
In theory the most precise possible measurements of the

counterterms would come from using n ¼ 3 in Eq. (98) in
order to fully remove the variance of the power spectrum
from the measurements. However, many contributions to
the trispectrum feature power spectra that are not simple
functions of one of the external density fields’momenta but

FIG. 13. The calculated counterterms T 2̃211 with F̃2 as calibrated from the bispectrum against the grid residual for configurations PPM
(top left), PMM (top right), MMM (bottom left), PPP (bottom right). The gray shaded region shows the theoretical error induced by two-
loop corrections. We apply a growth factor correction of ΔD2 ≈ 0.005 inspired by our bispectrum measurements in [13] to account for
time integration inaccuracies in the N-body results.
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are instead an averaged sum of the momenta between
different fields. This complicates the procedure and for the
sake of convenience only power spectra of single density
fields are removed from our measurements. As such,
bearing in mind the momentum arguments of the power
spectra in Eqs. (60)–(70), we have that

Q3111ðk1; k2; k3; k4; k5; k6Þ ¼
T3111ðk1; k2; k3; k4; k5; k6Þ
P11ðk2ÞP11ðk3ÞP11ðk4Þ

;

ð99Þ

Q5111ðk1; k2; k3; k4; k5; k6Þ ¼
T5111ðk1; k2; k3; k4; k5; k6Þ
P11ðk2ÞP11ðk3ÞP11ðk4Þ

;

ð100Þ

Q2211ðk1; k2; k3; k4; k5; k6Þ ¼
T2211ðk1; k2; k3; k4; k5; k6Þ

P11ðk3ÞP11ðk4Þ
;

ð101Þ

Q4211ðk1; k2; k3; k4; k5; k6Þ ¼
T4211ðk1; k2; k3; k4; k5; k6Þ

P11ðk3ÞP11ðk4Þ
;

ð102Þ

Q3221ðk1; k2; k3; k4; k5; k6Þ ¼
T3221ðk1; k2; k3; k4; k5; k6Þ

P11ðk4Þ
;

ð103Þ

Q3311ðk1; k2; k3; k4; k5; k6Þ ¼
T3311ðk1; k2; k3; k4; k5; k6Þ

P11ðk3ÞP11ðk4Þ
;

ð104Þ

and T2222 is left as it is. Note that the power spectra in the
denominators occupy the momentum bin of the linear
density fields in the trispectra.
Figure 11 shows each of the contributions to the one-loop

trispectrum in the four studied configurations with a cutoff of
Λ ¼ 0.3h Mpc−1 asmeasured both from the simulations and

FIG. 14. The calculated T2211 þ T4211 þ T 2̃211 with F̃2 as calibrated from the bispectrum against the grid Tn211 − T3211 − T1211 for the
four configurations studied. For PPM and MMM, the corrections are significant. In the former case it is notable that the symmetry
inspired fit works better than the UV-inspired fit, a relation that was also seen in the study of the bispectra [13], while for MMM the two
parametrizations of the counterkernel seem to work equally well. For PMM, the correction seems to be too large and is of debatable
value, while for PPP the correction is extremely small. As this is a ratio over the tree-level terms, only studying perturbation theory up to
tree level would have resulted in a constant line at one. Configurations PPM, PMM, and MMM can only be described by this at the
largest scales, deviating from one already by k ∼ 0.03h Mpc−1, while the measurements in configuration PPP do not agree with tree-
level predictions at any scale.
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from perturbation theory. As can be seen, the grid perturba-
tion theory agrees well with the analytic perturbation theory.
This constitutes a highly nontrivial validation of both our
CUBA and gridPT calculations of the trispectra.

C. Theoretical errors

Given that we are studying isolated counterterms in
partially nonlinear trispectra, we need only consider the tree
level terms that are appropriate to the correlator under
study. Specifically, for the four nonlinear terms we are
studying, we have that

ΔTn111;l ¼ T3111

�
kext
kNL

�ð3þnNLÞl
;

ΔTn211;l ¼ T2211

�
kext
kNL

�ð3þnNLÞl
;

ΔTn221;l ¼ T1221

�
kext
kNL

�ð3þnNLÞl
;

ΔTn311;l ¼ T1311

�
kext
kNL

�ð3þnNLÞl
; ð105Þ

where the momentum in the denominator is kext ¼ k1
because that is the momentum of the one-loop density
field and we have chosen nNL ¼ −1.3 to fit the magnitude
of our one-loop theoretical errors to our measured one-loop
contributions.
As shown in Fig. 12, the measured values of the one-loop

ratios fall within the expected errors for most configura-
tions; the notable exceptions being the MMM configuration
for T3221 and the large scale values of the PPP configuration
for the same trispectrum. While undesirable, this is in
keeping with the general difficulty we have faced with
these configurations. Also plotted are the expected magni-
tudes of the two and three loop contributions. To avoid
attempting to use a one-loop analysis in a region heavily
affected by higher loop terms, we will generally limit our
analysis to kmax ¼ 0.083h Mpc−1.

D. The F̃1 and F̃2 kernels

In our recent paper [13] we defined a number of methods
with which we constrained the parameters of F̃1 and F̃2

from the one-loop bispectrum. Here we will take from that
paper that γ2 ¼ 2.332h−2 Mpc2, a value obtained using

FIG. 15. The calculated counterterms T 1̃221 with F̃1 as calibrated from the bispectrum against the grid residual for configurations PPM
(top left), PMM (top right), MMM (bottom left), PPP (bottom right). The gray shaded region shows the theoretical errors for the two
loop contributions. We can see that the results work well for PPM, particularly with the amplitude fitted to the grid counterterm.
However, for the other configurations, particularly MMM, the counterterms fitted less well with the measured residuals.
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what we referred to as method Bnnn-1-S and which we refer
to hereafter as γ2;B, leaving us with two parametrizations
for the ϵ parameters of F̃2 seen in Eq. (45), which we refer
to as the UV- and symmetry-inspired parametrizations,1

together with the approximation γ1 ¼ c2s , giving a value of
γ1 ¼ 2.27h−2 Mpc2. We also take the UV approximations
of the counterterms and of the components of F̃2 calculated
on the grid and fit them as counterterms, both with the
values of γ1 and γ2 just mentioned and with independent fits
to their respective residuals.
With these parameters, we use the following methods for

estimating the trispectrum counterterms containing F̃1

and F̃2:

(i) We will use the chosen value of γ2;B together with
both corresponding parametrizations for the ϵi to
calculate T 2̃211 perturbatively.

(ii) We will use the chosen value of c2s calibrated from
the bispectrum to calculate T 1̃221 and T 1̃311 pertur-
batively.

(iii) We will use the chosen value of c2s as the amplitude
of γ1T 1̃221;grid and γ1T 1̃311.

(iv) We will use the chosen value of γ2;B as the amplitude
of γ2T 2̃211;grid.

(v) We will use a values of γ2;B and ϵ1;2;3 as calibrated
from the bispectrum as the amplitudes for the
constituent functions of F̃2 measured on the grid
and sum these to estimate T 2̃211 with both sym-
metry and UV-inspired parametrizations. We refer
to the parameters from the symmetry inspired
parametrization with the subscript S and those
with the UV-inspired parametrization with the
subscript U.

(vi) We will fit for the amplitude of γ1T 1̃221;grid.
(vii) We will fit for the amplitude of γ1T 1̃311;grid.
(viii) We will fit for the amplitude of γ2T 2̃211;grid.

FIG. 16. The calculated T1221 þ T3211 þ T 1̃221 with F̃1 as calibrated from the bispectrum against the grid Tn221 − T2221 for the four
configurations studied. The tree-level trispectrum corresponds to a horizontal line at one. The measurements clearly deviate from that
starting from the largest scales for configurations PPM and PMM, with PPM and PPP deviating from tree level beginning at least
at k ∼ 0.03h Mpc−1.

1In the UV-inspired parametrization we set the ϵ parameters to
be linear functions of γ2 in order to make the counterterm B2̃11
proportional to the UV limit of B411; with this parametrization,
we have ϵ1 ¼ 0, ϵ2 ¼ −0.565, and ϵ3 ¼ −1.699. In the symmetry
inspired parametrization we make no attempt at using the UV
limit of B411 as an ansatz for the counterterm and allow the ϵ
parameters to vary freely, in accordance with the symmetry
derivation of the counterterm; fitting with this parametrization
gave us ϵ1 ¼ 0.618, ϵ2 ¼ 0.517, and ϵ3 ¼ 2.978.
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The counterterms calculated in this way for T 2̃211 are
plotted alongside the residuals in Figs. 13 and 14 for the
four considered configurations. We can see that the UV
approximations produce far more accurate results in ana-
lytic perturbation theory than the symmetry inspired fits,
with the UV-inspired models successfully approximating
the residual on all scales for configurations PPM and PMM
and on all but the largest scales for MMM. However, for
PPP we found that we were unable to successfully
regularize Tn211 at any scale. These inaccuracies could
be the result of simulation or analysis systematics which
will be explored further in a future paper. We will also
explore explicit trispectrum configurations without inte-
grating over the diagonal legs in order to see if this
averaging played a role in these errors. In addition, we
find that the two-loop errors are much larger than might
have been expected, encompassing many of the counter-
term calculations, indicating that two-loop terms would
need to be taken into account for an accurate and precise
calibration of these terms.
The counterterms calculated in this way for T 1̃221 are

plotted alongside the residuals in Figs. 15 and 16 for the four
considered configurations. We see that the regularization

using a number of methods works on very large scales but
rapidly ceases to work beyond roughly k ∼ 0.04h Mpc−1,
perhaps indicating that two loop terms make a much larger
contribution to the trispectrum than they do to the bispec-
trum, where they do not have a large effect until roughly
k ∼ 0.08h Mpc−1. Most noticeably, in the case of configu-
ration MMM the fit only works for the UV parametrizations
with γ1 ¼ c2s and even then only until k ≈ 0.04h Mpc−1,
beyondwhich thesemodels donot evenhave the same sign or
shape as the residual. The configuration dependence of our
ability to regularize this trispectrum is noticeable; for
configuration PPM we find that method 3 provides a very
good regularization up to about k ∼ 0.1h Mpc−1 and that the
other two methods fail, while for configuration MMM we
find that method 3 fails at all scales and that methods 1 and 2
provide good fits but only at very large scales. Furthermore,
the theoretical error envelope that predicts the magnitude of
the two loop terms encompasses most of our results,
indicating that without taking two loop terms into account,
our results are likely to be inaccurate.
The counterterms calculated in these ways for T 1̃311 are

plotted alongside the residuals in Figs. 17 and 18 for the
four considered configurations. We see that the various

FIG. 17. The theoretical counterterm T 1̃311 with F̃1 as calibrated from the bispectrum against the grid residual for configurations PPM
(top left), PMM (top right), MMM (bottom left), PPP (bottom right). The gray shaded region shows the theoretical error for the two loop
contributions. For all configurations, we see that the grid counterterms, multiplied by some amplitude, fit well with the measured
residuals at large scales. For all configurations except MMM, we see the same for the analytically estimated T 1̃311.
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methods produce similar results to one another and all
provide an adequate approximation to the one-loop residual
of Tn311 at least until k ∼ 0.06h Mpc−1. However, once
again we see that the two loop theoretical error is very large
and encompasses many of our calculations.
Overall, we see that this approach has a much higher rate

of success in calculating the counterterms T 2̃211, T 1̃221, and
T 1̃311 than the α parametrization, with some methods
working better than others, but still failed to completely
account for the corresponding one-loop residuals up to the
desired momenta for all configurations. There are a number
of possible explanations for this, including a larger than
expected contribution from two-loop or higher order noise
terms and problems with the simulation’s time integration.
Nonetheless, we have found that our methods are able to
regularize all of the isolated trispectra considered at least
some momenta for most configurations sampled. However,
the large theoretical errors for the two-loop terms indicate
that our one-loop counterterm calculations are likely to be

rendered ineffective without two loop terms being
accounted for; this is left for a future project.

E. The F̃3 kernel

The counterkernel F̃3 was not constrained in [13] and is
the new interaction studied in this paper. We propose two
simple one-parameter models for the counterterm T 3̃111 by
defining what we call the α and β parametrizations, as will
be discussed in this section.
Our first and simplest one parameter ansatz is to define

Tn111ðk1; k2; k3; k4Þ
¼ T3111ðk1; k2; k3; k4Þ þ T5111ðk1; k2; k3; k4;ΛÞ
þ αn111ðΛÞk21P11ðk2ÞP11ðk3ÞP11ðk4Þ: ð106Þ

This simply acknowledges that the counterterm is expected
to scale as k2P3

11 and leaves a free parameter, αn111, to fit
that curve to the measured residual. By rearranging this

FIG. 18. The calculated T1311 þ T3311 þ T 1̃311 with F̃1 as calibrated from the bispectrum against the grid Tn311 − T2311 for the four
configurations studied. We see that the counterterm estimated here was extremely small and made a subleading correction, such that the
EFT results are almost indistinguishable from the SPT results. Given the small sizes of the measured residuals for the four configurations
studied, this could simply be because a larger correction was not required. Note that this is a ratio over the residual, so if we had only
studied perturbation theory up to tree level we would have predicted a constant line at one. Unlike the other terms we have measured,
Tn311 does seem to be consistent with tree level up to about k ∼ 0.06h Mpc−1 for all studied configurations, which could explain the
extremely small size of the EFT corrections.
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FIG. 19. Left: αn111 calculated at each point in isolation. Right: The χ2 minimization up to kmax of the same. We can see that the
counterterm parameter takes values of the expected order of magnitude for all configurations except PPP, in which it is consistent
with zero.

FIG. 20. The calculated T3111 þ T5111 þ T 3̃111 with F̃3 as calibrated from the bispectrum against the grid Tn111 − T4111 − T2111 −
T1111 for the four configurations studied. In all cases the measured trispectra had Λ ¼ 0.3h Mpc−1 except those used for calculating the
β parameters which had the cutoffs represented in those parameters’ subscripts. The parameters were taken as those with the values
kmax ¼ 0.08h Mpc−1. Note that this is a ratio over the tree-level terms such that, had we only studied perturbation theory up to tree level,
we would have a constant line at one. It is noticeable that this would not have given up an accurate estimator for Tn111 in configurations
PPM and MMM but would have sufficed up to even k ∼ 0.1h Mpc−1 for PPM and PPP, perhaps explaining the smaller sizes of the EFT
corrections in those configurations.
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equation and removing unphysical terms, we can estimate
the α parameter as

αn111ðΛÞ¼
Tn111ðk1;k2;k3;k4Þ−

P
5
i¼1Ti111ðk1;k2;k3;k4Þ

k21P11ðk2ÞP11ðk3ÞP11ðk4Þ
:

ð107Þ

In Fig. 19 we plot the calculated values of αn111 for all four
studied configurations, both as a function of k and as a χ2

minimization up to a kmax.

Second, we define the β parameters. By defining

T5111s;i−j ¼ T5111ðΛiÞ − T5111ðΛjÞ; ð108Þ

for T5111 with cutoffs of Λi and Λj, we have found a
way of isolating and encapsulating the cutoff depen-
dence of T5111. We can then define the parameter βi−j,
which we call the amplitude of T5111s;i−j, such that we can
minimize

χ2βi−j ¼
Xkmax

k¼kmin

½Tn111ðk1; k2; k3; k4Þ − TSPTðk1; k2; k3; k4Þ − βi−jðkmaxÞT5111s;i−jðk1; k2; k3; k4Þ�2
ΔTn111ðk1; k2; k3; k4Þ2

ð109Þ

for the amplitude and take βi−jð0.083h Mpc−1ÞT5111s;i−j×
ðk1; k2; k3; k4Þ as a counterterm estimator for the one-loop
trispectrum propagator. Rather than simply fitting a curve
with defined scaling to the residual as we did with the α
parameter, the β parameters explicitly account for the cutoff
dependence of the one-loop terms; by capturing the differ-
ence between the measured terms with different cutoffs,
they provide us with a curve that scales exactly as a
counterterm should scale in order to capture any given
term’s cutoff dependence.
In Fig. 20 we plot the calculated T3111 þ T5111 þ T 3̃111

against the measured Tn111 − T4111 − T2111 − T1111 using
our calculated T 3̃111 with both the α and β parametrizations
for the four configurations studied. We find that both
parametrizations work reasonably well at the scales of
interest, with the β parameters outperforming the α param-
eters in configurations PMM and PPP and the α parameters
performing better for the configurations PPM and MMM.
In both cases, at least one parametrization was capable of
providing a good fit to the measured residuals of Tn111 up to
k ∼ 0.07h Mpc−1, where we would expect to see two loop
effects strongly coming into effect.

III. DISCUSSION

This paper presents the first clear detection of the
trispectrum counterterms for the EFT of LSS through a
direct measurement. We have developed an estimator which
allows us to sample various trispectrum configurations in a
computationally efficient manner. This permits calibration
of the trispectrum counterterms through a study of the
trispectrum itself, rather than through the covariance of
the measured power spectrum. Furthermore, we have shown
that realization based cosmic variance cancellation tech-
niques allow for significantlymore precise results than could
otherwise have been obtained for the given sample size.
We have implemented two ways for estimating trispectra

on the grid, one direct summation method and one Fourier

method. We have shown that these methods produce
consistent results but that the Fourier space routines are
significantly less computationally intensive.These estimators
might be useful for extracting cubic bias parameters or cubic
primordial non-Gaussianity from simulations and surveys.
The method of gridPT allows us to measure perturbative

contributions to the trispectrum from the same seeds
which initialize the simulations. We compared the grid
based perturbative results for the trispectrum with analyti-
cal calculations and found excellent agreement. Using
gridPT we were able to estimate the connected trispectrum
with excellent signal to noise from a modest simulation
volume. The gridPTapproach could thus be used to test and
calibrate models for the covariance matrix at a managable
computational cost, avoiding the need for thousands of N-
body simulations.
Using the gridPT methodology, we have shown that

correlators with an odd number of fields, i.e., terms with a
vanishing mean and a nonzero variance, heavily affect the
measurements in finite volumes, making it hard to calibrate
counterterms without subtracting them from the measure-
ments. Using cosmic variance cancellation we have been
able to attain significant detections of the counterterm
amplitudes with only 14 realizations, making our analysis
faster than previous studies of the four point function in the
EFT of LSS that required thousands of realizations to
compensate for the variance of the covariance.
We have also shown that when studying the trispectrum

it is necessary to use the correct ΛCDM growth factors for
the density perturbations δ2 and δ3 in the tree-level terms, as
the growth factor corrections are of the same order of
magnitude as the one-loop corrections.
We have found that a simple single parameter approxi-

mation for the counterkernel F̃3 was sufficient to regularize
the one-loop residual of Tn111. This counterterm for T5111 is
a new interaction uniquely probed by the trispectrum but
not by the power spectrum and bispectrum. Calibrations of
F̃1 and F̃2 taken from the one-loop bispectrum were able to
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successfully regularize the one-loop residuals ofTn211,Tn221,
and Tn311. Even after finding methods that could regularize
each term, we found that our ability to calculate the counter-
terms was heavily configuration dependent, with some
configurations being much harder to regularize than others,
and that our results often only worked on the largest physical
scales. We have proposed a number of possible explanations
for this, including the notion that higher order terms, both
multiloop andnoise terms, could be having a larger impact on
the one-loop trispectra than they have on the one-loop bi- and
power spectra, or that there may be interference from
numerical errors in the simulations. Nonetheless, our results
offer the first successful regularization of the one-loop
trispectrum in the EFT of LSS and have been shown to be
successful for most configurations up to a nontrivial maxi-
mum wave number kmax.
While this study was being finalized, [17] presented a

detailed measurement of the trispectrum from a suite of
5000 simulations and assessed the trispectrum’s potential to
improve constraints on primordial non-Gaussianity. Within
their error bars the tree-level calculation suffices to describe
the trispectrum. Our significantly smaller error bars, how-
ever, allow us to show that loop corrections significantly
improve the modeling of the trispectrum.
We leave it to a future paper to study the full configu-

ration space of the trispectrum and to constrain the

parameters of the stress tensor explicitly. We also leave
it to a future paper to study the full trispectrum with all of its
counterterms being constrained simultaneously in a manner
analogous to our Bnnn methods in [13]. In particular, we
will be investigating whether or not using these new
methods will allow us to overcome the problems encoun-
tered in this paper.

ACKNOWLEDGMENTS

We would like to thank M. Garny, T. Nishimichi,
E. Pajer, F. Schmidt, M. Simonovic, A. Taruya, and
M. Zaldarriaga for helpful discussions and K. Kornet
for excellent computing support. This research made use
of the COSMOS supercomputer at the Department of
Applied Mathematics and Theoretical Physics, Cambridge.
T. S. acknowledges support through the Science and
Technology Facilities Council Doctoral Training Centre
in Data Intensive Science. T. B. is supported by the
Stephen Hawking Advanced Fellowship at the Center for
Theoretical Cosmology.

APPENDIX A: UV TESTS

We define a number of tests which allow us to confirm
that the calibration of our χ2 calculations is correct; without

FIG. 21. The measured T5111s;i−j for three combinations of cutoffs against −0.5k2P3
11, showing the similar scaling. This constitutes a

validation of the calibration of our measurements and calculations, showing that the terms scale as they would be expected to.
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them being properly calibrated we would have to assume
that all of the results we gain from them may be inaccurate.
If our routines are properly calibrated, we should

expect the scale dependent T5111;S;i−j to scale as k2P3
11.

As shown in Fig. 21, we find that for the three possible
combinations of trispectra with Λϵf0.2; 0.3; 0.4gh Mpc−1,
we have that

T5111ðΛ2Þ − T5111ðΛ1Þ ≈ −0.5k2P3: ðA1Þ

APPENDIX B: GENERALIZED TRISPECTRUM
ESTIMATORS

While Eq. (93) integrates over the four external legs and
allows the diagonals to vary, which is what we do for the four
configurations we are going to focus on, we also developed
equivalent algorithms for other forms of configuration.
Eq. (B1) allows us to measure a trispectrum configuration,
which has one diagonal leg fixed and is only allowing the
other to vary, giving only one unspecified degree of freedom,

T̂ ¼ 1

N

Z
d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3

Z
d3k3
ð2πÞ3

Z
d3k4
ð2πÞ3

Z
d3k5
ð2πÞ3 ð2πÞ

6δðDÞðk1 þ k2 − k5ÞδðDÞðk3 þ k4 þ k5Þδðk1Þδðk2Þδðk3Þδðk4Þ;

¼ 1

N

Z
d3x

Z
d3x0

Z
d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3

Z
d3k3
ð2πÞ3

Z
d3k4
ð2πÞ3

Z
d3k5
ð2πÞ3 e

ixðk1þk2Þe−ik5xeix0ðk3þk4Þeik5x0δðk1Þδðk2Þδðk3Þδðk4Þ;

≡ 1

N

Z
d3x

Z
d3x0

Z
d3k5
ð2πÞ3 f1ðxÞf2ðxÞf3ðx

0Þf4ðx0Þe−ik5xeik5x0 ;

¼ 1

N

Z
d3k5
ð2πÞ3

Z
d3xf1ðxÞf2ðxÞe−ik5x

Z
d3x0f3ðx0Þf4ðx0Þeik5x0 ;

≡ 1

N

Z
d3k5
ð2πÞ3 f12ðk5Þf34ðk5Þ; ðB1Þ

wherek5 can trivially be replaced byk6with the appropriate changes in theDirac functions,whileEq. (B2) allowsus tomeasure
a trispectrum in which all six legs are specified, limiting us to a single configuration [14]:

T̂ ¼ 1

N

Z
d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3

Z
d3k3
ð2πÞ3

Z
d3k4
ð2πÞ3

Z
d3k5
ð2πÞ3

Z
d3k6
ð2πÞ3 ð2πÞ

12δðDÞðk1 þ k2 − k5ÞδðDÞðk3 þ k4 þ k5Þ

× δðDÞðk1 þ k4 þ k6Þδðk1Þδðk2Þδðk3Þδðk4Þ;

¼ 1

N

Z
d3x

Z
d3x0

Z
d3x00

Z
d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3

Z
d3k3
ð2πÞ3

Z
d3k4
ð2πÞ3

Z
d3k5
ð2πÞ3

Z
d3k6
ð2πÞ3 e

ix·ðk1þk2Þe−ik5·x

× eix
0·ðk3þk4Þeik5·x0eix00·ðk1þk4Þeik6·x00δðk1Þδðk2Þδðk3Þδðk4Þ;

¼ 1

N

Z
d3k6
ð2πÞ3

Z
d3x00eik6·x00

Z
d3k5
ð2πÞ3

Z
d3xe−ik5·xf1ðxþ x00Þf2ðxÞ

Z
d3x0eik5·x0f3ðx0Þf4ðx0 þ x00Þ;

¼ 1

N

Z
d3k6
ð2πÞ3

Z
d3x00eik6·x00

Z
d3k5
ð2πÞ3 f12ðk5; x

00Þf34ðk5; x00Þ;

¼ 1

N

Z
d3k6
ð2πÞ3

Z
d3x00eik6·x00f1234ðx00Þ;

¼ 1

N

Z
d3k6
ð2πÞ3 f1234ðk6Þ;

¼ 1

N
f1234ðk6Þ: ðB2Þ

The formalism that allows to fix both diagonals is numerically more demanding than the algorithmsmarginalizing over one or
both diagonals. Fixing both diagonals requires Fourier transforms of f1ðxþ x00Þf2ðxÞ and f3ðx0Þf4ðx0 þ x00Þ for all x00 in the
third line. This is similar to the method suggested in Eq. (13) of [19], which begins with a different set of Dirac functions but
accomplishes a similar effect.
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