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We derive the nonrelativistic limit of a massive vector field. We show that the Cartesian spatial
components of the vector behave as three identical, noninteracting scalar fields. We find classes of
spherical, cylindrical, and planar self-gravitating vector solitons in the Newtonian limit. The gravitational
properties of the lowest-energy vector solitons—the gravitational potential and density field—depend only
on the net mass of the soliton and the vector particle mass. In particular, these self-gravitating, ground-state
vector solitons are independent of the distribution of energy across the vector field components and are
indistinguishable from their scalar-field counterparts. Fuzzy vector dark matter models can therefore give
rise to halo cores with observational properties that are identical to the ones in scalar fuzzy dark matter
models. We also provide novel hedgehog vector soliton solutions which cannot be observed in scalar-field
theories. The gravitational binding of the lowest-energy hedgehog halo is about 3 times weaker than the
ground-state vector soliton. Finally, we show that no spherically symmetric solitons exist with a
divergence-free vector field.
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I. INTRODUCTION

The lambda cold dark matter (ΛCDM)model is extremely
successful in describing the Universe on galaxy-cluster and
cosmic scales (≫10 kpc). The spectrum of density fluctua-
tions inferred from the cosmic microwave background at
redshift z ∼ 103 is in agreement with the one observed today,
z ≃ 0, at the percent level [1]. However, on galactic scales
(≲10 kpc), ΛCDM appears to be in tension with observa-
tions. N-body simulations predict density cusps in the cores
of dark matter halos [2], whose signature is not seen in
galaxy rotation curves [3,4]. Furthermore, the expected
abundance of low-mass halos greatly exceeds the one
inferred from observations of satellite galaxies [5–7].
These shortcomings could be attributed to inaccurate mod-
eling of baryonic physics [8–10]. However, no rigorous
argument has yet been put forward that uses known physics
to reconcile ΛCDM and galactic-scale observations.
One class of alternative solutions that addresses these

shortcomings includes modifications of the nature and
properties of dark matter. Warm dark matter (WDM)
scenarios assume a light dark matter particle (m ∼ keV)
whose thermal velocity dispersion suppresses small-scale
structure [11]. The formation of density cusps and low-
mass halos is prevented by free streaming of the WDM out
of potential wells [12,13]. The small-scale distribution of
dark matter can also be modified by introducing strong self-
interactions [14,15].
Another popular class of solutions to these small-

scale problems is the fuzzy dark matter (FDM) scenario.

This scenario involves a free bosonic ultralight (m ∼ 10−22−
10−21 eV) nonrelativistic dark matter particle whose wave
nature ismanifestedon astrophysical andgalactic scales [16].
On scales comparable to the kiloparsec de Broglie wave-
length of the FDM particle, the formation of density cusps
and low-mass halos is suppressed. On larger scales, FDM is
indistinguishable from CDM. A compelling FDM candidate
is an ultralight axion. The right relic abundance of axion
FDM with m in the desired range can be achieved easily in
natural high-energy physics models [17].
Many aspects of the cosmology and astrophysics of

axion FDM have received great attention in recent years.
The occupation numbers within galaxy halos are so high
(the de Broglie wavelength is much larger than the
interparticle distance) that the state of the axion can be
described as a classical nonrelativistic scalar-field conden-
sate. The phenomenology of the self-gravitating conden-
sate has been widely studied in the Newtonian limit of
gravity [18–44]. This self-gravitating condensate leads to a
number of astrophysical signatures (for a recent review, see
Ref. [45]), most of which are a consequence of the fact that
the cores of FDM halos are the ground-state soliton
solution of the Schrödinger-Poisson system.
FDM could also be realized by higher-spin bosons

[46–49]. In this work we consider an ultralight spin-1
boson that is minimally coupled to gravity: a vector dark
matter (VDM) particle. We derive its nonrelativistic1

1For a related work in Minkowski spacetime of lower
dimensions, see Ref. [50].
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Newtonian limit and show that the fuzzyVDMcondensate is
a collection of three scalar-field condensates, interacting only
gravitationally. We study soliton solutions of the resulting
equations and demonstrate that at least one VDM soliton has
a distribution of mass (and therefore gravitational potential)
identical to its axion counterpart. For this class of solutions,
no distinction can be made between axion FDM halos and
fuzzy VDM halos on the basis of their gravitational proper-
ties in the Newtonian limit.
Throughout this work we remain agnostic about the

high-energy physics embedding of VDM. We study the
massive vector field at the phenomenological level without
specifying the origin of its mass (Higgs or Stueckelberg) or
how it is produced in the primordial Universe (see, for
example, Refs. [51–58]).
The rest of the paper is organized as follows. In Sec. II

we outline the relativistic theory of a massive vector field
and derive its equations of motion in a perturbed
Friedmann-Robertson-Walker (FRW) background. In
Sec. III we study the nonrelativistic regime of the theory
in the Newtonian gravity limit. The classes of fuzzy VDM
solitons are described in Sec. IV. We present our conclud-
ing remarks in Sec. V. In Appendix Awe provide details for
the numerical procedure used to find vector soliton sol-
utions. We show that fuzzy VDM can be considered a
three-component superfluid in Appendix B.
Throughout this work we use the Einstein summation

convention for repeated indices. Repeated upper and lower
greek indices (spacetime indices) are summed over
μ ∈ f0; 1; 2; 3g, while repeated latin indices (spatial indi-
ces) of any level are summed over i ∈ f1; 2; 3g. We do not
use the summation convention for nonvector quantities
which have an index inside a bracket, for example, IðjÞ. We
adopt natural units in which ℏ ¼ c ¼ 1 and the reduced
Planck mass mPl ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 2.435 × 1018 GeV.

II. THE MODEL

Consider a massive vector field (sometimes referred to as
a Proca field) minimally coupled to gravity with an action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
m2

PlR
2

−
1

4
FμνFμν þ

1

2
m2AμAμ

�
; ð1Þ

where the Ricci scalar, R ¼ Rα
α, is obtained from the trace

of the Ricci tensor,

Rαβ ¼ ∂δΓδ
αβ − ∂βΓδ

αδ þ Γδ
αβΓσ

δσ − Γσ
αδΓδ

βσ; ð2Þ

and the field-strength tensor for the vector field Aμ is

Fμν ¼ ∇μAν −∇νAμ ¼ ∂μAν − ∂νAμ: ð3Þ

The Euler-Lagrange equations that follow from variation of
the action in Eq. (1) yield the Einstein equations

Gμν ¼ Rμν −
gμν
2

R ¼ 1

m2
Pl

Tμν; ð4Þ

where

Tμ
ν ¼ m2AμAν − FμαFνα

þ δμν

�
−
m2

2
AαAα þ 1

4
FαβFαβ

�
; ð5Þ

and the Maxwell equations

∇μFμν ¼ Jν; ð6Þ

where

Jν ¼ −m2Aν: ð7Þ

Despite the fact that the action in Eq. (1) does not possess a
Uð1Þ gauge symmetry (due to the mass term), Aν respects
an equation identical to the Lorenz gauge condition in free
theories

∇νAν ¼ 0: ð8Þ

This equation follows from contracting Eq. (6) with ∇ν.
Inwhat follows,we refer toEq. (8) as theLorenz constraint. It
is amanifestation of the fact that among the four components
ofAμ there are only 3 degrees of freedom. Colloquially,A0 is
the nondynamical (or auxiliary) field since it does not have a
kinetic term in the action in Eq. (1), whereas the Ai capture
the 2 transverse and 1 longitudinal physical degrees of
freedom (the longitudinal one present due to the nonvanish-
ing mass of the vector field).

A. The weak gravity limit

The perturbed metric in a flat FRW background takes the
following form:

ds2 ¼ a2ðτÞ½ð1þ 2ΦÞdτ2 þ 2ð∂iCþ ViÞdxidτ
− ½ð1 − 2ΨÞδij − ∂i∂jU − ∂ ½iKj� − hij�dxidxj�; ð9Þ

whereΦ,Ψ,C, andU are scalar perturbations, Vi andKi are
divergence-free vector perturbations (∂iVi ¼ ∂iKi ¼ 0),
and hij is the transverse-traceless spatial metric perturbation
(∂ihij ¼ ∂ihji ¼ 0 and hii ¼ 0). The 2 dynamical degrees of
freedom of the linearized metric are the transverse traceless,
or gravitational wave, modes, hij. We ignore these in what
follows since they do not affect the vector field dynamics in
the linear regime. We retain only the scalar and vector
perturbationswhich, in principle, can influence the dynamics
of the vector field in the linear regime (when perturbing
around an Āμ background).
To proceed, we fix the gauge freedom coming from the

invariance of the action in Eq. (1) under diffeomorphisms
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xμ → xμ þ ξμ; ð10Þ

where ξμ ¼ ½ξ0; ∂iξ
ðLÞ þ ξðTÞi �T . This invariance allows us

to fix two scalars and one transverse vector. For the scalars,
we choose to work in the Newtonian gauge

C ¼ 0 and U ¼ 0; ð11Þ

and we fix the transverse vector degree of freedom by
setting

Ki ¼ 0: ð12Þ

The remaining scalar and vector degrees of freedom (Φ, Ψ,
and Vi) do not represent true dynamical degrees of freedom
(their action has no kinetic term), but they are constrained
variables whose evolution is determined by the dynamical
variables, Aμ and hij.
The inverse and determinant of the metric (to linear order

in perturbations) are then

gμν¼ 1

a2ðτÞ

0
BBB@
1−2Φ V1 V2 V3

V1 −1−2Ψ 0 0

V2 0 −1−2Ψ 0

V3 0 0 −1−2Ψ

1
CCCA ð13Þ

and

ffiffiffiffiffiffi
−g

p ¼ a4ðτÞ½1þ ðΦ − 3ΨÞ�; ð14Þ

respectively. We do not set Φ to be equal to Ψ, since, in
principle, the vector field could have a sizable anisotropic
stress comparable to its isotropic pressure.
After plugging in the Lorenz constraint, Eq. (8), into the

Maxwell equation, Eq. (6), one arrives at

□Aν þm2Aν þ Rν
μAμ ¼ 0; ð15Þ

which when written out explicitly becomes

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμα∂αAνÞ þm2Aν

þ Aμgνα∂α

�∂μ
ffiffiffiffiffiffi−gpffiffiffiffiffiffi−gp

�
− ∂αAμ∂μgνα ¼ 0: ð16Þ

To leading order in metric perturbations Eq. (16) reduces to

for ν ¼ 0∶

∂2
0A

0 þ 2H∂0A0 − ð1þ 2ðΦþΨÞÞΔA0 − ∂0ðΦþ 3ΨÞ∂0A0 þ 2HVi∂iA0

þ 2Vi∂i∂0A0 − ∂iðΦ −ΨÞ∂iA0 þ ð∂0ViÞ∂iA0 þ ð1þ 2ΦÞa2m2A0 þ Aμ∂μ∂0ðΦ − 3ΨÞ þ 4A0∂0H

þ 2ð∂0AμÞ∂μΦ − ð∂iAμÞ∂μVi þ 2H∂0A0 þ 2HVi∂iA0 ¼ 0;

for ν ¼ j∶

∂2
0A

j þ 2H∂0Aj − ð1þ 2ðΦþ ΨÞÞΔAj − ∂0ðΦþ 3ΨÞ∂0Aj þ 2HVi∂iAj þ 2Vi∂i∂0Aj − ∂iðΦ − ΨÞ∂iAj

þ ð∂0ViÞ∂iAj þ ð1þ 2ΦÞa2m2Aj þ ½Aμ∂μ∂iðΦ − 3ΨÞ − 2ð∂iAμÞ∂μΨ

þ ð∂0AμÞ∂μVi þ 2Hð1þ 2ðΦþ ΨÞÞ∂iA0 − 2HVi∂0A0�δij ¼ 0; ð17Þ

where H ¼ ∂0a=a and Δ ¼ ∂i∂jδ
ij. The first two terms in

Eq. (16) and the first nine terms in each of the equations in
Eq. (17) are identical to the case of four copies of a massive
scalar field in a spacetime with scalar and vector metric
perturbations. However, the fact that Aν is a spacetime
vector field with a covariant derivative which mixes its
components gives rise to the last two terms in Eq. (16) and
the last three lines in each of the equations in Eq. (17),
which are not present in theories with scalar matter fields.

Another equation which is not present in scalar matter
theories is the Lorenz constraint, Eq. (8), which to leading
order in metric perturbations yields

∂0A0 þ 4HA0 þ ∂iAi þ A0∂0ðΦ − 3ΨÞ
þ Aj∂jðΦ − 3ΨÞ ¼ 0: ð18Þ

The remaining set of equations governing the evolution
of the metric perturbations comes from the Einstein
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equation, Eq. (4). Its 00, ij, and transverse 0i components
yield, respectively,

ΔΨ − 3Hð∂0ΨþHΦÞ ¼ a2

2m2
Pl

δT0
0;

2

3
Δ2ðΦ −ΨÞ ¼ a2

m2
Pl

�
δilδjk∂i∂j −

δklΔ
3

�
δTk

l;

ΔVi ¼
2a2

m2
Pl

δT0 ðTÞ
i ; ð19Þ

where on the right-hand side in the first and third lines
we remove the spatial mean of the energy-momentum

tensor components (δT0
0 ≡ T0

0 − T0
0, etc). Note also that

∂iT0 ðTÞ
i ¼ 0. As expected, all scalar and vector metric

perturbations are governed by constraint equations since
they do not represent true dynamical degrees of freedom.

III. NONRELATIVISTIC VDM

In the nonrelativistic limit we redefine the real vector
field Aμ in terms of a complex field2 Aμ and its rest energy
contribution3

Aμ ¼ 1ffiffiffiffiffiffiffi
2m

p ½Aμe−im
R
τ
aðτ0Þdτ0 þ c:c:�: ð20Þ

We assume that the wave nature of the vector particles is
manifest on comoving subhorizon scales, 2π=k, for which
a2m2 ≫ k2 ≫ H2 ∼ j∂0Hj. We further assume that all
quantities (Aμ, H, Φ, Ψ, and Vi) vary slowly. That is,
they do not change appreciably over a timescale of order
the oscillation period 2π=m.
We proceed by time averaging the product of

expðim R
τ aðτ0Þdτ0Þ and the Lorenz constraint, Eq. (18).

To leading order in metric perturbations and spacetime
derivatives, Eq. (18) reduces to

iamA0 ¼ ∂jAj: ð21Þ

Then to leading order in spacetime derivatives the time-
averaged energy-momentum reads

hTμ
νi ¼ δμ0δ

0
νmAj�Aj; ð22Þ

implying Vi ¼ 0, Φ ¼ Ψ, and4

Δ
a2

Φ ¼ mAj�Aj

2m2
Pl

: ð23Þ

After applying the same considerations to the equations of
motion, Eq. (17), we find that they reduce to a set of
Schrödinger-type equations5

�
i

�
∂t þ

5

2
H

�
þ Δ
2a2m

−Φm

�
A0 ¼ −iAj ∂j

a
Φ ð24Þ

and

�
i

�
∂t þ

3

2
H

�
þ Δ
2a2m

−Φm

�
Aj ¼ 0: ð25Þ

Equation (25) implies that at the homogeneous level, the
energy density of each vector field component redshifts like
matter, mjAjj2 ∝ a−3.
Our Schrödinger equations are consistent with the

Lorenz constraint. If we take the divergence of Eq. (25)
and use Eq. (21), we arrive at Eq. (24).
One can now solve the Schrödinger-Poisson system,

Eqs. (23) and (25), for Aj and Φ while making use of the
Lorenz constraint, Eq. (21), only to set up the initial
conditions for ∂jAj.6 In fact, Eqs. (23) and (25) can be
derived from the Lagrangian density

L ¼ Aj�
�
i∂t þ

3

2
H −mΦ

�
Aj

−
1

2ma2
j∇Ajj2 þm2

pl

a2
ΦΔΦ: ð26Þ

This Lagrangian density is invariant under a global SUð3Þ
transformation of the Aj components,

Ajðx; tÞ → UjiAiðx; tÞ; U ∈ SUð3Þ: ð27Þ

The gravitational potential is also SUð3Þ invariant, Φ → Φ.
The emergent SUð3Þ symmetry in the spatial sector in the
nonrelativistic limit of the theory is a consequence of the
fact that we work with the complex three-vector field, Aj.
Recall that SUð2Þ is a subgroup of SUð3Þ and is the double
cover of SOð3Þ, which is the global symmetry of the
nonrelativistic limit of the (physical) real three-vector field,
Ai. The remainder of the SUð3Þ is just a redundancy due to

2Note that Aμ is a four-component complex field, but not a
spacetime vector field. However, the spatial components, Ai,
constitute a complex three-vector field.

3Without loss of generality, constant phase shifts between the
individual components are absorbed into Aμ.

4Note that Tij ¼ 0 at this order, and thus gravitational waves
are not sourced at this order in the expansion in k=ðamÞ.

5We define cosmic time as dt ¼ adτ and the Hubble rate
as H ¼ _aðtÞ=aðtÞ, where an overdot denotes a derivative
with respect to cosmic time, t.

6Besides, when setting up the initial conditions for the
longitudinal part of Aj, there is no need to consider A0. It does
not play a role in the evolution of the metric perturbations andAj.
At any later moment we can consistently determine the value of
A0 from the Lorenz constraint, Eq. (21), and its time derivative
from its Schrödinger equation, Eq. (24).
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the fact that we are expressing the real theory in terms of a
complex representation, see Eq. (20). Nevertheless, this
internal SUð3Þ symmetry proves useful when we look for
soliton solutions of the vector Schrödinger-Poisson system,
Eqs. (23) and (25).
Before we consider the soliton solutions, we note that the

right-hand side of the Lorenz constraint, Eq. (21), is not
invariant under any of the SUð3Þ transformations in
Eq. (27). Hence, A0 is not an SUð3Þ singlet. However,
A0 transforms as a scalar under global coordinate rotations,
R, belonging to the SOð3Þ that the SOð1; 3Þ is broken into
in FRW (just like its real counterpart, A0).

IV. VDM SOLITONS

Once formed, the self-gravitating VDM structures should
settle into equilibrium configurations. These structures are
composed of localized cores whose size is determined by the
de Broglie–Jeans wavelength and an outer envelope and are
indistinguishable from CDM structures. The cores are sta-
tionary solutions of the Schrödinger-Poisson system (com-
monly referred to as solitons). We now look for such
solutions (after ignoring the expansion of the Universe).
We are interested primarily in the ground-state soliton

solutions of Eqs. (23) and (25), which are (classically) stable
and have a spherically symmetric distribution of energy. In
otherwords,we look forAjðx; tÞ, which give us a spherically
symmetric, static gravitational potential Φ ¼ ΦðjxjÞ.7 They
represent the cores of VDM halos. However, we also discuss
cylindrical and planar soliton solutions, which can constitute
the cores of filamentary and planar VDM structures.
The Ajðx; tÞ solitons spontaneously break the internal

SUð3Þ symmetry, Eq. (27). Since A0ðx; tÞ is not SUð3Þ
invariant but transforms as a scalar under spatial coordinate
rotations, we use it to classify our stationary ground-state
solutions with a spherically symmetric energy distribution.
We divide the solutions into three categories. The first

one corresponds to A0ðx; tÞ ¼ 0, which implies a diver-
gence-freeAj, according to the Lorenz constraint, Eq. (21).
The second category of soliton solutions corresponds to a
spherically symmetricA0 ¼ A0ðjxj; tÞ. As we show below,
these Aj solitons are reminiscent of the hedgehog vector
solutions in the context of topological defects in three
dimensions. The third category of solitons with a spheri-
cally symmetric energy distribution corresponds to a
generic x dependence of A0 ¼ A0ðx; tÞ.
In the following subsections we consider isolated con-

figurations for which Ajðx; tÞ and ΦðjxjÞ are nonsingular
near the origin and approach zero at jxj → ∞. The net mass
of each Aj is given by MðjÞ ¼ m

R
d3xjAjj2, and the total

mass of the soliton is Mtot ¼
P

j M
ðjÞ. The gravitational

potential energy of eachAj isWðjÞ ¼ ð1=2Þ R d3xΦmjAjj2,
and the total gravitational potential energy is Wtot ¼P

j W
ðjÞ. These considerations do not apply to Secs. IV B 1,

IV C 1, and IV C 2, where we briefly study objects with
cylindrical and planar symmetry.
We use the dimensionless quantities

Ãj ¼ m3
Pl

mM2
tot

Aj

m3=2 ; Φ̃ ¼ m4
Pl

m2M2
tot
Φ;

W̃ðjÞ ¼ m4
Pl

M2
totm2

WðjÞ

Mtot
; x̃μ ¼ m2

m2
Pl

xμMtot: ð28Þ

In terms of these new variables the fraction of energy stored
in eachAj is given by the norm of the rescaledwave function
M̃ðjÞ ≡ R

d3x̃jÃjj2 ¼ MðjÞ=Mtot ≤ 1, with
P

j M̃
ðjÞ ¼ 1.

A. A0 = 0 solitons: Nonspherical halos

We begin with the most general ansatz for a transverseAi,

Aiðx; tÞ ¼ ϵijk∂jzkðx; tÞ; ð29Þ

where zjðx; tÞ is a complex three-component vector.
Note that the Lorenz constraint, Eq. (21), implies
imA0 ¼ ∂iAiðx; tÞ ¼ 0.
The energy density T0

0ðx; tÞ for this configuration is
proportional to

ðAj�AjÞðx; tÞ ¼ ∂izk�∂izk − ∂izk�∂kzi: ð30Þ

The only way to get a spherically symmetric, static energy
distribution, T0

0 ¼ T0
0ðjxjÞ, is to have a zj with zr ≠ 0 and

zθ ¼ zφ ¼ 0. However, this makes the right-hand side in
Eq. (30) vanish.
Hence, there are no solitons with a spherically symmetric

and static energy distribution T0
0ðjxjÞ and vanishing A0.

The last condition may be met by solitons with a non-
spherically symmetric T0

0.

B. A0 =A0ðjxj; tÞ solitons: Excited hedgehog halos

We now consider the general trial solution

Ajðx; tÞ ¼ zjðx; tÞ: ð31Þ
The Lorenz constraint for this configuration, Eq. (21), reads

A0 ¼ A0ðx; tÞ ¼ −
i
m
∂jzjðx; tÞ; ð32Þ

while the stress tensor is proportional to the inner product

ðAj�AjÞðx; tÞ ¼ ðzj�zjÞðx; tÞ: ð33Þ
Equation (33) implies that a spherically symmetric energy
distribution requires the complex three-component vector

7Spherically symmetric mass distributions imply a vanishing
angular momentum, which is expected for halos formed from
cosmological initial conditions.
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from Eq. (31) to have a spherically symmetric coordinate
dependence, i.e., zj ¼ zjðjxj; tÞ, up to arbitrary phases.
The phases drop out if we wish to have a spherically

symmetricA0 ¼ A0ðjxj; tÞ; see Eq. (32). This further leads
to zr ≠ 0 and zθ ¼ 0, while the remaining components of
the complex vector zφ are unconstrained.8 We now consider
the simplest scenario in which zφ ¼ 0. This leaves us with a
“hedgehog” solution,

Aj ¼ ðAr;Aθ;AφÞ ¼ ðhðjxjÞe−imEht; 0; 0Þ; ð34Þ

where we have assumed that the stationary solution
zr ¼ hðjxjÞe−imEht. Note that jEhj ≪ 1 since we are in
the nonrelativistic regime. This hðjxjÞ is governed by the
Schrödinger-Poisson equations

�
−

1

2r2
d
dr

�
r2

d
dr

�
þ 2

r2

�
hþmΦh ¼ mEhh;

1

r2
d
dr

�
r2
dΦ
dr

�
¼ mjhj2

2m2
Pl

: ð35Þ

The last term in the square brackets is a consequence of the
fact that we are considering the radial component of the
vector dark matter field and it is not present in the case of
scalar FDM. Furthermore, unlike the scalar FDM case, here
we are forced to set the wave function to zero at the origin,
Arðjxj ¼ 0; tÞ ¼ hðjxj ¼ 0; tÞ ¼ 0 since this is the only
way to make the vector field nonsingular (i.e., continuous)
there. Therefore, the hedgehog solution has a node at r ¼ 0
and is unlikely to be the ground-state VDM halo. In Fig. 1,
we show the hedgehog solution with lowest energy
[Appendix A 1 contains details of the numerical procedure
used to solve Eq. (35)]. Higher-energy hedgehog solutions
have more zero crossings of hðrÞ. The gravitational potential
energy of the lowest-energy hedgehog solution is W̃hedg ¼
−5.71 × 10−5 and is greater than that of the axion FDM
ground-state soliton, W̃axion ¼ −1.72 × 10−4 [17]. However,
the first excited state of the axion FDM soliton has a
gravitational binding W̃n¼1

axion ¼ −3.25 × 10−5 [17], which
is weaker than that of the hedgehog ground state.
The simplest spherically symmetric halo with nonzero

A0ðjxj; tÞ and only one nonvanishing spatial-vector com-
ponent,Ar, therefore has a hedgehoglike solution, Eq. (34),
which is less gravitationally bound than the scalar FDM
ground-state soliton solution. This is an indication that we
have to go beyond these assumptions to find the ground-
state VDM soliton. In the next section we show that
configurations with nonspherically symmetric A0ðx; tÞ
having all three Aj components excited can have a
gravitational binding equal to that of the FDM ground-

state soliton, as long as they have the same temporal
dependence.

1. Cylindrical hedgehog

Before we move on to study spherical solutions with
more general spatial dependence, we remark upon another
set of symmetric field solutions that are unique to vector
fields: those with cylindrical symmetry

Aj ¼ ðAρ;Aθ;AzÞ ¼ ðgðρÞe−imEgt; 0; 0Þ; ð36Þ

where ρ is the cylindrical radial coordinate. These solutions
correspond to extended, stringlike configurations and are
solutions to the Schrödinger-Poisson equations

�
−

1

2ρ

d
dρ

�
ρ
d
dρ

�
þ 1

ρ2

�
gþmΦg ¼ mEgg;

1

ρ

d
dρ

�
ρ
dΦ
dρ

�
¼ mjgj2

2m2
Pl

: ð37Þ

Solutions of these equations are again forced to vanish at
ρ ¼ 0, gðρ ¼ 0Þ ¼ 0 and lead to gravitational potentialswith
lnðρÞ dependence at large ρ; see Fig. 2. These are not ground-
state solitons, and we relegate further discussion of the
solutions to Appendix A 2. See also Sec. IV C 1 for the
ground-state VDM filaments. Note that the last term in
the square brackets in Eq. (37) is not present in the cylindrical
limit of scalar FDM, and thus the solutions of Eq. (37) are
different from those in the scalar-field case [59,60].However,
they could be relevant to filamentary VDM structures
observed on galactic and cosmic scales with hedgehog
boundary conditions. We note that an identical energy
distribution to the hedgehog cylinder can be obtained if
we assume the azimuthal ansatz Aj ¼ ðAρ;Aθ;AzÞ ¼
ð0; gðρÞe−imEgt; 0Þ, where gðρÞ and Eg are from Eq. (37).

FIG. 1. The spherical hedgehog solution,Aj ¼ ðAr;Aθ;AφÞ ¼
ðhðjxjÞe−imEht; 0; 0Þ, given in terms of the rescaled quantities from
Eq. (28). The solution is normalized so that

R
h̃2ðr̃Þ4πr̃2dr ¼ 1.

8Recall that in spherical polars ∂jzjðx; tÞ ¼ 1
r2 ∂rðr2zrÞþ

1
r sin θ ∂θðzθ sin θÞ þ 1

r sin θ ∂φzφ.
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C. A0 =A0ðx; tÞ solitons: Ground-state halos

The ansatz in Eq. (31) and the subsequent analysis in
Eqs. (32) and (33) also applies to spherically symmetric
mass distributions with A0ðx; tÞ having a generic x
dependence. In particular, the complex vector function in
Eq. (31) is kept as zj ¼ zjðjxj; tÞ in order to have a
spherically symmetric energy density, according to
Eq. (33). However, this time there are no constraints on
the forms of the individual components of zj sinceA0ðx; tÞ
has a generic x dependence.
This simplest ansatz which respects these conditions is

zjðjxj; tÞ ¼ wjfðjxjÞe−imEt; ð38Þ

where wj is a constant vector with unit norm, wj�wj ¼ 1
[without loss of generality (wlog)]. Hence, the Cartesian
components of VDM can be written as

Aj ¼ ðAx;Ay;AzÞ ¼ fðjxjÞe−imEtðwx; wy; wzÞ ð39Þ

and are solutions of

−
1

2r2
d
dr

�
r2

d
dr

�
f þmΦf ¼ mEf;

1

r2
d
dr

�
r2
dΦ
dr

�
¼ mjfj2

2m2
Pl

: ð40Þ

fðjxjÞ is governed by the same Schrödinger-Poisson
system as the wave function of the axion FDM field
[17]. This time we can set fðr ¼ 0Þ ≠ 0 (akin to the axion
FDM halo case and unlike the hedgehog case) since we are
considering Cartesian vector components and there is no
direction singularity at the origin. Therefore, the fðjxjÞ
solutions are identical to the scalar FDM solitons. We focus
on the ground-state soliton; see Fig. 3. We distinguish the
different ground-state vector solutions, Eq. (39), only by
the choice of the constant complex vector wj. Otherwise,
they are degenerate. Their gravitational properties are

identical for all wj and indistinguishable from the scalar
FDM soliton since they all have the same energy density
distribution for the same total mass (thus, W̃tot ¼ W̃ðxÞþ
W̃ðyÞ þ W̃ðzÞ ¼ W̃axion ¼ −1.72 × 10−4). However, they are
distinct from the hedgehog case in terms of mass distri-
bution and are lower in gravitational energy since the
potential well is deeper at the origin for fðr ¼ 0Þ ≠ 0. We
present the details of the numerical procedure to solve
Eq. (40) in Appendix A 3.
Hence, observational characteristics of the scalar and

VDM ground-state solitons, such as the core gravitational
potential, Φð0Þ, the half-mass radius,9 r1=2, and the virial

velocity, vvir ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Wtot=Mtot

p ¼ ðMtotm=m2
PlÞ

ffiffiffiffiffiffiffiffiffi
W̃tot

p
, are

identical for halos with the same total mass, Mtot, and
axions and vectors with the same particle mass, m. The
properties of these soliton solutions are summarized in
Table I along with the analogous properties of the lowest-
energy hedgehog case.
Going beyond the ansatz in Eq. (38) is certainly possible

(see, for example, Appendix A 5). However, it is unlikely
that this will yield a VDM halo which is more strongly
gravitationally bound than the axion FDM ground-state
soliton. The breaking of the assumptions in Eq. (38) entails
having Aj components with (i) different r dependences of
the energy density profiles, ∝ jAjj2 and/or (ii) different
time dependences and/or (iii) different spatially dependent
phases (constant phases can be absorbed into wj). None of
these are expected to hold for the ground state. Case (i) can
be refuted on symmetry grounds. Since the theory is SUð3Þ
invariant, its ground state can break the SUð3Þ symmetry
only spontaneously, i.e., there must be a set of degenerate
ground states related to each other via the SUð3Þ

FIG. 2. The hedgehog cylindrical solution, Aj¼ðAρ;Aθ;AzÞ¼
ðgðρÞe−imEgt;0;0Þ, given in terms of the rescaled quantities from
Eq. (28). The solution is normalized so that g̃0ðρ̃ ¼ 0Þ ¼ 1.

FIG. 3. The ground-state Cartesian VDM soliton,
Aj ¼ ðAx;Ay;AzÞ ¼ fðjxjÞe−imEtðwx; wy; wzÞ, for arbitrary wj

given in terms of the rescaled quantities from Eq. (28). The f̃ðr̃Þ
and Φ̃ðr̃Þ profiles are identical to those of the scalar FDM ground-
state soliton solution; see, e.g., Ref. [17]. We use the same
normalization as in Fig. 1.

9Defined as
P

j

R r̃1=2
0 dr̃4πr̃2jÃjðr̃Þj2 ¼ 1=2.
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transformation, Eq. (27). Hence, ground-state Aj’s must
have the same r dependence since their energy densities
should SUð3Þ rotate into each other. Unequal time depend-
ences are still allowed, i.e., Aj ∝ e−imEðjÞt with different
EðjÞ’s. However, this implies a nonstationary A0, and thus
case (ii) should not apply to the ground state. Finally, the
phases of the Ajs should be spatially independent [cf. case
(iii)] for the ground-state VDM solitons. The velocity of the
VDM superfluid (see Appendix B 1) is proportional to the
spatial gradients of the phases. Thus, a ground-state VDM
halo with a vanishing fluid velocity must have Ajs with
spatially constant phases.

1. Filaments

We again briefly detour into solutions with cylindrically
symmetric distributions of mass. We consider the Cartesian
components of the vector field

Aj ¼ ðAx;Ay;AzÞ ¼ qðρÞe−imEqtðwx; wy; 0Þ: ð41Þ

These solutions (like the ones from Sec. IV B 1) represent
stringlike configurations. They are solutions to the
Schrödinger-Poisson equations

−
1

2ρ

d
dρ

�
ρ
d
dρ

�
qþmΦq ¼ mEqq;

1

ρ

d
dρ

�
ρ
dΦ
dρ

�
¼ mjqj2

2m2
Pl

; ð42Þ

where ρ is the cylindrical radial coordinate. The same
system of equations describes stringlike configurations of
scalar FDM [59,60]. Furthermore, as in the scalar-field
case, the solutions of these equations can have
qðρ ¼ 0Þ ≠ 0. Hence, the ground-state solution of the
cylindrically symmetric Cartesian components of the vector
field, Eq. (42), is identical to that of scalar FDM. It has a
gravitational potential with lnðρÞ dependence at large ρ; see
Fig. 4 and Appendix A 4, where we explain how to obtain
the solution numerically. The depth of the potential well at
ρ ¼ 0 is greater than that of the hedgehog filament from
Sec. IV B 1 (see the end of Appendix A 4 for details),
which suggests that the Cartesian case, Eq. (42), gives rise

to a stronger gravitational binding. Just as for spherical
halos, when we have a cylindrical structure (filament), the
lowest-energy VDM solutions are those that are identical to
the ground-state scalar FDM (cylindrical) soliton.

2. Walls

For completeness we discuss solutions with mass dis-
tributions which have a planar symmetry. We consider a
vector field with Cartesian components

Aj ¼ ðAx;Ay;AzÞ ¼ pðxÞe−imEptð1; 0; 0Þ: ð43Þ

These solutions represent wall-like configurations lying in
the y − z plane. They are solutions to the Schrödinger-
Poisson equations

−
1

2

d2p
dx2

þmΦp ¼ mEpp;

d2Φ
dx2

¼ mjpj2
2m2

Pl

: ð44Þ

Wall-like configurations of scalar FDM are described by
the same equations. Depending on the topology of the
vector field, we have two symmetry possibilities: (i) when
pðxÞ ¼ −pð−xÞ, i.e., the vector field points in opposite
directions on both sides of the plane, we are forced to have
pðx ¼ 0Þ ¼ 0, and (ii) when pðxÞ ¼ pð−xÞ, i.e.,Aj always
has the same direction, the vector field does not have to
vanish in the plane of symmetry. Both cases correspond to
one-dimensional solutions for scalar FDM [61], with
(ii) corresponding to even solutions, including the nodeless
ground state, and (i) capturing odd excited solutions.
The large-scale structure of the Universe reveals that

dark matter forms self-gravitating spherically symmetric

TABLE I. Properties of the lowest-energy (first row) spherical
hedgehog and (second row) Cartesian vector dark matter soliton
solutions. The dimensionless gravitational potential at the center
of the halo, half-mass radius, and gravitational binding energy are
given in the second, third, and fourth columns, respectively [see
also Eq. (28)].

Aj Φ̃ð0Þ r̃1=2 W̃tot

Eq. (34) −1.45 × 10−4 304 −5.71 × 10−5

Eq. (39) −5.00 × 10−4 98.6 −1.72 × 10−4

FIG. 4. The lowest-energy cylindrical solution, Aj ¼ ðAx;
Ay;AzÞ ¼ qðρÞe−imEqtðwx; wy; 0Þ, given in terms of the rescaled
quantities from Eq. (28). The q̃ðρ̃Þ and Φ̃ðρ̃Þ solutions are
identical to the ones of the scalar FDM lowest-energy cylindrical
solution; see, e.g., [60]. The solution is normalized so that it gives
rise to the same asymptotic behavior of the gravitational potential,
Φ̃ðρ̃ → ∞Þ → ðπ=2Þ lnðρ̃Þ þ const, as that of the hedgehog string
from Fig. 2.
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objects (i.e., halos), stringlike structures (also known as
filaments), and wall-like structures (often referred to as
“pancakes”); see, for example, Ref. [62]. Unless there is a
(topological) reason which forces the vector field to vanish
in the center, on the axis or plane of symmetry, respectively,
the ground-state VDM halos, filaments, and walls are
indistinguishable from the scalar FDM ones.
The reason why we have Cartesian vector solitons is

because in the nonrelativistic regime,k ≪ ðamÞ, the pressure
of the vector field is negligible. In this limit the energy-
momentum tensor, Eq. (5), loses its dependence on Fij and
reduces to Eq. (22). Anisotropic vector field configurations
like the Cartesian solitons do not give rise to anisotropic
pressure. This picture changes oncewe have relativistic field
configurations since the stresses induced by Fij are sizable.
The only known way to realize spherically symmetric stable
strongly gravitating solitons is to employ hedgehog solutions
[63]. The transition between these two regimes sets an upper
bound on the Cartesian spherical solitons. In the nonrela-
tivistic limit jΦð0Þj ≪ 1, implying Mtot ≪ jΦ̃ð0Þj−1=2m2

Pl=
m ∼ 1012 M⊙ð10−22 eV=mÞ; see Table I and Eq. (28). The
bound is identical to the one for scalar FDM halos [17]. The
lower bound on theCartesianVDMhalos also coincideswith
the one for scalar FDM [17]. As in the scalar case it can be
derived in two independent ways—namely, by assuming
either that the mean density of the soliton, ρ1=2 ∼Mtot=
ð4πr31=2=3Þ, is greater than the virial density, ∼200ρcrit,
ρcrit ¼ 3H2m2

Pl, or that Mtot has to be greater than the
critical Jeansmass,10MJ ∼ ρcritλ

3
J . Bothmethods give roughly

the same lower bound on the mass of the Cartesian spherical
VDM soliton, Mtot > 107 M⊙ð10−22 eV=mÞ3=2. Hence,
m ∼ 10−22 eV for VDM to explain the observed suppression
of halos below 107 − 108 M⊙, just like scalar FDM [17].

V. CONCLUSIONS

In this work, we studied the nonrelativistic limit of a
massive vector field in a perturbed FRW spacetime. We
explicitly showed that in this regime the Cartesian dynami-
cal degrees of freedom (Ax, Ay, Az) behave as three copies
of a massive scalar field that interact only gravitationally
via the Poisson equation. We then focused on stationary,
spatially localized solutions of the nonrelativistic theory—
soliton solutions. The ground-state solitons we found have
identical properties to the standard scalar FDM solitons,
regardless of the distribution of energy among the Aj fields.
Scalar FDM halos and the resulting fuzzy VDM halos are
observationally indistinguishable on the basis of the gravi-
tational properties of their cores in the Newtonian limit.

We also found a novel class of self-gravitating solutions
peculiar to VDM (i.e., not observed with scalar FDM), to
which we refer as hedgehog solitons11 since the vector
field topology is reminiscent of that of the hedgehog
solution describing the ’t Hooft–Polyakov monopole
[64,65]. They involved the spherical or cylindrical com-
ponents of the vector field, (Ar, Aθ, Aφ) or (Ar, Aθ, Az),
respectively. The lowest-energy hedgehog solutions lie
between the ground and the first excited states of the
Cartesian VDM solitons.
Last, we showed that there are no (exactly) spherical

solutions of a massive vector field with a vanishing
longitudinal component (but nonzero transverse
components).
The most salient distinction between axion and vector

FDM remains the power spectrum of their initial fluctua-
tions, which can affect the abundance of low-mass halos
[16,66] and depends on the primordial production mecha-
nism. Misalignment straightforwardly produces the
correct abundance of an axion with the theoretically
desired mass and decay constant, m ∼ 10−22 eV and
F ∼ 1017 GeV, respectively, in a miraculous fashion
[17]. However, when applied to a massive vector, pro-
duction via misalignment requires nonminimal, highly
tuned couplings to gravity [47], which also lead to
unitarity issues at low energies. Massive vectors mini-
mally coupled to gravity can be produced by quantum
fluctuations during inflation [51,56–58], but the catch is
that the vector is too heavy, m > 10−5 eV, and can be a
candidate for CDM, not FDM. Nevertheless, the
vector power spectrum has a peak on intermediate
scales, unlike the nearly scale-invariant scalar-field spec-
trum from inflation. Production of ultralight vectors,
m≳ 10−20 eV, can be realized with a resonant tachyonic
decay of an oscillating axion [52–55] (which again gives
rise to a strongly peaked VDM spectrum). We leave the
study of the nonrelativistic dynamics of fuzzy VDM in
such primordial embeddings for future work.
Another possible way to look for signatures of the vector

nature of dark matter is to consider phenomena on
Compton scales on which relativistic effects are not
negligible. We plan to study such effects with simulations,
carried out in the relativistic and nonrelativistic regimes.
Gravitational wave signatures arising from mergers and
coalescing halos may have distinct signatures due to
differences in the form of the stress tensor. Since the
relativistic limits of VDM and scalar FDM are different,
even perturbative post-Newtonian expansions should be
sufficient to predict novel VDM signatures, which do not
arise in scalar FDM models.
The additional freedom in the Schrödinger-Poisson

system that we derived here implies that there might be
10Just as for scalar FDM [16], the critical VDM Jeans scale,

λJ ∼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Pl=ρcrit
p

, is determined by equating it to the de Broglie
scale, λdB ∼ 1=ðmvÞ, where v is the nonrelativistic velocity of a
vector particle. Thus, we have λJ ∼ ðm2

Pl=ðm2ρcritÞÞ1=4.
11Note that similar “Proca star” solutions have been studied in

the context of a relativistic complex Proca field in Ref. [63].
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solutions beyond the simple-symmetric solutions we pre-
sented here. A nonrelativistic simulation of the formation of
a sufficiently large sample of VDM halos from cosmo-
logical initial conditions could reveal the entire spectrum of
stable vector solitons. If novel vector solitons exist, their
stability criteria may differ from those for the scalar-field
soliton [67], which apply to the spherical vector soliton we
found in this work.
Nongravitational self-interactions of fuzzy VDM could

also potentially affect its soliton solutions (for a related
study in the context of axion FDM, see Ref. [68]). Quartic
vector self-interactions occur naturally in realizations of the
Higgs and Stuckelberg mechanisms, although their relative
strength needs to be suppressed for efficient primordial
production of VDM [52]. Non-Abelian VDM also pos-
sesses nongravitational self-interactions [69,70]. We defer
the investigation of such effects on the soliton formation
and stability for future work.
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APPENDIX A: NUMERICAL VDM SOLITON
SOLUTIONS

In this appendix, we provide details about the numerical
procedure used to find the VDM halo solutions in Sec. IV.
We take the stationary-state ansatz, Ajðx; tÞ ¼

ψ jðxÞe−imEðjÞt, which yields the time-independent
Schrödinger equations

�
−
∇2

2m
þmΦðxÞ

�
ψ jðxÞ ¼ mEðjÞψ jðxÞ: ðA1Þ

Note that jEðjÞj ≪ 1 for the nonrelativistic assumption to
hold. We consider isolated configurations for which ψ jðxÞ
and ΦðxÞ are regular near the origin and approach zero at
jxj → ∞ (unless we drop the assumption of spherical
symmetry and consider cylindrical symmetry instead). It
follows directly from Eq. (A1) that EðjÞ is not the net energy
per unit mass of the jth component, since MðjÞEðjÞ ¼
2WðjÞ þKðjÞ þQðjÞ, where KðjÞ and QðjÞ are interpreted
as the kinetic and quantum energies of eachAj [see Eq. (B5)
for definitions], and thegravitational potential energy of each
Aj is12 WðjÞ ¼ ð1=2Þ R d3xΦmjψ jj2. For self-gravitating
systems

ΔΦ ¼
X
j

mjψ jj2
2m2

Pl

ðA2Þ

and Wtot ¼
P

j W
ðjÞ ¼ P

j V
ðjÞ [see Eq. (B5) for defini-

tions]. Moreover, the virial theorem from Appendix B 2
implies for the stationary soliton

P
j M

ðjÞEðjÞ ¼ ð3=2ÞWtot.
In the rest of this appendix we will be working in terms

of the rescaled dimensionless variables, following Eq. (28),

ψ̃ j ¼ m3
Pl

mM2
tot

ψ j

m3=2 ; Φ̃ ¼ m4
Pl

m2M2
tot
Φ;

r̃ ¼ m2

m2
Pl

Mtotjxj; ẼðjÞ ¼ m4
Pl

m2M2
tot
EðjÞ; ðA3Þ

which reduce the time-independent Schrödinger-Poisson
system to

−
∇̃2

2
ψ̃ j þ Φ̃ψ̃ j ¼ ẼðjÞψ̃ j; ∇̃2Φ̃ ¼ 1

2
ψ̃ j�ψ̃ j: ðA4Þ

1. VDM hedgehog

We now find the numerical solutions for the hedgehog
ansatz from Eq. (34), which we write as

Aj ¼ ðAr;Aθ;AφÞ ¼ ðhðjxjÞe−imEht; 0; 0Þ

¼ m1=2mPl

M2
tot

ðh̃ðjx̃jÞe−iẼht̃; 0; 0Þ: ðA5Þ

The dimensionless time-independent Schrödinger-Poisson
equations [see Eqs. (35) and (A4)] are given by

�
−

1

2r̃2
d
dr̃

�
r̃2

d
dr̃

�
þ 2

r̃2

�
h̃þ Φ̃ h̃ ¼ Ẽhh̃;

1

r̃2
d
dr̃

�
r̃2
dΦ̃
dr̃

�
¼ h̃2

2
; ðA6Þ

where we assume that h̃ðr̃Þ has a spatially independent
complex phase and thus assume wlog that it is real.
The dimensionlessSchrödinger-Poisson system,Eq. (A6),

does not possess any known analytic solutions. To proceed,
we solve the system of equations in Eq. (A6) numerically
using the “shooting” method.
We first absorb the rescaled energy eigenvalue into the

gravitational potential, φ̃h ≡ Φ̃ − Ẽh. Then Eq. (A6)
reduces to

�
1

2r̃2
d
dr̃

�
r̃2

d
dr̃

�
−

2

r̃2

�
h̃ ¼ φ̃hh̃;

1

r̃2
d
dr̃

�
r̃2

d
dr̃

�
φ̃h ¼

1

2
h2: ðA7Þ

12WðjÞ ≠ VðjÞ in general; cf./ Eq. (B5).

PETER ADSHEAD and KALOIAN D. LOZANOV PHYS. REV. D 103, 103501 (2021)

103501-10



The system of differential equations, Eq. (A7), remains
invariant under the rescaling

r̃→λr̃; h̃ðr̃Þ→λ−2h̃ðλr̃Þ; φ̃hðr̃Þ→λ−2φ̃hðλr̃Þ: ðA8Þ

Under this rescaling the norm of the solutions transforms
as

R
d3x̃h̃2ðr̃Þ → λ−1

R
d3x̃h̃2ðr̃Þ.

Next we integrate Eq. (A7) and find a smooth and
nodeless h̃ðr̃Þ solution, linear near the origin, h̃ðr̃Þ ∝ r̃, and
approaching zero at r̃ → ∞, satisfying the normalization
condition

R
d3x̃h̃2ðr̃Þ ¼ 1. To do this we implement the

following four-step algorithm:
(1) We choose an arbitrary negative numerical value for

φ̃hð0Þ, put h̃ð0Þ¼ 0, and set φ̃h
0ð0Þ¼ 0 and h̃0ð0Þ¼ 1.

(2) We integrate Eq. (A7) from r̃ ¼ 0 to ∞.
(3) We keep changing φ̃hð0Þ and repeating step 2 until

we find a smooth and nodeless h̃ðr̃Þ solution.
(4) The smooth and nodeless solution obtained in step 3

has
R
d3x̃h̃2ðr̃Þ ¼ λ. To normalize it, we rescale it

according to Eq. (A8).
The final solution from step 4 is the lowest-energy

hedgehog soliton; see Fig. 1. Once we have it, we can
recover Ẽh in two independent ways. The first one makes
use of the virial theorem, which implies that Ẽh ¼
−3

R
d3x̃φ̃hðx̃Þh̃2ðx̃Þ. The second method is based on the

assumption that Φ̃ðx̃Þ vanishes at infinity. Then from the
definition of φ̃h it follows that Ẽh ¼ −φ̃hð∞Þ. The two
methods yield results in agreement to arbitrary high
precision.13

2. VDM hedgehog strings

Here we find the numerical solutions for the cylindrical-
hedgehog ansatz from Eq. (36), which we write as

Aj ¼ ðAρ;Aθ;AzÞ ¼ ðgðρÞe−imEgt; 0; 0Þ

¼ m1=2mPl

M2
tot

ðg̃ðρ̃Þe−iẼgt̃; 0; 0Þ: ðA9Þ

The dimensionless time-independent Schrödinger-Poisson
equations [see Eqs. (37) and (A4)] are

�
−

1

2ρ̃

d
dρ̃

�
ρ̃
d
dρ̃

�
þ 1

ρ̃2

�
g̃þ Φ̃ g̃ ¼ Ẽgg̃;

1

ρ̃

d
dρ̃

�
ρ̃
dΦ̃
dρ̃

�
¼ g̃2

2
; ðA10Þ

where g̃ðρ̃Þ is assumed to have a spatially independent
complex phase which we can ignore.

The dimensionless cylindrical Schrödinger-Poisson sys-
tem, Eq. (A10), does not have analytic solutions. Thus, we
again solve the system of equations in Eq. (A10) numeri-
cally using the shooting method.
We first absorb the rescaled energy eigenvalue into the

gravitational potential, φ̃g ≡ Φ̃ − Ẽg. Then Eq. (A10)
reduces to �

1

2ρ̃

d
dρ̃

�
ρ̃
d
dρ̃

�
−

1

ρ̃2

�
g̃ ¼ φ̃gg̃;

1

ρ̃

d
dρ̃

�
ρ̃
d
dρ̃

�
φ̃g ¼

1

2
g2: ðA11Þ

The system of differential equations, Eq. (A11), is invariant
under the rescaling

ρ̃→λρ̃; g̃ðρ̃Þ→λ−2g̃ðλρ̃Þ; φ̃gðρ̃Þ→λ−2φ̃gðλρ̃Þ: ðA12Þ

We now integrate Eq. (A11) and find a smooth and
nodeless g̃ðρ̃Þ, linear near the origin, gðρ̃Þ ∝ ρ̃, and
approaching zero at ρ̃ → ∞. We do not consider the
normalization of g̃, since it has an infinite extension along
the z direction. Instead, as a “normalization” condition we
simply fix g̃0ðρ̃ ¼ 0Þ ¼ 1. We next implement the following
three-step algorithm:
(1) We choose an arbitrary negative numerical value

for φ̃gð0Þ, put g̃ð0Þ ¼ 0, and set φ̃g
0ð0Þ ¼ 0 and

g̃0ð0Þ ¼ 1.
(2) We integrate Eq. (A11) from ρ̃ ¼ 0 to ∞.
(3) We keep changing φ̃gð0Þ and repeating step 2 until

we find a smooth and nodeless g̃ðρ̃Þ solution.
The final solution from step 3 is the lowest-energy

hedgehog soliton; see Fig. 2. Once we have it, we do not
recover Ẽg, since it can be absorbed into the constant
appearing in the gravitational potential at infinity. Hence,
we end up with Φ̃ðρ̃Þ ¼ φ̃gðρ̃Þ, which in the limit of ρ̃ → ∞
tends to ðπ=2Þ lnðρ̃=πÞ.

3. VDM ground-state halos

We now derive the numerical solutions of the ground-
state ansatz from Eq. (39), which we write as

Aj ¼ ðAx;Ay;AzÞ ¼ fðjxjÞe−imEtðwx; wy; wzÞ

¼ m1=2mPl

M2
tot

f̃ðjx̃jÞe−iẼ t̃ðwx; wy; wzÞ: ðA13Þ

The dimensionless time-independent Schrödinger-Poisson
equations [see Eqs. (40) and (A4)] then become

−
1

2r̃2
d
dr̃

�
r̃2

d
dr̃

�
f̃ þ Φ̃ f̃ ¼ Ẽ f̃;

1

r̃2
d
dr̃

�
r̃2
dΦ̃
dr̃

�
¼ f̃2

2
; ðA14Þ

13For the second method we also fitted ar̃−1 þ b to φ̃hðr̃Þ at
large distances since Φ̃ðr̃Þ is expected to fall off as r̃−1 far from
the spherically symmetric soliton.
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where it is assumed that f̃ðr̃Þ has a spatially independent
complex phase and hence, wlog, it is taken to be real.
The dimensionless Schrödinger-Poisson system,

Eq. (A14), is identical to the one for scalar-field FDM
[17]. It does not have any known analytic solutions, whereas
its numerical solutions are well known; see, e.g., Ref. [17].
For completeness, we show how to obtain the known
solutions of the system of equations, Eq. (A14), numerically
using the shooting method.
We repeat the procedure used for the hedgehog case. We

begin by absorbing the rescaled energy eigenvalue into the
dimensionless gravitational potential, φ̃≡ Φ̃ − Ẽ. Then
Eq. (A14) becomes

1

2r̃2
d
dr̃

�
r̃2

d
dr̃

�
f̃ ¼ φ̃ f̃;

1

r̃2
d
dr̃

�
r̃2

d
dr̃

�
φ̃ ¼ 1

2
f2: ðA15Þ

As in the hedgehog case, Eq. (A15) is invariant under the
rescaling

r̃ → λr̃; f̃ðr̃Þ → λ−2f̃ðλr̃Þ; φ̃ðr̃Þ → λ−2φ̃ðλr̃Þ; ðA16Þ

whereas the norm of the solutions transforms asR
d3x̃f̃2ðr̃Þ → λ−1

R
d3x̃f̃2ðr̃Þ.

We proceed by numerically integrating Eq. (A15) and
finding a smooth and nodeless f̃ðr̃Þ solution, regular near the
origin and approaching zero at r̃ → ∞, normalized as
follows:

R
d3x̃f̃2ðr̃Þ ¼ 1. We again implement a four-step

algorithm:
(1) We choose an arbitrary negative numerical value for

φ̃ð0Þ and a positive one for f̃ð0Þ ¼ 0 and set φ̃0ð0Þ
and f̃0ð0Þ to zero.

(2) We integrate Eq. (A15) from r̃ ¼ 0 to ∞.
(3) We keep changing φ̃ð0Þ and repeating step 2 until we

find a smooth and nodeless f̃ðr̃Þ solution.
(4) The smooth and nodeless solution obtained in step 3

has
R
d3x̃f̃2ðr̃Þ ¼ λ. To normalize it, we rescale it

according to Eq. (A16).
The final solution from step 4 is the ground-state VDM

soliton; see Fig. 3.We can again recover Ẽ straightforwardly,
in two independent ways, by using either the virial theorem
identity Ẽ ¼ −3

R
d3x̃ φ̃ðx̃Þf̃2ðx̃Þ or the assumption that

Φ̃ðx̃Þ vanishes at infinity and thus Ẽ ¼ −φ̃ð∞Þ. The two
approaches agree to arbitrary high precision.14

4. VDM ground-state strings

We now find the numerical solutions for the Cartesian
cylindrical ansatz from Eq. (41), which we write as

Aj ¼ ðAx;Ay;AzÞ ¼ qðρ̃Þe−imEqtðwx; wy; 0Þ

¼ m1=2mPl

M2
tot

q̃ðρ̃Þe−iẼqt̃ðwx; wy; 0Þ: ðA17Þ

The dimensionless time-independent Schrödinger-Poisson
equations [see Eqs. (42) and (A4)] are

−
1

2ρ̃

d
dρ̃

�
ρ̃
d
dρ̃

�
q̃þ Φ̃ q̃ ¼ Ẽqq̃;

1

ρ̃

d
dρ̃

�
ρ̃
dΦ̃
dρ̃

�
¼ q̃2

2
; ðA18Þ

where q̃ðρ̃Þ is taken to be real wlog for the ground-state
solution.
The dimensionless cylindrical Schrödinger-Poisson sys-

tem for the Cartesian components, Eq. (A17), does not have
known analytic solutions. We solve Eq. (A18) numerically
with the shooting method.
As always, we absorb the rescaled energy eigenvalue

into the gravitational potential, φ̃q ≡ Φ̃ − Ẽq. Then
Eq. (A18) reduces to

1

2ρ̃

d
dρ̃

�
ρ̃
d
dρ̃

�
q̃ ¼ φ̃qq̃;

1

ρ̃

d
dρ̃

�
ρ̃
d
dρ̃

�
φ̃q ¼

1

2
q2: ðA19Þ

As before, the system of differential equations, Eq. (A19),
is invariant under the rescaling

ρ̃→λρ̃; q̃ðρ̃Þ→λ−2q̃ðλρ̃Þ; φ̃qðρ̃Þ→λ−2φ̃qðλρ̃Þ: ðA20Þ

We now integrate Eq. (A19) and find the smooth and
nodeless ground state q̃ðρ̃Þ, regular near the origin and
approaching zero at ρ̃ → ∞. We normalize q̃ in such a way
that φqðρ̃Þ ¼ ðπ=2Þ lnðρ̃Þ þ const at infinity. This allows us
to compare the gravitational potential to that of the hedge-
hog string from Appendix A 2 since the potential there has
the same ρ̃ dependence at infinity, ðπ=2Þ ln ρ̃þ const, and
thus the filament has the same mass. We next implement the
following four-step shooting algorithm:
(1) We choose an arbitrary negative numerical value for

φ̃qð0Þ and a positive one for q̃ð0Þ ¼ 0 and set φ̃q
0ð0Þ

and q̃0ð0Þ to zero.
(2) We integrate Eq. (A19) from ρ̃ ¼ 0 to ∞.
(3) We keep changing φ̃qð0Þ and repeating step 2 until

we find a smooth and nodeless q̃ðρ̃Þ solution.
(4) We rescale the smooth and nodeless solution ob-

tained in step 3 according to Eq. (A20), which gives
φqðρ̃Þ ¼ ðπ=2Þ lnðρ̃Þ þ const at infinity. The desired
value of λ needed for Eq. (A20) is found by fitting.

The final solution from step 4 is the lowest-energy
cylindrical soliton; see Fig. 4. We do not need to recover

14As in the hedgehog case, for the second method we also
fitted ar̃−1 þ b to φ̃ðr̃Þ at large r̃ since we expect Φ̃ðr̃Þ ∝ r̃−1 far
from the spherically symmetric soliton.
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Ẽq, since in the cylindrical case it can be absorbed into the
constant appearing in the gravitational potential at ρ̃ → ∞.
Thus, we have Φ̃ðρ̃Þ ¼ φ̃qðρ̃Þ, which at ρ̃ → ∞ goes as
ðπ=2Þ lnð2ρ̃=πÞ. We then find from the numerical solutions
that the difference in the depths of the gravitational
potential wells (at ρ̃ ¼ 0) of the hedgehog string from
Appendix A 2 and of the filament here is φ̃gð0Þ−
φ̃qð0Þþðπ=2Þlnð2Þ¼ðπ=3Þþ3=ð4πÞ. Hence, the Cartesian
filament, Eq. (A17), has a deeper potential well than the
hedgehog string, Eq. (A9).

5. Generic VDM ground-state solutions

We show here that the ground-state VDM halos can be
also obtained from a more generic ansatz than the one in
Eq. (A13)—namely,

Aj ¼ ψ jðjxjÞe−imEðjÞt ¼ ðAx;Ay;AzÞ

¼ m1=2mPl

M2
tot

ðψ̃xe−iẼ
ðxÞ t̃; ψ̃ye−iẼ

ðyÞ t̃; ψ̃ ze−iẼ
ðzÞ t̃Þ: ðA21Þ

The dimensionless time-independent Schrödinger-Poisson
system [see Eq. (A4)] is

−
1

2r̃2
d
dr̃

�
r̃2

d
dr̃

�
ψ̃ j þ Φ̃ψ̃ j ¼ ẼðjÞψ̃ j;

1

r̃2
d
dr̃

�
r̃2
dΦ̃
dr̃

�
¼ ψ̃ jψ̃ j

2
; ðA22Þ

where it is assumed that the ψ̃ j’s are real.
This extended Schrödinger-Poisson system does not

possess any known analytic solutions (for any number of
j components). To make further progress, we make the
simplifying assumption of ẼðxÞ ¼ ẼðyÞ ¼ ẼðzÞ ¼ Ẽ and
solve the system of equations from Eq. (A22) with the
aid of the shooting method.
We start by defining, φ̃≡ Φ̃ − Ẽ. Then Eq. (A22)

simplifies to

1

2r̃2
d
dr̃

r̃2
dψ̃ j

dr̃
¼ φ̃ψ̃ j;

1

r̃2
d
dr̃

r̃2
dφ̃
dr̃

¼ 1

2
ψ̃ jψ̃ j: ðA23Þ

Equation (A23) is invariant under

r̃→λr̃; ψ̃ jðr̃Þ→λ−2ψ̃ jðλr̃Þ; φ̃ðr̃Þ→λ−2φ̃ðλr̃Þ; ðA24Þ

and the sum of the norms of the solutions transforms
as

P
j M̃

ðjÞ → λ−1
P

j M̃
ðjÞ.

We continue by integrating Eq. (A23) and finding smooth
and nodeless ψ̃ jðr̃Þ solutions, regular near the origin and
approaching zero at r̃ → ∞, satisfying the normalization
condition

P
j M̃

ðjÞ ¼ 1. To this end we use the following
four-step algorithm:

(1) We choose numerical values for ψ̃ jð0Þ and φ̃ð0Þ and
set ψ̃ j0ð0Þ and φ̃0ð0Þ to zero.

(2) We integrate Eq. (A23) from r̃ ¼ 0 to ∞.
(3) We keep changing φ̃ð0Þ and repeating step 2 until we

find a smooth and nodeless ψ̃ jðr̃Þ solution.
(4) The smooth and nodeless solution obtained in step 3

has
P

j M̃
ðjÞ ¼ λ. To normalize it, we rescale it

according to Eq. (A24).
The final solution from step 4 is the soliton; see Fig. 3.

Once we have it, we can extract Ẽ with the help of the
identity which follows from the virial theorem Ẽ ¼
−3

P
j

R
d3x̃ φ̃ðx̃Þψ̃ j2ðx̃Þ. Alternatively, a ðar̃−1 − ẼÞ fit

to φ̃ðr̃Þ at large distances yields the same result for Ẽ.
Using this prescription we found solutions which were

indistinguishable from those in Appendix A 3 [see Fig. 5]
in terms of gravitational potential and energy density.

APPENDIX B: SUPERFLUID VDM, THE
MADELUNG EQUATIONS, AND THE VIRIAL

THEOREM

In this appendix, for completeness, we provide details of
the superfluid description and the virial theorem for VDM
used in Appendix A. For further details, we refer the reader
to the original literature; see, e.g., the references in [17].

1. Superfluid description of VDM

The (super)fluid description of nonrelativistic VDM is a
generalization of that of a nonrelativistic scalar field [17].
The three Aj fields have fluid densities and velocities
defined as

FIG. 5. The ground-state solution for the ansatz in Eq. (A21)
with M̃ðxÞ ¼ 0.690, M̃ðyÞ ¼ 0.248. Note that

P
j M̃

ðjÞ ¼ 1. The

Φ̃ðr̃Þ and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j ψ̃
j2ðr̃Þ

q
are identical to the blue and orange curves

in Fig. 3, respectively. Since the data in Fig. 3 are equivalent to,
e.g., M̃ðxÞ ¼ 1, one concludes that the gravitational properties of
the ground-state VDM halos, i.e., the gravitational potential,
Φ̃ðr̃Þ, and energy density,Pj ψ̃

j2ðr̃Þ, are independent of the M̃ðjÞ

values.
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Aj ≡
ffiffiffiffiffiffiffi
ρðjÞ

m

s
eiθ

ðjÞ
; vðjÞ ≡∇θðjÞ

am
: ðB1Þ

After substituting these definitions into the Schrödinger
equation for Aj, Eq. (25), we arrive at the Madelung
equations (for each component of Aj)

_ρðjÞ þ 3HρðjÞ þ ∇
a
· ðρðjÞvðjÞÞ ¼ 0;

_vðjÞ þHvðjÞ þ 1

a
ðvðjÞ · ∇ÞvðjÞ

¼ −
∇Φ
a

þ 1

2a3m2
∇
�
∇2

ffiffiffiffiffiffiffi
ρðjÞ

p
ffiffiffiffiffiffiffi
ρðjÞ

p �
: ðB2Þ

The first equation is the FRW version of the continuity
equation, whereas the second one represents the Euler
equation of classical fluid dynamics, with the last term on
the right-hand side being the quantum pressure term.
For self-gravitating vector dark matter, the superfluid

version of the Poisson equation, Eq. (23), is

Δ
a2

Φ ¼
X
j

ρðjÞ

2m2
Pl

: ðB3Þ

2. The virial theorem

We now derive relations between the kinetic, gradient,
and gravitational energies for the three components of the
superfluid VDM, which hold in stationary equilibrium (the
relations are commonly known as the virial theorem). We
consider a nonexpanding Universe. We follow the deriva-
tion for a single scalar FDM field from [17] and extend it
to VDM.
Since ρðjÞ ¼ m2jAjj2 is the mass density of the jth

component of the superfluid, the corresponding moment of
inertia is given by

IðjÞ ¼ 1

2
m
Z

d3xjAjj2x2: ðB4Þ

Using the Schrödinger equation for Aj, Eq. (25), with
aðtÞ ¼ 1, one can derive the virial theorem

̈IðjÞ ¼ VðjÞ þ 2KðjÞ þ 2QðjÞ;

VðjÞ ≡ −
Z

d3xρðjÞx · ∇Φ;

KðjÞ ¼ 1

2

Z
d3xρðjÞjvðjÞj2;

QðjÞ ¼ 1

2m2

Z
d3xj∇

ffiffiffiffiffiffiffi
ρðjÞ

q
j2; ðB5Þ

where KðjÞ and QðjÞ are interpreted as the kinetic and
quantum energies of the jth component of the superfluid.
In stationary equilibrium ̈IðjÞ ¼ 0 and, sinceKðjÞ ≥ 0, we

have

QðjÞ

jVðjÞj ≤
1

2
: ðB6Þ

The bound is saturated if the phase of the wave function is
position independent, vðjÞ ¼ ∇θðjÞ ¼ 0. This is the case for
the solitons discussed in Appendix A.
For a self-gravitating superfluid, the gravitational poten-

tial is given by

ΦðxÞ ¼ −
1

8πm2
Pl

X
j

Z
d3y

ρðjÞðyÞ
jx − yj : ðB7Þ

Then, regardless of whether stationary equilibrium is
established or not, there is always a conserved total energy
given by Wtot þ

P
jðKðjÞ þQðjÞÞ, where the total gravita-

tional potential energy of the self-gravitating superfluid is
given by

Wtot ≡ −
1

16m2
Pl

Z
d3xd3y

ρtotðxÞρtotðyÞ
jx − yj ¼

X
j

VðjÞ; ðB8Þ

where

ρtot ≡
X
j

ρðjÞ: ðB9Þ
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