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We use simulated strongly lensed gravitational wave events from the Einstein telescope to demonstrate
how the luminosity and angular diameter distances, dLðzÞ and dAðzÞ, respectively, can be combined to test
in a model independent manner for deviations from the cosmic distance duality relation and the standard
cosmological model. In particular, we use two machine learning approaches, the genetic algorithms and
Gaussian processes, to reconstruct the mock data and we show that both approaches are capable of correctly
recovering the underlying fiducial model and can provide percent-level constraints at intermediate redshifts
when applied to future Einstein telescope data.
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I. INTRODUCTION

The first detection of gravitational waves (GWs) by the
LIGO/Virgo Collaboration was not just limited to the
discovery of new astrophysical objects, but it was also
instrumental in furthering our understanding of the funda-
mental properties of gravity and cosmology, by providing
tests of gravity in the strong field regime. These observa-
tions from black hole and neutron star mergers have,
figuratively speaking, shone a light on the population of
compact objects in the Universe and the mechanism by
which they are formed [1], given some of the most rigorous
direct tests to date of general relativity (GR) [2,3], and
provided the first measurement of a cosmological param-
eter, the Hubble constant H0, using GW sources [4].
Moreover, the observation of the binary neutron star

merger GW170817 availed us of the opportunity to test
gravity both in the strong regime and at large scales, as it
was followed by the nearly simultaneous detection of its
optical counterpart and allowed us to strongly constrain the
GW propagation speed to jcg − cj≲Oð10−15Þ [5], thus
challenging a wide range of modified gravity scenarios
which are candidates to explain the current acceleration of
the Universe [6–11]. The impact of GW observations will
be further extended by third generation ground based
detectors like the Einstein telescope (ET) [12] and the
space-based interferometer LISA [13].

Similarly to photons, GWs can be gravitationally lensed
by the presence of galaxies and clusters of galaxies,
producing a deflection in their trajectories, thus generating
multiple detection events. This phenomenon is quite
intriguing because the clustered matter that lies in between
the GW source and the observer can enhance the observed
signal [14]. This in turn can cause the luminosity distance
to the source and therefore its redshift, if combined with the
Hubble parameter H0 constraints [15], to be underesti-
mated. Sequentially, this would lead to an overestimation of
the chirp mass [16].
With the upgraded sensitivity of the third generation of

GW detectors, such as the Einstein telescope (ET), the
detection sensitivity of the GW events would be accord-
ingly improved. Thus, with the sufficiently large number of
detectable events foreseen [17,18], it is expected that some
of these events could be gravitationally lensed, thus
allowing the creation of a considerably large catalogue
of strongly lensed GWs event within a few years of
operation. For an extensive analysis on how GW lensing
is enriched with concrete signatures and features and can be
used to search for deviations of GR, see Ref. [19].
As the GW passes through near massive astrophysical

objects, its path would be modified producing gravitational
lensing [20–22]. Since its first proposal [23], efforts have
been placed to search for signatures of gravitational lensing
in binary black hole events from current detectors such as
LIGO and Virgo [24] but with no strong evidence of this
effect [25]. However, as the sensitivity of the detectors
improve further, it is plausible to observe lensing effects
with future detectors such as aLIGO, the ET [26], and the
space-based detector LISA [27]. In Ref. [28] the authors
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improved previous analysis of GW lensing events by
including effects created by the ellipticity of lensing gal-
axies, lens environments, and magnification bias. Indeed,
these observations could lead to new applications in astro-
physics, cosmology, and fundamental physics [29–35].
One of the advantages of strongly lensed GW events

comes from their ability to provide simultaneous measure-
ments of both the luminosity and angular diameter distance,
i.e., dLðzÞ and dAðzÞ, respectively, which in turn could be
used to probe fundamental properties of the standard
cosmological model. One such example of a possible
probe is the cosmic distance duality relation (DDR), also
known as the Etherington relation, which relates the
luminosity distance to the angular diameter distance at
any redshift z via [36]

dLðzÞ ¼ ð1þ zÞ2dAðzÞ; ð1Þ

which is valid for any metric theory of gravity like GR and
under the condition that the number of gravitons or
photons, depending in which context it is applied, is
conserved and that they travel along null geodesics in a
pseudo-Riemannian spacetime [37]. At this point we can
introduce the duality parameter

ηðzÞ≡ dLðzÞ
ð1þ zÞ2dAðzÞ

≡ ð1þ zÞϵðzÞ; ð2Þ

where ηðzÞ is a function that accounts for possible devia-
tions from unity and is equal to unity when the DDR holds,
while in the last line we have introduced a phenomeno-
logical parameter ϵðzÞ, usually assumed to be constant,
i.e., ϵðzÞ ≃ ϵ0 ¼ constant.
Hence, any violation of the DDR relation at any redshift,

i.e., ηðzÞ ≠ 1 or ϵ0 ≠ 0, would be a hint of new physics,
which in the case of photons could be caused by different
mechanisms, such as the annihilation of photons by the
intergalactic dust [38], the coupling of photons with other
particles like axions [39], and the variation of fundamental
constants [40]. In fact several works have been devoted to
test the DDR relation [37,41–55].
As mentioned earlier, in our analysis ϵ0 is a phenom-

enological parameter that parametrizes deviations from the
standard DDR, i.e., any values that are different from zero
imply a deviation from the standard model. Clearly, any
such deviations will be small, as otherwise they would be
immediately obvious in a plethora of observations, includ-
ing strong and weak lensing. Indeed, in Ref. [52] it was
shown that current Type Ia supernovae (SnIa) and baryon
acoustic oscillations (BAO) data constrain the parameter to
be ϵ0 ¼ 0.013� 0.029 and that there is no evidence for a
redshift evolution of ϵðzÞ. The latter was shown by splitting
the data in two bins, in 0 < z < 0.9 and z ≥ 0.9, and testing
if both bins give consistent results for the reconstruction of

the parameter ϵ0 in each bin. In particular, it was found
that the values of ϵ0 in both bins were the same, note
however that this analysis was made using data in small
redshifts (z < 1.5), so deviations might be present at higher
redshifts.
Furthermore, in Ref. [52] it was found that future large

scale structure surveys like Euclid will be able to improve
upon the constraints on ϵ0 from currently available BAO
and type Ia supernovae (SnIa) by a factor of six. In
particular, current BAO and SnIa data provide a constraint
of ϵ0 ¼ 0.013� 0.029, while Euclid will improve this to
ϵ0 ¼ −0.0008� 0.0049, which is a tighter constraint on ϵ0
by a factor of six [52].
Since ϵðzÞ relates two geometric variables, i.e., the

luminosity and angular diameter distances, then strong
lensing (either with light or GWs) is ideally suited to
constrain it, while in the case of weak lensing the effect is
less clear, but as was shown in Ref. [52], the bulk of the
constraining power will come from improving the bounds
on Ωm, thus breaking the degeneracies between Ωm and ϵ.
In this paperwe show how to reconstruct theDDR relation

usingmock datasets of strongly lensedGWs, as they allow us
tomeasure both the angular diameter and luminosity distance
is complementary to the approach of Ref. [56], where
ηðzÞ was constrained using mocks of strongly lensed SnIa,
based on the Large Synoptic Survey Telescope survey. Both
methods have the advantage of allowing formeasurements of
the duality parameter without relying on multiple datasets,
hence it is competitivewith other more traditional tests of the
DDR relation where the latter is constrained through the
combination of SnIa andBAOobservations, as for example it
has been forecast for future surveys [52].
In Ref. [57] the authors proposed a novel method to test

the cosmic distance duality relation using the strongly
lensed GWs from the Einstein telescope and in Ref. [58]
mock data points were generated for this ground-based
detector, while a parametrized approach was used to
constrain the DDR relation. Here we present a broader
analysis by presenting a slightly different methodology
which allows us to directly make robust ηðzÞ mocks, based
on the mocks of dL and dA and then we use genetic
algorithms (GA) and Gaussian processes (GP), two non-
parametric and symbolic regression subclasses of machine
learning methods, to reconstruct ηðzÞ directly without any
underlying model.
The parametric and nonparametric methods, like the GA,

were extensively compared using mock data in Ref. [52],
where it was shown that the two approaches are consistent
with each other, albeit the errors in the reconstructed
quantities are slightly larger for the GA due to its non-
parametric nature. On the other hand, a model for the
duality parameter η, based on axion physics was studied in
Ref. [53]. Since axions couple to the standard model and
photons, it is expected that some of the axions will be
converted to photons and vice versa, thus leading to a
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surplus or deficit of photons. Since the DDR assumes the
photon number conservation, this implies axions lead to a
violation of the DDR and an duality parameter which is
different from unity. Using mock data it was shown in
Ref. [53], that both the GA and the GP can consistently
reconstruct the cosmological distances and the duality
parameter η in agreement with each other and the fiducial
model, within the errors, thus we are confident for our
reconstruction methods.
Here we follow the approach of Ref. [53], especially as

we also use mock GW events, albeit we assume that they
can be lensed so that we also extract the angular diameter
distance. Using the mock data, where we know the fiducial
cosmology, allows us to assess the quality of the fit and
determine whether the GA and the GP can successfully
determine the underlying model.
Our paper is organized as follows: In Sec. II we describe

the methodology to generate the ET mock data points and
the machine learning (ML) implementation. In Sec. III we
present our reconstructions for the GP and GA, while in
Sec. IV we summarize our conclusions.

II. METHODOLOGY

A. Strongly lensed GW events

1. The angular diameter distance dA from strong lensing

Here we will now consider the case when a GW
emission is strongly lensed by a foreground galaxy, whose
mass profile can be modeled by the singular isothermal
sphere (SIS) model [59]. We will assume however that
GWs propagate following geometric optics,1 i.e., we
neglect wave effects; see Ref. [22] for more details.
With this setup then we assume the two images will
appear at angular positions θ1 and θ2 with respect to the
lensing galaxy. See Fig. 1 the geometrical illustration
of the lensing system. Thus, the Einstein radius θE ¼
jθ1 − θ2j=2 will be given by [59]

θE ¼ 4πσ2SISdAðzl; zsÞ
c2dAðzsÞ

; ð3Þ

where the velocity dispersion of the lens galaxy is given
by σSIS, the angular diameter distances from the observer
to the source and from the lens to the source are given by
dAðzsÞ and dAðzl; zsÞ, respectively, zl and zs are the
redshifts of the lens and source, respectively. We can
rearrange Eq. (3) to obtain the distance ratio, which will be
given by

RA ≡ dAðzl; zsÞ
dAðzsÞ

¼ c2θE
4πσ2SIS

: ð4Þ

If the angular positions and the velocity dispersion are
well measured, which would require a precise localization
of the GW sources that should be achievable with a
network of interferometers,2 then we can obtain the
distance ratio RA from Eq. (4).
As the two images propagating along different paths will

take different amounts of time to reach Earth, then the time
delay between the images will be given by [59]

Δt ¼ ð1þ zlÞ
c

dAðzlÞdAðzsÞ
dAðzl; zsÞ

Δϕ; ð5Þ

where

Δϕ ¼ ðθ1 − βÞ2
2

−Ψðθ1Þ −
ðθ2 − βÞ2

2
þ Ψðθ2Þ; ð6Þ

is the Fermat potential difference between two paths, β is
the actual angular position of the source, and ΨðθÞ is the
rescaled projected gravitational potential of the lens galaxy.
From equation (5) we can thus obtain the time-delay
distance

DΔt ≡ dAðzlÞdAðzsÞ
dAðzl; zsÞ

¼ c
1þ zl

Δt
Δϕ

: ð7Þ

If the gravitational potential of the lens galaxy can be
measured fromphotometric and spectroscopic observations,

FIG. 1. The geometry of gravitational lensing. The source (S)
at redshift zs is strongly lensed by a foreground galaxy (L) at
redshift zl. The observer (O) sees two images (S1 and S2) at
angular positions θ1 and θ2, respectively. The actual angular
position of the source with respect to the line-of-sight from
observer to lens is β.

1The frequency of a gravitational wave produced by the merger
of neutron star-black hole (NS-BH) or neutron star-neutron star
(NS-NS) binary, is about several hundred Hertz and the corre-
sponding wavelength (∼106 m) is much smaller than the scale of
lens galaxy (∼kpc). Hence, it is unnecessary to consider the wave
effect.

2The angular separation between the images in a typical
strongly lensing system is about several arcseconds [60]. In
order to identify the images, the angular resolution of GW
detectors should be better than arcseconds. A larger network
of interferometers is necessary in order to reach such a high
accuracy.
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and if the time delay between two images can be well
measured, we can obtain the time-delay distance DΔt
according to Eq. (7).
In a spatially flat universe, the angular diameter distance

from lens to source, dAðzl; zsÞ, can be expressed in terms of
dAðzsÞ and dAðzlÞ as [57]

dAðzl; zsÞ ¼ dAðzsÞ −
1þ zl
1þ zs

dAðzlÞ: ð8Þ

Equation (8), together with equations (4) and (7), allow us
to uniquely solve for dAðzsÞ, which reads

dAðzsÞ ¼
1þ zl
1þ zs

RADΔt

1 − RA
; ð9Þ

where RA and DΔt are given by equations (4) and (7),
respectively. The error on dAðzsÞ propagates from the errors
on RA and DΔt. Using the standard error propagating
formula, and assuming that RA and DΔt are uncorrelated,
we obtain,

δdAðzsÞ
dAðzsÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

δRA

RAð1 − RAÞ
�

2

þ
�
δDΔt

DΔt

�
2

s
; ð10Þ

where

δRA

RA
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δθE
θE

�
2

þ 4

�
δσSIS
σSIS

�
2

s
; ð11Þ

and

δDΔt

DΔt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δΔt
Δt

�
2

þ
�
δΔϕ
Δϕ

�
2

s
: ð12Þ

In order for our method to work, we must independently
measure the following observables: (zl, zs, Δt, Δϕ, θE,
σSIS). If a GW event is accompanied by electromagnetic
counterparts, the redshifts of the lens and source can be
measured spectrometrically with negligible uncertainty,
just as in the strongly lensed quasar or galaxy case
[61,62]. The time delay between two images can be
measured by comparing the light curves of two images
at percentage level [63]. Especially, in the strongly lensed
GW case, due to the transient property of GW signal, the
time delay can be measured with negligible uncertainty.
The difference of Fermat potentials Δϕ, and the velocity
dispersion of lens galaxy σSIS, can be measured through
photometric and spectroscopic observations of the lens
galaxy [62,64]. The Einstein radius, θE ¼ jθ1 − θ2j=2, can
be obtained by measuring the image positions θ1 and θ2.
The measurements of the latter three observables, however,
may be uncertain. Following Ref. [65], we assume 0.6%,
1.0%, and 5.0% uncertainties on Δϕ, θE, σSIS, respectively.

Having obtained all the observables, dAðzsÞ and its uncer-
tainty can be derived from Eqs. (9)–(12). We see that the
uncertainty on dAðzsÞ mainly comes from the uncertainty
on σSIS. The uncertainties on the rest observables will not
strongly affect our results. To improve the accuracy, more
accurate determinations of the velocity dispersion are
required.

2. The luminosity distance dL from GW signals

We now consider an unlensed GW source. In this case
the luminosity distance to the source can be directly
obtained by matching the GW signals to the GW
templates. GW detectors based on the interferometers,
such as ET, measure the change of difference of two
optical paths caused by the pass of GW signals. In general,
the response of a GW detector on GW signals will depend
on the spacetime strain, which is the linear combination of
the two polarization states hþðtÞ and h×ðtÞ,

hðtÞ ¼ Fþðθ;φ;ψÞhþðtÞ þ F×ðθ;φ;ψÞh×ðtÞ; ð13Þ

where the beam-pattern functions Fþðθ;φ;ψÞ and
F×ðθ;φ;ψÞ do not only depend on the configuration of
the detector, but they also depend on the position of the GW
source ðθ;φÞ and the polarization angle ψ . For example, in
the case of the ET, the beam-pattern functions can be found
in Ref. [66].
In the post-Newtonian and stationary phase approxima-

tion, the strain hðtÞ can be written in the Fourier space
by [66,67]

HðfÞ ¼ Af−7=6 exp½ið2πft0 − π=4þ 2ψðf=2Þ − φð2;0ÞÞ�;
ð14Þ

where f is the GW frequency, t0 is the time of merger. The
explicit expressions of the phase terms ψðf=2Þ and φð2;0Þ
can be found in Ref. [68], but they are unimportant in our
study here. The Fourier amplitude in Eq. (14) is given by

A ¼ 1

dL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2þð1þ cos2ιÞ2 þ 4F2

×cos2ι
q

×

ffiffiffiffiffiffi
5π

96

r
π−7=6M5=6

c ; ð15Þ

where ι is the inclination angle, dL is the luminosity
distance, Mc ¼ Mη3=5 is the chirp mass, M ¼ m1 þm2

is the total mass, η ¼ m1m2=M2 is the symmetric mass
ratio, m1 and m2 are the component masses of the binary in
the comoving frame. Here and after, we work in the natural
units, so c ¼ G ¼ 1. In the case of a GW source at redshift
z, Mc in equation (15) should be interpreted as the chirp
mass in the observer frame, which can be related to that of
the comoving frame via Mc;obs ¼ ð1þ zÞMc;com. Finally,
it should be noted that the exponential term on the

ARJONA, LIN, NESSERIS, and TANG PHYS. REV. D 103, 103513 (2021)

103513-4



right-hand side of Eq. (14) is just a phase term, which is
unimportant in our analysis.
The signal-to-noise ratio (SNR) of the detector’s

response to a GW signal is given by [67]

ρi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hH;Hi

p
; ð16Þ

where the inner product may be defined as

ha; bi ¼ 4

Z
fupper

flower

ãðfÞb̃�ðfÞ þ ã�ðfÞb̃ðfÞ
2

df
ShðfÞ

; ð17Þ

and in the latter equation, ã and a� stand for the Fourier
transformation and complex conjugation of a, respectively,
while ShðfÞ is the one-side noise power spectral density
(PSD) of ET, flower ¼ 1 Hz and fupper ¼ 2fLSO are the
lower and upper cutoffs of the frequency, fLSO ¼
1=ð63=22πMobsÞ is the orbit frequency at the last stable
orbit, Mobs ¼ ð1þ zÞðm1 þm2Þ is the total mass in the
observer frame. Finally, the PSD for ET is given by [69]

ShðfÞ ¼ 10−50ð2.39 × 10−27x−15.64 þ 0.349x−2.145

þ 1.76x−0.12 þ 0.409x1.1Þ2 Hz−1; ð18Þ

where x is the GW frequency in unit of 100 Hz, i.e.,
x ¼ f=100 Hz. For the ET, three arms interfere with each
other in pairs, hence the combined SNR is given by

ρ ¼
�X3
i¼1

ρ2i

�1=2
: ð19Þ

In general, there is degeneracy between the luminosity
distance dL and inclination angle ι, so the uncertainty on dL
may be large. However, if the GWevent is accompanied by
a short gamma-ray burst (GRB), we can assume that the
inclination angle is small, since GRB is expected to be
produced in a narrow beam. In this case the degeneracy
between dL and ι breaks, and the uncertainty on dL can be
estimated as

δdL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2dL
ρ

�
2

þ ð0.05zdLÞ2
s

; ð20Þ

where the 0.05z term represents the uncertainty arising
from weak lensing effect caused by the intergalactic
medium along the line-of-sight.
The above discussion is applicable for unlensed GW

events. However, the situation is subtle for strongly lensed
GW events. Due to the magnification effect of lensing, the
luminosity distance determined from the strongly lensed
GW signals is not the true distance. Since the amplitude of
GW signal A is magnified by the lensing effect by a factor
of

ffiffiffiffiffiffi
μ�

p
[70], and the luminosity distance dL is inversely

proportional to A, the true luminosity distance should be
dtrueL ¼ ffiffiffiffiffiffi

μ�
p

dobsL . If the magnification factor
ffiffiffiffiffiffi
μ�

p
can be

independently determined through photometric observa-
tions, we can obtain the true distance dtrueL . The uncertainty
of μ� will also propagate to dL. Therefore, the total
uncertainty on dLðzsÞ is given by

δdtotalL

dL
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2

ρ

�
2

þ ð0.05zsÞ2 þ
1

4

�
δμ�
μ�

�
2

s
: ð21Þ

Due to the contamination of the image flux by the fore-
ground lensing galaxy, the magnification factor is highly
uncertain. Here we follow Ref. [65] and assume a 20%
uncertainty on μ�.
Theoretically, only the merger of NS-NS or NS-BH

binaries may be accompanied by a short GRB, while the
merger of BH-BH binary is expected to have no electro-
magnetic counterpart. Our method requires the direct
measurement of source redshift, which is achievable only
for NS-NS or NS-BH mergers. Unfortunately, according to
numerical simulations [26], most of the lensed GW events
are produced by the BH-BH merger. Without the redshift
for the BH-BH events, they cannot be directly used to test
DDR. If, however, the GWevent can be precisely localized,
it is possible to infer the redshift of GW source statistically
[71], but will introduce additional uncertainty.

B. The mock DDR data points

1. The fiducial cosmological distances

In order to forecast direct measurements of the duality
parameter ηðzÞ from the ET, we use mock distance data
points based on individual measurements of the luminosity
and angular diameter distances dLðzÞ and dAðzÞ, respec-
tively, as described previously. To join the two measure-
ments and derive the ηðzÞ data points, we follow the
pioneering work of Ref. [56] using a Markov Chain-
Monte Carlo (MCMC) approach to create mock samples.
In an nutshell we can summarize this approach as

follows. First, we assume a fiducial cosmology based on
the cosmological constant Λ and cold dark matter (ΛCDM)
model with a Hubble constant H0 ¼ 70 km s−1 Mpc−1, a
matter density parameterΩm;0 ¼ 0.3, and assuming flatness
(Ωk ¼ 0). Then, based on the redshift distribution of
sources, see Fig. 1 in Ref. [58] and Fig. 2 in Ref. [26]
for either NS-NS or NS-BH, we calculate at every point in
redshift the corresponding angular diameter distance dAðzÞ
and the luminosity distance dLðzÞ via the methodology of
Ref. [58] as described earlier. At this point, we also
introduce a modification of the luminosity distance so that
the observed luminosity distance would be proportional to
the “bare” one as:

dL;obsðzÞ ¼ ð1þ zÞϵðzÞdL;bareðzÞ; ð22Þ
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such that it corresponds to a duality parameter
ηðzÞ ¼ ð1þ zÞϵðzÞ, which should be equal to unity if no
deviations are present, i.e., ϵðzÞ → 0 in the ΛCDM model
and ηðzÞ ¼ 1. In particular, we assume that to lowest
order, any deviations are small enough that we can assume
a constant ϵðzÞ ¼ ϵ0. In general, any such deviations on
the GW sector could be due to modifications of gravity,
see for example Ref. [53]. Specifically, in what follows
we will assume four specific scenarios: the vanilla
ΛCDM case for ϵ0 ¼ 0 and three more cases with one
mild and two stronger deviations of the duality relation
with ϵ0 ¼ ð0.01; 0.05; 0.1Þ.
As mentioned earlier, current supernovae and BAO data

constrain the parameter to be ϵ0 ¼ 0.013� 0.029, and
there is no evidence for a redshift evolution of ϵðzÞ, while
that Euclid will be able to improve the constraints by a
factor of six [52]. Thus, our choices of the ϵ0 are realistic at
the lower end (ϵ0 ∼ 0.01) and high enough to sufficiently
test our methodology at the higher end (ϵ0 ∼ 0.1). In any
case the constant ϵðzÞ ¼ ϵ0 is the simplest ansatz used to
test for deviations from the duality relation, and it does not
really affect our analysis or our conclusions.

2. The mock samples of ηðzÞ
After we have calculated the fiducial values of the

cosmological distances, we can then make mock samples
of the duality parameter ηðzÞ directly via the following
procedure: First, at each redshift we create mock distances
dAðzsÞ and dLðzsÞ based on a Gaussian distribution using
the fiducial values and 1σ errors based on the methodology
of Ref. [56], such that for the mock we have

ðDi;mock; σi;mockÞ → N ðDi;fid; σi;fidÞ; ð23Þ

where i ¼ 1…Nlens, Di represents either dA or dL, while
σi;fid are the errors, and N ðμ; σÞ stands for a normal
distribution with mean μ and standard deviation σ. Then,
to make a mock sample of ηðziÞ values we can use Eq. (2)
and finally, we employ an MCMC-like approach to obtain
the mean values and the errors of the data points as follows:
(1) Using the mock distances at each redshiftDi;mock we

draw 10,000 random samples from the assumed
distribution for Di;mock.

(2) We then estimate ηðziÞ at each redshift zi for each of
the 10,000 random points using Eq. (2) to obtain
10,000 realizations of the distribution of ηðziÞ.

(3) We estimate the mean and standard deviation of
log10 ηðziÞ at each redshift point to create our final
mock sample.

The main advantage of this MCMC-like approach is that it
does not depend on error propagation for the various
quantities, which could be highly nontrivial for compli-
cated modified gravity models, but it also preserves the
statistical properties of the samples. This allows us to
obtain our results without any further dependence on the

cosmological model, and in Ref. [53] it was shown that this
approach allows for the creation of mocks that have
minimal external biases, theoretical, statistical, or other-
wise. For example, this means that we no longer have to
assume that the distributions of the log10 ηðziÞ data points
are sufficiently Gaussian, as implied by standard error
propagation and which may bias the results by introducing
artificial deviations from the fiducial model.
Finally, we should note that we chose to make mocks of

log10 ηðziÞ instead of simply ηðziÞ, as we found that the
distribution of the latter is somewhat non-Gaussian,while on
the other hand, log10 ηðziÞ is very close to being normally
distributed around zero, i.e., log10 ηðziÞ ∼N ð0; σlog10 ηðziÞÞ.
Then, having created the log10 ηðziÞ samples, we consider a
likelihood L of the form [56]:

−2 lnL ¼
XNlens

i¼1

�
log10 ηðziÞ − log10 ηthðziÞ

σlog10 ηðziÞ

�
2

; ð24Þ

where ηthðziÞ is the theoretical value of ηðziÞ. In our actual
analysis we will consider the somewhat optimistic case of
Nlens ¼ 100 as an optimistic case for the possible number of
events that could be detected in the coming decades.

C. Machine learning

Machine learning (ML) is a subset of artificial intelli-
gence designed to model a given dataset. ML approaches
have been proven to be successful at processing and
extracting essential information from large amounts of
data and can get rid of the problem of model bias [72],
while also being very effective in testing the consistency of
the dataset model independently and also for searching
tensions or systematics.
In the context of GW physics, ML can be a good ally

since it can tackle challenges that upcoming GWastronomy
is fronting [73,74] such as a fast and systematic method to
characterize properly the signal and the detector, accurate
reconstructions of GW signals and a correct estimate of
their statistical and systematic errors, and can help to
improve and be more sensitive to different searching
techniques such as matched filtering [75], cross-correlation
methods [76], and time-coincident detection of coherent
excess power between several detectors [77].
ML algorithms have been used to improve the sensitivity

of ground-based GW detectors, to reduce and characterize
nonastrophysical detector noise, and also it has been
applied for fast determinations of parameter estimation
[78,79]. See Ref. [80] for a review on several ML methods.
ML is able to process GW signals on real-time, for example
the algorithm named Deep Filtering [81] based on neural
networks has been created for parameter estimation, reach-
ing a similar performance compared to matched filtering
but faster. In the last few years ML techniques have also
been applied with success for glitch classification [82],
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earthquake prediction [83] and to supplement existing
Bayesian methods [84]. It is worth also mentioning the
recent progress of neural networks in producing in a fast
manner one and two dimensional marginalized Bayesian
posteriors [85] for GW parameter estimation, showing how
ML can give results very similar to Bayesian statistics [86].
Neural networks (NN) have been also tested on open

data; for example in Ref. [87] the authors searched for a
gravitational wave signal from an isolated neutron star from
a remnant of GW170817. NN were applied as well in
continuous gravitational waves from unknown spinning
neutron stars [88] and for gravitational-wave transients
associated with gamma-ray bursts [89]. Other applications,
general reports, and reviews for the use of GW data analysis
with ML can be found in Refs. [90–96].
In what follows we will describe two particular classes of

MLmethods, the genetic algorithms (GA) and the Gaussian
processes (GP) which we use to perform our analysis. One
of the advantages of the GA against other symbolic
regression methods, such as neural networks, is that the
GA provides analytical functions that describe the data
provided. In our paper we have also used the GP to
compare our results with the GA, but it is beyond the
scope of our paper to compare all of the different symbolic
regression ML approaches.

1. The genetic algorithms

Here we introduce the theoretical background of the
implementation of the GA in our analysis. For a similar
discussion on the GA and several applications to cosmol-
ogy see Refs. [51,97–103]. The GA have been also applied
in a wide range of areas such as particle physics [104–106],
astronomy and astrophysics [107–109], and other fields
like computational science, economics, medicine, and
engineering [110,111]. For other symbolic regression
methods applied in physics and cosmology see [112–119].

The GA is a particular class of ML methods mostly
developed to perform unsupervised regression of data,
which implies that the GA can be used for nonparametric
reconstructions finding an analytic function that describes
the data, using one or more variables. The unsupervised
regression nature of the GA means that the algorithm tries
to extract patterns and features on its own and without
external help by using features and patterns on its own
using unlabeled datasets. This is in contrast to supervised
machine-learning where the algorithm is trained on a model
to create good predictions based on the response to labeled
datasets. On the other hand, the main goal of a classification
problem is to identify to which class a new data point will
fall under, given a training sample. In the left panel of Fig. 2
we present the flowchart of the GA and we will now
proceed to discuss the implementation in detail.
The GA works by mimicking the notion of biological

evolution via the concept of natural selection, as conveyed
by the genetic operations of mutation and crossover.
In essence, a set of test functions evolves over time
through the effect of the stochastic operators of crossover,
i.e., the joining of two or more candidate functions to form
another one, and mutation, i.e., a random alteration of a
candidate function. This process is consequently repeated
thousands of times so as to ensure convergence, while
different random seeds can be tested to further explore the
functional space.
In what follows, we will briefly describe an example that

will help illustrate these two operators. Given two functions
f1ðxÞ ¼ 1þ xþ x2 and f2ðxÞ ¼ sinðxÞ þ cosðxÞ, the
mutation operation will randomly alter the various terms
in the previous expressions, e.g., the outcome might be that
the two functions have become f1ðxÞ ¼ 1þ 2xþ x2 and
f2ðxÞ ¼ sinðx2Þ þ cosðxÞ, where in the former the coef-
ficient of the second term was modified from one to two
while in the latter x ¼ x1 was modified to x2. The crossover

The evolution starts from a population of
randomly generated individuals

Mutation &
Crossover

Best fit
function

Terminate?

Next Generation
Individual solutions are

selected through a fitness
calculation process

The process is repeated until a termination
condition has been reached

Improve the solution by repeating the
operation of the mutation, crossover and

selection

Start Initial population

Fitness
calculation

Selection

Yes

No

Flowchart of a GA Select 
input data

Start

Final
reconstruction

Do the fit

(Optionally optimize
the hyperparameters)

Select the kernel

FIG. 2. Flowcharts of the list of steps of a usual genetic algorithm (left) and Gaussian process (right).
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operation, on the other hand, randomly merges the two
functions to create two more, e.g., the outcome might be
that the terms 1þ 2x from f1 and cosðxÞ combined to
f̃1ðxÞ ¼ 1þ 2xþ cosðxÞ, while the rest of the terms
combined to f̃2ðxÞ ¼ x2 þ sinðx2Þ. For further details on
the GA and some applications to cosmology see
Refs. [97,99].
Since by construction the GA is a stochastic

approach, the probability that a set or a population of
functions will produce offspring is normally assumed to
be proportional to its fitness to the data, which in our
analysis is a χ2 statistic and indicates how good every
individual agrees with the data. For the data we use in our
analysis, indeed we assume that the likelihoods are
sufficiently Gaussian that we use the χ2 in our GA
approach. Note that in the GA both the probability to
have offspring and the fitness of each individual is
proportional to the likelihood. This then causes evolu-
tionary pressure that favors the best-fitting functions in
every population, thus driving the fit towards the mini-
mum in a few generations.
In this analysis we reconstruct the DDR parameter

log10 ηðziÞ directly from the data, and the procedure to
its reconstruction proceeded as follows. First, our prede-
fined grammar consisted on the following orthogonal basis
of functions: exp, log, polynomials, etc., and a set of
operations þ;−;×;÷; see Table I for a complete list.
We also imposed a prior motivated by physical reasons.

The only assumption made is that ηðzÞ is equal to 1 at the
present time z ¼ 0. This is natural to expect since mech-
anisms where the DDR is violated are cumulative, as
photons interact with interceding constituents along the
line of sight. Hence, such an event does not have time to
occur at vanishing redshifts. This can also be seen by taking
the limit for z ¼ 0 at Eq. (2) and assuming the Hubble law,
i.e., limz→0 ηðzÞ ¼ 1. Finally, we make no assumptions on
the curvature of the Universe or any modified gravity or
dark energy model.
We also required that all functions reconstructed by

the GA are continuous and differentiable, without any
singularities in the redshift probed by the data, avoiding in
this manner overfitting or any spurious reconstructions.
We emphasize that the choice of the grammar and the

population size has already been tested in Ref. [97].3 In the
same manner, the seed numbers play also a big role since
they are used to create the initial population of functions
used later on by the GA.
Once the initial population has been constructed, the

fitness of each member is evaluated by a χ2 statistic, using
the ηðzÞ data points directly as input. Afterwards, using a
tournament selection, see Ref. [97] for more details, the
best-fitting functions in each generation are chosen and the
two stochastic operations (crossover and mutation) are
used. In order to assure convergence, the GA process is
then repeated thousands of times and with various random
seeds, so as to properly explore the functional space. Then
the final output of the code is a function of ηðzÞ that
describes the evolution of the DDR.
Finally, the error estimates of the reconstructed function

are determined via the path integral approach, which was
originally implemented in Refs. [99,100]. This approach
consists of having an analytical estimate of the error of the
reconstructed quantity by calculating a path integral over all
possible functions around the best fit GA that may
contribute to the likelihood; and it has been shown that
this can be performed whether the data points are correlated
or uncorrelated. This error reconstruction method has been
exhaustively examined and compared against a bootstrap
Monte Carlo by Ref. [99]. Thus, given a reconstructed
function fðxÞ from the GA, the path integral approach of
Ref. [99] provides us with the 1σ error δfðxÞ. This can be
also compared to error propagation if one assumes that the
error in a quantity is taken as σf ¼ fðpÞδp, where pwould
represent a parameter. We have extensively tested our
approach finding that this assumption is appropriate for
the data set used here.

2. The Gaussian processes

We also use the Gaussian processes approach in order to
provide an alternative to the GA reconstruction and mini-
mize any potential biases due to the reconstruction approach.
Traditionally, a Gaussian process (GP) is defined as an
ensemble of random variables that have a joint Gaussian
distribution [120]. The GP in general is determined by the
mean, usually assumed to be zero or some fiducial model,
and the covariance. In our case the GP random variables
stand for the duality parameter log10 ηðziÞ.
On the other hand, the covariance function, also known

as a kernel, is denoted by kðx; x̃Þ and encodes the
correlations of two different GP random variables denoted
by x and x̃, which in our case correspond to the values of
the duality parameter ηðzÞ at different values of z, i.e., two
different data points of the data set. In summary then, the
kernel is used to join up the data points in order to build a
function. In practice, the kernel is related to the input data

TABLE I. The grammars used in the GA analysis. Other
complicated forms are automatically produced by the mutation
and crossover operations as described in the text.

Grammar type Functions

Polynomials c, x, 1þ x
Fractions x

1þx
Trigonometric sinðxÞ, cosðxÞ, tanðxÞ
Exponentials ex, xx, ð1þ xÞ1þx

Logarithms logðxÞ, logð1þ xÞ

3See for example Fig. 2 of Ref. [97].
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as it is used as a measure of the similarity between points,
i.e., a covariance function, and is used to predict the value
for an unseen point from training data.
Lately the GPs have been used in the reconstruction of a

plethora of cosmological datasets, see e.g., [121–130],
while the proper choice of the kernel remains a hotly
debated issue in the literature, as it can strongly affect the
GP reconstruction. In Ref. [131] it was found that a kernel
that works quite well for cosmological datasets is the so-
called Matérn class of kernels, given by [120]:

kðx; x̃Þ ¼ σ2M
21−ν

ΓðνÞ
� ffiffiffiffiffi

2ν
p ðx − x̃Þ

l

�ν

× Kν

� ffiffiffiffiffi
2ν

p ðx − x̃Þ
l

�
; ð25Þ

where Kν is a modified Bessel function, ν determines the
shape of the covariance function, which asymptotes to the
Gaussian limit as ν → ∞, while ΓðνÞ is the gamma
function.
Furthermore, the parameter l describes the length scales

over which the function varies, while the parameter σM
corresponds to the magnitude of these variations. The
parameter ν is further chosen to be a half integer to
minimize the dependence on the Bessel function [131].
High values of νmake the GP smoother, but for ν ≥ 7=2 the
results are practically indistinguishable from each other, so
we make the choice ν ¼ 5=2. Overall, we find that altering
either the GP kernels or ν does not impact the performance
of the GP. In our analysis we use the GP PYTHON package
GEORGE [132] to reconstruct of log10 ηðzÞwith the kernel as
described above. Also note that in the GP the log-likelihood
given by Eq. (24) is used, by maximizing it, to optimize the
value of any hyperparameters in the kernel.
Finally, similarly to the GA case described in the

previous section, we have also imposed a prior on the
GP reconstructions which is motivated by physical reasons.
Specifically, we again demand that ηðzÞ is equal to unity at
out present time z ¼ 0, i.e., ηðz ¼ 0Þ ¼ 1. Again, this is
necessary to ensure our reconstructions are physical, while
at the same time keeping our analysis general enough.

III. RESULTS

We will now present the results of the reconstruction for
both the GA and GP approaches.4 Note that in both cases
the input data are the values of log10 ηi in the form of sets of
points given by ðz; log10 ηi; σlog10 ηiÞ, which are the inputs to
the GP and GA and can be used to create a likelihood, as
discussed in the previous point. In the case of the GA the
data enter only via the likelihood of Eq. (24), while on the
other hand the GP builds a function that essentially joins up

the data points according to the GP kernel, but also uses the
data (via the likelihood) to optimize the value of any
hyperparameters.
In Figs. 3 and 4 we show a particular realization of the

log10 ηðziÞ mocks for Nlens ¼ 100, along with the fiducial
model (dashed black line), the case of log10 η ¼ 0 (dashed
green line), and the corresponding best-fit (solid colored
line) for the GA and the GP for ϵ ¼ ð0; 0.01; 0.05; 0.10Þ in
the top left, top right, bottom left, and bottom right panels,
respectively. The data points are shown in the background
as gray points with their 1σ error bars and the shaded band
corresponds to the 1σ confidence region for the GA (red
band) and the GP (magenta band) in the two plots.
Note that for the different values of ϵ for the mocks, we

keep the same random seed number so that our analysis is
not complicated by statistical fluctuations and the inter-
pretation of our results is more straightforward. The
apparent lack of events at high redshifts is due to the
expected redshift distribution of the BH-NS and NS-NS
events; see Fig. 1 in Ref. [58] and Fig. 2 in Ref. [26], which
also has the side effect of increasing the errors of the
reconstructions and making the fits increase with redshift at
high z. The expected probability density of events as a
function of redshift, i.e., the redshift distribution of the BH-
NS and NS-NS events for the ET, was determined in
Ref. [26] by using the intrinsic merger rates of these objects
with the help of a population synthesis evolutionary code.
The only physical prior used in the reconstruction was

the assumption that limz→0 ηðzÞ → 1, which follows natu-
rally from the definition of ηðzÞ via Eq. (2) and the fact that,
at zero redshift the causes of any deviation (for example
either axions for light or modified gravity for the GW) have
had no time to yet act, which is necessary to ensure that our
results are physical.
As can be seen in Figs. 3 and 4, in all cases both the GA

and the GP capture the behavior of the data points
accurately and remain close to the fiducial model, well
within the 1σ region. In particular, on average the differ-
ence between the GA or GP best-fit and the fiducial model
remains close to a percent level in all reconstructions.
Furthermore, for both ML approaches we find that the
reconstructed errors are consistent with each other, thus we
are confident in our reconstruction as the GA and the GP
are in principle rather different reconstruction methods. In
particular, we see in both the GA and GP cases that when
ϵ ¼ ð0.05; 0.10Þ both ML approaches find a clear deviation
from the null hypothesis, i.e., log10 η ¼ 0 (dashed green
line) for 0 ≤ z ≤ 3.5. For higher redshifts, due to the lack of
points the errors of the reconstruction become larger and
the statistical significance of the detection diminishes.5

4Both codes are very efficient and it takes a few seconds for the
GA and less than a second for the GP to converge, which is
comparable to other traditional parametric approaches.

5As a consistency test of our approach, we also fit the
parametrization ηðzÞ ¼ ð1þ zÞϵ0 , with ϵ0 ¼ constant, to the
mock data and we discuss our results in the Appendix.

MACHINE LEARNING FORECASTS OF THE COSMIC DISTANCE … PHYS. REV. D 103, 103513 (2021)

103513-9



Finally, we also vary two key parameters of our
analysis, the amplification error δμ=μ and the number
of events N. Using the GA, we reconstruct ηðzÞ with the
amplification error δμ=μ taking the values ½0.1; 0.2; 0.5�
and then we do the same with the number of lenses with
N ¼ ½50; 100; 200� events for the case of ϵ ¼ 0.1. We
show the results in Fig. 5 and we find that as expected,
increasing the amplification error (top row of plots in
Fig. 5) has no obvious effect when δμ=μ changes from 0.1
to 0.2. As can be seen in Eq. (21) when ρ ¼ 16, which is
the critical value for which we assume to claim the
detection of GW signal, then the 2=ρ term is about 0.1,
the 0.05z term is also about 0.1 for z ∼ 2 and is even larger
for z > 2. Since there is a factor 1=4 before the term δμ=μ,
changing δμ=μ from 0.1 to 0.2 does not affect significantly
the total error on the luminosity distance dLðzÞ. On the
other hand, when δμ=μ ¼ 0.5, then the last term in
Eq. (21) dominates and this results in larger errors, by
roughly ∼20%, for the GA reconstruction of ηðzÞ, com-
pared to when δμ=μ is 0.1 or 0.2.

On the other hand, the effect of varying the number
of lenses is more subtle. As can be seen in the bottom
row of Fig. 5, for 50 lenses we have a deviation at ∼1σ
below z ∼ 4, while in the case of 100 lenses the errors of
the GA reconstruction become smaller for z < 4 raising
the deviation to slightly more than 1σ but at z > 4
surprisingly become larger again. This tightening of the
errors at intermediate redshifts (z < 4) and enlarging at
z > 4 as we increase the points from 50 to 100 is due to
the redshift distribution of the points (for 100 points
more events are located at z < 3.5). When we increase
the number of events to 200, we see the error at high
redshifts is now more uniform, even though the recon-
structions start to get dominated by the systematic
errors. In summary, the number of events necessary
to obtain a statistically significant deviation depends
both on the value of ϵ and the number of events, so for
example with N ¼ 50 we can have a 1σ deviation up to
z ∼ 4, while to go to higher redshifts (z ∼ 5) we
require N ¼ 200.
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FIG. 3. The ηðzÞmocks along with the fiducial model given by Eq. (2) (black dashed line), the case of log10 η ¼ 0 (dashed green line),
the corresponding best-fit (solid colored line) for the GA for ϵ ¼ ð0; 0.01; 0.05; 0.10Þ in the top left, top right, bottom left, and bottom
right panels, respectively. In all cases the ηðzÞ data points are shown in the background as gray points with their 1σ error bars and the
shaded band corresponds to the 1σ confidence region for the GA (red band).
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FIG. 4. The ηðzÞmocks along with the fiducial model given by Eq. (2) (black dashed line), the case of log10 η ¼ 0 (dashed green line),
the corresponding best-fit (solid colored line) for the GP for ϵ ¼ ð0; 0.01; 0.05; 0.10Þ in the top left, top right, bottom left, and bottom
right panels, respectively. In all cases the ηðzÞ data points are shown in the background as gray points with their 1σ error bars and the
shaded band corresponds to the 1σ confidence region for the GP (magenta band).
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FIG. 5. The ηðzÞmocks along with the fiducial model given by Eq. (2) (black dashed line), the case of log10 η ¼ 0 (dashed green line),
the corresponding best-fit (solid colored line) for the GA for ðϵ ¼ 0.10; δμ=μ ¼ 0.1; N ¼ 100Þ, ðϵ ¼ 0.10; δμ=μ ¼ 0.2; N ¼ 100Þ
ðϵ ¼ 0.10; δμ=μ ¼ 0.5; N ¼ 100Þ, ðϵ ¼ 0.10; δμ=μ ¼ 0.2; N ¼ 50Þ, ðϵ ¼ 0.10; δμ=μ ¼ 0.2; N ¼ 100Þ, ðϵ ¼ 0.10; δμ=μ ¼ 0.2; N ¼
200Þ in the top left, top center, top right, bottom left, bottom center, and bottom right panels, respectively. In all cases the ηðzÞ
data points are shown in the background as gray points with their 1σ error bars and the shaded band corresponds to the 1σ confidence
region for the GA (red band).
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IV. CONCLUSIONS

With the advent of GW observations an exciting new
window has opened into the Universe. Moreover, a possible
detection of strong GW lensing will allow for the testing of
fundamental hypotheses of the standard cosmological
model as it will provide a test of gravity in the strong
field regime, but will also allow for tests of the DDR,
similar to that proposed in Ref. [56] for strongly lensed
SnIa systems. This exciting possibility was first proposed
in Ref. [58], where parametric constraints of the DDR
variable ηðzÞ, given by Eq. (2) were presented.
Here, we extended the work of Ref. [58] in two crucial

ways. First, we presented a methodology which allows for
the direct creation of ηðzÞ mocks, similar to that of
Ref. [56]. We showed an example of this approach using
mock ET measurements of dL and dA from strongly lensed
GWevents, which were then combined to create mock ηðzÞ
data points with an MCMC-like approach, as described in
Sec. II B. It is important to stress that given the raw
measurements of dL and dA, the measurements of ηðzÞ

can be derived without using any dark energy model or

beyond the standard model (BSM) theory.
Second, instead of using parametric models for ηðzÞ,

which may carry theoretical bias or miss important features
in the data, here we used two specific ML approaches. In
particular, we employed the genetic algorithms and the
Gaussian processes, which are two nonparametric and
symbolic regression subclasses of ML methods, to recon-
struct ηðzÞ directly without using any underlying model.
Following our methodology, we created a realization

of mock ηðzÞ data points for ϵ ¼ ð0; 0.01; 0.05; 0.10Þ,
assuming the ET specifications, and then used the GA
and the GP to directly reconstruct ηðzÞ. The reconstructions
are shown in Figs. 3 and 4 where as can be seen, both the
GA and the GP capture the behavior of the data points
accurately and remain close to the fiducial model, well
within the 1σ region for all values of the duality parameter
ϵ. In particular, on average the difference between the GA
or GP best-fit and the fiducial model remains close to a
percent level in all reconstructions. Furthermore, in the
two most extreme cases of ϵ ¼ ð0.05; 0.10Þ both the GA
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FIG. 6. The ηðzÞmocks along with the fiducial model given by Eq. (2) (blue line) for ϵ ¼ ð0; 0.01; 0.05; 0.10Þ in the top left, top right,
bottom left, and bottom right panels, respectively, and the case of log10 η ¼ 0 (dashed green line). In all cases the ηðzÞ data points are
shown in the background as gray points with their 1σ error bars and the shaded band corresponds to the 1σ confidence region for the
best-fit fiducial model (blue band).
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and the GP find deviations from zero in the redshift
range 0 ≤ z ≤ 3.5.
We also determined the number of GW lensed events

necessary to determine whether a deviation from the null
hypothesis is present in the data. We find that the number of
events necessary to find a deviation depends both on the
value of ϵ and the number of events, so for example with
N ¼ 50 we can probe for deviations from the null hypoth-
esis (ϵ ¼ 0) up to z ∼ 4, while to go to higher redshifts we
require N ¼ 200.
We thus find that both machine learning approaches are

capable of correctly recovering the underlying fiducial
model and providing percent-level constraints when com-
paring the fiducial model and the reconstructions at
intermediate redshifts, when applied to future Einstein
telescope data, thus opening the door to direct tests of
the fundamental principles of the standard cosmological
model in the coming decades.

Numerical Analysis Files: The genetic algorithm codes
used by the authors in the analysis of the paper can be
found at https://github.com/snesseris and https://github
.com/RubenArjona. For the Gaussian process analysis
we use the publicly available PYTHON package GEORGE

found at https://github.com/dfm/george.
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APPENDIX: COMPARATIVE ANALYSIS

Here we present a reconstruction of the duality parameter
ηðzÞ using the mock data presented in Sec. II by fitting them
to the parametrization of Eq. (2) with ϵðzÞ ¼ ϵ0 ¼ constant.
This allows us to compare our GA and GP reconstructions
to the standard parametric approach used widely in the
literature.
In particular, in Fig. 6 we present the different fiducial

mocks for ϵ ¼ f0; 0.01; 0.05; 0.1g along with the best-fit
parametrizations and their respective errors (blue line and
blue shaded region). Comparing these against the recon-
structions of Fig. 3 we find that they are in good agreement,
albeit the parametric approach has somewhat smaller errors
compared to the GA, due to its parametric nature, some-
thing which was also observed in Ref. [52]. As all three
reconstructions, that of the GA, the GP, and the parametric
ones are in good agreement; we are confident in our
methodology.
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