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Internal linear combination (ILC) methods are some of the most widely used multifrequency cleaning
techniques employed in cosmic microwave background (CMB) data analysis. These methods reduce
foregrounds by minimizing the total variance in the coadded map (subject to a signal-preservation
constraint), although often significant foreground residuals or biases remain. A modification to the ILC
method is the constrained ILC, which explicitly nulls certain foreground components; however, this
foreground nulling often comes at a high price for ground-based CMB datasets, with the map noise
increasing significantly on small scales. In this paper we explore a new method, the partially constrained
ILC, which allows us to optimize the tradeoff between foreground bias and variance in ILC methods. In
particular, this method allows us to minimize the variance subject to an inequality constraint requiring that
the constrained foregrounds are reduced by at least a fixed factor, which can be chosen based on the
foreground sensitivity of the intended application. We test our method on simulated sky maps for a Simons
Observatory–like experiment; we find that for cleaning thermal Sunyaev-Zel’dovich contamination at
l ∈ ½3000; 4800�, if a small thermal Sunyaev-Zel’dovich residual of 20% of the standard ILC residual can
be tolerated, the variance of the CMB temperature map is reduced by at least 50% over the constrained ILC
value. We also demonstrate an application of this method to reduce noise in CMB lensing reconstruction.
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I. INTRODUCTION

The cosmic microwave background radiation (CMB) is
one of our most important sources of information about
cosmology and fundamental physics. Over the past deca-
des, much of its constraining power has arisen from the
primary CMB anisotropies. However, increasingly, the
CMB is also being used as a backlight to understand
the distribution of matter, gas and tracers lying between us
and the last scattering surface, using the secondary anisot-
ropies these imprint into the microwave background.
To robustly analyze either the primary CMB or the

individual astrophysical contributions, multifrequency
component separation methods, which use different fre-
quency dependences to disentangle the different compo-
nents, are becoming increasingly important.
There are several methods that have been proposed

to separate the CMB signal, or another astrophysical signal

of interest, from the other components that are present in
an observed CMB map. Perhaps the most widely used
method is the internal linear combination (ILC [1–9])
method, which combines in a linear fashion multifrequency
observations in order to extract an unbiased estimate of the
desired component (e.g., CMB).1 This method employs a
linear combination of frequency channels that minimizes
the total map variance, subject to the constraint of an
unbiased recovery of the desired component, with weights
calculated from an empirically determined covariance
matrix. A frequently used extension of ILC is the con-
strained ILC (CILC [10]), where the linear combination
is constructed in such a way to minimize the variance
subject to the additional constraint that a particular com-
ponent, with known spectral dependence, is nulled in the
extracted map. Without such nulling (also known as
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1Note that, because of frequency dependence, these frequency
methods in general will extract a combination of CMBþ kSZþ
other frequency independent elements.
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“deprojection”), ILC maps can possess significant fore-
ground residuals (e.g., [11,12]). The resulting deprojected
maps have a wide range of applications, including primordial
non-Gaussianity [13,14], cross-correlations (e.g., studying
kinetic Sunyaev-Zel’dovich (kSZ) [15,16] or ISW [17]),
CMB lensing reconstruction [11,18], and primordial B
modes [19]. However, a major downside of using con-
strained ILC methods is that the additional constraints often
lead to a substantial noise increase in the resulting map,
particularly for ground-based CMB experiments with a
moderate number of frequency channels.
However, this large noise penalty is not generally

necessary if we only wish to obtain a map with a reduced
level of foregrounds. Depending on the application, the
complete nulling of foreground contamination may not be
required, and it may instead be sufficient to merely reduce
the contamination by a large factor in amplitude. This is the
goal of this paper, which presents the partially constrained
ILC (PCILC) method. This method guarantees an overall
foreground bias that is reduced by at least a fixed factor,
but, by not requiring foregrounds to be completely nulled,
can result in a significantly lower noise than the CILC. The
method is easily applicable; as an example, we will show an
application to foreground cleaning for CMB gravitational
lensing reconstruction.
In Sec. II, following a brief review of existing multi-

frequency component separation methods, we will intro-
duce the PCILC. In Sec. III we will show and discuss the
results of our method when applied to simulations, and to
an example of CMB lensing reconstruction. We conclude
in Sec. IV. Further technical results are collected in the
Appendixes.

II. METHOD

Obtaining a clean and accurate CMB map from obser-
vational data is difficult due to various foreground signals
such as the thermal Sunyaev-Zeldovich (TSZ) effect and
the cosmic infrared background (CIB). In this section, we
will quickly review the standard ILC, the constrained ILC,
and finally our new proposed method, the partially con-
strained ILC.

A. The ILC method

The ILC is a commonly used method because it
requires minimal modeling assumptions about the data
and has considerable flexibility in the choice of domain in
which to extract the signal of interest. If we have Nν

frequency channels in our observational data, then for each
pixel p we can write an Nν × 1 vector where each row
represents the observed map at the corresponding fre-
quency channel:

yðpÞ ¼ asðpÞ þAfsfðpÞ þ nðpÞ ð1Þ

where a is the spectral energy distribution (SED) response
vector of the desired signal sðpÞ, Af is the mixing matrix
for the foreground components sf (to know how much a
specific foreground i contributes to the map at the observed
frequency j), and nðpÞ is the noise. We will focus solely on
the case of CMB ILC reconstruction, and thus a is the CMB
SED, which is unity when working in thermodynamic
temperature units. Note that p can be a point in any desired
space, e.g., in harmonic space, real space, or a needlet
frame. The ILC solution provides a linear combination of
maps ŝ ¼ wTy that recover the component of interest, in
this case the CMB, and it has a minimum variance

min ðhŝ2i − hŝi2Þ ¼ minðwTRwÞ; ð2Þ

whereR ¼ hyyTi − hyihyTi is the covariance matrix of the
data. Solving Eq. (2) under the constraint wTa ¼ 1, to
ensure an unbiased recovery of the component of interest,
gives the ILC weights (e.g., [3]):

wT
ILC ¼ ðaTR−1aÞ−1aTR−1: ð3Þ

B. The constrained ILC method

The CILC similarly involves building a linear combi-
nation of observed maps, at different frequencies, ŝ ¼ wTy
that recovers the component of interest with minimum
possible variance; however, the CILC involves the addi-
tional constraint of nulling some unwanted foreground or
other components.
To recover the CMB signal, while deprojecting some

foregrounds, i.e., nulling some components of the sf, we
use the corresponding SED vectors from the mixing matrix
Af. We define these SED vectors as (b1;b2;…;bm). Then
we can write a condition under which we completely
deproject these components:

8>>>>><
>>>>>:

wTb1 ¼ 0

wTb2 ¼ 0

..

.

wTbm ¼ 0

: ð4Þ

In this way we guarantee that the contribution of the
selected foregrounds to the final linear combination map
will be zero, which is not necessarily true for the ILC case.
However, this deprojection comes at a price: since we have
used one or more degrees of freedom for the deprojection,
the noise in the final CILC map is guaranteed to be higher
than that in the standard ILC case.
Formally, the constrained ILC solution provides a

linear combination of maps ŝ ¼ wTy such that it has
minimal variance, subject to the constraints wTa ¼ 1,
wTb1 ¼ 0, wTb2 ¼ 0; ...;wTbm ¼ 0. In this case, the
weights are (e.g., [10]):
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wT
CILC ¼ eTðATR−1AÞ−1ATR−1; ð5Þ

where A ¼ ½ab1 � � �bm� is a matrix of size Nν × ðmþ 1Þ,
and eT ¼ ½1 0 � � � 0� is a vector of 1 × ðmþ 1Þ, so that we
can recover the CMB (which, in our formalism, is always
the first component) if the unwanted components are
foregrounds.

C. The partially constrained ILC method

In the constrained ILC, by deprojection we lose one
degree of freedom for each deprojected component; this
inevitably leads to an increase of variance in the combined
map. Here we propose a new method where we partially
deproject foregrounds to get an intermediate solution
between the ILC and the constrained ILC, i.e., to achieve
a balance between foreground bias and variance reduction.
As a starting point, suppose we have just the CMB and

one foreground component, with the SED vector b1, that
we wish to reduce in the final combination. Partial
deprojection can be expressed as

jwTb1j ≤ ϵ; ð6Þ

where ϵ is some arbitrary positive number which controls
the level of residual foregrounds in the final map. By
defining new “slack variables” s1 and s2 to turn inequality
constraints to equality constraints, we write the modulus in
Eq. (6) as two equations with different signs [20]; the
inequality constraint can then be expressed as follows:

ϵ − wTb1 − s21 ¼ 0;

ϵþ wTb1 − s22 ¼ 0: ð7Þ

To find weights w such that the combined map has minimal
variance under constraints, we use the method of Lagrange
multipliers:

L ¼ wTRw þ λð1 − wTaÞ þ λ1ðϵ − wTb1 − s21Þ
þ λ2ðϵþ wTb1 − s22Þ ð8Þ

Minimizing this, we obtain a linear system of equations:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

∂L
∂wT ¼ 2Rw − λa − λ1b1 þ λ2b1 ¼ 0
∂L
∂s1 ¼ −2λ1s1 ¼ 0

∂L
∂s2 ¼ −2λ2s2 ¼ 0

∂L
∂λ ¼ 1 − aTw ¼ 0

∂L
∂λ1 ¼ ϵ − b1

Tw − s21 ¼ 0

∂L
∂λ2 ¼ ϵþ b1

Tw − s22 ¼ 0

: ð9Þ

We will now outline a step-by-step solution of the system
of Eq. (9):
Step one: the first equation of the system gives

w ¼ 1

2
R−1ðλaþ λ1b1 − λ2b1Þ: ð10Þ

Step two: substituting Eq. (10) into other equations that
contain w in the system of equations

aT
1

2
R−1ðλaþ λ1b1 − λ2b1Þ ¼ 1; ð11Þ

b1
T 1

2
R−1ðλaþ λ1b1 − λ2b1Þ ¼ ϵ − s21; ð12Þ

b1
T 1

2
R−1ðλaþ λ1b1 − λ2b1Þ ¼ s22 − ϵ: ð13Þ

Step three: from the second and third equations of the
system of equations it follows: λ1¼0 or s1 ¼ 0 or λ1 ¼ 0&
s1 ¼ 0, and λ2 ¼ 0 or s2 ¼ 0 or λ2 ¼ 0 & s2 ¼ 0. By simply
substituting the possible combinations into Eqs. (11)–(13),
we can build the following table:
Table I shows all possible combinations of different

variables being zero: λ1 ¼ 0 or s1 ¼ 0 or both, and λ2 ¼ 0
or s2 ¼ 0 or both. Specifically, the first row labels which of
the λ1, s1 variables are zero (or whether both are zero); the
second row similarly labels which of the λ2, s2, λ2 & s2
variables are zero, and the third row shows whether this
combination of zero-valued variables allows the system of
equations to have an answer (Yes/No).
Step four: finally, using simple algebra for λ1 ¼ 0 and

λ2 ¼ 0 we have the standard ILC solution, for λ1 ¼ 0 and
s2 ¼ 0 we have wPCILC− [see Eq. (14)], and for λ2 ¼ 0
and s1 ¼ 0 we have wPCILCþ [see Eq. (14)].
Therefore, solving the linear system of Eq. (9) gives us

three solutions:
(i) The first solution is the ILC solution.
(ii) The other two take values at the boundary, i.e.,

wT
PCILC�b1 ¼ �ϵ, and have the following form:

wT
PCILC�

¼ aTR−1ðKb ∓ KabϵÞ þb1
TR−1ð�Kaϵ−KabÞ

KaKb −K2
ab

;

ð14Þ

TABLE I. Table showing which variables are zero, out of all the
combinations described in step three, and whether for this
combination of zero-valued variables it is possible (Yes or No)
to find a solution for the system of equations in Eq. (9).

λ1 s1 λ1 & s1

λ2 s2 λ2 & s2 λ2 s2 λ2 & s2 λ2 s2 λ2 & s2

Yes Yes No Yes No No No No No
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where Ka ¼ aTR−1a, Kb ¼ b1
TR−1b1 and

Kab ¼ aTR−1b1.
The answers above make sense if we consider this

problem as follows: the variance function wTRw:
Rn → R, where n ¼ Nν is a number of frequency channels.
Geometrically this is an elliptic paraboloid with a minimum
at w ¼ 0. With our first constraint wTa ¼ 1, our working
domain is reduced to Rn−1 and geometrically it is still an
elliptic paraboloid with minimum at wILC. Adding the
inequality constraint jwTb1j ≤ ϵ is equivalent to consider-
ing an allowed interval I in Rn−1. Therefore, the minimum
will be the standard ILC solution if the interval includes
wILC, otherwise it will lie at the boundaries (i.e.,
if wILC ∉ I).
To find the correct overall solution, we first have to check

if the inequality condition is satisfied for the standard ILC
solution, i.e., jwT

ILCb1j ≤ ϵ. If so, then the answer (wPCILC)
is equal to the standard ILC solution. Otherwise, we
calculate the variance of the combined map for both
weights wPCILC� , i.e., wT

PCILC�RwPCILC� , and compare
them. The answer in this case is the weight vector for
which we get the smallest variance.
In the Appendix we discuss how to generalize this

derivation to multiple partially deprojected components.

III. RESULTS AND DISCUSSION

A. Simulations

We test our proposed method on the high-resolution
simulations of the microwave sky2 generated by The
Simons Observatory Collaboration [22,23]. For simplicity,
we perform the ILC in harmonic space, but the novel
aspects of our formalism can be straightforwardly applied
in pixel space or on a needlet frame as well. The simulation
maps are constructed for six frequency channels at which
the Simons Observatory (SO) will operate: 27, 39, 93, 145,
225, and 280 GHz. For simplicity, delta-function passbands
are assumed.
In this work, we use a simple sky model that includes the

lensed CMB signal, the TSZ effect, and the CIB. The TSZ
effect is the inverse-Compton scattering of CMB photons
off hot, free electrons, which generates a unique spectral
distortion in the mm-wave bands [24]. The CIB is the
cumulative thermal emission from dust grains heated by
starlight in galaxies over cosmic history. The lensing, TSZ,
and CIB fields were constructed in these simulations by
post processing a large N-body simulation with prescrip-
tions for each observable [23]. All components are thus
realistically correlated. Further details on each individual
component can be found in Refs. [22,23], including
adjustments that were made to more closely match recent
measurements of these fields. The noise model in the

simulations is generated from the properties of the planned
SO surveys, i.e., the “baseline” level for the SO Large
Aperture Telescope with observed sky fraction fsky ¼ 40%

(see [22]). Note that the noise maps are correlated at 27
and 39, 93 and 145, and at 225 and 280 GHz due to the
atmospheric correlations for frequency channels in the
same optics tube (see [22]). We combine the lensed
CMB, TSZ, CIB, and noise components for each frequency
channel.

B. Frequency dependence of components

To apply the CILC and PCILCmethods, we need to know
the frequency response models of the components that we
wish to deproject or partially deproject. In this work, the
components we will focus on are the TSZ and CIB.
For the TSZ effect [24–26] the frequency dependence in

thermodynamic CMB temperature units is given by

fTSZðνÞ ¼ x
ex þ 1

ex − 1
− 4; ð15Þ

where x ¼ hν=ðkBTCMBÞ. In contrast to the TSZ effect, the
CIB is not a single field that is rigidly rescaled across
frequency channels according to a fixed SED. However, as
an approximation, we adopt the following modified black-
body SED for the CIB [8]:

fCIBðνÞ ∝
ν3þβ

ehν=ðkBTCIBÞ − 1

�
dBðν; TÞ

dT

����
T¼TCMB

�
−1

ð16Þ

where β ¼ 1.2, TCMB ¼ 24 K, and Bðν; TÞ is the Planck
function, needed here to convert from specific intensity to
thermodynamic CMB temperature units. We emphasize
that the CIB component in the simulated sky maps is not
generated assuming this SED, but rather from detailed post
processing of a light cone from an N-body simulation,
using semianalytic star formation prescriptions. Thus, the
simulated CIB maps do not follow a single, rigid SED,
and they exhibit realistic decorrelation across frequency
channels [22].
Finally, for our frequency channels, the CMB SED is a

constant and equal to unity, since we work in thermody-
namic CMB temperature units.

C. Choosing a value for ϵ

To understand how to choose a reasonable threshold
value for partial deprojection [see Eq. (6)], we will first
explain the calculation of the foreground bias values. We
define a foreground bias fraction as

B ≔
wTFw
F145×145

; ð17Þ

where F is the empirically determined frequency-frequency
covariance matrix for this foreground and F145×145 is the2The simulations can be found at [21].
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power spectrum of this foreground at 145 GHz obtained
from the simulations. This bias variable B represents the
size of the residual foreground power after applying the
PCILC method (equal to wTFw), relative to the original
foreground power at 145 GHz. We can then define a
positive number Bth such that B ≤ Bth, which defines a
threshold value of the foreground bias. Note that from
Eq. (17) we obtain the foreground bias for the standard
ILC, by inserting the standard ILC weights in the numer-
ator. Based on this result, we know a reasonable upper
bound for the threshold bias value Bth, since any threshold
bias value above the standard ILC bias will just reproduce
the standard ILC weights, as discussed in Sec. II C.
Depending on how much we want to reduce the variance
in the final ILCmap, we can thus choose any value between
the standard ILC foreground bias and zero. Finally, we can
calculate the threshold value to be used for the PCILC
weights determination using the following equation:

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bth · F145×145

q
: ð18Þ

In this paper, for simplicity, we use the same threshold
value for all l, even if for some l it exceeds the standard

ILC bias. Specifically, we constrain the TSZ bias to be
below a threshold BTSZ ≤ 0.2 or 0.3 and CIB bias to be
below a threshold BCIB ≤ 0.2 or 0.3.

D. ILC: Results and discussion

Figure 1 shows the results obtained using ILC, CILC,
and PCILC for CMB map reconstruction on the SO-like
simulations, where the constraints are applied only to the
TSZ foreground component. As mentioned previously, for
the PCILC method, we show results for both BTSZ ≤ 0.2
and BTSZ ≤ 0.3. All calculations are performed in linearly
spaced multipole bins of width Δl ¼ 21. The upper left
panel shows the total power spectrum of the lensed CMB
signal reconstructed by various methods, and the upper
right panel shows the ratio of these power spectra to the
power spectrum of the lensed CMB obtained using the
standard ILC method. The lower left and right (lr) panels
show the TSZ bias and the CIB bias, as defined in Eq. (17).
The same configuration is shown in Figs. 3 and 5, but in
Fig. 3 the PCILC method is implemented for the CIB
foreground component with BCIB ≤ 0.2 and BCIB ≤ 0.3,
and in Fig. 5 the PCILC method is implemented for both
foreground components simultaneously, i.e., TSZ and CIB

FIG. 1. Partial deprojection of the TSZ component. Results from our new PCILC method applied to simulated sky maps with various
foreground bias threshold values as defined in Eq. (17) (blue and black curves) compared to the standard ILC (red) and the constrained
ILC, or CILC, (green) results. Upper left: total power spectra of the reconstructed (PC)ILC CMB maps. Upper right: the ratio of the
power spectra to the total CMB power spectrum obtained with the standard ILC. Lower left and lower right: the residual TSZ power
(left) and CIB power (right) in the coadded maps, measured relative to the power of the TSZ or CIB at 145 GHz [see Eq. (17)]. It can be
seen that, if a small bias can be tolerated, the PCILC method provides a significant variance reduction when compared with the CILC.
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with BTSZ ≤ 0.2 and BCIB ≤ 0.2, and BTSZ ≤ 0.3 and
BCIB ≤ 0.3.
Figures 2, 4, and 6 show complementary results to

Figs. 1, 3, and 5, respectively. In each figure, the right panel
shows the residual foreground power, and the left panel
shows the expected noise power (instrumental and atmos-
pheric) obtained by subtracting from the total result power
the input theory CMB power and the residual fore-
ground power.
The results in Fig. 1 show that when the TSZ component

is fully deprojected with the CILC, the variance of the

reconstructed CMB map increases by more than a factor of
six compared to the standard ILC for some multipoles, and
the residual CIB power becomes much higher than its value
for the standard ILC (as expected, since the constrained
weights have less freedom to adjust to minimize CIB
contamination). However, with partial deprojection such
that BTSZ ≤ 0.2, 0.3 using the PCILC, the variance and
the CIB bias only increase by a moderate amount over the
standard ILC results. In particular, for BTSZ ≤ 0.3 the
resulting total power spectrum is less than half the power
spectrum of the CILC map for l ∈ ½3000; 4800�.

FIG. 2. Complementary results to Fig. 1. Expected noise power (left) and residual foreground power (right).

FIG. 3. Partial deprojection of the CIB component. The same configuration of plots as in Fig. 1, but now with the CIB foreground
component deprojected or partially deprojected, as labeled in the plot legends. The CIB SED is taken to be a modified blackbody [see
Eq. (16)] in the ILC constraints, but the sky simulations are constructed with a realistic model that produces decorrelation and a nonrigid
SED that varies with frequency and sky position. This is why the residual CIB bias is slightly nonzero even when we set BCIB ¼ 0 (see
the green curve in the lower right panel).
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For the CIB deprojection in Fig. 3, the improvements
when using the PCILC method are not as striking as for
TSZ deprojection. Nevertheless, if we can tolerate a small
residual CIB bias, we still can lower the effective power
spectrum by tens of percent and reduce the residual TSZ
bias substantially by using the PCILC method instead of
the CILC, as shown in Fig. 3.
The main disadvantage of single-component CILC

and PCILC is that we do not control the bias of other

foregrounds, and therefore these biases can become larger,
as shown previously. By deprojection and partial depro-
jection for two or more components, we control the level of
bias of multiple foregrounds, or two for the case of our
sky simulations here. In this case, where we deproject both
TSZ and CIB, CILC increases the variance more than
40 times compared to the ILC for high l, as shown in
Fig. 5. Using the PCILC method, we can significantly
reduce the variance.

FIG. 4. Complementary results to Fig. 3. Expected noise power (left) and residual foreground power (right).

FIG. 5. Partial deprojection of both TSZ and CIB components. The same configuration of plots as in Fig. 1, but with simultaneous
deprojection or partial deprojection of both the TSZ and CIB foreground components, as labeled in the plot legends. Again, it can be
seen in the top right panel that, if a small bias can be tolerated, the PCILC method provides a significant variance reduction when
compared with the CILC. However, the bottom right panel shows that the CIB bias remains significantly nonzero even when we attempt
to fully deproject this component. This situation can arise when (partially) deprojecting multiple foregrounds with a small number of
frequency channels, such that even small inaccuracies in the modeling lead to non-negligible residual foreground biases (see text for
further discussion).
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Although PCILC performs well at reducing variance,
the CIB bias becomes more sensitive to decorrelation and
suboptimal SED modeling as additional constraints are
added. The small decorrelation and suboptimal SED model
of the CIB signal affect the accuracy of the CIB bias
removal, as shown in Fig. 5(lr). However, we would expect
the same variance reduction performance for more accurate
models (see next subsection); experiments with more
frequency channels should, in addition, suffer less from
bias residuals when (partially) deprojecting multiple com-
ponents (see Ref. [19]). In Appendix A, we analyze in
detail the problem of accurately reducing the CIB bias. We
also note that including additional CIB components via a
moment expansion [27] could reduce the bias seen in
Fig. 5, although this may be challenging for experiments
with a relatively small number of frequency channels.
Aside from the CIB bias calculation, we have verified

that the simulated results match our forecast performance
well. This gives further confidence in our method and our
pipeline performance.

E. Validation of CIB results using simplified
sky simulations

In this subsection, we use a simplified version of the
simulated sky described in Sec. III A, with the only
difference that instead of the standard CIB signals, we
use one CIB signal at 145 GHz and scale it to the other
frequency channels using Eq. (16). Thus, in these simpli-
fied simulations, the CIB field is comprised of a single
component, which is rescaled across frequencies with a
rigid SED. We combine this component with the CMB,
TSZ, and noise as done for the original simulations. With
these simplified sky maps, we check how well our method
works for partially deprojecting both TSZ and CIB when
we have a perfectly understood, one-component CIB
signal. The results are shown in Fig. 7, and they demon-
strate that the CIB bias is now successfully removed when
BTSZ ¼ 0 ¼ BCIB, and behaves as expected in the other
cases shown. This validates our claim that the residual CIB
biases seen in Fig. 5 are indeed due to SED variations and
decorrelation in the CIB signal in the original simulations.

Also note that for two-component partial deprojection, in
order to obtain the standard ILC solution, the correspond-
ing intervals from the inequality constraints for TSZ and
CIB, that is ITSZ and ICIB, must include wILC (i.e., wILC ∈
ITSZ and wILC ∈ ICIB). This is why, in Fig. 7, the CIB bias
may be higher than its corresponding bias from the standard
ILC if at the same time the TSZ bias is lower than its
corresponding bias from the standard ILC.
Figure 8 shows how the ratio of the power spectra

obtained with PCILC for two components (TSZ and CIB)
to the spectrum of the total lensed CMB obtained with
standard ILC at l ¼ 3500 varies with Bth

TSZ and Bth
CIB. Note

that when Bth
TSZ and Bth

CIB are equal to or greater than the

FIG. 6. Complementary results to Fig. 5. Expected noise power (left) and residual foreground power (right).

FIG. 7. Partial deprojection of both TSZ and CIB components.
The residual CIB power in the coadded maps, measured relative
to the power of the CIB at 145 GHz. The results shown here
are obtained for the simplified sky simulations described in
Sec. III E, in which the CIB field is comprised of a single
component that is simply rescaled in frequency using Eq. (16). In
contrast to Fig. 5, the CIB bias now behaves as expected, which
demonstrates that the behavior seen previously was due to CIB
decorrelation and SED variations.
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corresponding standard ILC bias values, the ratio becomes
equal to one, as expected, since the standard ILC weights
are recovered in this case.

F. Application to CMB lensing reconstruction

In this subsection, we will present, as an example, an
application of our new PCILC method for foreground
mitigation: foreground reduction for CMB lensing analysis.

Along their paths to our telescopes, CMB photons are
deflected, or lensed, by the gravitational influence of matter
in our Universe. CMB lensing measurements allow us to
constrain key cosmological parameters, such as the equa-
tion of state of dark energy, the sum of neutrino masses, or
the amplitude of density fluctuations (e.g., [28–30]).
Thanks to high-resolution, low-noise CMB surveys, it is

possible to extract the CMB lensing signal with quadratic
estimators, exploiting the lensing-induced couplings
between different modes of the CMB (e.g., [31]).
However, these estimators are susceptible to the presence
of foreground contamination in mm-wave maps, leading to
potential biases in the extracted cosmological parameters
[32–35]. Foregrounds are a more significant limitation
for CMB temperature-derived lensing reconstruction than
for polarization-derived reconstruction, as small-scale fore-
grounds in polarization are smaller compared to the CMB
signal [36]. If CMB temperature foregrounds are left
untreated, the resulting CMB lensing autospectrum and
cross-spectrum analyses may be biased at the 3–20% levels,
much larger than the statistical error bars (e.g., [11,32,
34,37–39]). As many current- and next-generation lensing
maps will still depend to a large extent on temperature data,
rather than on polarization, it is important to mitigate these
foregrounds for lensing analyses.
To mitigate foreground contamination in CMB lensing

maps, different methods exist; these broadly divide into
geometrical (e.g., [33,35,40]) and multifrequency methods
(e.g., [11,18,36]). Here we will focus on the latter, although
it is worth keeping in mind that this approach cannot
mitigate foreground biases with the same SED as the
primary CMB [34]. In particular, we will use the multi-
frequency symmetric cleaned estimator presented in

FIG. 8. Contour plot of the ratio of the total CMB map power
spectra obtained with PCILC for two components (TSZ and CIB)
to the spectrum of the total CMB obtained with standard ILC, at
l ¼ 3500 as a function of Bth

TSZ and Bth
CIB.

(a) (b)

FIG. 9. (Partial) deprojection of both TSZ and CIB in CMB maps used for lensing reconstruction, using the temperature CMB noise
curves in Fig. 5. In both panels (a) and (b) the lensing noise curves are shown for four cases: standard ILC CMBmaps used in a quadratic
lensing estimator; a CMB map cleaned with CILC, used in a quadratic lensing estimator; and PCILC-cleaned CMB maps, again used in
a quadratic lensing estimator. The multifrequency-cleaned maps are labeled with a number that represents the average increase in noise
with respect to lensing reconstruction using the standard ILC CMBmap. It can be seen that the PCILC gives a significant noise reduction
on large scales of around 30%, when compared with CILC foreground mitigation methods.
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Ref. [18] (building on the estimator of Ref. [11]), which
has the advantage of degrading the S/N of a CMB
lensing measurement less than many other methods,
while still significantly reducing the foreground-induced
contamination.
In Ref. [18] this method was applied to temperature TSZ-

deprojected CILC maps, constructed using data from the
Atacama Cosmology Telescope and the Planck satellite [8].
This lead to a reduction of the TSZ contamination in the
reconstructed CMB lensing map, albeit at the price of
somewhat decreased S/N in the measurement, when com-
pared to the case without any deprojection. For current
CMB lensing goals, a complete nulling of the foreground
contamination is likely unnecessary; given that foreground
biases are already quite small (a few percent of the signal),
only a substantial reduction of the CMB lensing foreground

contamination is likely required in order for it to be
negligible. The PCILC method allows for the required
reduction in the foreground contamination while improving
the S/N relative to complete deprojection with a CILC.
We illustrate this S/N improvement from the use of the

PCILC in Figs. 9–11, where temperature CMB lensing
reconstruction noise curves arising from the ILC, CILC,
and PCILC temperature CMB maps are shown. We apply
the standard quadratic estimator to the ILC map, and apply
the method of Ref. [18] to the CILC and PCILC maps. The
CMB modes we use for reconstruction have lmin ¼ 30; in
addition, we use lmax ¼ 3000 for all the CMB lensing
estimators; we also show results with lmax ¼ 3500 for the
multifrequency cleaned ones. Figure 9 shows temperature
estimator CMB lensing noise curves when constraining
both TSZ and CIB (from Fig. 5), Fig. 10 shows constraints

(a) (b)

FIG. 10. As for Fig. 9, but (partially) deprojecting only CIB, using the temperature CMB noise curves in Fig. 3. In this case there are
not relevant CMB lensing noise improvements between CILC and PCILC, as CIB deprojection does not lead to a huge blowing up in
CMB temperature noise for the CMB scales of lensing reconstruction.

(a) (b)

FIG. 11. As for Fig. 9, but (partially) deprojecting only TSZ, using the temperature CMB noise curves in Fig. 1. On large scales, the
PCILC derived CMB lensing noise performs better than CILC one at around 10%.
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on only CIB (from Fig. 3), and Fig. 11 only on TSZ (from
Fig. 1). It is clear that in terms of CMB lensing noise,
the PCILC outperforms the CILC by a factor of around
10–30%, even though the foreground bias is expected to be
reduced to a level that is negligible for current and
upcoming experiments. Multifrequency cleaning with the
PCILC method is therefore a powerful technique for
mitigation of foreground biases in CMB lensing, while
minimizing degradation in signal-to-noise.3

IV. CONCLUSIONS

In this work, we have developed a new tool for CMB
foreground cleaning—the PCILC method. This method
finds the minimum-variance linear combination of different
frequency channels in cases where residual foreground
biases must be controlled to be below a threshold value but
do not need to strictly be nulled. By allowing for, in many
cases, negligibly small but nonzero foreground residuals,
this method provides significant reductions in variance—
often by factors of 2–3—when compared with a con-
strained ILC in which foregrounds are strictly nulled.
We test and validate our method using realistic SO-like
simulations, finding that we can reproduce the expected,
forecast performance. Our method can be easily applied to
current and upcoming CMB surveys, and has several
possible applications; as an example, we show that it is
capable of mitigating foreground biases in CMB lensing at
lower noise than previous multifrequency methods.
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APPENDIX A: CIB BIAS

In this section, we discuss why we find problems with
the CIB bias obtained from the PCILC and CILC methods
implemented for the simultaneous deprojection of two
components.
As mentioned in Sec. III, these problems arise due to

slight decorrelation of the CIB across frequencies and the
imperfect SEDmodel of the CIB signal. To understand why
this is so, let us first express the CIB cross-frequency power
spectra as follows:

FCIB
ν×ν0 ¼ rCIBν×ν0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FCIB
ν×νFCIB

ν0×ν0

q
ðA1Þ

where rCIBν×ν0 is the correlation coefficient between ν and ν0

frequency channels, and all auto- and cross-frequency
spectra obtained are from the simulations. Next, we split
this equation into two parts,

FCIB
ν×ν0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FCIB
ν×νFCIB

ν0×ν0

q
þ ðrCIBν×ν0 − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FCIB
ν×νFCIB

ν0×ν0

q
; ðA2Þ

where the first part is decorrelation free and the second is
the decorrelation estimate. Since the off-diagonal values
of the covariance matrix FCIB consist of cross-frequency
spectra, by analogy we can express the covariance matrix as
follows:

FCIB ¼ qqT þ qqT ∘ ðr − 1Þ ¼ QþD; ðA3Þ

where qT ¼
h ffiffiffiffiffiffiffiffiffiffiffiffi

FCIB
ν1×ν1

q ffiffiffiffiffiffiffiffiffiffiffiffi
FCIB
ν2×ν2

q
� � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FCIB
νNν×νNν

q i
, r is the

Nν × Nν matrix where each element corresponds to the
correlation coefficient between frequency channels, and 1
is the Nν × Nν matrix where each element is equal to one.
Then, using Eq. (17), the CIB bias can be decomposed as
follows:

BCIB ¼ wTQw þ wTDw
FCIB
145×145

: ðA4Þ

The first part of Eq. (A4) corresponds to the case where the
CIB maps are perfectly correlated, so we can use it as a
SED test:

ΔBSED ¼ wTQw
FCIB
145×145

−
wTbbTw
b2145

ðA5Þ

where b is the model CIB SED [see Eq. (16)], an Nν × 1
vector, and b145 is the model CIB SED evaluated at
145 GHz. In Fig. 12 (left), we show how the suboptimal
CIB SED affects the CIB bias error.
The second part of the Eq. (A4) shows how decorrelation

affects the CIB bias:

3Assessing the precise impact of our method on CMB lensing
power spectrum foreground biases requires simulation-based
calculations and is beyond the scope of our paper. Nevertheless,
we can make an approximate estimate for the reduction in
foreground biases in the standard quadratic power spectrum
estimator, assuming the CMB lensing filters do not change and
neglecting any scale dependence in ϵ. Depending on the lensing
scale, the lensing foreground biases generally are dominated by
either the primary terms, which have the form hκTfTfi ∝ ϵ, or the
trispectrum terms, which have the form hTfTfTfTfi ∝ ϵ2; here
Tf is the foreground contribution to the temperature map. These
scalings with powers of Tf imply that lensing biases should
therefore be suppressed by at least a factor of ϵ (although on small
scales, where the trispectrum term dominates, a more significant
reduction by a factor ϵ2 can be expected.) The original,
unmitigated biases are typically less than ∼5% [32] of the signal
power for conventional analysis choices; therefore, a reduction by
even a moderate factor ϵ∼ ≤ 0.2 may be sufficient to reduce the
biases to a sub-percent level, which is negligible for current-
generation experiments.
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Bdecorr ¼
wTDw
FCIB
145×145

: ðA6Þ

In Fig. 12 (right) we can see how decorrelation affects the
CIB bias error. As expected, the decorrelation errors grow
with l, as the CIB decorrelation itself does (e.g., [41]).
In Fig. 3 (lr), we can see that the CIB bias residual when

reducing or removing only one component is much lower
compared with the CIB bias when reducing or removing
two components. Since Eq. (A4) also applies for single-
inequality ILC, the only difference is in the weights, which
are shown in Fig. 13. An explanation for the imperfect CIB
removal is therefore that the high weight values when
deprojecting two components amplify small errors in the
CIB model and small amounts of decorrelation, leading to
significant biases.

APPENDIX B: MULTIPLE PARTIALLY
CONSTRAINED ILC

Suppose we have Nf frequencies, Nc components, with
Nc − 1 foregrounds. Suppose we would like to constrain P
foregrounds.
Let us define a few quantities: consider a “projection”

operator M described by a 2P × P matrix,

M≡

0
BBBBBBBBBBBB@

1 0 0 0 … 0 0

1 0 0 0 … 0 0

0 1 0 0 … 0 0

0 1 0 0 … 0 0

… … … … … … …

0 0 0 0 … … 1

0 0 0 0 … … 1

1
CCCCCCCCCCCCA

ðB1Þ

and another 2P × P operator N,

N ≡

0
BBBBBBBBBBBB@

1 0 0 0 … 0 0

−1 0 0 0 … 0 0

0 1 0 0 … 0 0

0 −1 0 0 … 0 0

… … … … … … …

0 0 0 0 … … 1

0 0 0 0 … … −1

1
CCCCCCCCCCCCA

: ðB2Þ

Also define a 2P-dimensional vector containing the
“slack” variables,

FIG. 12. Effect of decorrelation between frequency maps (right) and suboptimal CIB spectral response model (left) on CIB bias.

FIG. 13. Weight values for each frequency channel. Left: weights obtained from CILC for two-component (CIB and TSZ)
deprojection. Right: weights obtained for CIB deprojection.
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s⃗≡ ð s11 s12 … … sj1 sj2 … … sP1 sP2 ÞT
ðB3Þ

and another one for their squares

s⃗2 ≡ ð s211 s212 … … s2j1 s2j2 … … s2P1 s2P2 ÞT;
ðB4Þ

where j refers to the jth foreground to be deprojected.
Note that we can write this vector as

s⃗T2 ¼
X
k

ðPks⃗ÞTðPks⃗Þe⃗Tk ; ðB5Þ

where e⃗k is an orthonormal basis vector and Pk is a
projection matrix.
Also consider an Nf × P matrix defining the fore-

grounds to be constrained,

F≡ ð f⃗1 f⃗2 … f⃗P Þ; ðB6Þ

with f⃗j the Nf -dimensional vector where ðf⃗jÞi is the
foreground component j SED at frequency i.

And finally define the constraints vector

ϵ⃗≡ ð ϵ1 ϵ2 … ϵP ÞT: ðB7Þ

Then we can write a Lagrangian

L≡ w⃗TRw⃗þ λð1− w⃗Te⃗Þ þ λ⃗TineqMϵ⃗þ λ⃗TineqNFTw⃗− λ⃗Tineqs⃗2:

ðB8Þ

To solve for the weights, we then have to look at the
surfaces of minimum functional

8>>>>>>>><
>>>>>>>>:

∇⃗w⃗TL ¼ 2Rw⃗ − λe⃗þ FNT λ⃗ineq ¼ 0⃗

∂L
∂λ ¼ 1 − e⃗Tw⃗ ¼ 0

∇⃗λ⃗Tineq
L ¼ Mϵ⃗þ NFTw⃗ − s⃗2 ¼ 0⃗

∇⃗s⃗TL ¼ −2
P
k
ðPT

kPks⃗Þe⃗Tk λ⃗ineq ¼ 0⃗

: ðB9Þ

If the constraints are active, for the λineq;jl multiplier, then
we have equality constraint, otherwise if the constraints are
nonactive, then we reduce to the standard ILC, as this is
allowed.
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