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We investigate the properties of the equation of state of strange-quark matter and u-d quark matter, the
sound velocity of quark matter, the stability region for star matter, the maximum mass of quark stars (QSs),
and the tidal deformability for QSs by using a quark quasiparticle model. Our results indicate that the
recently discovered heavy compact stars PSR J0348þ 0432, MSR J0740þ 6620, and PSR J2215þ 5135,
and especially the GW190814s secondary component m2 can be well described as QSs within the
quasiparticle model.
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I. INTRODUCTION

The investigation of the thermodynamic properties of
strongly interacting matter, especially the equation of state
(EOS) of neutron star matter, is one of the fundamental
issues in nuclear physics and astrophysics [1–4]. The
appearance of quark matter in massive neutron stars
(NSs) is considered as a hot topic in compact object
studies, and NSs could be converted to strange quark stars
(QSs) whose possible existence is still one of the most
important fields of modern nuclear physics and astrophys-
ics [5–11]. QSs are totally made up of strange-quark matter
(SQM), which includes deconfined absolutely stable u, d,
and s quarks with leptons in β equilibrium [7,8,12–16].
Recently, the heavy pulsar PSR J0348þ 0432 with a mass
of 2.01� 0.04 M⊙ [17] was discovered in 2013, while
the more massive compact star PSR J2215þ 5135 was
detected by fitting the radial velocity lines and three-band
light curves in the irradiated compact stars model, whose
star mass reaches 2.27þ0.17

−0.15 M⊙ [18]. In Ref. [19], using
data on relativistic Shapiro delay with the Green Bank
Telescope, MSR J0740þ 6620 (2.14�0.10

0.09 M⊙ with 68.3%
credibility interval and 2.14�0.20

0.18 M⊙ with 95.4% credi-
bility interval) was reported as the most massive precisely
observed pulsar. The observations of these supermassive
compact stars can put strict constraints on the equation
of state (EOS) and rule out most of the conventional
phenomenological models of quark matter, whereas there

exist some other models which can still describe heavy
quark stars with strong isospin interactions inside the star
matter [20–29].
The LIGO-Virgo Collaboration [30] detected and

reported the gravitational-wave (GW) signal GW170817
from a binary compact star system, and the constraints
on the thermodynamic properties of the star matter were
calculated based on this observation [31–40]. In Ref. [30],
the LIGO-Virgo Collaboration investigated the properties
of the tidal deformability of compact stars and set an upper
limit of Λ1.4 < 800 for the low-spin priors of 1.4 solar mass
pulsars. Then, based on the upper limit for tidal deform-
ability, constraints on the properties of the nuclear matter
symmetry energy and the EOS of strongly interacting
matter were calculated in numerous works [33,37,38,
41–47]. In Refs. [33,48,49], Λ̃ was constrained as
(0,630) for a large-spin pulsar, 300þ420

−230 was obtained
by considering the largest posterior density interval,
and Λ1.4 ¼ 190þ390

−120 was calculated using the Λm5 linear
expansion at 1.4 M⊙. Furthermore, GW170817 might also
have the possilility of being produced from the binary
quark/hybrid star merger in Refs. [36,50,51]. Recently, the
compact binary merger GW190814 [52] recently discov-
ered by the LIGO/Virgo Collaboration, which has a
secondary component m2 with mass 2.50–2.67 M⊙ at
the 90% credible level, has aroused much interest in the
modern physics community. Candidates for the secondary
component of GW190814 include compact stars or a light
black hole, and this large mass can set very strict constraints
on the EOS of nuclear matter once we consider the
candidate as a supermassive compact star, e.g., a quark
star or a hybrid star.
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In the present work, we investigate the properties of the
equation of state of SQM and u-d quark matter (udQM), the
sound velocity of quark matter, the stability region for
quark star matter, the maximum mass of QSs, and the tidal
deformability for QSs by using the quark quasiparticle
model. We find that the recently discovered supermassive
compact stars can be well described as QSs within the
quasiparticle model.

II. MODELS AND METHODS

A. The quasiparticle model

Unlike the conventional density-dependent quark mass
model, whose equivalent quark mass includes the quark-
quark effective interactions in quark matter [53–82], the
equivalent mass of the quasiparticle model was derived in the
zero-momentum limit of the dispersion relations by resum-
ing one-loop self-energy diagrams in the hard dense loop
approximation [83], which can be expressed as [83–85]

mq ¼
mq0

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q0

4
þ g2μ2q

6π2

s
; ð1Þ

wheremq0 is the quark current mass (we setmu0¼5.5MeV,
md0 ¼ 5.5 MeV, and ms0 ¼ 95 MeV in this work), μq
represents the chemical potential of the ith flavor of quarks,
and g is the strong interaction coupling constant which is
treated as a free input parameter in this work.
The quasiparticle contribution to the total thermody-

namic potential density for SQM can be written as

Ω ¼
X
i

½Ωi þ BiðμiÞ� þ B; ð2Þ

where BiðμiÞ are the additional terms introduced by
medium dependence, B represents the negative vacuum
pressure term for nonperturbative confinement (which
can also be considered as a free input parameter) [86],
and Ωi in the sum shows the contribution to the thermo-
dynamic potential density for all flavors of quarks (u, d,
and s) and leptons (e and μ). The analytic expression
for Ωi is written as

Ωi ¼ −
gi

48π2

�
μi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i −m2

i

q
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p
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i

�
; ð3Þ

where gi is the degeneracy factor with gi ¼ 6 for quarks and
gi ¼ 2 for leptons. The medium-dependent term BiðμiÞ is
determined by using the integration formula as

BiðμiÞ ¼ −
Z

μi

mi

∂Ωi

∂mi

∂mi

∂μi dμi: ð4Þ

B. Properties of strange-quark matter
at zero temperature

Strange-quark matter is composed of u, d, and s quarks
and leptons (e and μ) with electric charge neutrality in beta
equilibrium. The weak beta-equilibrium condition at zero
temperature can be written as

μd ¼ μs ¼ μu þ μe; and μμ ¼ μe: ð5Þ

The electric charge neutrality condition can be expressed as

2

3
nu ¼

1

3
nd þ

1

3
ns þ ne: ð6Þ

The total energy density E and the pressure P are,
respectively, written as

E ¼
X
i

Ei ¼
X
i

ðΩi þ BiðμiÞ þ μiniÞ þ B; ð7Þ

P ¼ −
X
i

ðΩi þ BiðμiÞÞ − B: ð8Þ

III. RESULTS AND DISCUSSIONS

A. The stability of SQM in QSs

In Ref. [9] the absolute stability of SQM was proposed,
which requires that the minimum value of the energy per
baryon of SQM at zero temperature should be less than
930 MeV [the minimum energy per baryon of the observed
stable nuclei Mð56FeÞ=56], while the minimum energy per
baryon of the u-d quark matter should be larger than
930 MeV. Since ordinary nuclei are made of nucleons and
not a u-d two-flavor quark phase, the energy per baryon of
udQM must exceed the lowest energy per baryon found in
nuclei, which is about 930 MeV for Mð56FeÞ=56. Then,
there exists no phase transition from nuclear matter to
udQM, and we should use the EOS of SQM to calculate the
properties of star matter. This absolutely stable condition
can put very strict constraints on the parameter space for
most of the phenomenological quark mass models.
In Fig. 1, we first calculate the energy per baryon and the

corresponding pressure of SQM and udQM as functions of
the baryon number density with four sets of parameters,
i.e., g − 2 (g ¼ 2,B1=4 ¼ 141 MeV), g − 3 (g ¼ 3, B1=4 ¼
136 MeV), g − 4 (g ¼ 4, B1=4 ¼ 131 MeV), and g − 5

(g ¼ 5, B1=4 ¼ 120 MeV). In our calculation, we find that
the minimum energy per baryon of udQM/SQM decreases
with B at a fixed coupling constant g. One can calculate
the maximum mass of QSs by changing B with fixed g
through using the EOS of SQM under the absolute stability
condition. For example, for the g ¼ 2 case, the minimum
energy per baryon of SQM/udQM reaches 930=1014 MeV
with B1=4 ¼ 153 MeV, while the minimum energy per
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baryon of SQM/udQM decreases to 856=930 MeV with
B1=4 ¼ 141 MeV. The parameter sets g − 2, g − 3, g − 4,
and g − 5 in Fig. 1 are chosen under the stability condition,
where we change B to obtain 2.01, 2.14, 2.27, and 2.59
solar mass QSs at a certain coupling constant g (g ¼ 2, 3, 4,
5). One can find that all of the minimum values of the
energy per baryon for SQM/udQM from these four cases
are smaller/larger than 930 MeV, which satisfies the
absolutely stable conditions for SQM and udQM.
Furthermore, it can be seen from Fig. 1 that the baryon
density of the minimum energy per baryon for SQM and
udQM in the four cases is exactly the corresponding zero
pressure baryon density, which meets the requirement
of thermodynamical self-consistency for quark matter. In
particular, we find that the value of the zero-pressure
density of SQM (udQM) decreases from 0.255
ð0.22Þ fm−3 to 0.135 ð0.115Þ fm−3 when g increases from
2 to 5, and the minimum value of the energy per baryon
for SQM and udQM increases with the increment of the
coupling constant g. The correlation between g and the
energy per baryon of quark matter can also be found in
Ref. [83], while the energy density of quark matter seems to
have no dependence on the constant g in Fig. 7 of Ref. [83].
We mention that the energy density in Fig. 7 of Ref. [83] is
not based on the β-equilibrium condition of strange quark
matter in QSs, and the results from Figs. 5–7 in that work
focus on the correlation between the energy density at the
baryon density of the minimum energy per baryon and a
constant g with other parameters being fixed (the results we
show in Fig. 1 of our work are the energy per baryon as a
function of the baryon density under the β-equilibrium
condition with different sets of parameters). We then
calculate the energy density at the baryon density of the
minimum energy per baryon under the same conditions as

in Ref. [83] with different values of g, and the results show
that the energy density can also stay approximately con-
stant, which does not contradict the results of Ref. [83].
Moreover, one can see from Fig. 1 that the pressure and
energy per baryon for the SQM and udQM cases both
increase with g, which implies that the EOS for large g can
support heavier QSs within the quasiparticle bag model. In
addition, we also check the phase transition from nuclear
matter to udQM by using the quasiparticle model (for quark
phase) and the MDI model (the MDI model is an isospin-
and momentum-dependent effective nuclear interaction
model [87], which is used for the hadron phase in this
work). Generally, the hadron-quark phase transition from
nuclear matter to quark matter might appear at 3–5 times
the saturation density ρ0 in the hybrid star approach, and
this phase transition usually moves to a higher density
region with increasing stiffness of the EOS of the quark
matter. In this work, we use the Gibbs construction method
to construct the hadron-quark mixed phase, and we find
that the phase transition from nuclear matter to udQM
appears at nB ¼ 1.25 fm−3 when g − 5 is chosen for
udQM, which is much larger than the saturation density
and implies that the phase transition from the nuclear phase
to the quark phase does not occur too early. In the mixed
phase, the phase transition softens the EOSs, which causes
the udQM to appear at very high baryon density (larger
than 2.5 fm−3). In the present work, we employ the MDI
model to describe the hadron phase for simplicity, and more
systematic investigations on the hadron-quark phase tran-
sition with the quasiparticle model and other phenomeno-
logical models for nuclear matter (e.g., the constraints on
the EOSs from models of nuclear matter in Ref. [88]) will
be further studied in future work.
In addition, we also examine the sound velocity in Fig. 2

by using c2s ¼ ∂P=∂E within the quasiparticle model with
g − 2, g − 3, g − 4, and g − 5 at zero temperature, and we

FIG. 1. Energy per baryon and the corresponding pressure as
functions of the baryon density for SQM and udQM within
the quasiparticle model with different parameter sets at zero
temperature.

FIG. 2. Sound velocity squared as a function of the energy
density for SQMwithin the quasiparticle model with g − 2, g − 3,
g − 4, and g − 5 at zero temperature.
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obtain that the sound velocity is less than the speed of light
in all four cases, which satisfies the causality condition
cs < c. One can also find in Fig. 2 that the sound velocity
squared decreases with the increment of g.
In Fig. 3, we calculate the quark fraction as a function of

the baryon density in SQM with g − 2, g − 3, g − 4, and
g − 5 at zero temperature, and one can find that the
difference among the fractions of u, d, and s quarks
decreases with the baryon density. In particular, it is
interesting to see that the difference of the quark fraction
becomes larger once g increases, which indicates that the
u-d quark isospin asymmetry δ ¼ 3ðnd − nuÞ=ðnd þ nuÞ
increases as the coupling constant g increases in SQM.
In Fig. 4, we calculate the mass-radius relation of QSs

with g − 2, g − 3, g − 4, and g − 5. The large compact star
mass value 2.59þ0.08

−0.09 M⊙ð90%C:L:Þ from GW190814 [52],
the two independent constraints of the simultaneous M-R
measurements from NICER (through the analysis of the

x-ray data for the millisecond pulsar PSR J0030þ 451)
[89,90], and the mass and radius regions of the pulsars in
the rapid burster MXB 1730-335 using the analysis of
Swift/XRT time-resolved spectra of the burst [91] are all
included in this figure for comparison. It can be seen that
the results of the maximum mass of QSs with g − 2 and
g − 3 are both consistent with the observations of the
pulsars in the rapid burster MXB 1730-335 and can
describe PSR J0348þ 0432 with a mass of 2.01�
0.04 M⊙ [17] and the recently discovered massive pulsar
MSR J0740þ 6620 (2.14�0.10

0.09 M⊙ at the 68.3% credi-
bility interval and 2.14�0.20

0.18 M⊙ at the 95.4% credibility
interval) [19] as QSs. Furthermore, the results of the
maximum mass of QSs with g − 3, g − 4, and g − 5 are
all consistent with the constraints from NICER, and
one can describe PSR J2215þ 5135 with a mass of
2.27�0.10

0.09 M⊙ as QSs with g − 4. For the case g − 5,
one can find that the maximum mass of the QSs is
2.59 M⊙, which can describe the GW190814’s secondary
component as QSs within the quasiparticle model.
Additionally, the results show that the EOS of the large
QSs whose maximum mass exceeds two solar masses
with large radii cannot fulfill the MXB constraint, which
implies that MXB1730-355 might belong to another branch
of stars proposed in the so-called two-families scenario
from Ref. [92].
To further check the effects of the coupling constant g and

search for the maximum mass range of QSs by considering
the absolutely stable condition within the quasiparticle
model, we calculate the maximummass of QSs as a function
of the coupling constant g by satisfying the absolutely stable
condition in Fig. 5. In this figure, the allowed values of the
maximum mass of QSs and the coupling constant g within
the quasiparticle model are chosen in the stability window of
SQM (shaded area), where the maximum mass and param-
eter sets are all able to fulfill the absolutely stable condition.
The star mass constraints from PSR J0348þ 0432, MSR
J0740þ 6620, PSR J2215þ 5135, and GW190814 are also
listed in Fig. 5, and one can find that the allowed ranges of
the coupling constant g are (2,3.58), (2.92,4), (3.58,4.36),
and (4.62,5.03) for these four star mass constraints, respec-
tively. We also mention that the range of the maximum mass
of QSs decreases with the increment of the coupling constant
g in the stability window of SQM, and the range finally
narrows down to a “point” when the maximum mass of QSs
within the quasiparticle model reaches 3.03 solar masses,
where the coupling constant g increases to 5.6. In Fig. 6, we
calculate the energy per baryon and the corresponding
pressure as functions of the baryon density for SQM and
u-d quark matter with g ¼ 5.6 within the quasiparticle
model. One can see that the minimum values of the energy
per baryon for SQM and udQM are exactly equal to
930 MeV, which indicates the maximum value of the
coupling constant g by considering the stability condition
of SQM within the quasiparticle model. Therefore, our

FIG. 3. Quark fraction as a function of the baryon density in
SQM with g − 2, g − 3, g − 4, and g − 5 at zero temperature.

FIG. 4. Mass-radius relation of QSs with g − 2, g − 3, g − 4,
and g − 5 at zero temperature.
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results show that the maximum mass of QSs within the
quasiparticle model by considering the stability condition of
SQM is 3.03 solar masses, and the corresponding coupling
constant g also reaches the maximum value g ¼ 5.6, which
can be considered as the extreme cases for the parameter sets
in this model.
The observation of tidal effects in binary compact star

systems can provide significant information about the
thermodynamic properties of the star matter because of
the tidal deformation being determined by the internal
structure of the compact stars. In Fig. 7, we calculate the
dimensionless tidal deformability Λ1.4 as a function of the
coupling constant g by considering the absolutely stable
condition in SQM. The upper limit Λ1.4 < 800 derived from
GW170817 is also listed in order to check if this constraint is
violated in the large value area of the maximummass of QSs

and the coupling constant g. Based on the absolutely stable
condition, the tidal deformabilityΛ1.4 is constrained within a
certain range with the fixed coupling constant g. One can
find from Fig. 7 that Λ1.4 increases from 163 to 437 with
(g ¼ 1; B1=4 ∈ ð143; 158Þ MeV) and 232 to 588 with (g ¼
2; B1=4 ∈ ð141; 153Þ MeV) in order to satisfy the absolutely
stable condition, while for the (g ¼ 3; B1=4 ∈ ð136;
147Þ MeV), (g ¼ 4; B1=4 ∈ ð128; 137Þ MeV), and (g ¼
5; B1=4 ∈ ð117; 121Þ MeV) cases, Λ1.4 increases from 388
to 826, 782 to 1346, and 2086 to 3343. It can be seen
that Λ1.4 for the (g ¼ 1; B1=4 ∈ ð143; 158Þ MeV) and
(g ¼ 2; B1=4 ∈ ð141; 153Þ MeV) cases is totally below the
upper limit Λ1.4 < 800 derived from GW170817, while
the tidal deformability ranges for the (g ¼ 3; B1=4 ∈
ð136; 147Þ MeV) and (g ¼ 4; B1=4 ∈ ð128; 137Þ MeV)
cases both partly exceed the upper limit Λ1.4 ¼ 800 when
(B1=4 ¼ 145, MQS ¼ 2.12 M⊙) and (B1=4 ¼ 129, MQS ¼
2.13 M⊙) for g ¼ 3 and g ¼ 4, respectively. In particular,
the tidal deformability for the (g ¼ 5; B1=4 ∈ ð117;
121Þ MeV) case completely exceeds the upper limit
constraint from GW170817. For the extreme case
(g ¼ 5.6; B1=4 ¼ 108.9 MeV), Λ1.4 reaches 5012, which
strongly violates the constraint Λ1.4 < 800 derived from
GW170817. Finally, our results above indicate that we
cannot describe GW170817 as QSs whose maximum mass
is larger than 2.13 M⊙ within the quasiparticle model, and
the candidates for GW170817 might be neutron stars (if the
flux of strangelets produced in the merger of quark stars is
suppressed or strangelets evaporate or decay [93,94]) or
quark stars.

B. Discussion on the coupling constant g

In the previous subsection, we discussed the properties
of SQM and QSs within the quasiparticle model by treating

FIG. 5. Maximum mass of QSs as functions of the coupling
constant g by satisfying the absolutely stable condition within the
quasiparticle model.

FIG. 6. Energy per baryon and the corresponding pressure as
functions of the baryon density for SQM and udQM within the
quasiparticle model with g ¼ 5.6 at zero temperature.

FIG. 7. Dimensionless tidal deformability Λ1.4 as a function of
the coupling constant g by considering the absolutely stable
condition in SQM. The red dotted line denotes the Λ1.4 < 800
upper limit derived from GW170817.
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the coupling constant g as fixed, and this treatment can be
found in many works [79,83,85,95]. In principle, the
running coupling constant should not be fixed and the
effective quark mass should decrease with increasing μi in
the large baryon density region to satisfy the restoration of
chiral symmetry from the QCD features. To fix this

problem, an effective running coupling constant g2ðμiÞ ¼
48π2

29
½lnð0.8μ2iΛ2 Þ�−1 was proposed in Refs. [96–98] with the

QCD scale-fixing parameter Λ taken to be 120–200 MeV.
In Fig. 8, we calculate the effective quark mass as a

function of the baryon density with the fixed coupling
constant and effective running coupling constant within the
quasiparticle model. In the first panel, the parameters are
set as g − 5 (g ¼ 5, B1=4 ¼ 120 MeV), which is the fixed
coupling constant case, and one can see that the effective
quark masses for u, d, and s quarks all increase with the
baryon density. From Eq. (1) one can easily find that the
quark mass increases with the chemical potential at zero
temperature for the fixed coupling constant case, which
cannot provide the chiral symmetry restoration within the
quasiparticle model. In the upper-right panel of Fig. 8, we
calculate the quark mass by using the effective running
coupling constant

g2ðμiÞ ¼
48π2

29

�
ln

�
0.8μ2i
Λ2

��
−1
; ð9Þ

where Λ is set to 200 MeVand B1=4 ¼ 120 MeV. One can
find that the quark masses of all three flavors of quarks first
decrease with the baryon density from 0.1–0.4 fm−3, and
then increase with the baryon density in this treatment,
which still cannot satisfy the QCD features due to the
increment of the quark mass [from Eq. (1)] with the
chemical potential in the ultrahigh-density region.

In order to solve the restoration of chiral symmetry for
the effective quark mass within the quasiparticle model,
one should build a new form of the effective running
coupling constant g. Because of the complexity and
difficulty in the straight calculation of the effective running
coupling constant, we rewrite g for simplicity by using the
phenomenological approach,

g2ðμiÞ → g2e−βμi ; ð10Þ

where β is a parameter determining the chemical potential
dependence of the effective running coupling constant.
This chemical-potential-dependent quark mass coupling
constant is similar to the treatment of Ref. [80] within the
CIDDM model. One can see that the restoration of chiral
symmetry can be guaranteed if β > 0, and we believe that
more formal and reasonable treatments for the effective
running coupling constant g within the quasiparticle model
can be proposed in future works. In this work, we use
Eq. (10) and set g ¼ 5, B1=4 ¼ 120 MeV to calculate the
effective quark mass in the lower-left (β ¼ 0.01) and lower-
right (β ¼ 0.0001) panels in Fig. 8. One can find in the
lower-left panel that the quark masses of all flavors of
quarks decrease with the increment of baryon density, and
the effective quark mass can decrease to its current mass
when nB ¼ 2 fm−3. One can also find in the lower-right
panel of Fig. 8 that the values of the effective quark mass
for the quark star matter region (the maximum value of the
baryon density for the quark star matter region is the central
baryon density of the maximum mass of QSs, which
usually appears around nB ¼ 1 fm−3) seems to be almost
identical to the quark mass in the fixed coupling constant
case once β is set very small, e.g., β ¼ 0.0001. This result
indicates that we can still use the conclusions from the fixed
coupling constant case in the quark star matter region once

FIG. 8. Quark mass as a function of baryon density with the
fixed coupling constant and effective running coupling constant
within the quasiparticle model.

FIG. 9. Mass-radius relation with the fixed coupling con-
stant and effective running coupling constant within the
quasiparticle model.
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β is set extremely small, and the effective quark mass in this
case can still satisfy the restoration of chiral symmetry at
ultrahigh baryon density.
Additionally, we calculate the mass-radius relation

with the effective running coupling constant g2ðμiÞ →
g2e−βμi within the quasiparticle model. One can find in
Fig. 9 that the maximum mass of QSs reaches 2.62 M⊙
with g ¼ 5, B1=4 ¼ 120 MeV, and β ¼ 0.01, which is
approximately identical to the maximum quark star
mass in the g − 5 case with the fixed coupling constant
g (2.59 solar masses) and can still describe GW190814’s
secondary component as QSs within the quasiparti-
cle model.

IV. CONCLUSION AND DISCUSSION

In this work, we have explored the properties of the
EOSs of SQM and udQM, the sound velocity of quark
matter, the quark fraction, the maximum mass of QSs and
the coupling constant g, as well as the tidal deformability
for QSs by using the quark quasiparticle model. Our results
show that we can describe the recently discovered heavy
compact stars, especially GW190814’s secondary compo-
nent, as QSs within the quasiparticle model.
In order to satisfy the absolutely stable condition for

SQM, we further studied the range of the maximummass of
QSs and the parameter sets. We found that the range of the
maximum mass of QSs decreases with the increment of the
coupling constant g when the absolutely stable condition is

considered, and the heaviest QSs that the quasiparticle
model can support are of 3.03 solar masses.
Moreover,we alsocalculated the tidal deformability ofQSs

in the stability window of SQM. We found that the tidal
deformability of the large-mass QSs can violate the upper
limit constraint Λ1.4 < 800 derived from GW170817 for
large-mass stars within the quasiparticle model. Furthermore,
we discussed the expressions of the effective coupling
constant g, and we used a phenomenological approach to
temporarily solve the restoration of chiral symmetry for the
effective quark mass within the quasiparticle model.
Therefore, our results have demonstrated that we can

describe newly discovered heavy compact stars as QSs by
using the quasiparticle model, and the absolutely stable
condition for SQM indeed puts very strict constraints on
the range of the parameter sets, the maximum mass of QSs,
and the tidal deformability of QSs. In particular, our results
have shown that the maximum mass of QSs that the
quasiparticle model can support is 3.03 solar masses, and
the tidal deformabilityΛ1.4 for largeQSs canviolate the upper
limit from GW170817.
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