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We perform the first suite of fully general relativistic magnetohydrodynamic simulations of spinning
massive black hole binary mergers. We consider binary black holes with spins of different magnitudes
aligned to the orbital angular momentum, which are immersed in a hot, magnetized gas cloud. We
investigate the effect of the spin and degree of magnetization (defined through the fluid parameter
β−1 ≡ pmag=pfluid) on the properties of the accretion flow. We find that magnetized accretion flows are
characterized by more turbulent dynamics, as the magnetic field lines are twisted and compressed during
the late inspiral. Postmerger, the polar regions around the spin axis of the remnant Kerr black hole are
magnetically dominated, and the magnetic field strength is increased by a factor approximately 102

(independently from the initial value of β−1). The magnetized gas in the equatorial plane acquires higher
angular momentum and settles in a thin circular structure around the black hole. We find that mass accretion
rates of magnetized configurations are generally smaller than in the unmagnetized cases by up to a factor
approximately 3. Black hole spins have also a suppressing effect on the accretion rate, as large as
approximately 48%. As a potential driver for electromagnetic emission, we follow the evolution of the
Poynting luminosity, which increases after merger up to a factor approximately 2 with increasing spin,
regardless of the initial level of magnetization of the fluid. Our results stress the importance of taking into
account both spins and magnetic fields when studying accretion processes onto merging massive black
holes.
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I. INTRODUCTION

Massive black hole binary (MBHB) mergers are a
natural outcome of galaxy collisions [1,2] and are among
the most powerful sources of gravitational waves (GWs)
which will be detected by future space-based interferometers
such as LISA [3]. These mergers may occur in a gas-rich
environment [4–10], leading to the intriguing possibility of
concurrent electromagnetic (EM) emission observable by
traditional astronomical facilities. Observing these powerful
events both in the EM and the GW windows will provide
uniqueopportunities formultimessenger astronomy.Amajor
goal of forthcoming multiband EM observations (e.g.,
Athena [11]) is to observe and study the EM counterparts
to LISA MBHB coalescences: detecting the EM signal
emitted alongside an ongoing merger will let us probe the
existence of multiple disk structures around the massive
black holes (MBHs) [12–15] and, possibly, the launch of

relativistic jets during the inspiral and when the new MBH
has formed [16,17]. Concurrent observation of EM counter-
parts to GW events will help illuminate the physical
processes that power quasars and offer new opportunities
for testing the propagation of GWs on cosmological scales,
e.g.,measuring the differences in the arrival times of light and
GWs, or inferring the redshift z versus the luminosity
distance dL relation without resorting to EM distance scale
calibrators [18–20].
Our knowledge of the properties of the EM signals

emerging during a MBHB merger is still incomplete,
despite recent advances [13,21–24]. Predictions on this
EM emission depend on the fueling rate; on the hydrody-
namical, geometrical, and radiative properties of the accret-
ing magnetized gas; and on the MBHs masses and spins.
The development of numerical relativity (NR) simula-

tions of these powerful events is required to advance our
theoretical understanding of the physical mechanisms
which drive EM signals associated to GW detections. A
jump in the predictive power of NR simulations will allow*fcattorini@uninsubria.it
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better predictions for the EM spectrum rising during the late
inspiral and coalescence of MBHBs, providing guidance to
future observations and maximizing the scientific return
of LISA.
The structure of the accretion flows around coalescing

MBHBs largely depends on the angular momentum content
of the accreting gas conveyed in the galactic merger and on
its thermodynamical state. Two limiting scenarios bracket
the range of physical properties of accreting fluids
around MBHBs:

(i) The circumbinary disk (CBD) model, in which a
rotationally supported disk surrounds the binary and
viscous and gravitational torques balance to clear a
central cavity at twice the MBHB separation [25].
Numerical simulations show that the system evolves
into a nonaxisymmetric configuration with the
cavity becoming highly lopsided and filled with a
tenuous, shocked plasma, in part ejected against the
disk wall where it loses angular momentum to feed
theMBHs. This leads to the formation of two narrow
streams, which periodically convey mass onto the
MBHs in the form of transient “minidisks” that
persist down to coalescence (e.g., Refs. [13,15,26–
31]). The first simulations of equal-mass, non-
spinning binaries in magnetized CBDs were per-
formed by Ref. [26] (adopting high-order Post-
Newtonian (PN) approximations) and Ref. [32]
(in full general relativity).

(ii) If the surrounding gas is hot, tenuous, and not
rotationally supported, the MBHs may find them-
selves embedded in a turbulent and radiatively
inefficient accretion flow [33,34]. In this scenario,
the gas is unable to cool efficiently, and thus the
energy is stored in the accretion flow as thermal
energy instead of being radiated. We refer to this
scenario as the gas cloud model [35–37]. The first
general relativistic hydrodynamical simulations of
merging equal-mass binaries in unmagnetized gas
clouds were carried out by Refs. [35,36] (the latter
considered both nonspinning and parallel-spin bina-
ries). These works established that the phases of late
inspiral and merger are accompanied by a gradual
rise in the emitted bremsstrahlung luminosity, fol-
lowed by a sudden dropoff corresponding to the
postmerger accretion of the shock-heated gas. In a
subsequent work [37], the impact of misaligned
spins and unequal mass ratios on the physics of hot
accretion flows was investigated, and it was found
that less symmetric systems result in lower lumi-
nosity and delayed emission from the regions near
the black holes (BHs).

In the present work, we consider the hot gas cloud
model. We perform the first general relativistic magneto-
hydrodynamic (GRMHD) simulations of merging spinning
BHs immersed in an initially homogeneous fluid and

examine how magnetic fields and spins affect the dynamics
of the gas and the Poynting luminosity emission. Our
simulations revise the scenario analyzed in Giacomazzo
et al. [38] (Gi12 hereafter) and Kelly et al. [22] (Ke17
hereafter) and explore the behavior of moderately magnet-
ized accretion flows (MMAFs) onto binaries of MBHs
within the ideal MHD limit. The analysis of moderately
magnetized plasma bridges the study of unmagnetized
gaseous environments (e.g., Refs. [35,36]) and results
obtained in the force-free regime (e.g., Ref. [16]), which
approximate magnetically dominated plasma (i.e., fluids
for which β−1 ≡ pmag=pfluid ≫ 1).
The simulations of Gi12 were the first to study the nature

of MMAFs around equal-mass, nonspinning black hole
binaries (set at an initial separation of 8.48 M, where M is
the total mass of the binary), solving the GRMHD
equations with the WhiskyMHD code [39,40]. Gi12 con-
sidered two models for the gas cloud surrounding the
binary, both with an initially uniform rest-mass density ρ0:
a unmagnetized plasma and a plasma threaded by an
initially uniform magnetic field with an initial ratio of
magnetic-to-fluid pressure β−1 equal to 0.025. Their results
showed that MMAFs exhibit different dynamics compared
to unmagnetized accretion flows and can lead to strong,
collimated EM emission.
The results of Gi12 were farther extended by Ke17, who

covered a broader collection of physical scenarios adopting
the IllinoisGRMHD code [41,42] to solve the GRMHD
equations. The simulations of Ke17 consider equal-mass
binaries of nonspinning black holes with initial separations
covering values between 6.6M and 16.3M. Evolving
higher-separation binaries allowed them to better resolve
the timing features of the EM (Poynting) emission. Several
configurations differing only in the initial magnetic field
value b0 were also evolved, showing that the level of the
Poynting luminosity reached during the inspiral is little
sensitive to the initial magnetic field strength.
In this work, we progress by studying the scenario

examined by Gi12 and Ke17 and carry out the first three-
dimensional GRMHD simulations of merging BHs includ-
ing spins. Extending the study to BHs with nonzero spin is
key when considering binaries of massive black holes. The
motivation is astrophysical, as there is observational evi-
dence thatMBHs have grownprimarily by efficient accretion
[43] and are expected to acquire a nonvanishing spin
depending on whether accretion is prograde or retrograde,
coherent or chaotic, as discussed extensively in the literature
(see, e.g., Refs. [44–49]).
Two recent works present preliminary results describing

GRMHD premerger simulations of spinning binary black
holes. Lopez Armengol et al. [50] construct an approximate
space-time metric, which they name “Superimposed Kerr-
Schild” metric, and carry out simulations of circumbinary
accretion onto binary systems with separation fixed at 20M,
and spin parameters a ¼ ð0;�0.9Þ. They find that spin can
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significantly affect the circumbinary accretion via frame-
dragging effects, enhancing or reducing it according to the
sign of the spin-orbit coupling. Paschalidis et al. [51]
perform fully general relativistic MHD simulations of black
hole binaries (BHBs) and consider binary configurations of
spinning BHs set at an initial distance d ¼ 20M, with spin
parameters a ¼ ð0;�0.75Þ. Their work addresses the for-
mation and dynamics of minidisks. In particular, they
demonstrate the impact of spin in allowing the formation
of minidisks. Both aforementioned investigations focus on
the late stages of BHB inspiral, i.e., the premerger phase.
By contrast, our work considers a different environment
(i.e., the gas cloud model) and examines merging binary
systems, treating both pre- and postmerger phases.
Our simulations consider binary equal-mass BHs with

equal spins, both aligned with the orbital angular momen-
tum, and with spin dimensionless parameters of magnitude
a1;2 ¼ ð0; 0.3; 0.6Þ, immersed in a uniform plasma with
different initial degrees of magnetization. The binary
evolutions are carried out with the EINSTEIN TOOLKIT

[52,53] on adaptive-mesh refinement (AMR) grids pro-
vided by the Carpet driver [54]. The space-time metric
evolution is obtained using the Kranc-based MCLACHLAN

[55,56] thorn, adopting the Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) [57–59] formalism. We adopt the
“moving puncture” method [60–62], and our initial metric
data are of the Bowen-York type [63], conditioned to satisfy
the constraint equations using the TWOPUNCTURES thorn
[64]. The GRMHD equations were solved with the
IllinoisGRMHD code [41,42].
The main structure of the paper is as follows. In Sec. II,

we give a brief description of the numerical methods
adopted in our simulations. The initial configuration of
our binary evolutions are described in Sec. III. In Sec. IV,
we present results from all models considered: the dynam-
ics of the plasma surrounding the BHs across evolution
(Sec. IVA), the magnetic field enhancement and the
formation of magnetically-dominated regions (Sec. IV
B), the mass accretion rate both during the orbital evolution
and in the postmerger (Sec. IV C), and the development of
strong Poynting flux emission (Sec. IV D).

II. NUMERICAL METHODS

We consider three families of simulations, each defined
by BHs spin parameter a1;2 ¼ ð0; 0.3; 0.6Þ; for each family,
we run three simulations characterized by different degrees
of initial “magnetization,” i.e., different values of initial
magnetic-to-gas pressure ratio β−10 . All runs consider black
holes immersed in an adiabatic gas with initial uniform
density and pressure. We take the gas to be either
unmagnetized (B0 models) or moderately magnetized
(B1 and B2 models), set with initial uniform magnetic
field aligned with the total angular momentum of the
system.

In this section, we give a brief overview of the math-
ematical setup used for producing the simulations dis-
cussed in the following. For more detailed discussion on the
numerical framework adopted for evolving BH binaries in
general relativity, see, e.g., Refs. [65,66].

A. Evolution of gravitational f ields

All the equations presented below are in geometrized
units ðG ¼ c ¼ 1Þ. In these units, Einstein’s field equations
of general relativity are

Gμν ¼ 8πTμν; ð1Þ

where Gμν is the Einstein tensor and Tμν the total stress-
energy tensor. For a magnetized fluid, the stress-energy
tensor is the sum of matter and EM components,

Tμν ¼ Tμν
matter þ Tμν

EM; ð2Þ

Tμν
matter ¼ ρhuμuν þ pfluidgμν; ð3Þ

Tμν
EM ¼ b2

�
uμuν þ 1

2
gμν

�
− bμbν; ð4Þ

where gμν is the metric tensor, ρ is the rest-mass density, uμ

is the 4-velocity of the fluid, h is the specific enthalpy, pfluid
is the fluid pressure, and bμ is the magnetic 4-vector. The
space-time metric in standard 3þ 1 form is

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð5Þ

where α is the lapse function, βi is the ith component of the
shift vector, and γij is the spatial metric. The extrinsic
curvature Kij is given by

ð∂t − LβÞγij ¼ −2αKij ð6Þ

with Lβ denoting the Lie derivative with respect to β. We
evolve the metric variables ðγij; KijÞ using the BSSN
formulation (BSSN evolution and constraint equations
are summarized in Refs. [58,59]).
Our metric evolution equations do not include matter

source terms, since for all the simulations considered in this
work we assume that the total mass of the fluid is negligible
with respect to the mass of the two BHs, Mfluid ≪ MBHs
(i.e., we evolve the Einstein equations in vacuum). We
adopt the “1þ log” slicing condition for the lapse and a
“hyperbolic gamma-driving” condition for the shift [62].
In general, nonradiative GRMHD simulations are scale

free. Thus, we will use length and time units that scale with
the total mass of the system M. All our simulations are
evolved setting c ¼ G ¼ M ¼ 1. The unitary values of
mass, length, and time in code units correspond to
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m̂ ¼ M ¼ 2 · 1039M6 g ð7Þ

l̂ ¼ G
c2

M ¼ 1.48 · 1011M6 cm ð8Þ

t̂ ¼ G
c3

M ¼ 4.94M6 s; ð9Þ

where M6 ≡M=106M⊙. Since we assume Mfluid ≪ MBHs,
the fluid contribution to Eq. (1) can be ignored, and we can
set Tμν ≈ 0. This means that we are free to rescale an
appropriate set of the fluid field variables independently of
the geometric scaling that arises by the condition M ¼ 1.

B. Evolution of magnetohydrodynamic fields

The GRMHD equations and constraint equations are
derived from the following:
(1) the conservation of baryon number

∇μðρuμÞ ¼ 0; ð10Þ

(2) the conservation of energy momentum

∇μTμν ¼ 0; ð11Þ

where Tμν ¼ Tμν
matter þ Tμν

EM; and
(3) the homogenous Maxwell’s equations

∇νF�μν ¼ 1ffiffiffiffiffiffi−gp ∂νð
ffiffiffiffiffiffi
−g

p
F�μνÞ ¼ 0; ð12Þ

where Fμν is the Faraday tensor, F�μν is its dual, and
g is the determinant of gμν.

The IllinoisGRMHD code [42] evolves a set of conservative
MHD fields C≡ fρ�; τ̃; S̃i; B̃ig solving the coupled
Einstein-Maxwell equations. It assumes a perfect fluid
stress-energy tensor for the matter and infinite conductivity
(ideal MHD limit). The vectors of the “conservative
variables” C depend directly on the “primitive variables”
P≡ fρ; pfluid; vi; Big, where ρ is the rest-mass density,
pfluid is the fluid pressure, vi ≡ ui=u0 are the components
of the fluid 3-velocity, and Bi are the spatial components of
magnetic field Bμ measured by Eulerian observers.
To satisfy the divergence-free nature of the magnetic

field, the IllinoisGRMHD code evolves the magnetic 4-vector
potential Aμ instead of the magnetic fields directly (see
Ref. [42]), so that

Aμ ¼ Φnμ þ Aμ;

B̃i ¼ ϵ̃ijk∂jAk; ð13Þ

where Aμ is purely spatial ðAμnμ ¼ 0Þ and Φ is the EM
scalar potential. The standard permutation symbol ϵ̃ijk is

equal to 1ð−1Þ if ijk are an even (odd) permutation of 123
and 0 if one or more indices are identical.
We apply the so-called outflow boundary conditions to

the hydrodynamic variables ðρ0; pfluid; viÞ and a linear
extrapolation to Aμ [42].

C. Magnetized accretion flows

At present, our understanding of accretion flow proper-
ties around merging MBHBs is uncertain. On very small
scales (such as the ones we consider), it is not possible to
uniquely define initial conditions for the gas in the vicinity
of merging binaries. Following Gi12 and Ke17, we choose
to evolve our models in a simple environment consisting in
a homogenous, ideal gas with initial uniform rest-mass
density ρ0, which has an initially uniform magnetic field
(aligned with the orbital angular momentum) and fills the
entire computational domain.
An ideal gas with adiabatic index γ has a pressure

pfluid ¼ ρϵðγ − 1Þ ð14Þ

(where ρ is the rest-mass density, ϵ is the specific internal
energy, and γ is the adiabatic index) and a specific enthalpy

h ¼ ð1þ ϵÞ þ pfluid

ρ
¼ 1þ γϵ: ð15Þ

We also choose our gas to obey the polytropic equation of
state

pfluid ¼ κρΓ; ð16Þ

with a polytropic index Γ ¼ 4=3 and a polytropic constant
κ to be assigned. We assume that the adiabatic index of the
fluid γ is coincident with the polytropic index Γ; hence, the
specific internal energy of the gas can be expressed as

ϵ ¼ κρΓ−1

Γ − 1
: ð17Þ

The speed of sound in the gas is

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

h

�∂pfluid

∂ρ þ pfluid

ρ2
∂pfluid

∂ϵ
�s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ − 1Þðϵþ pfluid=ρÞ

h

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Γpfluid

hρ

s
: ð18Þ

We express the magnetic field with the magnetic four-
vector bμ (see, e.g., Ref. [67])
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bμ ¼ 1ffiffiffiffiffiffi
4π

p
α

�
umBm;

Bi þ ðumBmÞui
u0

�
; ð19Þ

where repeated latin indices indicate sums over spatial
components only.
The relativistic Alfvén velocity of a magnetized plasma

[68] is defined as

vAlf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2

ρð1þ ϵÞ þ pfluid þ b2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

ρð1þ ΓϵÞ þ b2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2

ρþ 4pfluid þ b2

s
; ð20Þ

where the second line holds for polytropic fluids
with Γ ¼ 4=3.

D. Diagnostics

To explore the effects of spin and magnetic field strength
on the dynamics of the accreting gas, we track the evolution
of the following quantities:

(i) rest-mass density ρ (normalized to its initial
value ρ0);

(ii) Newtonian Mach number M≡ v=cs, where v is
defined as the velocity magnitude of the fluid on the
orbital plane

v ¼ ðv2x þ v2yÞ1=2 ð21Þ

and cs is the speed of sound in the
medium [Eq. (18)];

(iii) Newtonian angular velocity Ωfluid of the fluid about
the orbital axis, defined as

Ωfluid ¼
xvy − yvx
ðx2 þ y2Þ : ð22Þ

The quantity Ωfluid has the dimension of t̂−1.
Given a test particle orbiting a Kerr BH of massM and spin
parameter a, the coordinate angular frequency of a circular
orbit (for those values of r for which circular orbits exist) is
(see, e.g., Ref. [69])

Ω�
circ ¼ � M1=2

r3=2 ∓ aM1=2 ; ð23Þ

where r is the areal radius in Kerr-Boyer-Lindquist coor-
dinates and the sign þð−Þ refers to corotating (counter-
rotating) orbits. We define a circularity parameter ω as

ω≡Ωfluid=Ωþ
circ: ð24Þ

Following the evolution of these diagnostics allows us to
better interpret the results of each simulation (e.g.,

monitoring M and ω will help us studying the degree
of rotation induced on the gas by the inspiraling BHs).
In Sec. IV D, we explore how the evolution of the

magnetic fields affects the possible emission of EM signals.
As was pointed out in Refs. [16,70] (for electrovacuum)
and [71,72] (for force-free plasma), the later inspiral and
merger of massive BH binaries immersed in a magnetized
gas may be connected with an EM counterpart in the form
of a jet, which could be potentially visible at large
distances. In this work, we study this strong and collimated
electromagnetic emission, looking primarily at the
Poynting vector [22,38]. It is calculated as

Si ≡ αTi
EM;0 ¼ α

�
b2uiu0 þ

1

2
b2gi0 − bib0

�
: ð25Þ

III. INITIAL DATA

We reexamine the setup of Ke17, performing simulations
of MMAFs onto binaries of equal-mass BHs. The individual
mass of each BH in code units isMBH ¼ M=2 ¼ 0.5, where
M ¼ 1 is the total mass of the system. Our binaries are
immersed in an initially uniform, radiation-dominated poly-
tropic fluid (p0 ¼ κρΓ0 , with ρ0 ¼ 1; κ ¼ 0.2;Γ ¼ 4=3). To
capture the effect of the individual BHs spins on the accretion
flows, we evolve binaries of spinningBHswith parallel spins
aligned with the orbital axis, and adimensional spin param-
eters a1 ¼ a2 ¼ ð0; 0.3; 0.6Þ.
We adopt a cubical domain given by ½−1024M; 1024M�3

and employ AMR with N ¼ 11 levels of refinement. The
coarsest resolution is Δxc ¼ 64M=3, and the finest one is
Δxf ¼ Δxc · 21−N ¼ M=48. All our simulations could be
easily rescaled to consider systems of binary black holeswith
a total mass M ¼ 2 × 106M⊙ and immersed in a gas with
uniform initial rest-mass density ρ0 ¼ 10−11 g cm−3. These
values are consistent with the approximation Tμν ≈ 0, since
they yield Mfluid=MBH ∼ 10−7 (see Sec. II A).
The BHs rotate around each other starting on quasicir-

cular orbits at an initial separation d0 ≃ 12M. We decided
to set our initial separations to 12M on the basis of previous
results of Ke17. The simulations in Ke17 consider initial
separations covering values between 6.6M and 16.3M. It
was found that features in the evolution of the Poynting
luminosity are well resolved for initial separations greater
than or approximately equal to 11.5M. More specifically,
simulations in Ke17 of binaries with separations of 11.5M,
14.4M, and 16.3M show the same qualitative behavior;
thus, we chose to evolve our binaries starting from an initial
separation of 12M. This choice allows for the evolution of
different configurations up to and beyond merger.
Our quasicircular initial data are obtained from larger-

scale PN evolutions (the PN equations are evolved from a
larger separation, approximately 40M, to the distance we
begin our full GR runs with). In Table I, we give the initial
data for the nine configurations presented in this paper.
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A. Initial plasma configuration

We evolve MBHBs immersed in a hot plasma, which is
threaded by an initially uniform magnetic field parallel to
the binary angular momentum, i.e., Bi ¼ ð0; 0; BzÞ. The
magnetic field is assumed to be anchored to a distant
circumbinary disk located outside the computational
domain. This initial configuration of the magnetic field
is analogous to that implemented in previous works (e.g.,
Refs. [16,71,72], Gi12, and Ke17). While simplistic, our
choice of the initial plasma configuration is sufficiently
clear to aid in pinpointing the effects of subtle physical
processes (e.g., the spins) on the accretion flows. We set
three different initial plasma configurations, which are
chosen so that

β−10 ≡ pmag

pfluid
¼

8>><
>>:

0 ðB0 runsÞ
0.025 ðB1 runsÞ
0.31 ðB2 runsÞ

ð26Þ

or, equivalently,

ζ0 ≡ umag

ufluid
¼

8>><
>>:

0 ðB0 runsÞ
0.005 ðB1 runsÞ
0.063 ðB2 runsÞ;

ð27Þ

where β−1 and ζ are the adimensional magnetic-to-fluid
pressure ratio and magnetic-to-fluid energy density ratio,
respectively, and

umag ¼ pmag ¼
B2

8π
¼ b2

2
;

ufluid ¼ ρc2; pfluid ¼ κρΓ:

In Table II, we list the initial uniform GRMHD field values
for the three sets of configurations B0, B1, and B2. The

value of the initial fluid rest-mass density
ρ0 ¼ 10−11 g cm−3, along with a specific choice of ζ0
(β−10 ), uniquely fixes the corresponding physical values
of the initial magnetic field strength B0 and of the initial
fluid temperature T0. In physical units, the adimensional
ratios (26) and (27) are

β−10 ≡ pmag

pfluid
¼ B2

0

8πκρΓ0
ð28Þ

ζ0 ≡ umag

ufluid
¼ B2

0

8πc2ρ0
: ð29Þ

Therefore, given a specific value of the adimensional
parameter ζ0, one has

B0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πc2ρ0ζ0

q
¼

8>><
>>:

0 ðB1 runsÞ
3.36 × 104 G ðB2 runsÞ
1.20 × 105 G ðB3 runsÞ

ð30Þ

To calculate the initial physical temperature of the accretion
flow we use the equation

T0 ¼
μmp

kB

p0

ρ0
¼ μmp

kB
κρΓ−10 ð31Þ

where μ is the mean molecular weight, mp is the proton
mass, κ is the polytropic constant and kB is the Boltzmann
constant. In code units, we set κ ¼ 0.2 (conforming with
Gi12 and Ke17). To assign the physical value of κ in cgs
units (which, for a Γ ¼ 4=3 polytrope, has the dimensions
of g−1=3 cm3 s−2), we proceed as follows: combining
Eqs. (28) and (29), we find

κ ¼ ζ0
β−10

c2ρ1−Γ0 : ð32Þ

Inserting the values in code units for κ, c, and ρ0 in Eq. (32)
yields ζ0=β−10 ¼ 0.2, which is adimensional and thus
independent of the units of measure. Therefore, entering
the cgs values of c and ρ0 in (32), we get

TABLE II. Initial uniform GRMHD field values for the three
sets of configurations B0, B1, and B2: rest-mass density ρ,
polytropic constant κ, magnetic-to-gas energy density (pressure)
ratio ζ (β−1), and Alfvén velocity valf. The values are in code
units.

Run ρ0 κ ζ0 β−10 valf

B0 1 0.2 0.0 0.0 …
B1 1 0.2 5e-3 2.5e-2 7.4e-2
B2 1 0.2 6.3e-2 0.31 0.26

TABLE I. BBH initial data parameters and derived quantities in
code units of the GRMHD runs: initial puncture separation d0 and
linear momentum components px and py, dimensionless spin
parameter a of each BH, merger time tMerger, and the initial ratio
of magnetic-to-fluid pressure β−10 .

Run d0 px py a1;2 tMerger β−10

B0S0 0
B1S0 12.038 5.26 × 10−4 0.085 0.0 1834 0.025
B2S0 0.31
B0S3 0
B1S3 12.162 4.78 × 10−4 0.083 0.3 2198 0.025
B2S3 0.31
B0S6 0
B1S6 12.162 4.62 × 10−4 0.082 0.6 2540 0.025
B2S6 0.31
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κ ∼ 8.34 × 1023ρ−1=3−11 g−1=3 cm3 s−2; ð33Þ

where ρ−11≡ρ0=10−11gcm−3. Employing Eq. (31) with μ ¼
1=2, ρ0 ¼ 10−11 gcm−3 and κ∼8.34×1023 g−1=3 cm3 s−2,
we find that the initial temperature of the accretion flow is

T0 ∼ 1.1 × 1012 K: ð34Þ

Our physical values of the initial magnetic field magnitudes
B0 and initial temperature T0 are consistent with those
adopted in other general relativistic simulations of hot
accretion flows onto MBHBs, e.g., Refs. [36,37], Gi12,
and Ke17.

IV. RESULTS

With our work, we probe the physics of MMAFs onto
binaries of spinning BHs, evolving a number of simulations
which cover a range of black hole spins and gas magneti-
zation. Following Ke17, we aim at exploring the astro-
physical processes which may give rise to electromagnetic
counterparts to GWs, by studying the near-zone mecha-
nisms that could drive EM emission. We investigate the role
of the BH spins and of magnetic fields on the gas dynamics,
exploring how those parameters affect the rest-mass density
evolution, as well as the velocity of the fluid in the vicinity
of the binary.
As a channel of EM emission, we consider the Poynting

flux, which may provide a powerful supply of energy that

can be converted to strong EM emission farther from the
BHs [73–75].
To make contact with the results of Ke17, we evolve

similar configurations (their canonical configuration is an
equal-mass binary with d0 ¼ 14.4M, ρ0 ¼ 1, and
β−10 ¼ 0.025, in a polytropic gaswithΓ ¼ 4=3 and κ ¼ 0.2).

A. Gas dynamics

Figures 1 and 2 show the evolution on the orbital plane
xy and on the polar plane xz of the rest-mass density ρ
(normalized to its initial value ρ0) for the B2S3 ðβ−10 ¼
0.31; a1;2 ¼ 0.3Þ and B0S3 ðβ−10 ¼ 0; a1;2 ¼ 0.3Þ configu-
rations. We do not show snapshots for S0, S6 cases since
they qualitatively look very similar to S3 models.
The evolution of the unmagnetized model B0S3 (Fig. 2)

is similar to the B0 configuration (no magnetic fields,
nonspinning BHs) in the work by Gi12, with the production
of two denser gas wakes during the inspiral and the
formation of a central spinning BH after merger.
Throughout the evolution, the two inspiraling BHs are
surrounded by spherical overdensities of matter accreting
onto the horizons; after merger, the final BH is ringed by an
almost-isotropycal, high-density, spherical distribution of
accreting matter (Fig. 2, right column).
The magnetized models exhibit different features (for a

comparison, see, e.g., the B2 configuration in Gi12, Fig. 1,
and the b1e-1 configuration in Ke17, Figs. 3 and 4). In all
our magnetized simulations, the density close to each BH
and in the regions connecting them is larger compared to
the unmagnetized cases. We found that the rest-mass

FIG. 1. Rest-mass density ρ (normalized to its initial value ρ0) on the xy (top panels) and xz planes (bottom panels) for the B2S3
configuration ða ¼ 0.3; β−10 ¼ 0.31Þ. The snapshots were taken, respectively, after approximately one orbit, after approximately eight
orbits, and at a time equal to approximately 300M after the merger. The regions inside the BH horizons have been masked out.
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overdensities near the BHs in the B1 (B2) models are
approximately 50% larger than those in the B0 (B1) models;
conversely, the individual BH spins show no effect on the
enhancement of ρ. In the magnetized models, the regions
close to the BHs reveal the presence of turbulence in the fluid
which is absent in the unmagnetized configurations (see, e.g.,
the top panels in Fig. 1, which display snapshots of the rest-
mass density on the orbital plane xy for the magnetized
model B2S3). Figures 3 and 4 highlight the differences in the
dynamical evolution of the accretion flows between the
unmagnetized model B0S6 ðβ−10 ¼ 0; a1;2 ¼ 0.6Þ and mag-
netized model B2S6 ðβ−10 ¼ 0.31; a1;2 ¼ 0.6Þ. For each
configuration, Fig. 3 displays a two-dimensional snapshot
of the Mach number field M on the equatorial plane xy,
taken approximately one orbit prior to coalescence. In the
unmagnetized case B0S6 (top panel), the fluid is mostly
subsonic. The two spiral fronts of the shock waves travel at
transonic speed through the inspiral and are present all the
way down to merger. In the magnetized case B2S6 (bottom
panel), the shock fronts are hardly visible. The motion of the
fluid ismore chaotic, and the gas speed in the regions close to
the BHs is supersonic.
Differences between the unmagnetized and magnetized

configurations are noticeable also postmerger. In Fig. 4, we
show two-dimensional snapshots of the circularity param-
eter ω [Eq. (24)] for the B0S6 and B2S6 models. Both
snapshots were taken approximately 100M after coales-
cence and display the magnitudes of ω and the fluid
velocity fields around remnant Kerr BHs with spin param-
eter a ≃ 0.858 [76]. The shaded areas mark the regions

within the innermost stable circular orbit [69]. In the
unmagnetized model, the accretion flow on the equatorial
plane is nearly radial at distances greater than or equal to
3M, and the circularity parameter at rISCO is <0.1.
Conversely, in the magnetized case, the fluid exhibits a
higher degree of rotation in the xy plane, and the ϕ-
averaged circularity at rISCO is approximately 0.3.

B. Evolution of magnetic fields

During the evolution of the B1 and B2 models, the
initially weak magnetic fields are dragged along each BH
and soon become dynamically important in the polar
regions close to the horizons (see Fig. 5, left panel). The
magnetic field lines are twisted and compressed, producing
a magnification of the magnetic field strength. After the
coalescence, the magnetic field strength in the polar regions
surrounding of the remnant BH is amplified by a factor
approximately 102; this amplification is observed in all
magnetized configurations (in agreement with Gi12) and is
little-to-not sensitive to the initial β−10 parameter and to the
individual BH spins.
In Fig. 5, we show the evolution of the magnetic-to-gas

pressure ratio β−1 on the xz plane for the B2S3 model. After
as short as one orbit (left panel), we see that the polar
regions close to the individual horizons are magnetically
dominated (i.e., they have larger values of β−1 than the
initial conditions). After eight orbits (central panel), these
regions become more pronounced and outline two vertical
areas which are depleted of gas. After merger, a magneti-
cally dominated funnel is created around the spin axis of the

FIG. 2. Rest-mass density ρ (normalized to its initial value ρ0) on the xy (top panels) and xz planes (bottom panels) for the B0S3
configuration ða ¼ 0.3; β−10 ¼ 0Þ. The snapshots were taken, respectively, after approximately one orbit, after approximately eight
orbits, and after a time equal to approximately 300M after the merger. The regions inside the BH horizons have been masked out.
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remnant BH (right panel). Along this region, the magnetic
field strength is increased by a factor approximately 102,
contributing considerably to the total pressure in the gas.
The effect of the magnetically dominated regions on the

plasma distribution is noticeable in Fig. 6, in which we
compare the rest-mass distributions on the xz plane after
merger (at the same time t ¼ 2500M) for the B0S3
(unmagnetized) and B2S3 (magnetized) models: the evo-
lution of B0S3 results in a spherical distribution of matter
accreting onto the final BH, whereas the end point of B2S3
evolution is the formation of a thin, “disklike” structure
around the BH (see also Figs. 1 and 2, right panels).

C. Mass accretion rate

An important diagnostic of our simulations is the flux of
rest mass across the horizons of each BH. To study the mass

accretion rate onto the BH horizons, we use the OUTFLOW

thorn [77], which computes the flow of rest-mass density
across a given spherical surface (e.g., in our case, across
each apparent horizon). This quantity is calculated via

_M ¼ −
I
S

ffiffiffi
γ

p
Dvidσi; ð35Þ

where D≡ ραu0 is the fluid density measured in the
observer frame (i.e., ρW, where W is the Lorentz factor)
and σi is the ordinary (flat) space directed area element of
the surface enclosing the horizon. Figures 7–9 show the
time evolution of the mass accretion rates _M onto the BH

FIG. 3. Mach number field M≡ v=cs on the equatorial plane
for B0S6 (top) and B2S6 (bottom) models. Arrows denote
velocity vectors. The snapshots were taken approximately one
orbit before merger. The BHs interiors have been masked out.

FIG. 4. Circularity parameter ω on the equatorial plane for
B0S6 (top) and B2S6 (bottom) models. Arrows denote velocity
vectors. The snapshots were taken approximately 100M after
merger. The BHs interiors have been masked out. The shaded
areas denote the regions within the innermost stable circular orbit
ðr < RISCOÞ for a Kerr BH with spin parameter a ≃ 0.858 (see,
e.g., Eq. (2.21) in Ref. [69]).
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horizons for each binary system. We plot the evolution of
_M for the unmagnetized (B0) runs, the β−1 ¼ 0.025 (B1)
runs, and the β−1 ¼ 0.313 (B2) runs. In each plot (i.e., for
each level of magnetization), we compare the values of _M
for the three different spin configurations. The vertical,
dotted lines mark the time of coalescence for each spin
configuration (as expected, the merger of spinning BHs is
delayed as a result of the hang-up mechanism [78], which
delays or prompts the coalescence according to the sign of
the spin-orbit coupling).
The quantities in Fig. 7–9 are scaled from code to

physical units as follows: since _M generally scales as

ρM2 ðg3cm−3Þ, we multiply the rate in code units _Mc:u: by a
factor G2c−3 ðg−2 cm3 s−1Þ to obtain the rate in cgs units as

_Mcgs ¼ 6.6 × 1021 _Mc:u:ρ−11M2
6 g s−1 ð36Þ

and the rate in solar masses per year as

_MM⊙ yr−1 ¼ 1.05 × 10−4 _Mc:u:ρ−11M2
6 M⊙ yr−1: ð37Þ

For each level of magnetization, the estimates of _M share a
number of common features:

(i) For the B0 configurations, _M shows ðiÞ an early
maximum as the gas surrounding the binaries estab-
lishes a quasiequilibrium flow with the orbital mo-
tion, followed by ðiiÞ a steady growth, that reaches its

FIG. 5. Evolution of the magnetic to gas pressure β−1 ¼ b2=2pfluid on the xz plane for the B2S3 configuration. The snapshots were
taken, respectively, after approximately one orbit, after approximately eight orbits, and at a time equal to approximately 300M after the
merger.

FIG. 6. Rest-mass density ρ (normalized to its initial value ρ0)
on the xz plane for the B0S3 (top panel) and B2S3 (bottom panel)
configurations, at t ∼ 300M after the merger. The regions inside
the BH horizons have been masked out.

FIG. 7. Accretion rate _M in solar masses per year onto the black
hole horizons for the unmagnetized (B0) models. The dotted lines
mark the merger times for the nonspinning (magenta), a1;2 ¼ 0.3
(blue), and a1;2 ¼ 0.6 (green) configurations.
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peak at merger ðiiiÞ. After the coalescence, the
accretion rates settle to constant values ðivÞ.

(ii) For the B1/B2 configurations, _M shows the same
initial transient as B0 ðiÞ, followed by a steep
decrease ðiiÞ, after which it settles to quasiconstant
values which slowly decline prior to merger ðiiiÞ.
Just before the coalescence, the flows drop ðivÞ and
jump upon merger ðvÞ as the apparent horizons join
discontinuously.

The accretion rates of the magnetized configurations are
generally smaller than in the unmagnetized cases by a
factor approximately 2–3. To highlight the effect of

different spin parameters on the accretion rate, we show
in Fig. 10 the values of _M for the magnetized models B1
and B2. We focus on the postmerger accretion onto the
remnant Kerr BHs. Same-colored lines denote same-spin
models, whereas straight (dotted) lines stand for B1 (B2)
models. We see that a higher initial magnetization (B2 to
B1) has a suppressing effect on _M, which is reduced by
approximately 27% for spin parameter a1;2 ¼ 0, by approx-
imately 20% for spin parameter a1;2 ¼ 0.3, and by approx-
imately 13% for a1;2 ¼ 0.6.
Conversely, for a given value of β−10 , we find that _M is

reduced (compared to the nonspinning case) by approx-
imately 23% for a1;2 ¼ 0.3 and by approximately 48%
for a1;2 ¼ 0.6.

D. Poynting luminosity

Several works [16,70–72] have shown that the interaction
of orbitingMBHswith ambient magnetic fields results in the
conversion of some of the BH energy into EM energy in the
form of collimated regions of Poynting flux. Such regions
may generate relativistic outflows [73–75] and through a
cascade of matter interaction yield strong EM emission. All
our magnetized simulations develop strong flows of electro-
magnetic energy in the form of Poynting flux; the Poynting
flux luminosity can be computed as a surface integral across a
2-sphere at a large distance (see Appendix A),

LPoynt ≈ lim
R→∞

2R2

ffiffiffi
π

3

r
Szð1;0Þ; ð38Þ

where Szð1;0Þ is the dominant ðl; mÞ ¼ ð1; 0Þ spherical mode
of the Poynting vector [Eq. (25)]. Following the evolution of

FIG. 8. Accretion rate _M in solar masses per year onto the black
hole horizons for the β−10 ¼ 0.025 (B1) models. The dotted lines
mark the merger times for the nonspinning (magenta), a1;2 ¼ 0.3
(blue), and a1;2 ¼ 0.6 (green) configurations.

FIG. 9. Accretion rate _M in solar masses per year onto the black
hole horizons for the β−10 ¼ 0.31 (B2) models. The dotted lines
mark the merger times for the nonspinning (magenta), a1;2 ¼ 0.3
(blue), and a1;2 ¼ 0.6 (green) configurations.

FIG. 10. Postmerger accretion rate _M in solar masses per year
onto the remnant black hole horizons for the β−10 ¼ 0.025 (B1,
straight lines) and β−10 ¼ 0.31 (B2, dotted lines) models. The
colored arrows denote transitions from lower to higher levels of
magnetization β−1 for same-spin configurations.
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LPoynt helps us measure the amount of potential emission on
timescales comparable to the merger time. To this extent, we
extract the luminosity on a coordinate sphere of radius Rext;
we set the extraction radius at Rext ¼ 30M as was done in
Ke17 (in Gi12, extractionwas carried out atRext ¼ 10M, but
the initial binary separation was approximately 30% smaller
than in our simulations). This choice allows us to avoid
spurious effects due to the orbital motion of the BHs.
In Fig. 11, we show the evolution of the z component of

the Poynting vector on the polar plane xz for the B2S3
configuration. As in the simulations of Gi12 and Ke17, the
Poynting flux emission in our simulations is largely
collimated and parallel to the orbital angular momentum
and to the spin of the postmerger BH. In Fig. 12, we display
the Poynting flux luminosity computed for each of the six
magnetized models. On the left, we show the B1 configu-
rations, i.e., those with β−10 ¼ 0.025; on the right, we show
the B2 configurations, with β−10 ¼ 0.31. The values of

LPoynt are in units of L0 ≡ 2.347 × 1043ρ−11M2
6 erg s−1

(see Appendix B). The values of LPoynt which we observe
are consistent with the EM power generated by the
Blandford-Znajek [73] mechanism (see, e.g., Eq. (4.50)
in Ref. [79]:

LBZ ∼ 1043 erg s−1ðaÞ2
�

M
106M⊙

�
2
�

B
106 G

�
2

: ð39Þ

The main difference between the B1 and B2 configurations
is the time at which the modes reach the extraction sphere at
30M. This is what we expected: both configurations evolve
a magnetic field which is initially “dynamically weak”; i.e.,
the inertia of the plasma is larger than the magnetic field
energy. The lower the value of β−10 (B1 configuration), the
stronger the initial magnetic field B0 must become in order
to surmount the fluid pressure. The development of a
stronger magnetic field requires more time; thus, a lower

FIG. 11. Evolution of the z component of the Poynting vector (code units) on the xz plane for the B2S3 configuration. The snapshots
were taken, respectively, after approximately one orbit, after approximately eight orbits, and approximately 300M after the merger.

FIG. 12. LPoyn (z components) in units of L0 ≡ 2.347 × 1043ρ−11M2
6 erg s−1 for the B1 (β−10 ¼ 0.025, left) and B2 (β−10 ¼ 0.31, right)

models, extracted on a coordinate sphere of radius R ¼ 30M. The dotted lines mark the merger times for the nonspinning (magenta),
a ¼ 0.3 (blue), and a ¼ 0.6 (green) configurations.
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β−10 implies a longer time for launching a jet [74], which is
in agreement with our simulations.
We find that the peak luminosity which is reached

shortly after merger is sensitive to the BH spins and is
enhanced by a factor of approximately 2 (approximately
2.5) for binaries with spin parameters a ¼ 0.3 ða ¼ 0.6Þ
with respect to the nonspinning case. This intensification is
a general feature and does not depend on the initial level of
magnetization of the gas. Nevertheless, the qualitative
behavior of all models is very similar.

V. CONCLUSIONS

To expand our understanding of the physical processes
which arise in the vicinity of merging massive black hole
binaries, we carry out GRMHD simulations of equal-mass,
spinning MBHB mergers in hot, magnetized environments.
We have for the first time investigated the role of individual
BH spins in the evolution of magnetic fields and gas
dynamics. We evolve a set of nine simulations covering a
range of initially uniform,moderatelymagnetized fluidswith
different initial magnetic-to-gas pressure ratios. For each
magnetization level, we study distinct spin configurations
defined by adimensional spin parameters a ¼ ð0; 0.3; 0.6Þ.
Our results offer some insight on the role of spin and

magnetization in the magnetohydrodynamical properties of
hot accretion flows around merging MBHBs and on the
physical mechanisms which may provide electromagnetic
counterparts to future LISA observations. We have shown
that across the orbital evolution the magnetic field can be
distorted by the motion of the BHs and significantly
increase its strength, developing magnetically dominated
structures in the polar regions above each BH and ulti-
mately producing a magnetically dominated funnel around
the spin axis of the remnant BH. In general, the dynamics of
a magnetized fluid is different than in the unmagnetized
case, even if the fluid is initially not magnetically domi-
nated. The accretion flow in magnetized environments
yields turbulent motion in the gas near the inspiraling
BHs, eventually leading to the formation of a thin, disklike
structure rotating on the equatorial plane of the remnant
Kerr BH. These results are consistent with previous
simulations of nonspinning binaries.
We find that mass accretion rates onto BH horizons in

magnetized fluids are generally smaller than in unmagne-
tized cases by a factor approximately 2–3. For a given
initial magnetization, we show that (aligned) spins of the
individual BHs have a suppressing effect on the accretion
rate as large as approximately 48%.
As a potential driver for EM emission, we examined the

development and evolution of the Poynting flux. Though
not directly observable, it can be considered as a source of
power for EM emission along the jet, and its increase
during postmerger evolution may provide observational

signs of a merged MBHB. We find that spin can affect the
peak luminosity reached shortly after merger, which is
enhanced by up to a factor of approximately 2.5 for binaries
of spinning BHs compared to the nonspinning models. This
intensification does not depend on the initial level of
magnetization β−10 of the gas.
Technical limitations in our analysis prevent more

detailed predictions. Our simulations do not account for
the emission of radiation by the plasma, which would
determine the magnitude of the accretion luminosity and
the shape of the spectra. Therefore, the accretion flows that
we describe lack any radiative mechanism, including
cooling and feedback.
In this paper, we made an attempt to extract physically

relevant information by evolving our simulations in simple
gaseous environments, which help us highlight the effects
of spins and magnetization on the accretion flows and
emitted Poynting luminosity. While this choice may be
useful to identify the subtle effects of different spins and
degrees of magnetization, it is not clear how well this
simplistic environment can stand in for real accretion flows,
which realistically possess angular momentum support and
carry dynamical effects from radiation flows. Assessing
these limitations motivates our future work.
We aim at extending our exploration of the parameter

space of merging MBHBs investigating less symmetrical
systems. We will consider binaries with spins which are
antialigned with the orbital angular momentum, as well as
generic misaligned spin configurations. Also, we intend to
study binaries with high-spinning (0.95 and above) MBHs,
where one could expect departures from the general trends
we found in the present work. Additionally, we will
consider binary systems with unequal mass ratios, which
are the natural outcome of galaxy mergers in cosmological
simulations (as shown, e.g., in Ref. [80]).
These improvements will let us question the effects of

surrounding (premerger) material in powering electromag-
netic counterparts to gravitational wave events and the
effect of the gravitational recoil imparted to the newly
formed MBH on the shock-heated gas along the MBH
trajectory.
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APPENDIX A: RELATION BETWEEN POYNTING
VECTOR AND EM FLUX

In the main text, we calculate the Poynting emission
through the (1, 0) spherical harmonic Szð1;0Þ of the z
component of the Poynting vector. The quantity Szð1;0Þ is
closely related to the EM luminosity computed in the
pioneering work by Palenzuela et al. [16], in which the
emitted luminosity is determined in terms of the outgoing
Newman-Penrose radiative scalar Φ2 ¼ Fμνnμn�ν. The
square of Φ2 is connected to the electromagnetic energy
flux: the EM luminosity is given by the integral

LEM ¼ dEEM

dt
¼ lim

r→∞

I
r2

2π
jΦ2j2dΩ: ðA1Þ

The quantity jΦ2j2 is proportional to the radial component
of the Poynting vector. Assuming that Φ2 is calculated on a
Kerr background using the Kinnersley tetrad, we have (see,
e.g., Ref. [81] and Eq. (5.13) in Ref. [82])

dEEM

dt
¼ lim

r→∞

I
r2Tr

0dΩ ¼ lim
r→∞

I
r2

2π
jΦ2j2dΩ: ðA2Þ

In the 3þ 1 formulation of space-time, the quantity Tr
0 may

be expressed as [83,84] [see also Eq. (25) in the main text]

Tr
0 ¼ −

1

α
erjkEjHk ¼

1

α
Sr; ðA3Þ

where eijk ¼ ffiffiffi
γ

p
ϵijk is the Levi-Civita pseudotensor asso-

ciated to the spatial 3-metric γ. As r converges to the
numerical radial coordinate at large distances, we have
α → 1, and the emitted Poynting luminosity can thus be
expressed as

LPoynt ≡ lim
r→∞

I
r2SrdΩ ¼ lim

r→∞
2

ffiffiffi
π

p
r2Srð0;0Þ; ðA4Þ

where Srð0;0Þ is the ðl; mÞ ¼ ð0; 0Þ spherical mode of Sr. To
relate this quantity to the dominant ð1; 0Þ spherical
harmonic of Sz, we assume that the Poynting flux is
dominated by emission along the z axis. Then, we can write

Sr ∼ Sz cos θ: ðA5Þ

The ð0; 0Þ and ð1; 0Þ spherical harmonics modes of Sr are
related by

Srð0;0Þ ¼
Srð1;0Þffiffiffi
3

p
cos θ

: ðA6Þ

Therefore, combining Eqs. (A4) and (A6), we find

lim
R→∞

2R2

ffiffiffi
π

3

r
Szð1;0Þ; ðA7Þ

which is formula (38) used in our study.
The assumption (A5) is supported by previous simu-

lations of BHBs in gaseous and magnetized environments.
For example, Ke17 compared the evolution of both Szð1;0Þ
and

ffiffiffi
3

p
Srð0;0Þ and found that, except that for some difference

in the initial gauge relaxation, the two signals closely agree.

APPENDIX B: CONVERTING LPoynt FROM CODE
TO CGS UNITS

In the GRMHD simulations presented here, the Poynting
luminosity scales as

LPoynt ¼ ρ0M2Fðt=M; ϵ0; ζ0Þ; ðB1Þ

where ϵ0 is the initial specific internal energy, ζ0 ≡
umag=ufluid is the initial magnetic-to-fluid energy density
ratio, and F is a dimensionless function of time (for more
details, see Sec. III in Ke17).
Equation (B1) is in code units, where c ¼ G ¼ 1. To

convert this relation to cgs units, we need to multiply by a
factor G2=c ≈ 1.48 × 10−25 g−2 cm4 s−2, and we obtain

LPoyntðtÞ ¼ 1.483 × 10−25
�

ρ0
1 g cm−3

��
M
1 g

�
2

× Fðt; ϵ0; ζ0Þ erg s−1: ðB2Þ

If we want to scale with our canonical density ρ0 ¼
10−11 g cm−3 and for a system of two BHs of M1 ¼ M2 ¼
106M⊙ (i.e., M ≃ 3.977 × 1039 g), we find

LPoyntðtÞ ¼ 2.347 × 1043ρ−11M2
6Fðt; ϵ0; ζ0Þ erg s−1

¼ L0ρ−11M2
6Fðt; ϵ0; ζ0Þ erg s−1; ðB3Þ

where ρ−11≡ρ0=ð10−11 gcm−3Þ and M6 ≡M=ð106M⊙Þ.
The quantity L0 is the normalization factor used in
Sec. IVD, Fig. 12.
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