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We consider cosmological models where dark matter is universally charged under a dark Abelian gauge
field. This new interaction is repulsive and competes with gravity on large scales and in the dynamics of
galaxies and clusters. We focus on nonlinear models of dark electrodynamics where the effects of the new
force are screened within a K-mouflage radius that helps avoiding traditional constraints on charged dark
matter models. We discuss the background cosmology of these models in a Newtonian approach and show
the equivalence with relativistic Lemaître models where an inhomogeneous pressure due to the electrostatic
interaction is present. In particular, after foliating the Universe using spherical shells, we find that dark
matter shells with initially different radii do not evolve similarly as they exit their K-mouflage radii at
different times, resulting in a breaking of the initial comoving evolution. In the large time regime, the
background cosmology is described by a comoving but inhomogeneous model with a reduced gravitational
Newton constant and a negative curvature originating from the electrostatic pressure. In this model, baryons
do not directly feel the electrostatic interaction, but are influenced by the inhomogeneous matter
distribution induced by the electric force. We find that shells of smaller radii evolve faster than the
outer shells which feel the repulsive interaction earlier. This mimics the discrepancy between the large scale
Hubble rate and the local one. Similarly, as galaxies and clusters are not screened by the new interaction,
large scale global flows would result from the existence of the new dark electromagnetic interaction.
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I. INTRODUCTION

The uniqueness of general relativity as the low energy
effective field theory for a massless spin-2 particle respecting
local Lorentz invariance and locality is at the heart of the
ubiquitous presence of additional degrees of freedom in
infraredmodifications of gravity. In relationwith the problem
of dark energy, theories featuring new scalar fields are
especially appealing and, consequently, their phenomeno-
logical consequences have been extensively explored. One of
the most interesting features of these scalar fields, that
typically mediate fifth forces, is the presence of screening
mechanisms that allow to evade local gravity tests. It is also
the reasonwhy these fields exhibit an elusive character. There
is a variety of screeningmechanisms [1] that can be classified
according to the type of operators that drive them, namely:
Chameleon [2,3], symmetron [4–6], dilaton [7] if the screen-
ing relies on nonderivative operators, K-mouflage/Kinetic
screening [8–11] if the mechanisms originate from operators
with first derivatives and Vainshtein [12,13] if the relevant
operators for the screening contain second derivatives.

In view of the rich phenomenology provided by scalar
field theories featuring screening mechanisms, considering
that the three fundamental interactions present in the
standard model (other than gravity) are mediated by gauge
bosons and that the Universe contains a dark sector where
similar types of gauge interactions to those of the visible
sector could be expected, it is certainly alluring to envisage
the existence and phenomenology of screening mechanisms
for spin-1 fields. In particular, we will be interested in
massless spin-1 fields (for the massive case see, e.g., [14]).
In this scenario, the absence of Galileon-type interactions
[15] makes it natural to consider a screening à la K-
mouflage. As a matter of fact, this idea was already realised
in the Born-Infeld electromagnetism that can arguably be
considered as the first screening mechanism of this type,
although with a different aim [16,17]. In this work, we will
explore some consequences of having a dark U(1) gauge
boson that mediates an extra force following the approach of
[18], sharing similarities with earlier works [19]. This
scenario can have an important impact on the cosmological
evolution of the Universe. Let us assume that the gauge
boson mediates a dark interaction for the dark matter
particles and that the early Universe underwent a phase of
dark matter genesis where only one type of charged DM
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particles survived. In the following, we will be agnostic
about the mechanism which could realize this separation
between the particles of dark matter and their antiparticles
but mechanisms that realise such behavior have been put
forward [20]. We will focus on the consequences of the
presence of a charged dark matter species leaving the
detailed study of possible mechanisms for its production
to further work. Let us notice, however, that mechanisms
that generate asymmetry in the dark matter sector have been
proposed [21] and that cosmological models in which a net
electric charge is present have been considered, see for
example [22] and references therein. As we will see, in the
earlyUniverse, the screening radius is larger than theHubble
horizon and, therefore, the DM component is impervious to
the dark boson interaction. As the Universe expands, the
horizon grows until, at some point, it becomes larger than the
largest screening radius hence allowing astrophysical
objects to feel the repulsive force, if certain conditions
are met. In particular, during the early stage of horizon
screening, the DM component is subject to gravitational
collapse and it forms halos as in the standard model.
However, in our scenario, each halo will have its own
screening radius so that DM halos separated by distances
larger than twice the screening scale will feel an additional
repulsive force mediated by the gauge boson as soon as the
horizon crosses the screening scale. The repulsive nature of
the force, as opposed to the usual attractive force produced
by scalar fields, is of course due to the spin-1 nature of the
gauge boson. This can have two effects. The first one is at the
cosmological background level. We will show that below a
certain redshift the extra electromagnetic interaction acts to
lower Newton’s constant and adds a contribution to the
spatial curvature. As we will argue, the appearance of the
low redshift dark electric repulsion can shed some light on
the pressing tension for the value ofH0 as measured locally
[23–25] and inferred from cosmic microwaves background
(CMB) anisotropies observations [26] (see [27] for a recent
state of the art summary). Typically we expect that for
couplings of dark matter to the dark electromagnetic
interaction of order one as compared to gravity, i.e.,
β ¼ Oð1Þ, and for a suppression scale Λe of the order of
the dark energy scale, the large scale value of theHubble rate
can be valid down to redshifts of order 0.5 allowing BAO
measurements (baryon acoustic oscillations) to corroborate
the CMB results while the local value of the Hubble rate can
be different by a factor of the order of ten percent. In a similar
vein, once galaxy clusters have formed, their dark charges
can imply that the peculiar velocities of both the clusters
themselves and the galaxies which are embedded within
them are modified by the new repulsive electromagnetic
interaction. This should leave an imprint on the late time
distribution of structures on large scales. The existence of a
long-range interaction for the dark matter sector due to a
dark U(1) charge has been extensively considered in the
literature and their observational signatures analysed,

especially as an attempt to alleviate the structure formation
problems of the standard collisionless dark matter paradigm
[28–34]. While such models can provide promising mech-
anisms to explain the small scale anomalies of the standard
model, the additional long-range interaction is also tightly
constrained (see, e.g., [35] and references therein). Our
scenario however crucially differs from these models pre-
cisely in the existence of nonlinearities in the dark gauge
sector that suppress the coupling constant both at high
redshift (thus avoiding effects on the freeze-out time or the
core of the structure formation period) and on small scales at
present times. As discussed above and in more detail below,
observational signatures are however expected in an inter-
esting range of scales.
In this article we will study the cosmological evolution of

the Universe in the presence of the additional dark electro-
magnetic force. As a first step, we will focus on the back-
ground cosmology of the Universe when this new dark force
is present. In the absence of the dark interaction, the back-
ground evolution of the Universe can be appropriately
described using the cosmological principlewhich posits that
the Universe is homogeneous and isotropic at sufficiently
large scales. As well known, this results in the usual
relativistic description of the dynamics of the Universe using
the Friedmann-Lemaître-Robertson-Walker (FLRW) metric.
In this setting, the Universe can be foliated by spherical
sections thanks to isotropy. Each of these sections follow
comoving trajectories described by a common scale factor.
Notice that this background dynamics can be fully described
in terms of a Newtonian approach, see for example [36].
When thedark force is introduced, isotropyof thebackground
cosmology is maintained while homogeneity is lost. This
follows from the scale dependence of the additional inter-
action which is nonlinear and breaks scale invariance. As a
result, different spherical sections of the background cosmo-
logical description of the Universe on large scales will not
evolve in a co-moving fashion.A fully relativistic treatment of
this system can be given and necessitates the use of Lemaître
metrics [37] generalizing the more common Lemaître-
Tolman-Bondi approach [37–39] to inhomogeneous space-
times. The difference between the twometrics springing from
the gradient of pressure coming from the presence of a radial
electric field.1 In Sec. III C we sketch such a relativistic

1In the isotropic situations relevant for us themagnetic field plays
no role since an expanding charged sphere does not generate any
magnetic field. At the perturbation level, when going beyond the
background cosmology as described here, magnetic fields will be
generated by the peculiar velocities of cosmological structures. The
resulting magnetic field depends linearly on the velocity field v and
the resulting Lorentz force is Oðv2Þ. As dark matter velocities are
always small of order 10−3, the magnetic interaction induced by the
relative motion of charges is suppressed compared to the electric
interaction. As a result, only taking into account the electric
interaction, as in the isotropic description of the background
cosmology we give here, is not thwarted by the magnetic effects
due to local inhomogeneities.
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treatment by introducing a dark fluidmimicking the effects of
the electric field. The full relativistic case where such a dark
fluid follows from nonlinear electrodynamics has been
derived in [40]. As in the FRLW case, we will tackle the
background cosmological evolution by resorting to a
Newtonian cosmology approach where the Universe is dust
dominated and the particles are subject to both gravity and the
new electric force.Wewill explicitly see how the evolution of
the spherical sections of the Universe in the presence of the
dark electric force, starting from an initial state where the
Universe evolves according to the standard Hubble flow at
high redshift, enters a phase where the comoving motion
ceases and different scales expand at different rates as they
exit their corresponding screening radii. Asymptotically,
however, the Universe recovers a comoving evolution where
all the scales expand at the same rate again, but in the process
an inhomogeneous density profile is generated. We will see
how these results can be interpreted in terms of inhomo-
geneous models with spherical symmetry such as Lemaître
models. We will confirm our results by numerically solving
the Newtonian evolution for a discrete set of shells that will
allow us to address the crucial issue of a regular stream flow
without shell crossing and also analyzing the effects of adding
an uncharged baryonic component and a cosmological
constant.
The background cosmological description of the

Universe in terms of an inhomogeneous and isotropic
Universe allows us to suggest that the present H0 tension
may eventually be resolved by taking into account such
dynamical inhomogeneities in the dark matter distribution
induced by the dark force. Notice that these dynamical
inhomogeneities differ greatly from the known inhomoge-
neities in the baryonic distribution, obtained because we are
located in an underdense region, which can be taken into
account using a Lemaître-Tolman-Bondi description of the
Universe. The effect of these local inhomogeneities is
known to be twenty times too small to close the H0 tension
[41–43]. The inhomogeneities that we obtain here would
affect the local dynamics of dark matter as the dark force
would not be screened compared to the screening of its
effects early in the Universe. A precise comparison of this
proposal to observations is left for future work.
The article is organized as follows: In Sec. II wewill briefly

describe some general properties of nonlinear electromag-
netism, emphasising the physical origin of the screening
mechanism. In Sec. III we study the Newtonian cosmology,
with a discussion on its validity, how an effective Friedmann
equation is obtained and its relation to inhomogeneous
Lemaître models. We confirm our analytical results by
numerically solving the system in Sec. IV for DM only
and including baryons which are taken to be decoupled from
dark electromagnetism. We also discuss the shell-crossing
condition. In this section we show how the additional electric
repulsion can help to alleviate the H0 tension. Finally, we
discuss some observational consequences in Sec. V.

Conventions: The field strength of the gauge field is
Fμν ¼ ∂μAν − ∂νAμ. Its dual is defined as F̃μν ¼ 1

2
ϵμναβFμν.

The electric and magnetic components are Ei ¼ F0i and
Bi ¼ F̃0i. We will work with mostly plus signature for the
metric.

II. NONLINEAR ELECTRODYNAMICS

A. The nonlinear U(1) model

The properties of nonlinear electrodynamics have been
extensively considered in the literature [44,45] so here we
will only give the most relevant aspects for our purposes.
Let us consider a theory for an Abelian gauge spin-1 field
Aμ described by the Lagrangian

L ¼ KðY; ZÞ þ JμAμ ð1Þ
with K and arbitrary function of Y ¼ − 1

4
FμνFμν and Z ¼

− 1
4
FμνF̃μν and Jμ the conserved current that describes the

charged sector. Notice that the coupling to charged matter is
not modified and corresponds to the one of linear electro-
dynamics. The specific nature of the DM charged sector is
not crucial for our purposes here and it will suffice to
assume that they behave like charged pointlike particles.2 In
terms of the electric and magnetic components we have
Y ¼ 1

2
ðE⃗2 − B⃗2Þ and Z ¼ E⃗ · B⃗. The nonlinear dependence

on Y and Z will become relevant at some scale Λe that will
control the classical nonlinearities. Since quantum correc-
tions are expected to enter with derivatives of the field
strength3 ∂lFn, there should be a regime where classical
nonlinearities are relevant and within the regime of validity
of the effective field theory (EFT). In this regime we can
have Fμν ∼ Λ2

e as long as ∂ ≪ Λe.
The field equations for the gauge field are

∇νðKYFμν þKZF̃μνÞ ¼ Jμ ð2Þ
where the current Jμ acts as its source. As usual, these
equations can be complemented by the Bianchi identities
∇μF̃μν ≡ 0. We will consider now a static source with

Jν ¼ ðρq; 0⃗Þ. The field equations in this situation reduce to

2The precise scenario for the DM charged sector could be
relevant for studies of direct or indirect detection where the
precise couplings to the Standard Model particles are crucial.

3We refer here to quantum corrections due to self-interactions
of the vector field. The coupling to matter fields will generate
quantum corrections to K that are suppressed by the mass of the
particle running in the internal loop. A paradigmatic example
is the Euler-Heisenberg Lagrangian. Corrections due to self-
interactions arise in a nontrivial background as one expands the
quantum fluctuations around this field configuration. The quan-
tum corrections depend on the background. In the case of scalar
field theory like K-mouflage with a shift symmetry, it has been
shown that these quantum corrections appear only as higher order
derivative corrections and therefore leave the original Lagrangian
nonrenormalized [46].
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∇ · ðKYE⃗þKZB⃗Þ ¼ ρq; ∇ × ðKYB⃗þKZE⃗Þ ¼ 0: ð3Þ

Assuming parity invariance, it is noncontradictory to
consider a vanishing magnetic field. Indeed, parity invari-
ance imposes a Z2 symmetry with respect to Z, i.e., the
Lagrangian can only depend on Z2. In that case KZ ¼
2Z∂K=∂Z2 that vanishes identically for B⃗ ¼ 0 provided K
is an analytical function. The equations then read

∇ · ðKYE⃗Þ ¼ ρq: ð4Þ

If the source is spherically symmetric, we can integrate over
a sphere enclosing the source so that Gauss’ theorem gives

KYE⃗ ¼ Q
4πr3

r⃗ ð5Þ

withQ ¼ R
ρqd3x the total charge inside the sphere. This is

the usual result obtained in classical electrodynamics
dressed by the extra KY factor. As for scalar K-mouflage
models, the nonlinearities and the origin of screening lie in
the fact that KY ≠ 1 and can become very large.
We will embed this model of nonlinear electrodynamics

in the cosmological description of the Universe. Typically,
dark matter will be charged under the new Uð1Þ interaction
and at the background cosmological level that we consider
here, we will resort to an isotropic and inhomogeneous
space-time as the presence of the nonlinear electromagnetic
interaction breaks scale-invariance by introducing an intrin-
sic scale Λe in the model. On the other hand, it is exactly
this nonlinear character of the interaction that allows for the
presence of a screening phenomenon that we describe next.

B. Screening

The screening mechanism is now trivial to understand.
If K is an analytic function of Y such that KðYÞ ∼ Y for
Y → 0 we have that

E ≃
Q

4πr2
; r → ∞: ð6Þ

As we approach the object, the electric field grows and the
nonlinearities become more relevant. Since the nonlinear
terms are controlled by the scale Λe, we can expect them to
become relevant when E ∼ Λ2

e that occurs at a scale
parameterically given by

Q
4πr2Λ2

e
¼ 1 ⇒ rs ¼ κ

ffiffiffiffiffiffi
Q
4π

r
Λ−1
e ð7Þ

where κ is a number (typically of order unity) that depends
on the specific theory under consideration. Below this
scale, the electric field is given by

E ≃
Q

4πKYr2
; r ≪ rs ð8Þ

where we clearly see the screening at work, i.e., it is
induced by having a large KY that suppresses the electric
field. This can be interpreted as a screening of the effective
charge Q that is classically redressed by the electric field.
If we have a given distribution of particles of massm and

charge q, then the dominant monopole electric field (which
is the only contribution for a spherical distribution) can be
expressed in terms of the mass of the distribution. If we
denote by4

β≡
ffiffiffi
2

p
QMPl

M
ð9Þ

the charge-to-mass ratio of the object, then we can express
the electric field as

E⃗ ¼ β
M

4
ffiffiffi
2

p
πMPlKYr3

r⃗: ð10Þ

On the other hand, the screening radius can also be
expressed in terms of the mass as

rs ¼ λ

ffiffiffiffiffiffiffiffi
M
MPl

s
Λ−1
e ; with λ≡ κ

ffiffiffiffiffiffiffiffiffiffiffiffi
β

2
ffiffiffi
2

p
π

s
: ð11Þ

Before proceeding further with the analysis, let us anticipate
someorder ofmagnitude estimates for themodel’s parameters.
In the followingwewill be interested in theHubble tensionand
the role that the new dark electromagnetic interaction could be
in alleviating this discrepancy. In particular, we will see that
taking β ¼ Oð1Þ and for a scale Λe close to the dark energy
scale the local Hubble rate can be made compatible with a ten
percent difference with the Hubble rate on large scales. These
values of β andΛe will be the typical templates for our model.
If we take λ ¼ Oð1Þ in Eq. (11), which is equivalent to having
β ∼Oð1Þ, the screening radius of a particle of mass
m ¼ OðGeVÞ is rs ≃ 10−9Λ−1

e . If we nowuse the dark energy
scale for Λe, i.e., Λe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MPlH0

p
≃ 10−3 eV, we obtain

rs ∼ 10−6 eV−1 ∼ 10−13 m. This is a very small screening
radius implying that in practice particles act as unscreened
point-particle objects.However, due to thenonlinearities of the
theory, large accumulations ofmass such as galaxies or cluster
do not act as the superimposition of individual particles, i.e.,
collective effects take place, and they will be screened.
In the presence of a massive object of mass M, a test

particle of mass m and charge qwill experience a force due
to gravity and the electric field that can be written as

4The normalization is introduced for convenience so that β
directly measures the relative strength of gravity and the electric
force outside the screening radius. Notice the factor of 2.
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F⃗ ¼ −G
mM
r3

r⃗þ qQ
4πKYr3

r⃗ ¼ −G
mM
r3

�
1 −

β2

KY

�
r⃗: ð12Þ

This expression clearly shows how at large distances where
KY ≃ 1, the electric force contributes with a strength β2

relative to gravity while inside the screening radius where
KY ≫ 1 the electric force is strongly suppressed. This
screening phenomenon shows similarities with other
screenings appearing for scalar interactions such as the
Vainshtein and K-mouflage phenomena. Inside the screen-
ing radius, the interaction with a point particle is shielded.
Outside the screening radius, the effacement theorem, see
Appendix A, applies and a macroscopic object acts
under the dark electromagnetic interaction as a point
particle. This implies that two macroscopic objects sepa-
rated by a distance larger than the sum of their screening
radii interact with the unscreened dark interaction of
strength β2. We will see in Sec. V that this could have
interesting phenomenological consequences for the dynam-
ics of galaxy clusters. Let us also notice that the additional
interaction effectively weakens gravity due to the electric
repulsion outside the screening radius, in high contrast to
the scalar field theories. In fact, we can encapsulate the
effect of the electric force into an effective scale-dependent
Newton’s constant

Geff

G
¼ 1 −

β2

KY
: ð13Þ

This is one of the main effects that we will exploit in this
work. Since the absence of ghostlike perturbations requires
KY > 0, the effective Newton’s constant is always reduced
for stable theories. Notice that taking β ¼ Oð1Þ could result
in the dark interaction overcoming the gravitational force.
This would lead to an “anti”-gravity effect between
particles subject to this new interaction. Of course, the
well-known constraints on gravitational interactions
between baryons imply that this behavior is excluded.
On the other hand, a large and repulsive interaction
between unscreened objects made out of dark matter can
be made plausible as we explain in Sec. V where phe-
nomenological constraints are applied.
Before proceeding to the main core and for illustrative

purposes, let us briefly give some details for two para-
digmatic nonlinear electrodynamics.

C. Two examples

Born-Infeld electromagnetism. As commented in the
introduction, this is allegedly the first electromagnetic
theory ever exploiting screening properties. The
Lagrangian can be written in the following two alternative
forms:

LBI ¼ Λ4
e

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det

�
ημν þ

1

Λ2
e
Fμν

�s #

¼ Λ4
e

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Y
Λ4
e
−
�
Z
Λ4
e

�
2

s #
: ð14Þ

The electric field for this Lagrangian can be solved
analytically and is given by

E ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðrsr Þ4

q Q
4πr2

; with rs ¼
ffiffiffiffiffiffi
Q
4π

r
Λ−1
e : ð15Þ

Notice that this is the unique solution and that several
branches do not appear contrary to what happens in the
power law example provided in the following section.
Clearly, for r ≫ rs, the electric field approaches the
Maxwellian solution, while at short distances r ≪ rs, the
electric field is

E ≃
�
r
rs

�
2 Q
4πr2

¼ Λ2
e ð16Þ

so its value saturates to an upper constant bound, as the
theory was designed for. In particular, the electric field does
not diverge at the origin and this regularizes the classical
self-energy of pointlike particles. A summary of the
properties of the Born-Infeld case can be found in Table I.
Power law correction. Another useful example of non-

linear electrodynamics is adding a power law correction to
the Maxwellian Lagrangian

Ln ¼ Y þ Λ4
e

�
Y
Λ4
e

�
n

ð17Þ

with n a dimensionless parameter that must be n > 1 in
order to recover Maxwell electromagnetism at large dis-
tances (small electromagnetic fields). We could add con-
tributions depending on Z2 as well, but since these trivialise
for static purely electric configurations as the ones we
consider here, they are not relevant. They should be
relevant however for the behaviour of the perturbations.
The equation for the electric field can be written as

�
1þ n

�
E2

2Λ4
e

�
n−1�

E ¼ Q
4πr2

: ð18Þ

This equation exemplifies the expected feature that non-
linear electromagnetism exhibit several branches, one of
which is continuously connected to the Maxwell solution at
infinity. This is the one we will be interested in. The case of
Born-Infeld is also special due to the absence of multi-
branching. The screening radius can be computed as
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n

�
E2

2Λ4
e

�
n−1

¼ 1 ⇒ rs ¼ ½2n1=ð1−nÞ�−1=4
ffiffiffiffiffiffi
Q
4π

r
Λ−1
e : ð19Þ

again in accordance with the general expression (11) so it is
parameterically determined by the nonlinear scale Λe. In
the present case of a polynomial equation of degree 2n − 1
the solution can be found by solving the associated
algebraic equation. Since a general algebraic solution is
more involved to obtain, and generically does not exist for
n ≥ 3, we will limit ourselves to computing the behavior of
the electric field below the screening scale

E ≃ κn

�
r
rs

� 2
1−2n

Λ2
e ð20Þ

with κn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1=ð1−nÞ

p
. This expression clearly shows that

the electric field is suppressed with respect to its
Maxwellian counterpart provided n > 1. Notice however
that the electric field is divergent at the origin. A summary
of the properties of the quadratic (n ¼ 2) case can be found
in Table I.

III. NEWTONIAN COSMOLOGY

A. Formalism

We are interested in studying a Universe with a dark
electromagnetic interaction described by the nonlinear
theories as introduced above and featuring a screening
mechanism. We will commence our analysis by studying
the Newtonian cosmology within this scenario. A nice
discussion of Newtonian cosmology can be found in [47].
Here we will content ourselves with highlighting the most
relevant points for our purposes. For the sake of simplicity,
we will assume a Universe filled with an ensemble of
nonrelativistic massive particles that interact through the
dark electromagnetic force in addition to the usual gravi-
tational attraction. Furthermore, we will assume that all the
particles have the same mass and charge. This could be the
case if we only consider the dynamics of dark matter (DM)
particles and we assume them to be conformed by one
single species that has a certain dark charge. We will extend
our analysis by including an uncharged baryon component
later.

The idea is then to consider an infinite distribution of
particles of density ρ which we will assume to be initially
homogeneous (for a detailed account on discrete cosmo-
logy see [36]). A little digression on the problem of infinite
distributions seems in order. If the particles interact via a
long-range force, dynamics are not well-posed due to the
divergence of the force. The Newtonian potential is
precisely on the verge of being convergent. This follows
from the fact that, assuming a constant density profile, the
force at a point x⃗ is formally given by

F⃗ ∝
Z

d3x0
x⃗ − x⃗0

jx⃗ − x⃗0j3 : ð21Þ

The integrand for large distances goes as a constant and,
therefore, the force is linearly divergent so we can assign to
it any value by simply performing an appropriate arrange-
ment of the integration volume. For instance, if the
integration is performed symmetrically with respect to x⃗
we will obtain F⃗ ¼ 0. More technically, while the integral
can be made convergent, it is not conditionally convergent
and we need some physical guidance to give it some
physical sense. The way to treat this problem is by suitably
defining the infinite problem. For that, we can take a sphere
of a given radius R and only at the end do we take the limit
R → ∞. Certainly, the ill-defined final limit introduces a
dependence on the initial geometry we start with. Since we
want to achieve a spherically symmetric solution, a sphere
is the appropriate initial geometry. Another approach that
would suffice for our purposes here would be to consider
actually an isotropic distribution of matter inside a sphere
of a radius R much larger than the scales we are interested
in, so the distribution would appear homogeneous and
isotropic for our relevant observers. This would avoid
taking the ill-defined limit, but it could introduce boundary
effects. However, these will be negligible provided wework
well inside the distribution.
Having clarified our approach to the Newtonian cosmol-

ogy, we can proceed with our analysis. Let us consider the
spherically symmetric shell distributions discussed above
and describe their evolution with the time-dependent radial
coordinate RðtÞ. We will assume that at some initial time t⋆
the shells have initial positions r⋆ ¼ Rðt⋆Þ and velocities
v⋆ ¼ _Rðt⋆Þ > 0 as it corresponds to an initially expanding

TABLE I. We give two specific examples of nonlinear electromagnetism featuring a screening mechanism.
Accidentally, the screening scale coincides for these two theories, but the parametric scaling with Q and Λe is
universal. We also have introduced, for future convenience, the function FðxÞ that incorporates the nonlinear
properties of each specific model.

Theory Lagrangian Function Screening scale

Born-Infeld LBI
Λ4
e
¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðημν þ 1

Λ2
e
FμνÞ

q
FðxÞ ¼ 1ffiffiffiffiffiffiffiffiffi

1þx−4
p rs ¼ 1

Λe

ffiffiffiffi
Q
4π

q
Quadratic (n ¼ 2) L2 ¼ − 1

4
FμνFμν þ ðFμνFμν

4Λ4
e
Þ2 ½1þ FðxÞ

x4 �FðxÞ ¼ 1 rs ¼ 1
Λe

ffiffiffiffi
Q
4π

q
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regime. The initial density profile will also be assumed to
be isotropic so ρ⋆ ¼ ρðr⋆Þ. Since the initial distribution of
velocities is assumed to be radial, the initial spherical
symmetry will be maintained throughout the evolution.
Now we can follow such an evolution by using either
Eulerian coordinates ðt; RðtÞÞ or Lagrangian coordinates
ðt; r⋆Þ, i.e., we can either follow the evolution of each shell
or follow the evolution of the density field. In terms of
Eulerian coordinates, the dynamics is governed by the
equations

R̈ðt; r⋆Þ ¼ −
GMðRÞ

R2
½1 − β2FðR=rsÞ�: ð22Þ

with

MðRÞ ¼ 4π

Z
y<R

ρðyÞy2dy ð23Þ

the mass enclosed by a sphere of radius R. For the sake of
generality, we have introduced the function FðxÞ as a
phenomenological parametrization of the screening so that
Fðx ≫ 1Þ ≃ 1 and Fðx ≪ 1Þ ≪ 1. The specific shape of
this interpolating function depends on the precise theory
and is given by K−1

Y expressed as a function of the radius.
However, for our general arguments in the following, the
detailed form of FðxÞ is not needed. Having moving
charged shells, one may object that magnetic forces should
also be included. However, given the preserved spherical
symmetry and that expanding charged spheres do not
generate magnetic fields, the Lorentz force is in this case
strictly zero. Furthermore, let us mention that magnetic
forces that could be generated by peculiar motions due to
deviations from spherical symmetry would be a next-to-
leading order effect and can be safely ignored against the
electric forces just as much as we neglect gravito-magnetic
forces in the gravitational sector.
For our purposes and to have a more direct connection to

FLRW (Friedmann-Lemaître-Robertson-Walker), Lemaître
and LTB (Lemaître-Tolman-Bondi) models that we will
present in Sec. III C, it is more convenient to use
Lagrangian coordinates so that each shell is described by
its radius at a given time, say r⋆ ¼ Rðt⋆Þ. Using these
coordinates amounts to foliating the spatial sections with
the initial position of the shells. In that case, we can
introduce the local scale factor defined by aðt; r⋆Þ≡ R=r⋆
and rewrite the equations as

äðt; r⋆Þ ¼ −
Gμðt; r⋆Þ
a2ðt; r⋆Þ

�
1 − β2F

�
a
as

��
ð24Þ

with μ≡Mr−3⋆ . Since the screening radius is
rs ¼ λΛ−1

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=MPl

p
, we have that as ¼ λΛ−1

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μr⋆=MPl

p
.

Now, a must be considered as a function of time and the
Lagrangian coordinate r⋆. To simplify the notation, we will

denote by r≡ r⋆ so a ¼ aðt; rÞ and r is the (time-
independent) radial coordinate. The mass density parameter
μ can be written in terms of the scale factor as

μðt; rÞ ¼ 4π

Z
ã<a

ã2dãρðt; ãrÞ: ð25Þ

If the evolution of the system is such that the different shells
do not cross, this integral does not depend on time, so we
can compute it by evaluating at t ¼ t⋆

μðt; rÞ ¼ μðt⋆; rÞ ¼ 4π

Z
ã<1

ã2dãρðt⋆; ãrÞ: ð26Þ

where we have used that a⋆ ≡ aðt⋆; rÞ ¼ 1. This simply
reflects the fact that if there is no shell-crossing, the mass
within a given shell is conserved and, consequently, it is
determined by the initial configuration. Furthermore, if the
initial density profile is uniform ρðt⋆; ãrÞ ¼ ρ⋆, we have

μ⋆ ¼ 4πρ⋆
3

ð27Þ

so it is just a constant. In that case, the evolution equation
becomes

ä ¼ −
4πGρ⋆
3a2

½1 − β2Fða=asÞ�; ð28Þ

with the screening scale factor given by

asðrÞ ¼
λ

Λe

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πρ⋆
3MPl

r

s
: ð29Þ

If the nonlinearities in the electric force sector were absent
(i.e., FðxÞ ¼ 1 at all scales), the obtained evolution
equation would not depend on r, indicating that all the
shells evolve in the same way. The usual comoving motion
of the particles would still be valid, though with a corrected
Newton’s constant accounting for the extra electric repul-
sion. In our case, however, we clearly see how the nonlinear
term breaks the self-similar evolution via the dependence
on r hidden in the screening scale. This means that we will
have a comoving motion of the shells until they exit their
respective screening radii. Since, in the absence of shell
crossing, the screening radii scale as as ∝

ffiffiffi
r

p
, the more

internal shells exit the screened regime earlier than the
external shells.5 This can potentially induce shell crossing
since once a shell exits its screening scale it tends to expand
faster due to the extra electric repulsion. For the moment,
we will assume that no shell-crossing occurs in order to

5The presence of shell crossing complicates things in a
substantial manner. For instance the screening scale could also
depend on time. We will comment on shell crossing effects in
Secs. IV B and IV C.
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simplify the analysis, but we will come back to this point in
Sec. IV B. Let us emphasise that the breaking of self-
similarity in the evolution does not directly imply the
appearance of self-crossing as we will corroborate with our
numerical analysis in Sec. IV.

B. Effective Friedmann equation

From the evolution equations for the shells (28), we can
obtain in a simple manner the effective Friedmann equation
derived from Newtonian cosmology. For that, we notice
that it is possible to find a first integral of (28) by means of
the corresponding energy function, which is given by

EðrÞ ¼ 1

2
_a2 −

4πGρ⋆
3a

þ UðaÞ ð30Þ

with

UðaÞ≡ U⋆ −
4πGρ⋆

3
β2

Z
a

a⋆
da

Fða=asÞ
a2

ð31Þ

where U⋆ is the initial value of U. Notice that U is the dark
electromagnetic energy per unit mass of a given shell
characterised by the scale factor a. We can rewrite the
energy equation (30) in a more suggestive form as follows:

_a2

a2
¼ 8πGρ⋆

3a3
þ 2

EðrÞ − UðaÞ
a2

: ð32Þ

We can then define the inhomogeneous Hubble factor as

H2ðt; rÞ≡ _a2

a2
¼ 8πGρ⋆

3a3
þ 2

EðrÞ − UðaÞ
a2

ð33Þ

that reproduces the analogous Friedmann equation in an
LTBmodel with appropriate identifications and under some
assumptions that we will make explicit in Sec. III C. The
first term in (33) is obviously the matter contribution. The
energy function EðrÞ reproduces the contribution from the
inhomogeneous spatial curvature kðrÞ. The appropriate
interpretation of the potential U depends on the particular
evolution because it can depend on t and r through its
dependence on a. In the general case, this potential
contributes like an additional component with an effective
equation of state determined by (31). Since the zero-point
of this potential is free, i.e., it will be determined by
boundary conditions, there will always be a piece of U
contributing to the spatial curvature kðrÞ. Before computing
the explicit form of these contributions, it is instructive to
see what happens in the absence of the screening scale, so F
is a constant function (whose value can be absorbed into β).
In that case, we recover that the Eq. (28) does not depend
on the radial Lagrangian coordinate so the shells comove,
i.e., a ¼ aðtÞ. In that case using (31) we find

U ¼ 4πGρ⋆
3

β2a−1 − U0: ð34Þ

We have obtained the expected result that the Newton’s
constant is redressed by a factor 1 − β2 and the arbitrary
zero-point of the potential contributes to the spatial
curvature. Crucially, notice that all the r-dependence drops
and we recover the usual FLRW homogeneous cosmology.
In the general case, we can compute a reasonable

approximation to (31) without specifying F. By setting
U⋆ ¼ 0 in accordance with our initial conditions,6 we
can introduce x≡ a=as and write

U ¼ −
4πGρ⋆
3as

β2
Z

x

x⋆
dx

FðxÞ
x2

¼ −
4πGρ⋆
3as

β2
Z

x

0

dx
FðxÞ
x2

ð35Þ
where we have used that x⋆ ¼ a⋆=as ≪ 1 to replace the
lower limit by 0. In practice, this amounts to removing a
finite part that contributes to U⋆, but such a contribution is
sufficiently small to have no effect. Initially, when the
electric force is screened, i.e., for x < 1 we can assume that
the interpolating function takes the form7 FðxÞ ≃ xm so we
have

Uscreened ≃ −
4πGρ⋆
3as

β2
Z

x

0

dx xm−2

¼ −
4πGρ⋆
3as

xm−1

m − 1
¼ −

4πGρ⋆
3a

xm

m − 1
: ð36Þ

This expression shows that the electrostatic energy
generates a spatial curvature despite being screened.
Furthermore, this contribution grows as Uscreened ∝ am−1

and, even though the evolution is self-similar, the spatial
curvature already acquires an inhomogeneous profile
Uscreened ∝ ams ∝ rm=2. In any case, since in the screened
region we have x ≪ 1, U contributes negligibly with
respect to the dust component to the Friedmann equa-
tion (33). Hence at early times before the shells exit their
screening radius, i.e., for a ≪ as, the Friedmann equation
reduces to the one of the Λ-CDM model when the spatial
curvature vanishes E≡ 0. In this case the scale factor is not
affected and grows as a ∝ t2=3. Only when the screening
ceases around x ≃ 1 does this contribution become relevant.
In the asymptotic region with x≳ 1, the integral can be
computed as

6This may introduce a fine-tuning problem similar to the usual
curvature problem of cosmology. Of course, in practice what we
are really assuming is that U⋆ is sufficiently small so that it does
not play any role.

7Notice that the existence of screening requires m > 0, while
avoiding a divergent potential U near the origin requires m > 1.
Physically, this is the necessary condition to avoid a divergent
electrostatic energy for pointlike sources. Born-Infeld corre-
sponds to m ¼ 2.
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U ≃ −
4πGρ⋆
3as

β2
�Z

1

0

dxxm−2 þ
Z

x

1

dxx−2
�
: ð37Þ

The integration can be performed straightforwardly and we
obtain

UðaÞ ≃ −
4πGρ⋆
3as

β2
�

m
m − 1

−
as
a

�
ð38Þ

where we have restored the explicit dependence on a. At
very late times where a ≫ as, the second term becomes
negligible and only the first piece contributes. To have a
better physical understanding of the two terms, we can
insert the expression for U into the Friedmann equation (33)
to obtain

H2ðt; rÞ ¼ ð1 − β2Þ 8πGρ⋆
3a3

þ m
m − 1

8πGρ⋆
3as

β2a−2: ð39Þ

We then see that the unscreened region corrects the
effective Newton’s constant by the factor 1 − β2, as
expected because in that region we have the extra electric
repulsion, while the screened region contributes a spatial
curvature term. This equation can be written as

H2ðt; rÞ ¼ 8πGρ⋆
3a3

�
1þ β2

�
m

m − 1

a
as

− 1

��
: ð40Þ

When the shells have exited their screening radius for
a ≥ as, the term in β2 is always positive. As a result, the
correction to the Friedmann equation due to the dark
interaction always enhances the Hubble rate compared to
the Λ-CDM case.
It is interesting to notice that the asymptotic evolution is

dominated by the growth of Uscreened during the screened
phase that saturates at x ≃ 1 and give an inhomogeneous
spatial curvature. Although it may seem like this inhomo-
geneous spatial curvature induces a scale-dependent expan-
sion rate at late times, this is not the case and it actually
gives rise to an asymptotically homogeneous Hubble
expansion rate. This can be understood directly from the
equation (28) by noticing that at late times the dominant
solution is a ∝ t as it corresponds to a curvature dominated
Universe. Since the inhomogeneity appears in the propor-
tionality constant, the Hubble expansion rate is not sensi-
tive to it and all the shells enter again a comoving motion,
although an inhomogeneous density profile has been
generated. To see why the curvature contribution from U
to the Friedmann equation is homogeneous, we can notice
that as ∝

ffiffiffi
r

p
. On the other hand, we can compute the effect

of the asymptotic dominance of the curvature term in the
Friedmann equation (39) on the expansion rate. In par-
ticular we find that asymptotically the scale factor a∞
acquires a dependence on the radius r as

a∞ ¼ a∞
as

as
a⋆

a⋆ ¼
�
t∞
ts

��
ts
t⋆

�
2=3

a⋆

∝ t−1=3s ∝ a−1=2s ∝ r−1=4 ð41Þ

where we have used that a ∝ t2=3 in the unscreened phase
as the effects of the electrostatic force is null in this era and
the Friedmann equation reduces to the one of the Λ-CDM
model when we take a vanishing curvarture E≡ 0 and the
scale factor grows in t in the curvature dominated regime.
Since the inhomogeneous curvature contribution from U in
the asymptotic region goes like a−2∞ a−1s we see that the
r-scaling exactly cancels. Yet another way of seeing
the scale-independence is to notice that the asymptotic
Friedmann equation gives _a ∝ a−1=2s ðrÞ ⇒ a ∝ a−1=2s ðrÞt
so H ¼ _a=a does not depend on r. In particular, this means
that the asymptotic scaling of the spatial curvature decays
as k∞ðrÞ ¼ 2U∞ ∝ r−1=2 so the larger scales are less
influenced by the produced spatial curvature. Let us
emphasise that despite recovering the comoving evolution
in the asymptotic late-time region, the cosmological prin-
ciple is broken due to the inhomogeneous profile for the
scale factor of the different scales generated by the scale-
dependence of as. This breaking of homogeneity gives
observable effects like, e.g., on the redshifts of photons as
we will discuss in Sec. IV D.
Thus, the overall evolution exhibits three phases:
(i) Phase 1: Comoving dust dominated evolution. The

first stage of the evolution is insensitive to the
electric force, which is screened on all scales, and
the Universe evolves in comoving motion. However,
the inhomogeneous contribution from U to the
spatial curvature already grows

(ii) Phase 2: Transition region. Some scales start exiting
their screening radii so they decouple from the
comoving motion due to the additional electric
force. Since the screening scale factor scales as
∝

ffiffiffi
r

p
, smaller scales decouple from the comoving

motion at earlier times.
(iii) Phase 3: Asymptotic comoving inhomogeneous

evolution. At very late times, when all the relevant
scales have exited their screening radii, the comov-
ing motion is recovered, but for an inhomogeneous
density profile formed during phase 2. This asymp-
totic state is dominated by the spatial curvature
associated to the electric potential that has been
growing since phase 1.

Wewill confirm these findings in the numerical solutions of
Sec. IV. In the next section we will see how our Newtonian
picture relates to relativistic inhomogeneous cosmological
models. But before that and for completeness, let us give
the corresponding expressions when the mass is not
conserved, i.e., for μ ¼ μðt; rÞ. In that case we can still
write a first integral of (24) as
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EðrÞ ¼ 1

2
_a2 −

GMðaÞ
a

þ ŨðaÞ ð42Þ

where the functions M and Ũ satisfy

M − a
dM
da

¼ μðaÞ; and
dU
da

¼ −β2
GμðaÞ
a2

Fða=asÞ
ð43Þ

and μ must be interpreted as a function of a. The function
M will be identified with the mass in the shell labeled by a
and Ũ is related to the electrostatic potential which will be
shown to correspond too the pressure due to the electro-
static interaction in the next section. It is not difficult to see
that for μ ¼ μ⋆ we recover our previous results when mass
conservation holds.

C. Connection to Lemaître models

In this section we will show how, with suitable identi-
fications, the dynamics of charged DM admits a geomet-
rical interpretation in terms of an inhomogeneous,
spherically symmetric metric. To do so, we will introduce
a dark fluid as a proxy for the description of the properties
of nonlinear electrodynamics cosmologically. This dark
fluid will not have an equation of state equal to one-third as
in linear electrodynamics. At the field theory level, this
follows from the nonvanishing of the trace of the energy-
momentum tensor for nonlinear electromagnetism that
measures the breaking of scale invariance. Moreover we
will see that the pressure must also be inhomogeneous. This
can be described using Lemaître models [37]. A fully
relativistic description where the origin of the dark fluid
will be shown to follow from the presence of an isotropic
electric field is given in [40].

1. The Einstein equations

The equations derived in the previous section from the
Newtonian approach can be matched, with appropriate
identifications, to those derived from a Lemaître model
[37]. This belongs to the category of inhomogeneous
spherically symmetric solution to the Einstein equations
(see [48] for a review) which has been extensively applied
to cosmology [49]. The Lemaître metric reduces to the well
known Lemaître-Tolman-Bondi (LTB) one [37–39] if one
takes a Universe filled only with dust (zero pressure) and a
cosmological constant term. Generalisation of LTB models
to include a time or space dependent pressure have been
investigated as well [50–52]. However, in order to treat
with full generality a time and space dependent pressure,
one needs to resort to the Lemaître model.
The metric for this class of models is given by the

following line element

ds2 ¼ −eAðr;tÞdt2 þ eBðr;tÞdr2 þ R2ðr; tÞdΩ2 ð44Þ

where dΩ is the solid angle that can be fixed once an origin
for the coordinates has been chosen.
We will assume that the matter content can be described

as a perfect fluid and comprises a pressure-less dust, a
(dark) fluid with pressure and a cosmological constant
term. We will further consider noninteracting fields,
hence their individual stress-energy tensor are covariantly
conserved.
The Einstein equations for the metric (44) read

2
_R0

R
−

_BR0

R
−
A0 _R
R

¼ 0; ð45Þ

4πR2 _Rptotðr; tÞ ¼ − _Mtot; ð46Þ

4πR2R0ρtotðr; tÞ ¼ M0
tot ð47Þ

where

2GMtot ¼ Rþ Re−A _R2 − Re−BR02 −
1

3
ΛR3 ð48Þ

is the Lemaître [37] or Misner-Sharp-Hernandez mass
[53,54]. Notice that Λ has dimension two in natural units
where ℏ ¼ 1, c ¼ 1. Hence here ρtot and ptot denote the
total energy density and pressure of all the fluids in the
Universe but the one representing the cosmological
constant.

2. Conservation of matter

From the conservation of the energy momentum tensor
we get

_Bþ 4
_R
R
¼ −

2_ρtot
ρtot þ ptot

and A0 ¼ −
2p0

tot

ρtot þ ptot
: ð49Þ

The second equation clearly shows how the gradients of the
pressure source the function A and fully determines it.
More particularly, we have

A ¼ −
Z

dr
2p0

tot

ρtot þ ptot
þ ÃðtÞ ð50Þ

where ÃðtÞ depends only on time and is not determined. In
fact, we can always choose Ã≡ 0 as this can be absorbed in
a change of time t → t̃where dt̃ ¼ dteÃ=2. Also notice that,
in the absence of pressure term we retrieve the fact that
A≡ 0 like in Lemaître-Tolman-Bondi models. Joining
Eqs. (46) and (47) with those in (49) and recalling that
the two fluid species are not interacting, i.e., their stress
energy tensor are separately conserved in an inhomo-
geneous Universe, we get the continuity equations in this
class of models to be
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_ρdust þ
�
2
_R
R
þ R0

R

�
ρdust ¼ 0; ð51Þ

_ρe þ
�
2
_R
R
þ R0

R

�
ðρe þ peÞ ¼ −

_R
R0 p

0
e: ð52Þ

where we have explicitly separated the total energy density
ρtot ¼ ρdust þ ρe where ρdust corresponds to the pressureless
fluid contribution while ρe is the energy density of a fluid
with an inhomogeneous pressure whose origin will be
identified as representing the effects of the electrostatic
interaction, i.e., the dark fluid. The first equation in (52)
expresses the conservation of the dust component of the
matter content. The second equation follows from the
conservation of dust in an inhomogeneous Universe and
(46) together with (47). Finally, notice that the above
system of equations reduce to the standard ones for the
homogeneous case if p0 ¼ 0 and R ¼ raðtÞ.
Equation (45) can be integrated and gives

eBðr;tÞ ¼ R02

1þ 2EðrÞ e
−
R

A0 _R
R0dt

¼ R02

1þ 2EðrÞ e
2
R p0tot

ρtotþptot

_R
R0dt ð53Þ

where we have used the second equation in (49).

3. The Friedmann equation

The mass defined in Eq. (48) can be conveniently
rewritten as

e−A _R2 ¼ 2GMtot

R
þ 1

3
ΛR2 þ ð1þ 2EðrÞÞe−2IB − 1 ð54Þ

where we have introduced the integral

IB ¼
Z

p0
tot

ρtot þ ptot

_R
R0 dt: ð55Þ

The total mass appearing in the above equation can be
separated in its two components

Mtotðr; tÞ ¼ 4π

Z
½ρdustðr; tÞ þ ρeðr; tÞ�R2ðr; tÞR0ðr; tÞdr

¼ MNðr; tÞ þMeðr; tÞ; ð56Þ

where in the last equality we have defined the Newtonian
mass MN associated to the dust component and the
electrostatic mass Me. Notice that the time derivative of
MN vanishes thanks to the conservation of ρdust. If we also
assume that there is no shell crossing, i.e., R0ðr; tÞ ≠ 0, then
MN is conserved inside the sphere of radius Rðr; tÞ at any
given time. It is then enough to provide its value at some
reference time. This is not true for the second mass Me,

since the presence of the pressure implies the nonconser-
vation of the mass.
Let us now consider the situation in which pe ≪ ρtot and

the dimensionless ratio of pressure gradients over the total
energy density is not too large compared to the inverse size
R−1, i.e., we consider that this term varies slowly over the
whole shell. As both Aðr; tÞ and Bðr; tÞ depend on integrals
of the quantity p0

e=ðρtot þ peÞ, we can expand the expo-
nential and consider only the leading terms. This gives

ð1 − AÞ
_R2

R2
¼ 2GMtot

R3
þ 1

3
Λþ 2

EðrÞ − IB
R2

ð57Þ

where Λ ¼ 8πGρDE is related to the dark energy scale ρDE.
One can see that Eq. (57) is formally equivalent with the
one obtained from the Newtonian cosmology approach.
Indeed let us identify

IB
R2

¼ UðaÞ
a2

ð58Þ

where Rðr; tÞ ¼ aðr; tÞr for each shell and UðaÞ is given by
(31). This gives

p0
e

ρtot þ pe
¼ 4πβ2Gρ�rR0

3a2ðr; tÞ F

�
a
as

�
: ð59Þ

The identification with the Newtonian cosmology approach
is valid when the dust component dominates over the dark
fluid and we have ρtot þ pe ≃ ρdust. We can see that (59)
then determines pe which is proportional to OðGÞ from
(59) implying that the term in 2GMe=R3 in the Friedmann
becomes, thanks to (47), of order G2. This is a post-
Newtonian term as the Newtonian approximation can be
seen as an expansion in powers of G and small velocities.
Hence this term goes beyond the Newtonian approxima-
tion, being second order, and can be dropped in the
identification with the Newtonian cosmology equations.
Thus we can discard the term inMe in the total mass as well
as the contribution due to the potential A and keep the
Friedmann equation at the lowest order

_R2

R2
¼ 2GMN

R3
þ 1

3
Λþ 2

EðrÞ − IB
R2

ð60Þ

which completes the identification between the Newtonian
approximation of the Lemaître model and the cosmological
model with a dark electromagnetic component presented in
the previous section. In agreement with our previous
definition, we have identified the mass MN as the mass
inside the shell of radius R due entirely to the dust
component of the Universe. This is exactly the mass term
that appears in the Newtonian derivation of the Friedmann
equation where a shell of mass R evolves under the
influence of the gravitational potential inside its radius.
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This comes eventually from the effacement theorem which
is true for Newtonian gravity and can be extended to
screened electrostatic interaction, see Appendix A. This
equivalence is only valid when no shell crossing happens
and only one type of charged matter is present. A good
example is provided by the Born-Infeld theory. More
complex cases with charged and uncharged species,
together with shell crossing will be considered below.

4. Thermodynamic interpretation

The Einstein equation (47) can be used to identify the
mass of the pressure component as

Meðr; tÞ ¼ −4π
Z

dtpeR2 _R: ð61Þ

Notice that the dark radiation mass is equal to the work due
to the dark pressure. In this sense we can identify the
pressure as

pe ¼ −
dMtot

dV
ð62Þ

where the volume of a given shell labelled by r is such that
dV ¼ 4πR2 _Rdt ¼ 4πR2dR. This can also be written as the
pressure due to the electrostatic force on a given shell as

pe ¼
Fe

S
ð63Þ

where the electrostatic force on a shell

Fe ¼ −
dUe

dR
ð64Þ

is the gradient of the internal energy Ue identified with

Ue ≡Mtot ð65Þ

and S ¼ 4πR2 is the surface area of the given shell at time t.
Hence, we see that the dark radiation pressure is respon-
sible for the variation of the internal energy, i.e. the total
mass, of a given shell. In the Newtonian approximation, the
electrostatic pressure can be easily computed as the force
acting on a given shell of radius R divided by its surface
area 4πR2. The electrostatic force exerted on the shell of
radius is given by

Fe ¼
β2GM2ðRÞ

R2
FðR=rsÞ ð66Þ

from (22) leading to the pressure pe ¼ Fe=4πR2

pe ¼
β2GM2ðRÞ

4πR4
FðR=rsÞ ¼ β2

4πGρ2⋆
9a4

r2Fða=asÞ: ð67Þ

We can compare this expression to the pressure in the
relativistic version. If we consider (59) and take a
Newtonian limit so we can neglect pe against ρtot ¼
ρ⋆=a3 and use that R0 ¼ a we obtain:

p0
e ¼

4πβ2Gρ2⋆
3a4

rFða=asÞ: ð68Þ

In the asymptotic region, we can now recall that a ∝ r−1=4

and approximate F ≃ 1 so we can neglect its r-dependence.
Under these assumptions, we can integrate the above
expression and explicitly check that we obtain the pressure
(67) already known from the Newtonian approach. Notice
that the dark interaction contributes to the Friedmann
equation because the pressure of the dark fluid has a
nonvanishing gradient. This gives a contribution to the
curvature of space. Hence we see explicitly that the effects
of the dark force goes beyond the usual treatment of
inhomogeneities using Lemaître-Tolman-Bondi space-
times, and necessitates the more general Lemaître models.

IV. NUMERICAL RESULTS

In this section we will solve numerically the evolution of
the shells and we will confirm the analytical findings of the
precedent section. We will proceed in several steps to
clearly identify the different effects. To that end, we will
first introduce our numerical approach to the problem and
solve it for a single component scenario as we did in the
previous analytical analysis. The numerical solutions will
allow us to make explicit when the previous assumption of
the absence of shell crossing, even though the additional
electric force is repulsive, is valid. We will then proceed to
include uncharged baryons and dark energy and discuss
how this scenario can be relevant to alleviate the H0

tension.

A. Evolution of dark matter halos

We can confirm the phenomenology explained above
from the Newtonian cosmology approach by solving
numerically the evolution of many shells. We will tackle
the numerical problem by discretizing the shells distribu-
tion so we will consider a set of N shells with radii RiðtÞ
subject to the following system of equations

R̈i ¼ −
GMðRiÞ

R2
i

½1 − β2FðRi=rs;iÞ�; i ¼ 1;…; N: ð69Þ

We will solve these equations for a set of discrete shells
with a uniform initial distribution, i.e., assuming a homo-
geneous density profile initially. In all the cases that
we consider, we have checked that for large values of
N, typically one hundred, the evolution of the shells
converges to an asymptotic behavior which corresponds
to the analytical understanding that we have just presented.
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In particular, in the absence of shell-crossing we expect the
large N limit to converge to the description we have given
in terms of Newtonian cosmology. Because the spherical
symmetry is preserved in the evolution, the mass for each
shell mi will remain constant. Notice that this does not
mean that the functionMðRiÞ, which is the mass contained
within the ith shell, is constant in the evolution. This only
happens in the absence of shell-crossing. Numerically, we
compute the mass MðRiÞ as

MðRiÞ ¼
X
Rj≤Ri

mj ð70Þ

where the time-dependence comes from the time depend-
ence of the summation limits because, as explained, mi are
constant. Obviously, if there is no shell-crossing, the

summation limits do not depend on time and the mass
enclosed by each shell is conserved. If the initial uniform
density is ρ⋆, we assign to each shell the mass contained
between that shell and the immediate inner one in the initial
distribution so that

mi ¼
4πρ⋆
3

ðR3
i − R3

i−1Þjt¼t⋆ ; i ¼ 1;…; N ð71Þ

with R0 ¼ 0. Because of the initial uniform density profile,
this mass assignment guarantees that MðRiðt⋆ÞÞ ∝ R3

i ðt⋆Þ
which establishes an initial hierarchy for the screening radii.
Finally, for the initial velocities wewill assume that the shells
are in a comoving regime with viðt⋆Þ ¼ H⋆Riðt⋆Þ. These
initial conditions are motivated as at early times we impose
that all the shells are inside their screening radii so that it is

FIG. 1. The following choice of values are only taken for illustration so that the effects can be visible. In the upper left panel we show
the evolution of the shells size normalized to the radius of the innermost shell. The color coding has been chosen so that darker means
inner shells. We have chosen β2 ¼ 200, 4πρ⋆=3 ¼ 1 and rs ¼ 500

ffiffiffiffiffi
M

p
in units of G ¼ 1. In the upper right panel we show the shells

scale factor evolution, where we can see the initial dust dominated evolution (dashed line) that transits to an open Universe (dotted line)
with a spatial curvature generated by the electric pressure. We can also confirm the initial self-similar evolution that breaks as the
different shells exit their corresponding screening radii. The lower left panel shows the time evolution of the function U which governs
the evolution of the curvature in the effective Friedmann equation. Finally, in the lower right panel we plot the density (blue) and the
pressure (orange) profiles at three different times: the initial profile (solid line), the profile at a time in the transition region, t ¼ 3 × 103,
(dashed) and the asymptotic profile (dotted). This confirms that the asymptotic state recovers the self-similar evolution but an
inhomogeneous profile has been generated. Moreover we also see explicitly that the pressure acts on the outer shells at late times.
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natural that they evolve according to the usual Hubble flow.
We also impose the spatial curvature contribution to be
negligible with respect to the dust energy density so we take

H⋆ ¼
ffiffiffiffiffiffiffiffiffiffi
8πGρ⋆

3

q
. This initial velocity guarantees that we will

pick the solution corresponding to a dust dominated
expansion.
For our numerical solutions, we will use the Born-Infeld

model, so the interpolation function is FðxÞ ¼
ð1þ x−4Þ−1=2 and we show the evolution of the shells in
Fig. 1. In the upper left panel we can see the evolution of
the shells size normalised to the (time-dependent) radius of
the innermost shell, while the upper right panel shows the
evolution of their scale factors. The three phases described
above are clearly visible, namely: the shells comove
initially with a common scale factor that grows as
a ∝ t2=3, as it corresponds to dust domination. When the
shells start exiting their respective screening scales the
comoving evolution ceases and different shells start evolv-
ing differently. Finally, at sufficiently late times, the shells
enter a comoving evolution where they all grow as a ∝ t,
but the breaking of self-similar evolution during the
transition phase introduces an inhomogeneous distribution
for the scale factors. This inhomogeneity can be identified
in the lower right panel where the density profiles at
different times are depicted. In particular, we can see a
growing density profile in the asymptotic region, in
accordance with the fact that the electric force stacks more
densely the initial distribution of shells (upper left panel).
Finally, we have plotted the potential U that gives rise to an
inhomogeneous spatial curvature that becomes dominant at
late times as it eventually drives the expansion of the shells.
As obtained analytically above, there is an initial growth
during the screened phase that saturates when the screening
ceases (with a transition region). The asymptotic spatial
curvature can be seen to be larger for the inner shells, in
agreement with the obtained profile k∞ ∝ r−1=2.

B. Shell crossing

As commented above, an important issue in the evolution
of the shells is the possibility of having a singular stream
flow where different shells cross. This condition in turn
determines whether the mass inside a given shell is con-
served or not. In this section we will analyse this issue in
more detail with our numerical solutions. Our main purpose
here is not to present an exhaustive analysis of the regular
evolution of the outwards/inwards matter streams that can
give rise to the presence or absence of shell crossing, but
rather to show how this crucially depends on the electric
force profile with an explicit example. That shell crossing is
not always a feature of our scenario should be clear from our
analysis in the preceding section for the Born-Infeld theory.
In this case, no shell crossing was present.
The crucial importance of the electric force for having

shell crossing essentially lies in both its relative strength,

measured by β2, and in the interpolation region, i.e., how
smoothly or suddenly the transition occurs. While the
impact of β2 is quite obvious, the dependence of shell
crossing on the details of the transition region is less
obvious. For a very sudden transition, when a given shell
exits its screening radius, the outer shells which are with a
slightly larger radius have not exited their screening radius
when the inner shells experience an additional repulsion.
This may result in the shell crossing phenomenon if the
inner shell gets pushed toward the outer shells quick
enough, which fully depends on the magnitude of β2.
On the other hand, if the transition is sufficiently smooth,
the effect of the additional repulsive force kicks in more
gradually and the precise shape of the force is also relevant.
This means that, when the inner shell exits its screening
radius, the outer shell already feels a little bit of the
repulsion. Hence the relative acceleration between both
shells is smaller for smoother transitions. It can happen then
that, for a sufficiently smooth transition, the outer shell
exits its screening radius before the inner shells has time to
catch up with it. This is the general interplay between
strength of the interaction β2 and smoothness of the
transition that determines whether shell-crossing will occur
or not.
In order to illustrate the different regimes, we will use an

artificially modified Born-Infeld electromagnetism param-
eterisation as a proxy for an electric force whose inter-
polating function is given by

F ¼ 1

½1þ ðrsRi
Þ4�2 : ð72Þ

This profile is sharper than the pure Born-Infeld one and,
consequently, it is more prone to exhibit shell crossing. In
Fig. 2 we show the evolution and we can clearly see the
appearance of shell crossing. It is important to emphasize
that this only happens above a certain value for β2, while if
β is sufficiently small, shell crossing can still be prevented.
The uniformly distributed shells initially evolve in comov-
ing motion with a ∝ t2=3 as before. However, when they
start exiting their screening scales we can observe how the
evolution in the transition region differs from the Born-
Infeld case in Fig. 1 and now the different shells cross.
Eventually, the comoving motion is again recovered, but
the generated inhomogeneity is crucially different. In
particular, we can see how the shells become substantially
more densely distributed, indicating a much steeper asymp-
totic density profile.
We also show how the mass function for each shell

evolves in time. While for the Born-Infeld model with no
shell-crossing the mass is conserved, the model that
exhibits shell-crossing leads to an evolution where the
mass of each shell is not conserved due to the gain/loss
of mass of the shells as they absorb or exit other shells.
The shell crossing as well as the mass variation of the
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different shells can be seen in Fig. 4 top panel and in the
animations available at [55].
We should warn that the mass evolution shown in Fig. 2

shows an effect due to having considered a finite number of
shells. This obviously affects the mass profile, but also the
saturation of the innermost shell that eventually becomes
the outermost one. As we can see, the mass saturates when
the shell has overtaken all the shells. By including a wider
range of shell sizes, the asymptotic masses of the different
shells will change. This will also impact the evolution of
those shells since they can keep increasing their mass for a
longer time so the transition phase is longer. In any case, let
us repeat once more that our aim here is to provide an
explicit example of shell-crossing and not to perform an
exhaustive analysis so we will not enter into a more detailed
analysis of the shell crossing and we will content ourselves
with signaling its relevance for our purposes. The interest of
exposing the possibility of shell crossing in our scenario is to
highlight the crucial difference with the standard case where
there is no shell crossing. It is important to emphasise in
this respect that we are considering an initially isotropic an

homogeneous distribution so that the shell crossing is
genuinely produced by the dark electric repulsion. An
inhomogeneous density profile or an anisotropic distribution
in the initial configuration can also give rise to shell crossing
when the shells evolve solely under the influence of gravity.
To finalise our discussion on shell crossing, it is important

to notice that the explained casuistic occurs because the
additional force is repulsive. Since the screening models
based on scalar fields give rise to an additional attractive
force, shell crossing does not take place because each shell
slows down once it exits its screening radius, thus working in
the precise opposite direction, i.e., it actually helps to prevent
shell-crossing. The inhomogenization of an initial uniform
profile can still persist however and this has an impact on the
predicted mass function from the spherical collapse as
computed with the Press-Schechter formalism.

C. Adding baryons

In the previous sections we have analyzed the evolution
of shells formed by identical particles. This would be the

FIG. 2. In this figure we show a case exhibiting shell crossing. We have chosen the same values as in Fig. 1 except for screening scale
that has now been chosen as rs ¼ 100

ffiffiffiffiffi
M

p
. The color coding is also the same. We can see how the initially innermost shell starts gaining

mass when it exists its screening radius so it becomes the most massive shell in the asymptotic state, in agreement with the fact that it
overtakes all the shells and it becomes the outermost one at late times. On the other hand, the outermost shells lose mass and eventually
become the innermost shells.
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actual evolution if the dark electric force acted universally.
We will now take a step forward and assume the perhaps
more realistic situation where the initial distribution of
particles contains both charged DM and uncharged bary-
ons. This is a hypothesis which is similar to the one of
coupled quintessence models where dark energy only
couples to dark matter and is decoupled from baryons.
We apply the same framework here to the dark electric
force. We then have two different sets of equations: those
for the evolution of baryons driven by gravity alone and the
equations for DM that include the dark electric force. If we
denote by RDMðt; r⋆Þ and RBðt; r⋆Þ the Eulerian coordi-
nates of the DM and the baryons respectively, the system
will evolve according to the following equations:

R̈Bðt; r⋆Þ ¼ −
GMðRBÞ

R2
B

; ð73Þ

R̈DMðt; r⋆Þ ¼ −
GMðRDMÞ

R2
DM

½1 − β2FðRDM=rsÞ�: ð74Þ

Notice that we are using the same Lagrangian coordinate
for both components, which arises from assuming that they
comove initially when only gravity acts. We will use initial
conditions analogous to those used for the pure DM
distributions above, but now the initial shells have two
components so we define the initial mass of the ith shell as
mi ¼ mi;DM þmi;B. Since the baryons and DM shells
evolve differently, now the mass of each initial shell is
not conserved. The initial density profile is assumed to be
uniform for both components so, regardless of its specific
composition, the initial density is constant ρðt⋆Þ ¼ ρ⋆.
Thus, if we have a fraction ϒ of baryons (that we also
assume uniform so it is the same for all the shells), the mass
of each shell is given by

mi;B ¼ ϒ
4πρ⋆
3

ðR3
i − R3

i−1Þ
���
t¼t⋆

; ð75Þ

mi;DM ¼ð1 −ϒÞ 4πρ⋆
3

ðR3
i − R3

i−1Þ
���
t¼t⋆

: ð76Þ

Typical values of the initial baryonic fraction areϒ ≃ 0.2 in
accordance with the observed relative abundance of bary-
ons and DM in the Universe. The total mass functionMðRÞ
is then computed as in the single component case but
keeping in mind that the sum extends to both baryons and
DM, i.e.,

MðRiÞ ¼
X

Rj;B≤Ri

mj;B þ
X

Rj;DM≤Ri

mj;DM: ð77Þ

Initially, when the electric force is screened, both compo-
nents evolve together in comoving motion under the action
of gravity. As the DM shells start exiting their screening

radii, the electric force initiates the corresponding repulsion
for the DM sector. At this point, the DM shells start
expanding faster than the corresponding baryons shells.
This causes a mass gain for the DM shells due to the baryon
shells that are absorbed. The effect on baryons shells is
however a mass loss due to the faster expansion of the DM
shells. A crucial effect of this more involved evolution is
that now we can have a shell crossing for the DM
component induced by the baryons, while the baryon
shells do not undergo shell crossing. In this case, besides
the relative strength of the electric repulsion β2 and the
smoothness of the transition, the fraction of baryons ϒ also
plays a crucial role for the appearance of shell crossing
since this parameter controls the mass gain of the DM shells
when they expand faster than the baryonic shells. If we look
at the expansion rates of the baryons an DM shells we see
that both are modified and acquire an inhomogeneous
evolution in the transient phase. The effect is stronger for
the DM component because it is this component that is
affected by the electric force, while baryons are only
affected by the mass loss. As we can see in the lower
panels of Fig. 3 (see also Fig. 4 bottom panel and [55]), the
variation on the DM shells is much stronger and follows a
similar tendency to the case when no baryons are present,
although the effects of the baryons is also apparent. For
baryons we can clearly see a reduction in the expansion rate
during the transient phase that is more pronounced for the
outermost shells, but the effect is substantially smaller than
for DM, as expected. Of course, the relative strength in the
effects on the DM and the baryons depends on the
corresponding ratio ϒ that we have kept fixed to be small.
In the asymptotic phase we again recover the comoving

evolution and the initially uniform distribution turns into an
inhomogeneous profile. Again, the inhomogeneity is more
pronounced for the DM component than for baryons. In
fact, we can see in the upper right panel of Fig. 3 that the
DM shells become strongly packed into a small region,
indicating a strong increase in the density for the DM
component. It is noteworthy that both components reach
the comoving motion but the inhomogeneous scale factor
for baryons and DM will be different, i.e., we cannot
globally describe the matter evolution with one single
inhomogeneous scale factor.

D. The H0 tension

In the previous sections we have seen how the expansion
of the shells is modified by the presence of the electric
repulsion. From the numerical solutions we have corrobo-
rated that the expansion rate of the outer shells is reduced
with respect to the one of the inner shells when the
screening ceases. At some point, the evolution for the
DM shells is reversed, while for baryons the inner shells
always expand slightly faster in the transient region for the
considered values of the parameters. This slowing down of
the outer shells can be understood from the effective
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Friedmann equation deduced above. Interestingly, although
one may be tempted to think that the reduction in the
expansion rate of the outer shells is driven by the effective
Newton’s constant, this is not the case and the dominant
contribution comes from the inhomogeneous spatial cur-
vature that the electric potential creates. In view of these
results, it is easy to understand how this mechanism
provides a promising scenario to alleviate the H0 tension:
The Hubble constant measured locally corresponds to the
inner shells that exhibit a larger expansion rate due to the
electric interaction as compared to the cosmological values
that correspond to the outer shells.
It is convenient to consider this scenario in more detail to

clarify some subtle points. A first point worth clarifying is
the existence of two background metrics. In the relativistic
view in terms of Lemaître models of Sec. III C we were
dealing with a single component Universe where the entire
matter sector was universally coupled to the dark electro-
static interaction. An important consequence of this
assumption is obviously that universality remains (i.e., a
sort of cosmological equivalence principle still holds) so
that we can describe the motion of particles in terms of a

unique metric. In a more realistic scenario with uncharged
baryons, this universality is broken8 and baryons and DM
evolve according to different metrics (scale factors). Of
course, the reason for this is that DM particles are subject to
the long range electrostatic interaction while baryons are
not. Thus, in this two-component Universe we have two
metrics and the natural question that arises is: what metric
would be probed by photons? The answer seems to be:
neither and both. To explain why this is the case we need to
bear in mind that photons would be emitted by galaxies that
can be assumed to be inside virialized DM halos. In this
scenario, galaxies are tracers of the DM distribution9 so that
the emitting sources of photons follow the Hubble flow

FIG. 3. The upper left panel shows the scale factor evolution for the DM (solid-green palette) and baryons (dashed-red palette) shells.
In the upper right panel we plot the evolution of the shell’s size relative to the size of the innermost shell of each component. The lower
left panel shows the expansion rates for both components normalized to the Hubble factor of the innermost shell of each component.
Finally, in the lower right panel we can see how the relative size of the initially comoving shells of baryons and DM evolves.

8For the amusement of the reader enjoying semantic clarifi-
cations, let us stress that the (gravitational) equivalence principle
is still valid. However, the presence of the electrostatic cosmo-
logical background affecting only the DM sector could be (to
some extent mistakenly) interpreted as a cosmological violation
of the equivalence principle.

9We are assuming that galaxies are efficiently dragged by the
gravitational potential of the DM halos, which is a reasonable
assumption if the fraction of baryons is sufficiently small.
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of the DM component. This would provide the initial
condition to the photon’s trajectories. However, if photons
are not charged under the dark U(1) interaction, their
propagation toward the receiver is oblivious to the direct
effect of the electric interaction. Thus, in their propagation
they will probe the baryonic metric, which is the metric that
drives the dynamics of the uncharged sector. We can be
more quantitative by considering nearby objects for which
we can obtain the Hubble law. In that case, the redshift of a
photon emitted by a galaxy that belongs to the DM halo at
position RDM is given by z ¼ _RDM ≃H0RDM, i.e., the

redshift can be fully ascribed to the recession velocity of
the galaxy so wewill be probing the local value ofH0 of the
corresponding shell. Since these nearby objects live in the
inner shells, the measured value will be higher than the
cosmological one, inferred from CMB for instance, that
would correspond to the outer shells.
So far, we have only considered the dust component and

a fair objection could be that the present Universe is
dominated by dark energy which could play an important
role. It is not difficult to include a cosmological constant in
our numerical set-up. Since a cosmological constant has a

FIG. 4. These snapshots show, in arbitrary units, the numerical solution for the evolution of the shells without (top) and with (bottom)
baryons together with the (log) mass distribution (insets), i.e., the mass inside the different shells from the inner most to the outer most.
The upper snapshots show a case with shell-crossing and we can see how the mass distribution changes as the shells cross. Crucially, it is
the very repulsive nature of the force what can lead to shell crossing in the expanding phase. This cannot happen for models with scalar
fields due to their intrinsically attractive character. In the lower panels we can see how the charged DM shells separate from the baryons
as they exit their screening radius. Animations are available in the Supplemental Material [55].
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constant density ρDE, its effect can be easily accounted for

by adding an uncharged mass ΔM ¼ 4πR3
i

3
ρDE to the ith

shell, i.e., adding a term proportional to Ri to the rhs of the
evolution equations for both DM and baryons:

R̈Bðt; r⋆Þ ¼ −
GMðRBÞ

R2
B

þ 4πGρDE
3

RB; ð78Þ

R̈DMðt; r⋆Þ ¼ −
GMðRDMÞ

R2
DM

½1 − β2FðRDM=rsÞ�

þ 4πGρDE
3

RDM: ð79Þ

Notice too that the inclusion of dark energy has already
been discussed in the case of the Lemaître models in
Sec. III C. With the inclusion of this term, we obtain the
expansion rates depicted in Fig. 5. The obtained results can
be easily understood in view of the modified Friedmann
equation. Since the inhomogeneous curvature contribution
from the electric force is larger for the inner shells, their
accelerated expansion caused by the cosmological constant
is effectively delayed with respect to the outer shells. In
other words, the breaking of comoving motion induced by
the electric force makes the different shells to enter the
accelerated regime at different times. Consequently, the
local Hubble factor as measured from the inner shells will
be slightly larger than the one corresponding to the outer
shells. As this is what seems to be the observed results
between large and local expansion rates, we expect that the
detailed analysis of the dark models presented here could
be made to reproduce current data. This is left for
future work.
Nonetheless we can give an approximate description of

the way the local value of H0 is modified following

Appendix B where we have discussed the Friedmann
equation and its consequences in a simplified context
where dark matter and a cosmological constant are taken
into account. We find that when shell crossing does not
happens, as for the Born-Infeld model, the local Hubble
rate is related to the large scale one by

Hlocal
0 ≃HCMB

0

�
1þ β2

2
Ωm0zs

�
ð80Þ

where zs is the redshift of exit from the screening radius of a
shell labeled by r and Ωm0 ∼ 0.25 is the dark matter
fraction. First of all notice that the local Hubble rate is
always larger than the large scale one as long as zs > 0.
This is guaranteed as long as the horizon becomes
unscreened in the past of our Universe, see section V.
Indeed, as as ∝

ffiffiffi
r

p
we find that inner shells are always

unscreened earlier than the whole horizon. For the same
reason shells with differing r have different zs, i.e., local
Hubble rates measured using probes on different scales r
will have different Hubble rates. In order to be compatible
with observations, one must also make sure that the BAO
occur in the unscreened regime. This can be achieved if the
whole horizon is in the screened regime until a redshift of
order 0.5. This guarantees that all fluctuations within the
horizon feel a suppressed dark force due to the large KY
factor in (13). In section V, we will see that for β ¼ Oð1Þ,
and 10−3 eV ≤ Λe ≤ 10−2 eV, the horizon becomes
unscreened for z ≤ 0.5 and galaxies are typically
unscreened too. As the inner shells become unscreened
earlier than the whole horizon, we can take as a template
zs ∼ 1 and β ¼ Oð1Þ. Using these values and (80), the
resulting deviation of the local Hubble rate from the large
scale one is then around ten per cent as measurements seem

FIG. 5. This figure shows the evolution of the expansion rates for the shells with the same parameters as in Fig. 1 and in the presence of
a cosmological constant with 8πGρΛ

3
¼ 10−4. Notice that the inner shells have a larger expansion rate than the outer shells. The figure on

the left corresponds to the absolute expansion rates for all shells and the convergence to a Universe dominated by a cosmological
constant can be seen. The right figure gives the normalised Hubble rate to the inner most shell. Baryons are represented in red while dark
matter is in green.
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to indicate. Of course, in order to address the Hubble
tension and to be compatible with BAO being screened, the
transition between the two regimes needs to be sufficiently
fast. This will ultimately depend on the specific function of
the nonlinear electromagnetism. A more thorough descrip-
tion of this effect is left for future work.
As already mentioned, this suggested mechanism to

alleviate theH0 tension differs from other proposals relying
on scalar fields (see e.g., [56–60] but also [61,62] for a
more phenomenological approach) in at least two ways.
Firstly, the main effect to alleviate theH0 tension is through
a change in the effective Newton’s constant, which is not
what we do here. In some of those models the early
background cosmology is affected [63–67].10 In our sce-
nario however, even though there is also a modification of
the effective Newton’s constant (with interesting pheno-
menological consequences that we will discuss below),
the mechanism relies on the screening mechanism that
unleashes a late time repulsive force that breaks the
comoving motion, so the expansion becomes inhomo-
geneous, and makes the local Universe expansion rate
stronger than the cosmological one. Let us stress once again
that this mechanism crucially depends on the spin-1 nature
of the screened interaction and a similar scenario for scalar
fields is not possible due to their attractive nature (at least
without invoking contrived interactions).
It has recently been suggested [69] by a tomographic

analysis of the Pantheon supernovae data set that the local
Universe could indeed have a value of Hlocal

0 of about 2%
larger than the cosmological value Hcos

0 . In that study, the
authors interpreted the result as an indication of a local
underdensity. An earlier analysis of the Pantheon dataset
found similar results [70]. It is remarkable that our scenario
could indeed explain this result in a natural and theoreti-
cally motivated manner since that is precisely the obtained
result. The larger value of Hlocal

0 arises from the faster
expansion of the inner shells.

V. SOME PHENOMENOLOGICAL ASPECTS

In the previous section we have seen how the present
model could ease theH0 tension and ideally reconcile local
measurements with the ones from CMB. However, the
expected phenomenology associated to a charged DM is far
richer. We will devote this section to a brief discussion of
the aspects that we believe are most interesting.

A. Some more on the cosmological evolution

From a cosmological perspective, the physics which
takes place before the time when the screening radius
becomes smaller than the horizon is unchanged, as can be

see from the evolution of matter shells in Fig. 3. This is a
direct consequence of the fact that the ratio between the two
aforementioned scales goes as

rðHÞ
s ðaÞHðaÞ ∝ a−p=4 ð81Þ

where p ¼ 3ð1þ wÞ and w is the equation of state
parameter of the matter species dominating the Universe.
Since this ratio is a decreasing function of the scale factor,11

it is quite natural to assume that in the early Universe the
DM dynamics is blind to the force. In particular, we require
that at last scattering the whole horizon is inside its
screening radius in order to avoid sizeable modifications
to the CMB physics. For β ¼ Oð1Þ, this results in an upper
bound on the energy scale Λe, namely

Λe ≲Oð1Þ eV: ð82Þ

Notice that as long as the whole horizon is screened any
structure or fluctuation of the matter density is screened and
is therefore blind to the presence of the dark force. This
follows from suppression of the dark repulsion by the large
factor KY as in (13). This effect is analogous to the same
phenomenon for scalar K-mouflage models [10,11]. On the
other hand, to have the force active at recent cosmological
times we require that the screening scale today is smaller
than the size of the horizon. This in turns implies a lower
bound on the energy scale Λe, for β ¼ Oð1Þ, of the order

Λe ≳ 10−3 eV: ð83Þ

We conclude that the energy scale for the non linearities
needs to be in the range

10−3 eV≲ Λe ≲ 1 eV: ð84Þ

Notice that for Λe ¼ 10−2 eV we get that the horizon
equates its associated screening radius at z ∼ 0.6 while for
Λe ¼ 10−1 eV the equivalence occurs at z ∼ 30.
It is worth notice that, even though at last scattering the

electrostatic force is absent, there can be effects on the
CMB spectrum. For example, since the DM distribution
will be modified as compared to the uncharged case, we can
expect to see differences accumulating as the CMB photons
travel to us affecting, for example, the late-time Integrated
Sachs-Wolfe effect.

B. Astrophysical aspects

Once the horizon scale becomes larger than its screening
radius, the electrostatic force switches on leaving a redshift

10It has been recently noticed that, despite early DE models
could alleviate the H0 tension, they would, at the same time,
worsen the σ8 tension [68].

11It is interesting to notice that if a cosmological constant term
is dominating, the ratio becomes constant. Hence, if the transition
to the unscreened cosmological regime does not occur prior to
cosmological constant domination, it will never occur.
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and scale dependent modification to the DM Hubble law
(39). As we have seen in Sec. IV D, this results in a larger
local expansion rate as compared to the one on larger scales.
However, this is just one side of the effect of the electrostatic
force. In fact, once we are in the cosmological unscreened
regime we need to analyse if and when virialized objects
actually feel the repulsive force. In other words we need to
compute the screening scale associated to the mass enclosed
by a certain DM object. Since we are considering a late time
transition to the unscreened cosmological regime, we will
assume that the baryonic inhomogeneities will trace the DM
distribution and, particular, we will consider galaxies to be
dragged by DM halos12.
Let us focus on the expected values of the screening

radius for clusters and galaxies. Taking for the typical size
of clusters 5 Mpc and masses of order 1015 M⊙, we find
that a cluster is screened if the cutoff scale is

Λe ≲ 10−4 eV: ð85Þ

Taking into account the cosmological bound (84) we see
that in general clusters will not be screened today. For
galaxies we take a typical size of 100 kpc and masses of
order 1012 M⊙ and we get that galaxies are screened if

Λe ≲ 10−3 eV: ð86Þ

Hence, we see that galaxies as well will, generically, not be
screened. However, depending on the specific properties
and on the detailed cosmological evolution certain types
might be screened. We can then conclude that, as soon as
the horizon becomes larger than its associated screening
radius, most of the astrophysical objects will start to feel the
repulsive force. In this regime, the electrostatic interaction
will start competing with the gravitational interaction and
its main effect is a redressing of Newton’s constant as

Geff ¼ Gð1 − β2Þ ð87Þ

effectively reducing the gravitational interaction.
Let us first elaborate more on how the electrostatic force

can impact the determination, for example, of the dynamics
of standard candles and their calibrators. In the previous
section we have seen how photons’ propagation, will be
modified by the presence of the electrostatic force only
indirectly via the gravitational potential of DM structures
along the path. Hence, the modification of the Hubble law
can impact the determination of the luminosity distance for
objects that are at sufficiently high redshift. We will focus
now on a supernovae belonging to a nearby, fully virialized
galaxy. Then the supernovae is subject to the peculiar
velocity of the host galaxy. When its distance to our galaxy

is smaller than twice the screening radius rs, the electro-
static interactions is negligible. On the other hand, when it
is further away than 2rs, the electrostatic interaction will
start to act as a new force

F⃗12 ¼
βGm1m2

jx⃗1 − x⃗2j3
ðx⃗2 − x⃗1Þ: ð88Þ

This implies that the determination of the relative motion
between the host and our galaxy will be modified due to the
repulsion in a space dependent manner. Moreover, if the
horizon crosses the cosmological screening radius at very
recent times, we can also expect a redshift dependence. In
fact, the light from a high redshift supernova might have
been emitted while the electrostatic force was cosmologi-
cally screened even if the host galaxy is not massive enough
to be self-screened. Let us now consider an ensemble of
galaxies in a cluster. Since neither the cluster nor the
galaxies belonging to it are generically screened, there will
be two main effects on the dynamics. First, the bulk motion
of the cluster will be affected because of its total dark
charge, analogously to what we described for above for
galaxies. Second, each galaxy will be subject to the
repulsive force generated by all the others. Assuming virial
equilibrium, the total mass of the cluster as derived from the
motion of galaxies can be obtained via [71,72]

GeffM
2R

∼
3

2
σ2r ð89Þ

with σr the observed galaxies’ velocity dispersion,
13 Geff is

the effective Newton constant experienced by galaxies and
R is the virial radius of the cluster. On the other hand, the
total mass of the cluster can be inferred via other inde-
pendent measurements. Even more interesting is the fact
that such measurements, at least at first order in Newtonian
expansion, are not affected by the electrostatic force. For
example, the total mass can be reconstructed by looking at
the intracluster gas distribution that represents the dominant
baryonic mass component of a cluster [73]. Since baryons
are not charged they will be sensitive to G. Another way of
getting the mass is to use gravitational lensing [74].14

Hence, by knowing the total mass and the cluster’s radius
from independent measurements we can use (89) to place a
constraint on the value of β2 as

β2 ≤
����1 − σ2r

ðσðNÞ
r Þ2

���� ð90Þ

12It is interesting to notice that due to the repulsive nature of
the electrostatic force, DM-less galaxies could, in principle, form.

13More precisely, the observable quantity is the line of sight
projected velocity dispersion.

14In fact, gravitational lensing is sensitive to the lensing
potential which, to leading order and in the absence of anisotropic
stresses or, equivalently, with a trivial slip parameter, is given by
twice the Newtonian potential. This allows one using the Poisson
equation depending on G to reconstruct the density field.
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where σðNÞ
r is the dispersion velocity inferred (indirectly)

using Newton’s constant. If we assume that the correction is
small we get

β2 ≤
jδσrj
σðNÞ
r

: ð91Þ

Of course, this is just an extremely rough estimate of the
size of the corrections as we are neglecting several
important contributions, both astrophysical and model
related. For example, there is no reason a priory to expect
a standard DM profile for the cluster. Also, assuming the
same lensing potential as in GR is only an approximation as
the two gravitational potentials are not generically equiv-
alent. Moreover, the different background evolution should
also be taken into account when estimating the distance of
the cluster. All in all, the goodness of the available data
[75–77] and the compatibility of mass measures from
different tracers [78] make galaxy clusters an ideal astro-
physical laboratory to test the presence of an electrostatic
force in the DM sector.
Another interesting consequence that can be drawn is

that, due to the repulsive nature of the interaction, fewer
small mass DM halos are expected to form in this model.
This suppression of the DM mass function could ease the
tension between the predicted number of satellite galaxies
and the one actually observed [79,80], although this
mismatch can find an explanation also in the context of
uncharged DM [81] or through baryonic physics [82]. We
could also expect that the repulsive force may deplete some
regions of space and create voids. For all these phenomena
related to the formation of structures, we expect that
numerical simulations with N-body codes including the
dark force will certainly provide a more thorough picture
than the one we have used here with spherical shells. These
simulations are in the process of being performed. On the
other hand, we expect that the description using shells
being nonlinear does capture the essence of the background
dynamics of the Universe even down to nonlinear scales. In
particular as most of structure formation occurs at redshifts
z≳ 0.5 where the horizon is screened and the growth of
structure is, as a result, not modified, we expect that effects
of the dark force on structure formation will be bounded.
Constraints of the type obtained in [83]15 from tidal
disruption of satellite galaxies are expected to apply and
lead to bounds on β at the 0.1 level. In particular, the fact
that baryons are not charged while dark matter feels the
dark repulsion in unscreened galaxies would play a
prominent role and would lead to an effective violation
of the equivalence principle for large β. The analysis of

these phenomena would certainly require new numerical
simulations. This is left for future work.
Furthermore, since in our model baryons are uncharged,

their distribution will have a larger bias as compared to the
case of uncharged DM. An extreme situation is represented
by clusters collisions where we expect to see DM to show
more resistance in crossing through than in standard cases.
In particular, we would expect to see a mismatch in the
position of the centres of mass of DM and galaxies (that can
be considered effectively collisionless, contrarily to the gas
component of the cluster).
Finally, let us comment on potential constraints imposed

by a displacement of the Milky Way from the center of the
charged dark matter distribution. When it comes to the
CMB the main potential conflict comes from the CMB
dipole which, however, is not affected within this scenario.
In fact, the local effect would be a contribution to our local
motion, but this would only correct our peculiar motion
with respect to the CMB. Since it is a genuine Doppler
effect (amplified by the extra force) the constraints
from aberration from Planck are evaded [84] (see also
the recent [85]). Possibly, the most relevant effect would be
the observation of an anisotropic modulation in the Hubble
diagram. Although this has been constrained by several
analyses with even claims of statistically mild detections
(see e.g., [86–89]), these are much less constraining than
the CMB dipole ones. This point is discussed in more detail
in [40] where it is shown that there is no strong angular
dependence provided the sources are further away from us
than the center.

C. Charging baryons

Let us finally mention the intriguing possibility to charge
also the baryonic sector. In the early Universe the cosmo-
logical screening would apply and its dynamical behaviour
will be as in the uncharged case, exactly as it happens for
DM during that stage. It is only in the recent Universe,
when the screening radius enters the horizon, that the new
physics kicks in. Since, in general, galaxies will not be
screened we expect to have new interesting physics at both
the DM and baryonic level. On the other hand, solar system
and laboratory tests strongly constrain any fifth force acting
on Standard Model particles. Hence, the first requirement is
to have at least the solar system safely screened. Indeed, the
screening radius of the sun is

rs;⊙ ∼ λb

�
eV
Λe

�
r⊙N ð92Þ

where r⊙N is the semi-major axis of Neptune orbit and λb is
related to the baryonic dark coupling βb. Hence, we see that
if the solar system needs to be screened, then either the
constraint on Λe tightens or baryonic matter has a much
larger charge compared to DM. Of course, the latter shows
that the case where baryons are uncharged is peculiar.

15This paper focuses mainly on attractive scalar interactions
between dark matter particles and no such interactions between
baryons. The case of repulsive scalar forces is also briefly
discussed corresponding to a change of G as in (87).
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When uncharged the solar system constraints become void.
On the other hand, if a charge is present for the baryons
then the coupling to the dark force must be large enough.
We move now to discuss briefly how laboratory experi-

ments could cast constraints on this kind of interactions.
When baryons are coupled we expect a modification of
Newton’s law on scales much larger than the screening
length. Typically, the screening length for a coupling βb of
order unity is given by

rs ≃
ffiffiffiffiffiffiffi
m
mPl

r
Λ−1
e : ð93Þ

For test masses of order 1g we get screening radii of order
rs ≃ 103Λ−1

e . Taking for Λe values between the one tenth of
the dark energy scale and 1 eV corresponding to the values
for which the whole Universe is screened at last scattering
and galaxies are screened now, we find screening radii
between one metre and 0.1 mm. The existence of Newtonian
forces on distances larger than 0.1 mm has been tested by the
Eötwash experiment [90]. Here a new analysis would have to
be performed taking into account the screening of charges
and the presence of a shield for electrostatic interactions.
A better prospect may come from atomic interferometry
[91–93] where a large ball of Aluminium influences the
behaviour of Caesium atoms at a distance of 2 cm. For balls
of radius about 1 cm and masses around 10 grams, we find
that the screening is larger than 2 cm when typically we have
Λe ≤ 0.1 eV. Of course a proper analysis should be devoted
to constraints coming from laboratory experiments. This is
left for future work.

VI. CONCLUSION

The growing tension between early (CMB) Universe
observations and local measurements in our galactic envi-
ronment is beginning to shake our understanding of both its
cosmological evolution and matter content. In particular, the
mismatch between the value of H0 as inferred from the
Planck satellite [26] and as measured from Supernovae (and
other local measurements) [23–25] may call for an overhaul
of the standard model of cosmology, i.e., the Λ-CDM
description where baryons, dark matter, and dark energy
are the main components of our Universe with universal
interactions governed by gravity.
Motivated by these observational tensions, in this work

we have explored the possibility of extending the arsenal of
fundamental forces acting on very large scales and its
potential observational effects. One of the features of
gravity is the observed absence of negative masses and
its universal attractiveness. Although other fundamental
interactions such as electromagnetism share the long-range
character of gravity, their action is screened on very large
scales owed to the neutral balance between positive and
negative charges for astrophysical objects.

In this paper, we have analysed the role that an additional
electromagnetic interaction, dark electromagnetism, could
play on large scales. Large distance effects on the dynamics
of the Universe are guaranteed when the dark charges of
matter under this new U(1) field are all of the same sign,
mimicking what happens for gravity. On very large scales,
the repulsiveness of the interaction between matter particles
counteract the gravitational pull and could have conse-
quences on the cosmological background evolution and the
dynamics of galaxies and clusters. On the other hand, a
large repulsion between matter objects is certainly prohib-
ited by the absence of deviations from gravity in the solar
system and the successes of the description of early
Universe cosmology up to the last scattering time and
the acoustic oscillations of the CMB. These successes can
be preserved if the new electromagnetic interaction is
screened due to its nonlinear character on short distance
scales. This feature would preserve the description of the
early Universe including the CMB if the screening radius is
larger than the horizon until a redshift less a few hundreds.
Here we have investigated the case of dark matter being

charged under this dark and nonlinear U(1) gauge inter-
action. The nonlinearities in the dark electromagnetic sector
are the very distinctive property of our scenario as compared
to othermodelswith charged darkmatter and additional dark
long-range interactions. We have explored its dynamics in
the context of Newtonian cosmology as a fully relativistic
treatment is fraught with ambiguities due to the long range
nature of the new interaction. If the early Universe under-
went a phase of darkmatter genesis inwhich only one type of
charge survived, the Universe would be filled with such an
interacting DM component. The non linear nature of
the dark electromagnetic force splits the dynamics of the
Universe into two distinct regimes characterised by the
screening radius rs defined in (11). At separations smaller
than the screening scale the interaction is suppressedmaking
the dynamics of DM indistinguishable from that of the
uncharged case, while at larger separations DM particles
start to feel the repulsion due to the interaction. As we have
seen in section III C this electrostatic force has the geomet-
rical interpretation of particles moving in an inhomogenous
spherically symmetricUniverse.On the other hand, particles
that are uncharged under the U(1) interaction will follow
geodesics associated to an uncharged metric. This does not
imply that the two fluids evolve independently as we have
seen in Sec. IV. The uncharged sector feels the presence of
the dark force which constrains the Universe to become
inhomogeneous as the different Newtonian shells, i.e., the
different spherical shells labeled by the initial comoving
radii in the early Universe, become unscreened at different
times. This has important consequences for the late time
dynamics of the Universe. In particular we have shown that
the innermost shells, i.e., objects in our local environment,
would become unscreened earlier than outermost shells
corresponding to more distant objects. As a result, not only

CHARGED DARK MATTER AND THE H0 TENSION PHYS. REV. D 103, 103505 (2021)

103505-23



the Hubble rate of nearby objects would be larger than in the
early Universe, mimicking the observed discrepancy
between local and CMB data, but local measurements of
the Hubble rate would differ between close objects and
further ones, e.g., implying a different Hubble rate for local
supernovae and cosmological ones. Of course we have not
yet carried out a full quantitative analysis of this phenome-
non and this can only be considered so far as a scenario.
More thorough studies are left for future work (see however
[40] for preliminary work in this direction).
The existence of the dark repulsion could also be traced

in the dynamics of galaxies and clusters. Indeed it turns out
that they are unscreened almost as soon as the screening
radius enters the horizon and as such would feel the extra
repulsion. This could have observed effects in the peculiar
velocities if they are reconstructed assuming the Newtonian
dynamics of gravity. This would follow from the reduction
of Newton’s constant induced by the repulsive interaction
on unscreened objects. Similarly the collapsing dynamics
of spherical shells should also be affected implying
plausible consequences for large scale structure formation
and cluster number counts.
Finally in this paper we have focused on the case where

only dark matter could be charged under the new U(1)
interaction. Many other possibilities could be envisaged.
Baryons could be charged with consequences from large
scale structures to laboratory experiments. Neutrinos could
be charged with consequences on their time delays with
photons. Of course we believe that large scale simulations
of the dynamics of the Universe with this new electro-
magnetic interaction should reveal intricacies such that new
effects for voids in the Universe. There can also be
important consequences for astrophysical probes of dark
matter annihilation/scattering. Although Sommerfeld
enhancement is naturally suppressed inside big dark matter
haloes due to the nonlinear screening of the effective
coupling constant, it can become relevant around low mass
haloes. In that case however, the low DM density would
play against it. On the other hand, at an even more
speculative level, if compact objects carrying a nontrivial
dark charge exist in unscreened environments, they could
provide a population of exotic objects which could give
detectable signals in gravitational waves. Around such
compact objects where the dark electric field could be
large, there would also be the possibility of producing dark
matter particles via the Schwinger mechanism. In summary,
the presented scenario constitutes a promising framework
with interesting observational signatures in a wide variety
of contexts. These applications will be explored in more
detail in future work.
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APPENDIX A: SOME THEOREMS

In this appendix we extend some well-known theorems
valid for linear electrostatic forces to the case in which
nonlinear corrections appear. This can be particularly
relevant for laboratory experiments, in the case baryonic
matter is also charged as we mentioned in Sec. V C.

1. The cavity theorem

Let us assume that the particles are evenly distributed
inside a spherical cavity of center the origin of coordinates
and radius R. Inside the cavity the field Er is spherically
distributed and must satisfy

∇⃗ · ðKYE⃗Þ ¼ 0; r ≤ R ðA1Þ

where E⃗ depends on r and is radial. As a result KY only
depends on r too. Integrating this equality over a ball of
radius r and centered at the origin gives using Green’s
theorem that

ErðrÞ ¼ 0; r ≤ R ðA2Þ

i.e., the electric field vanishes. Hence no effects of the
particles outside the cavity are present inside the cavity.

2. The effacement theorem

Let us now consider the effects of the particles inside the
cavity when no particles are outside. Again we must solve

∇⃗ · ðKYE⃗Þ ¼ ρqθðR − rÞ; ðA3Þ

where the field E⃗ is radial and depends only of the radius
thanks to the homogeneity and isotropy of the coarsed-
grained distribution of particles. Green’s theorem tells
us that

KYEr ¼
βMðRÞ
4

ffiffiffi
2

p
πr2

ðA4Þ
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i.e., the electric field is the one obtained by putting all the
charge βMðRÞ= ffiffiffi

2
p

mPl at the origin. HereMðRÞ is the mass
of the particles inside the ball.

APPENDIX B: A SIMPLIFIED TREATMENT
OF THE H0 TENSION

In this appendix, we present a simplified treatment, a
gedanken analysis, of theH0 tension when only one species
is present, i.e., dark matter, and is charged under the dark
U(1). We also assume that no shell crossing happens as it is
the case in Born-Infeld theory for instance. In the follow-
ing, we take as a simplification that the function F
which governs the transition between the screened to the
unscreened regimes is sharp, i.e., F ¼ 1 in the unscreened
region and F ¼ 0 when screening takes place. This implies
that the Hubble rate when all scales feel the new interaction
in an unscreened way reads

H2 ¼ 8πG
3

�
ρ0

�
a30
a3

ð1 − β2Þ þ β2
a0
as

a20
a2

�
þ ρDE

�
ðB1Þ

where ρ0 ¼ ρ⋆ a3⋆
a3
0

and a0 is the scale factor of the observer at

late time. For local objects we have a ≃ a0, and their
redshift provides a measure of their velocity. We assume
that objects close-by emit light while being in the Hubble
flow of dark matter. The local Hubble rate, i.e., the one of

dark matter which corresponds to the Hubble rate at
emission, is given by

Hlocal
0 ¼ HCMB

0

�
1 −

β2

2
Ωm0 þ

β2

2
Ωm0

a0
as

�

¼ HCMB
0

�
1þ β2

2
Ωm0zs

�
ðB2Þ

where 1þ zs ¼ a0=as and the Hubble rate HCMB
0 has been

normalized in the absence of dark interaction, as befitting
what happens in the early Universe when the screening
radius is larger than the horizon,

Ωm0H2
0 ¼

8πG
3

ρ0; ΩΛH2
0 ¼

8πG
3

ρDE ðB3Þ

and Ωm0 þ ΩDE ¼ 1. We can see the effects of the dark
electric interaction in (B2). The reducing of Newton’s

constant − β2

2
Ωm0 due to the repulsiveness of the electric

force is largely compensated by the increase coming from
the negative curvature effect due to the electric pressure
β2

2
Ωm0

a0
as
. As a result, the local value of Hlocal

0 is larger than
the value obtained with the CMB normalization. Moreover
as as is smaller for innermost shells, i.e., close objects, we
can see that these emitting objects have a larger Hubble rate
than distant ones.
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