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Extreme mass ratio inspirals (EMRIs) are important sources for space-borne gravitational wave
detectors, such as the laser interferometer space antenna and TianQin. Previous EMRI rate studies have
focused on the “loss cone” scenario, where stellar-mass black holes (sBHs) are scattered into highly
eccentric orbits near the central massive black hole (MBH) via multibody interaction. In this work, we
calculate the rate of EMRIs of an alternative formation channel: EMRI formation assisted by the accretion
flow around accreting massive black holes. In this scenario, sBHs and stars on inclined orbits are captured
by the accretion disk, and then subsequently migrate towards the MBH, under the influence of density wave
generation and head wind. By solving the Fokker-Planck equation incorporating both sBH-sBH–sBH-star
scatterings and sBH–star-disk interactions, we find that an accretion disk usually boosts the EMRI
formation rate per individual MBH by Oð101–103Þ compared with the canonical loss cone formation
channel. Taking into account that the fraction of active Galactic nuclei (AGNs) is ∼Oð10−2 − 10−1Þ, where
the MBHs are expected to be rapidly accreting, we expect EMRI formation assisted by AGN disks to be an
important channel for all EMRIs observed by space-borne gravitational wave detectors. These two
channels also predict distinct distributions of EMRI eccentricities and orbit inclinations with respect to the
MBH spin equatorial plane, which can be tested by future gravitational wave observations.
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I. INTRODUCTION

With the laser interferometer space antenna (LISA) and
TianQin planned for launch in early 2030s [1,2], the mHz
band will be available for gravitational-wave (GW) obser-
vation. One primary target source of space-borne GW
detectors is extreme mass ratio inspiral (EMRI), which
usually consists of a stellar-mass compact object, e.g., a
black hole or a neutron star, and a massive black hole
(MBH). The stellar-mass object may stay in the LISA band
for years and complete 104 ∼ 105 circles around the MBH
before their final mergers [3]. Because of such a large
number of cycles, small modification of the metric of the
EMRI system [4] and possible environmental or astro-
physical effects [5–7] may accumulate over the duration of
the waveform and generate detectable phase shift. With a
population of events, the distributions of masses and spins
of the host MBHs may be measured as a way to infer the
growth history of Galactic Center MBHs [8,9].
One important problem related to EMRIs is to evaluate

their event rate. The “canonical” EMRI formation is
expected to be a stellar-mass black hole (sBH) captured
by a MBH via multibody scatterings in the core of a galaxy
[10], which has been the main assumption for previous rate

calculations [11,12], (while other formation channels
involving tidal disruption or tidal capture of binary sBHs
may also contribute a fraction of EMRIs [13,14]). Given the
MBH mass and the initial distributions of surrounding stars
and sBHs, the EMRI rate per MBH can be obtained by
solving the Fokker-Planck equation or by N-body simu-
lations [15,16]. In addition to the generic rate per MBH, the
LISA detectable EMRI rate also depends on the mass
function of MBHs at different redshifts, the fraction of
MBH living in star clusters, and the relative abundance of
sBHs in star clusters. Taking account of all these uncer-
tainties with semianalytic models, Babak et al. [12]
forecasted that there will be tens to thousands EMRIs
detected by LISA per year, and in a similar analysis, Fan
et al. [17] forecasted a slightly lower EMRI detection rate
by TianQin.
In this work, we consider another possible EMRI

formation channel, where a sBH in the core of a galaxy
is captured by the accretion disk around an accreting MBH.
As extensively studied in the context of star-disk-satellite
systems [18–22], a planet within inclined orbit with respect
to the disk excites density waves that drive the planet’s
inward migration, circularize the planet’s orbit and drive
the planet orbit toward the disk plane. In a MBH-disk-sBH
system, similar processes also work and assist the EMRI
formation. A sBH initially resides on a inclined orbit
crossing the accretion disk generally moves towards lower
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inclination orbits and eventually get captured by the
accretion disk. sBHs within the disk generally interact
with the disk through wind effects, density wave gener-
ation, and dynamic friction. As we can find in the
discussions in Sec. III, sBHs migrate within the disk under
these effects.
The timescale of sBH capture and migration apparently

depends on the disk profile. In particular, certain disk
models [23,24] predict local density maxima at distance
∼Oð102Þ −Oð103Þ times the MBH size away. As a result,
the migration torque due to density wave generation
changes sign at these locations where the migrating objects
are trapped. This trapping mechanism has been extensively
discussed in the context of investigating binary black hole
(BBH) mergers in AGN disks [25–41] as a possible way to
generate hierarchical stellar-mass BBH mergers that are
observable by ground-based gravitational-wave detectors.
However, we notice that these studies have made improper
assumptions in calculating the disk structure and over-
looked an important component of the disk force: the head
wind, which originates from the accretion of disk materials
onto the moving sBH [42]. With the improper assumptions
corrected and the wind influence included, we find that the
total torque is always positive for realistic disk parameters,
so that the disk trap is unlikely giving rise to hierarchical
stellar-mass binary mergers, nor does it stop the sBHs
migrating towards the MBH to become EMRIs.
We incorporate all the relevant disk-star and sBH

interactions into a Fokker-Planck code, and then compute
the EMRI formation rate with varying MBH mass and disk
profiles. The initial distribution of the star cluster is
specified according to Tremaine’s stellar cluster model
[43]. In the limit of zero disk effects, the code reproduces
known results from previous “loss-cone” calculations. With
the presence of an “realistic” accretion disk (Sec. IV), we
find that the disk-assisted EMRI formation is generically
Oð101–103Þ times faster than the loss cone mechanism for
the same MBH. Taking into account the fraction of active
Galactic nuclei (AGNs) observed Oð10−2 − 10−1Þ [44,45],
we conclude that disk-assisted EMRI formation may be an
important or even dominant channel for LISA EMRI
observation.
Interestingly, disk-assisted EMRIs tend to have low

eccentricities (e ≃ 0) and low inclinations (ι≲ 0.1) if the
MBH spin is aligned with angular momentum direction of
the accretion disk when they enter the LISA band. These
distributions are very different from the ones predicted by
loss cone formation (0–0.2 and 0–π=2 at plunge, respec-
tively). Environmental effects of AGN disks may also
induce detectable phase shifts to EMRI gravitational wave-
forms [42,46,47]. This means that it is possible to separate
out these two channels with a population of events. With
the rate inferred for each channel from observations, one
can then further constrain the distribution of stars around
MBHs and physics of AGN disks. In particular, EMRIs

within AGNs may produce both gravitational wave and
electromagnetic signals for multimessenger observa-
tions [42,48].
The paper is organized as follows. In Sec. II, we first

briefly review the canonical EMRI formation channel via
loss cone and numerically calculate the EMRI rate for a
fiducial MBH + star-sBH cluster system. In Sec. III, we
introduce a few commonly used AGN accretion disk
models, explore different interactions between sBHs-stars
with accretion disks, and discuss the existence problem of
migration traps in AGN disks. In Sec. IV, we incorporate
the sBH–star-disk interactions into the Fokker-Planck
equation and numerically calculate the accretion disk-
assisted EMRI rate. Summary and discussion are given
in Sec. V. Some numerical details are placed in the
Appendixes A and B.
Throughout this paper, we use geometrical units

G ¼ c ¼ 1.

II. REVIEW OF EMRI FORMATION VIA LOSS
CONE

In this section, we briefly review how stars fall into a
MBH via the loss cone mechanism, following Refs. [49–
51], and then compute the EMRI formation rate for a given
MBH-stellar cluster system by numerically solving the
Fokker-Planck equation. Many technical details discussed
are also useful for the rate calculation with the presence of
AGN disks.

A. Basics

Let us consider a stellar mass BH (sBH) orbiting around
a MBH with mass M•, which locates in the center of a
galaxy being surrounded by a stellar cluster with velocity
dispersion σ. Assuming the sBH is on an eccentric orbit
with eccentricity e and semimajor axis length a, its specific
orbit energy and specific orbital angular momentum are

E ≔ ϕðrÞ − v2

2
¼ M•

2a
; J ¼ M•

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

2E

r
; ð1Þ

where ϕðrÞ ¼ M•=r is the (positive) gravitational potential.
For later convenience, we also define R≡ J2=J2cðEÞ, where
JcðEÞ is the specific orbital angular momentum of a sBH
with specific energyE on a circular orbit. For the point-mass
gravitational potential, we have R ¼ 2EJ2=M2

• ¼ 1 − e2.
The sBH gradually spirals inward as GW emission takes
away energy and angular momentum on a timescale tgw. On
the other hand, stars and sBHs in the cluster continuously
scatter the sBH via mutual gravitational interactions, chang-
ing its orbit angular momentum on a relaxation timescale tJ.
As a result, the inspiral is susceptible to scatterings if tgw > tJ
and the sBHwill either be scattered to awider orbit or plunge
into theMBH.Therefore a stableEMRI forms only if theGW
dissipation dominates over scatterings; i.e., the orbit must be
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tight and highly eccentric (e → 1) to enable efficient GW
emission, tgw < tJ.
In the phase space, there is a region bounded by the

energy-dependent angular momentum, JlcðEÞ, where stel-
lar mass BHs initially populating the region promptly fall
into the MBH within one orbital period [52]. This part of
phase space is usually referred as the loss cone. The overall
infall rate is set by the rate of diffusion or relaxation
processes which drive sBHs to the loss cone by successive
two-body scatterings, and the condition of infall is written
as PðEÞ < tJ [53], where PðEÞ is the orbital period. For
comparison, the condition of stable inspirals tgw < tJ is
much stronger, because the orbital period PðEÞ is usually
much shorter than the GW dissipation timescale tgw. For the
problem we are discussing, the relevant orbits are nearly
zero-energy (with a ≫ M• and E ≃ 0), and the boundary of
the loss cone is defined by [52]

Jlc;bhðE ≃ 0Þ ¼ 4M•: ð2Þ

The above discussion equally applies to stars around aMBH,
except the star loss cone is determined by tidal disruption and
Jlc;starðEÞ is slightly larger than Jlc;bhðEÞ [54]. For numerical
convenience, we simply take Jlc;starðE ≃ 0Þ ¼ 4M•.

B. EMRI rate via loss cone

1. Initial condition

For a given MBH, to accurately compute the EMRI rate
via the loss-cone mechanism, we need to know the
distribution functions of the surrounding stars and sBHs,
fiðt; x⃗; v⃗Þ (i ¼ star; bh). As argued in Refs. [55,56], these
distribution functions are approximately functions of the
action variables: fi ≈ fiðt; E; RÞ. In alignment with pre-
vious studies [15,16], we use Tremaine’s MBHþ stellar
cluster model [43,57] as the initial condition for the Fokker-
Planck evolution. Assuming there are two components in
the stellar cluster: light stars with massmstar and heavy sBH
with mass mbh, and the total star and sBH mass in the
cluster areMstar andMbh, respectively, the number densities
of stars and sBHs in the Tremaine’s cluster model are
given by

nstarðrÞ ¼
Mstar

mstar

3 − γ

4π

ra
rγðrþ raÞ4−γ

;

nbhðrÞ ¼ δ × nstarðrÞ; ð3Þ

with ra being the density transition radius, γ being the
density scaling power index, and δ being the relative
abundance of sBHs. From Eq. (3), we see niðrÞ ∼ r−γ

(i ¼ star, bh) for r ≪ ra, niðrÞ ∼ r−2−γ=2 for r ¼ ra, and
niðrÞ ∼ r−4 for r ≫ ra. Different combinations of model
parameters γ and ra produce rich cluster profiles. For
example, the Galactic nuclear stellar cluster is

approximately described by the Tremaine’s model with γ ¼
1.8 and ra ¼ 4rh ¼ 4M•=σ2, where the star density profile
is nstarðrÞ ∼ r−1.8 within the influence radius rh and
becomes as steep as nstarðrÞ ∼ r−3 at a distance a few
times larger than rh [58,59].
From the density profiles (3), one can obtain the

magnitude of the gravitational potential

ϕðrÞ ¼ M•

r
þMstar þMbh

ra

1

2 − γ

�
1 −

�
r

rþ ra

�
2−γ

�
; ð4Þ

where the second term is contributed by the stars and sBHs.
In the case that the initial distribution functions fiðt ¼
0; E; RÞ only depend on the energy E, they are related to the
position space number density by [43]

fiðt ¼ 0; E; RÞ ¼
ffiffiffi
2

p

ð2πÞ2
d
dE

Z
E

0

dni
dϕ

dϕffiffiffiffiffiffiffiffiffiffiffiffi
E − ϕ

p ; ð5Þ

where niðrÞ has been written as an implicit function
of ϕðrÞ.
In the more general case, fi depends on both E and R. In

order to invert the distribution function fiðE;RÞ to find the
number density niðrÞ, we first list the properties of star
orbits in given potential field ϕðrÞ [56]. From the energy
definition E ¼ ϕ − v2=2, we have

2ðϕ − EÞ ¼ v2 ¼ J2

r2
þ v2r ; ð6Þ

where vr is the radial velocity. For a circular orbit of energy
E, its orbit radius and angular momentum Jc are deter-
mined by

J2cðEÞ ¼ −r3cϕ0ðrcÞ;

2ðϕðrcÞ − EÞ ¼ J2c
r2c

: ð7Þ

For a general noncircular orbit with parameters ðE;RÞ, its
turning points (apsis or periapsis) r� are determined by

2ðϕðr�Þ − EÞ ¼ J2

r2�
; ð8Þ

and its orbit period PðE;RÞ is defined as

PðE;RÞ ¼ 2

Z
rþ

r−

dr
vr

: ð9Þ

Defining the number density in the ðE; RÞ phase space as
NiðE;RÞdEdR ≔

R
rþ
r−

d3rd3vfiðE; RÞ, we have [55,56]
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NiðE;RÞ ¼ 4π2PðE;RÞJ2cðEÞfiðE;RÞ
≔ CðE; RÞfiðE;RÞ: ð10Þ

With these listed properties, one can show that the
position-space number density niðrÞ is related to the
distribution function fiðE;RÞ by [56]

niðrÞ ¼
2π

r2

Z
ϕðrÞ

0

dEJ2cðEÞ
Z

Rmax

0

dR
vr

fiðE; RÞ; ð11Þ

where Rmaxðr;EÞ¼2r2ðϕðrÞ−EÞ=J2cðEÞ, and vrðr; E; RÞ ¼
2ðϕ − EÞ − J2=r2 ¼ ðRmax − RÞJ2cðEÞ=r2. In the case of
isotropic distribution fi ¼ fiðEÞ, the above equation
simplifies as [60]

niðrÞ ¼ 4π

Z
ϕðrÞ

0

dE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðϕðrÞ − EÞ

p
fiðEÞ: ð12Þ

2. Fokker-Planck equation

Given initial distributions of stars and sBHs,
fiðt ¼ 0; E; RÞ, their evolution is governed by the orbit-
averaged Fokker-Planck equation [56]

C
∂f
∂t ¼ −

∂
∂EFE −

∂
∂RFR; ð13Þ

with C the weight function defined in Eq. (10) and FE;R the
flux in the E=R direction:

−FE ¼ DEE
∂f
∂EþDER

∂f
∂RþDEf;

−FR ¼ DRR
∂f
∂RþDER

∂f
∂EþDRf; ð14Þ

where the diffusion coefficients fDEE;DER;DRRgi and the
advection coefficients fDE;DRgi are functions of
fiðt; E; RÞ [56,61] and we detail their calculation in
Appendix A. In particular, the local relaxation timescale
of the system is approximately [55,61–63]

trlxðrÞ ¼ 0.34
σ3P

iniðrÞm2
i lnΛ

; ð15Þ

where the Coulomb’s logarithm lnΛ weakly depends on
the total number of stars within the influence radius and we
take lnΛ ¼ 10 in this work.
We aim to evolve fiðt; E; RÞ according to Eq. (13)

and subject to following boundary conditions [64]. On
the E → 0 boundary,

fiðt; E; RÞjE→0 ¼ fiðt ¼ 0; E; RÞjE→0; ð16Þ

i.e., the distributions far away from the central MBH barely
evolve due to its long relaxation timescale. On the R ¼ 1

boundary, the flux in the R direction should vanish for both
stars and sBHs,

FRjR→1 ¼ 0: ð17Þ

On the loss cone boundary R ¼ RlcðEÞ ≔ J2lc=J
2
cðEÞ, the

flux in the R direction has been derived in Ref. [55] as

−
FR

C
≃
�
DRR

R

�
R→0

fðR0Þ
lnðR0=RlcÞ þ F ðylcÞ

; ð18Þ

where DRR ≔ DRR=C, ylc ≔ Rlc=½ðDRR=RÞR→0P�, P ¼
PðE;RÞ is the orbital period, R0 is any small R in the
range of Rlc ≤ R ≪ 1, F ðylcÞ ≃ 1=ylc for ylc ≲ 1, and
F ðylcÞ ≃ 0.824y−1=2lc for ylc ≳ 1. At R0 ¼ Rlc, Eq. (18) is
simplified as fðRlcÞ ≃ 0 (empty loss cone) for ylc ≫ 1 and
FR ≃ 0 for ylc ≪ 1 (full loss cone).

3. EMRI rate with the loss-cone mechanism

We consider a fiducial model of MBH+star–sBH cluster
with M• ¼ 4 × 106 M⊙, and two components in the clus-
ter: light stars mstar ¼ 1 M⊙, and heavy BHs with mass
mbh ¼ 10 M⊙. We assume that stellar velocity dispersion σ
follows the M• − σ relation [65,66]

M• ¼ 1.53 × 106 M⊙

�
σ

70 km=s

�
4.24

: ð19Þ

The initial star or sBH distributions are specified according
to the Tremaine’s model outlined in Sec. II B 1 with the
total star mass Mstar ¼ 20M•, the density transition radius
ra ¼ 4rh ¼ 4M•=σ2, the density power index γ ¼ 1.5, and
the relative abundance of sBHs δ ¼ 10−3. For reference, the
initial total number of stars within the influence sphere is
Nstarðr < rhÞ ¼ 5.6 × 106 in this stellar cluster.
To numerically solve Eq. (13), we introduce a new

dimensionless variable Z ¼ lnð1þ 5E=σ2Þ following
Ref. [55] and implement a uniform 128 × 128 grid on
the ðR; ZÞ space. From the initial distribution functions
fiðt ¼ 0; E; RÞ, we compute all the diffusion coefficients
and the advection coefficients, with which we evolve a
discretized version of Eq. (13) with time step

δt¼0.25Cj;kmin

�
ΔR
DR

;
ðΔRÞ2
DRR

;
ΔZ
DE

dE
dZ

;
ðΔZÞ2
DEE

�
dE
dZ

�
2
�

i;j;k
;

where i ¼ fstar; sBHg, j and k are the grid indices. We
update the coefficients according to the new distribution
functions every 100 steps, and we stop the simulation at
tf ¼ 5 Gyr. For convergence test, we also run a low-
resolution (64 × 128) and a high-resolution (256 × 256)
simulation. We find the simulation results agree with each
other to a good precision.
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In Fig. 1, we show the final distributions fiðtf ; E; RÞ in
the first two panels and the R-integrated distribution
functions

f̄iðt; EÞ ≔
Z

1

0

fiðt; E; RÞdR ð20Þ

in the third panel, where f̄starðtf ; EÞ ∼ E0 and f̄bhðtf ; EÞ ∼
E0.3 for E=σ2 ≳ 10. The sBH density profile f̄bh here turns
out to be shallower than that obtained from solving 1D
Fokker-Planck equations [15]. The steeper profile from 1D
calculation is expected because sBHs’ leaving the cluster
and falling into the MBH via the loss cone cannot be
incorporated in the 1D Fokker-Planck equation, and con-
sequently sBHs which are supposed to fall into the MBH,
are instead accumulated in the large E regime. The phase
space distribution function being f̄ðEÞ ∼ Eξ is approxi-
mately equivalent to the position space density being
nðrÞ ∼ r−ð3=2þξÞ [53]. As a result, the star or sBH number
density profile in the final state are nstarðrÞ ∼ r−1.5 and
nbhðrÞ ∼ r−1.8 for r≲ 0.1rh. We can also find that the
density profile of the more massive, sBH component is
steeper than that of the star component, a phenonmenon
known as mass segregation, which has been shown to
enhance the EMRI rate [15,16,67].

In fact, mass segregation not only occurs in the E
dimension, but also in the R dimension. In Fig. 2, we
show the final distributions of the two components at E ¼
Egw [see Eq. (21)] in the R direction, where the sBH
component is more concentrated on circular orbits. As a
result, the mass segregation in the R direction is expected to
mildly reduce the EMRI rate, which is mainly contributed
by sBHs on highly eccentric orbits.
With the distribution function fbhðt; E; RÞ (and all the

diffusion and advection coefficients) obtained, we are ready
to calculate the EMRI rate for the loss cone mechanism. As
discussed in Refs. [16,50], the EMRI condition tgw < tJ is
approximately formulated as a < rgw ¼ 0.01rh. Therefore
the EMRI rate per MBH via loss cone is given by

Γemri ¼
Z
E>Egw

F⃗ · d⃗l; ð21Þ

where Egw ¼ M•=ð2rgwÞ, F⃗ ¼ ðFE; FRÞ, and d⃗l ¼
ðdE; dRÞ is the line element along the boundary of the
loss cone. According to the flux conservation in the steady
state, the EMRI rate should be equal to the inflow rate F̄E at
E ¼ Egw,

FIG. 1. Final distribution functions fstarðtf ; E; RÞ (left panel), fbhðtf ; E; RÞ (middle panel). Initial and final R-integrated distribution
functions (right panel). All the distribution functions are shown in units of 105 pc−3=ð2πσ2Þ3=2 and energies E are shown in units of σ2.

FIG. 2. Mass segregation in the R direction, where the heavier
component is more concentrated on circular orbits.

FIG. 3. The time dependence of the inflow rate F̄EjE¼Egw
, the

EMRI rate Γemri, and the sBH number growth rate
dNbhðE > EgwÞ=dt.
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F̄EjE¼Egw
¼

Z
1

0

FEðE;RÞjE¼Egw
dR: ð22Þ

In Fig. 3, we plot the time dependence of three different
rates: F̄EjE¼Egw

, Γemri, and the sBH number growth rate
dNbhðE > EgwÞ=dt. We find that the EMRI rate has
reached a quasisteady state at t ∼ 3 Gyr, when
Γemri ≃ 210 Gyr−1. In addition, the inflow rate F̄EjE¼Egw

initially increases up to t ∼ 2 Gyr and slowly decreases
until F̄EjE¼Egw

≃ Γemri at tf ¼ 5 Gyr. The total number of
sBHs NbhjE>Egw

increases from its initial value ≃10 to the
final value ≃160. After 5 Gyr (not shown in the plot),
NbhðE > EgwÞ starts to slowly decrease because the con-
sumption rate via loss cone Γemri becomes larger than the
inflow supply rate F̄EjE¼Egw

.
To explore the dependence of the EMRI rate on the MBH

mass, we have performed an additional 4 simulations
similar to the fiducial model case, except with different
MBH mass M•. To quantify the EMRI rate via loss cone,
we define the average rate

Γ̄emri ≔
1

tf

Z
tf

0

ΓemriðtÞdt; ð23Þ

and a characteristic rate

Γ̂emri ≔ ΓemriðtÞjwhen Nbhðt;E>EgwÞmaximizes; ð24Þ

i.e., the EMRI rate when the total sBH number NbhðE >
EgwÞ is maximal in the range of t ∈ ½0; tf �. For the fiducial
model we see that Γ̂emri ¼ Γemriðt ¼ tfÞ (see Fig. 3), while
Γ̂emri turns out to be the EMRI rate at some earlier time
Γemriðt < tfÞ for cases with lighter MBHs, for which the
relaxation timescales are shorter and the peak NsBHðE >
EgwÞ comes earlier. In the upper panel of Fig. 4, we show
the characteristic rate Γ̂emri as a function ofM•. We find that
the MBH mass dependence is mild, which can be approxi-
mated as ∝ M−0.28

• . This scaling can be qualitatively
understood as follows [50]:

Γ̂emri ∝
NbhðE > EgwÞ

trlxðrgwÞ
∝

σ3

M•
; ð25Þ

where we have used NbhðE > EgwÞ ∝ M•, trlxðrgwÞ ∝ σ3=
nstarðrgwÞ ∝ σ3r3gw=NstarðE > EgwÞ ∝ σ3r3gw=M•, and
rgw ∝ M•=σ2. In combination with the M• − σ relation
[Eq. (19)], we have Γ̂emri ∝ M−0.29

• , which is close to the
scaling fitted from our numerical results.
To explore the effect of the initial cluster profile, we also

run two sets of simulations with two different initial
stellar cluster models: one with higher sBH fraction
ðδ ¼ 2 × 10−3; γ ¼ 1.5Þ, and another with steeper density

profile ðδ ¼ 10−3; γ ¼ 1.8Þ, where the initial total number of
stars within the influence sphere is about 50% higher with
Nstarðr < rhÞ ¼ 8.1 × 106. We find the dependence of Γ̂emri
on M• can be approximately fitted by the same scaling
Γ̂emri ∝ M−0.28

• in both cases. As expected, both higher sBH
fraction and steeper density profile enhance the characteristic
rate Γ̂emri. In more details, the EMRI rate increases by less
than a factor of 2 when we double the sBH fraction, because
the sBH-sBH coupling becomes stronger, which tends to
flatten the density profile of sBHs. The EMRI rate Γ̂emri in the
stellar cluster with a steeper density profile is higher by a
factor of ∼3, which is mainly contributed to by higher sBH
numbers and shorter relaxation timescale (higher density of
stars) within the influence sphere. The normalizedEMRI rate
Γ̂emri=N2

starðr < rhÞ in the two stellar clusters differs by
only ∼50%.
To compare the future LISA detectable EMRI rate with

the model prediction, the average rate Γ̄emri is more
relevant, whose dependence on the MBH mass M• and
on the initial cluster model are shown in the lower panel of
Fig. 4. We see no simple scaling between the average rate
and theMBHmass for any initial cluster model. The overall

FIG. 4. Upper panel: The dependence of the characteristic
EMRI rate per MBH Γ̂emri on the MBH mass M• for different
initial cluster models, where ðδ ¼ δ0 ¼ 10−3; γ ¼ 1.5Þ is our
fiducial model, ðδ ¼ 2δ0; γ ¼ 1.5Þ is a similar cluster model with
higher sBH fraction, and ðδ ¼ δ0; γ ¼ 1.8Þ is a Galactic nuclear
stellar clusterlike model. Lower panel: the average rate Γ̄emri.
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behavior is the ratio Γ̄emri=Γ̂emri is lower for lower MBH
mass, while the ratio depends more on the initial condition
for MBHs on the high mass end. For a MBH on the low
mass end, sBHs in the vicinity of the MBH are rapidly
depleted and the average rate is limited by the number of
sBHs available. For a MBH on the high mass end, the
relaxation timescale of the system is long and the two rates
are different by no more than a factor of 2.
In Ref. [16], stars and sBHs in the cluster are evolved

following 1D (E direction) Fokker-Planck equations, in
which no star or sBH loss is taken account of. Therefore the
numbers of stars and sBHs in the cluster are conserved and
there exists a steady state base on which the EMRI rate was
calculated assuming the standard logarithmic distribution
in the R direction and the relaxation timescale (15) in the R
direction [50]. Though there is no strictly steady state in our
approach because the cluster continually loses stars or
sBHs via the loss cone. The characteristic rate Γ̂emri is
roughly comparable with the steady-state EMRI rate in
Ref. [16], in terms of either magnitude or the scaling
with M•.

III. SBH-ACCRETION DISK INTERACTIONS

About 1% low-redshift (z≲ 1) galaxies and as high as
10% high-redshift (1≲ z≲ 3) galaxies are active [44,45] in
which MBHs are expected to be rapidly accreting gas in a
disk configuration. The interaction with disk could com-
pletely reshape the distribution of sBHs. In this section, we
will first discuss models of AGN accretion disks, then
introduce relevant disk-sBH interactions, including density
waves and wind. Other possible interactions, e.g., dynamic
friction [68,69] and heating torque [70,71], are negligible
as we will explain in Sec. III C.

A. AGN disk models

1. α=β-disk

With the α-viscosity prescription [72] and the thin disk
assumption, the 1D disk structure is governed by the
following equations [23]:

σSBT4
eff ¼

3

8π
_M•Ω2; ð26aÞ

T4
mid ¼

�
3

8
τ þ 1

2
þ 1

4τ

�
T4
eff ; ð26bÞ

τ ¼ κΣ
2
; ð26cÞ

βbH2Ω2Σ ¼
_M•Ω
3πα

; ð26dÞ

prad ¼
τ

2
σSBT4

eff ; ð26eÞ

pgas ¼
ρkT
mH

; ð26fÞ

β ¼ pgas

prad þ pgas
ð26gÞ

Σ ¼ 2ρH; ð26hÞ

cs ¼ HΩ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ptot=ρ

p
; ð26iÞ

κ ¼ κðρ; TmidÞ; ð26jÞ

with Tmid being the middle plane temperature, Teff being
the effective radiation temperature, τ being the disk optical
depth, H ¼ rh being the scale height of the disk, cs being
the local sound speed, and κ being the gas opacity [73,74].
The parameter b can be either 0 or 1 depending on whether
the viscosity is proportional to the total pressure (α disk)
or the gas pressure (β disk).
In the outer region, the viscosity dissipation heating

becomes less efficient and the disk will be prone to the disk
self-gravity if the Toomre’s stability parameter

Q ¼ csΩ
πΣ

≃
Ω2

2πρ
ð27Þ

is less than unity. Following Ref. [23], we assume some
external feeding back mechanism heats the disk and
maintains a minimum value of the Toomre’s parameter
as Qmin ≃ 1. In outer parts where the equilibrium between
the local viscosity dissipation heating and the radiation
cooling no longer holds, Eq. (26a) is replaced by Eq. (27)
with Q ¼ Qmin.
Given the value of accretion rate _M• and the gas opacity

function κðρ; TmidÞ, all the disk variables fTeff; Tmid;
τ;Σ; ρ; H; prad; pgas; β; cs; κg can be numerically solved as
functions of the angular velocity Ω, which is approximated
by the Kepler angular velocity Ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ϕ0ðrÞ=rp
. In this

work, we assume the potential ϕðrÞ [Eq. (4)] of the fiducial
MBHþ cluster model.
As two fiducial disk models, we calculate the structure of

an α disk and a β disk both with M• ¼ 4 × 106 M⊙,
α ¼ 0.1, _M• ¼ 0.1 _MEdd

• , where the Eddington accretion
rate is related to the Eddington luminosity by _MEdd

• ≔
LEdd
• =0.1. We plot the fiducial α=β-disk structure in left

panels of Fig. 5: the disk surface density Σ, the middle plane
temperature Tmid, the disk optical depth τ, and the disk
aspect ratio h as functions of radius r. The two disks only
differ within radius ∼103 M•, beyond which the gas
pressure dominates over the radiation pressure, so that
the difference in the viscosity prescriptions of the two disks
is negligible. In the inner region, the radiation pressure
dominates, so that the viscosity in the α disk is larger than
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in the β disk, which results in a larger radial gas velocity
and a lower gas surface density.

2. TQM disk

In the TQM disk model [24], the disk angular momen-
tum is assumed to be carried away by global torques instead
of local viscosity, and the gas inflow velocity is para-
metrized as a constant fraction of local sound speed:
vgas;r ¼ Xcs. In outer parts of the disk, star formation is
assumed to heat the disk and maintain its stability against
disk self gravity. In addition to the gas pressure and the
radiation pressure, a turbulence pressure driven by super-
nova explosion in the disk is also incorporated. The 1D disk
structure is governed by the following equations:

σSBT4
eff ¼

3

8π
_M•Ω2 þ 1

2
ϵ⋆ _Σ⋆; ð28aÞ

T4
mid ¼

�
3

8
τ þ 1

2
þ 1

4τ

�
T4
eff ; ð28bÞ

τ ¼ κΣ
2
; ð28cÞ

_MðrÞ ¼ Xcsð2πrΣÞ; ð28dÞ

cs ¼ HΩ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ptot=ρ

p
; ð28eÞ

pgas ¼
ρkTmid

mH
; ð28fÞ

prad ¼
τ

2
σSBT4

eff ; ð28gÞ

ptb ¼ ϵ⋆ _Σ⋆; ð28hÞ

Σ ¼ 2ρH; ð28iÞ

_MðrÞ ¼ _M• þ
Z

r

rmin

2πr _Σ⋆dr; ð28jÞ

κ ¼ κðρ; TmidÞ: ð28kÞ

In inner parts where Q > 1, the star formation ceases
( _Σ⋆ ¼ 0), the accretion rate is radius independent _M≡ _M•,
and the turbulence pressure ptb vanishes. In outer parts, the
Toomre’s stability parameter is assumed to be Q ¼ 1 and
the density is specified by

FIG. 5. Fiducial α=β disk in the upper and lower row. Left panel: disk structure with Σ½g=cm3� the surface density, T½eV� the middle
plane temperature, τ the disk optical depth, and h ≔ H=r the disk aspect ratio. Middle panel: the torques (in units of c2 ¼ 1) exerted on
the sBH from GW emission _Jgw [(40)], disk wind _Jwind [(36)] and density waves _Jmig;I [(30)], where _Jmig;I changes its sign close to the
local density maxima. Right panel: the corresponding timescales (in units of yr) on which different torque change the sBH orbital
angular momentum by order of unity ti ≔ J=j _Jij. with i ¼ gw=wind=mig; I. For comparison, the typical disk life span ∼ð106; 108Þ yr is
plotted as a horizontal gray band.
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ρ ¼ Ω2

2π
: ð29Þ

In Fig. 6, we show the structure of an example TQM disk
with M• ¼ 4 × 106 M⊙, _M• ¼ 0.1 _MEdd

• , X ¼ 0.1, and
ϵ⋆ ¼ 10−3. A salient feature in the disk is a opacity gap
at r ∼ 104 M•, inside which the disk is optically thin τ < 1.
In Ref. [24], a sharp density increase was found on the inner
edge of the opacity gap, while the density increase in our
solution is rather mild. This difference is traced back to
different equations of radiation pressure assumed: in
Ref. [24], prad ¼ 4

3
σSBT4

mid was assumed, which should
hold only in the optically thick regime and break down
inside the opacity gap, while our equation of radiation
pressure [Eq. (28g)] is more general.
The α-viscosity prescription is consistent with the

turbulence viscosity driven by magnetorotational instability
in inner parts of accretion disks where the gas is fully
ionized [75–77]. In outer parts, the physical mechanisms of
the angular momentum transport and the external heating
processes (in addition to the disk viscosity heating) main-
taining the disk stability are still open issues. In this work,
we follow Ref. [23] to consider α=β disks assuming α-
viscosity prescription throughout the disk and certain
implicit heating processes in outer parts of the disk.
Consistent with Ref. [24], we also consider TQM disks
where a more efficient angular momentum transport
mechanism is assumed. In addition, star formation in outer
parts of the AGN disk is explicitly taken into account as the
external heating process. To our best knowledge, we expect
α=β disk models to be a closer description to inner parts of
AGN disks in nature, while it is not clear which disk model
works better or whether any of them accurately describes
the nature in outer regions.

B. Density waves

As extensively studied in the context of star-disk-satellite
systems [18–22], a planet excites density waves consisting
of three components: regular density waves excited by the
circular motion of the planet, eccentricity waves excited by
the noncircular motion, and bending waves excited by the

motion normal to the disk. The regular density waves exert
a negative torque on the planet and drive an inward
migration (commonly called type-I migration) on a time-
scale tmig;I; the eccentricity waves work to damp the
eccentricity e of the planet orbits on a timescale twav
and the bending waves work to drive the planet onto the
disk on the same timescale twav. Similar processes should
also work in the MBH-disk-sBH system, with torque
arising from density waves [21,22]

_Jmig;I ¼ CI
mbh

M
Σ
M

r4Ω2

h2
; ð30Þ

where M ¼ Mð< rÞ is the total mass within radius r, CI ¼
−0.85þ d lnΣ=d ln rþ 0.9d lnTmid=d ln r [78]. In some
special cases we will show later, the surface density ΣðrÞ is
a fast increasing function of radius r, and the type-I torque
becomes positive. The corresponding migration timescale
tmig;I and eccentricity or the inclination damping timescale
twav are

tmig;I ¼
J

j _Jmig;Ij
¼ r2Ω

j _Jmig;Ij
∼

M
mbh

M
Σr2

h2

Ω
;

twav ¼
M
mbh

M
Σr2

h4

Ω
; ð31Þ

where in the “∼” sign we have take jCIj ¼ 1 for order of
magnitude estimate. In the context of turbulent protoplanet
disks, planets are also subject to stochastic migration due to
gravitational interaction with turbulent density fluctuations
in the disk [79]. It is not clear under what condition the
stochastic migration of sBHs in AGN disks prevails the
type-I migration [80,81]. We do not include the possible
contribution from stochastic migration in this paper, and
should be straightforward to do so by adding a diffusion
term in the Fokker-Planck equation as long as it is better
quantified.
A gap in the disk might be opened if the sBH is so

massive that its tidal torque moves gas away faster than the
viscosity replenishing rate. The gap width can be estimated
as [42,82–84]

FIG. 6. Same as Fig. 5 except for a fiducial TQM disk.
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Δ ≃
�
0.02

r2Ω
ν

m2
bh

M2

�
1=3

r; ð32Þ

where ν ¼ _M=ð3πΣÞ is the kinetic viscosity coefficient.
The gap opening requires (see also Ref. [85])

H < Δ; rHill < Δ; ð33Þ

where H is the disk thickness and rHill ¼ ðmbh=3MÞ1=3r is
the Hill radius of the sBH inside which the tidal field of the
sBH dominates. As long as a gap opens, type-I migration
turns off and the sBH is subject to type-II migration.
Following Ref. [86] (see also Refs. [87,88]), the type-II
torque on the sBH can be estimated as

_Jmig;II ¼ −
2πr2Σ
mbh

rΩjvgas;rj; ð34Þ

where vgas;r ¼ − _M=ð2πrΣÞ is the gas inflow velocity. The
corresponding timescale of type-II migration is defined as

tmig;II ¼
r2Ω

j _Jmig;IIj
: ð35Þ

The above analysis equally applies to stars except with a
lower mass mstar.

In the three fiducial disk models (Figs. 5 and 6), the gap
opening condition (33) is not satisfied. In the upper row of
Fig. 7, we show the structure of a comparison α disk with
low viscosity α ¼ 0.01 where the gap opening condition is
satisfied if a sBH orbits around the MBH in the range
of ∼ð103; 104ÞM•.

C. Wind

For a sBH embedded in the gas disk, its gravitational
attraction influences the surrounding gas materials, so that
they tend to flow towards to the sBH. If the disk is not
rotating and the sBH has no relative motion with respect to
the disk, these gases should flow towards the sBH in a
nearly spherical manner. On the other hand, if the disk is
rotating and the sBH has nonzero velocity relative to nearby
materials, the accretion cannot be spherical. In addition, the
infalling materials generally carry nonzero angular momen-
tum relative to the sBH, so that they tend to circularize and
form certain local disk or bulge profile to organize the
accretion flow. Depending on the heating processes and
magnetic fields, a major part of captured materials may be
carried away in the form of outflow and only the remaining
part is accreted [89,90]. Because of the circularization
process, it is reasonable to expect that the outflow materials
carry minimal net momentum with respect to the sBH.
Therefore all the infalling gas, either finally being accreted

FIG. 7. Upper row: Same as Fig. 5 except for a comparison of the α disk with low viscosity α ¼ 0.01, where the gap opening condition
is satisfied when an orbiting sBH is located in the range of ∼ð103; 104ÞM• (vertical gray band in the middle panel). Lower row: Same to
Fig. 5 except for a comparison α disk with M• ¼ 4 × 108 M⊙ and _M• ¼ 0.5 _MEdd

• , where the type-I torque becomes positive in two
disconnected regions.
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by the sBH or flying away in the outflow, exerts a net
torque to the sBH. As the sBH grows via gas accretion, the
processes of sBH capture onto the disk and migration
inward accelerate [Eq. (31)]. Considering the expected
strong feedback during accretion, the calculation of sBH
growth in AGN disks needs more sophisticated modeling in
separate studies and we conservatively take it as _mbh ¼ 0 in
this paper.
As a result, the “head wind” with respect to the sBH are

captured at places where the sBH gravity becomes impor-
tant, and the momentum carried by the wind eventually
transfers to the sBH. The specific torque exerted on the sBH
from the wind is written as

_Jidwind ¼ −
rδvϕ _mwind

mbh
; ð36Þ

where the upper script “id” is used to denote quantities of
in-disk (id) sBHs and δvϕ is the relative bulk velocity in the
ϕ direction. The the head wind strength _mwind can be
estimated according to the Bondi-Hoyle-Lyttleton (BHL)
rate _mBHL with some disk environment corrections [42]

_mwind ¼ _mBHL × minf1; H=rBHL; rHill=rBHLg: ð37Þ

The BHL rate and the Bondi radius are well known as

_mBHL

mbh
¼ 4πρmbh

ðv2rel þ c2sÞ3=2
; ð38Þ

and rBHL ¼ mbh=ðv2rel þ c2sÞ, where vrel is the relative veloc-
ity between the sBH and the local gas, v2rel ¼ ðδvϕþ
δvdrÞ2 þ δv2r , with δvr being the relative bulk velocity in
the r direction, and δvdr being the relative velocity coming
from the differential rotation of the gas [42]:

δvϕ ¼ 3 − γ

2
hcs; ð39aÞ

δvr ¼ jvgas;r − vbh;rj ¼
				 −

_M
2πrΣ

−
_J

dJ=dr

				; ð39bÞ

δvdr ¼
3

2

�
mbh

3M

�
1=3

h−1cs; ð39cÞ

where γ ¼ d ln ρ=d ln r and _J is the change rate of the specific
angular momentum of the sBH (or, equivalently, the specific
torque exerted on the sBH) due to sBH-disk interactions and
GW emission, i.e., _J ¼ _Jmig;I;II þ _Jwind þ _Jgw, where

_Jgw ¼ −
32

5

mbh

M

�
M
r

�
7=2

ð40Þ

is the angular momentum loss rate due to GW emission
(assuming a circular orbit), _Jwind is the loss rate due to the

wind interaction [Eq. (36)], and _Jmig;I;II ¼ _Jmig;I or _Jmig;II

depends on which type of migration is operating. For sBHs
with inclined orbits [so that part of their orbits are outside of
the disk (od)], when they hit the accretion disk, the relative
velocity vrel ∼ rΩ ≫ cs is usually much greater than that of
the in-disk sBHs. As a result, thewind capture radius is much
smaller, which greatly reduces the wind effect, so that we
simply take _Jodwind ¼ 0.
In summary, migration timescales of in-disk sBHs and

those outside are

tbh;idmig ¼ J

j _Jmig;I;II þ _Jgw þ _Jidwindj
; tbh;odmig ¼ J

j _Jmig;I þ _Jgwj
;

ð41Þ

where we take _Jidwind ¼ 0 in the case of type-II migration
when a gap is open, or _Jidwind as in Eq. (36) otherwise.
Without a detailed model of sBH accretion in the disk
environment, Eq. (36) is merely an order of magnitude
estimate of the wind strength. In the following section, we
will see the EMRI rate in AGN disks is insensitive to the
wind strength, and it decreases very mildly even if we turn
off the head wind completely by setting _Jwind ≡ 0 (Table I).
Equating the in-disk migration timescale with the disk

lifetime Tdisk defines a critical radius within which sBH can
successfully migrate into the central MBH, i.e., the critical
radius rcritðTdiskÞ is defined by

Z
rcrit

rmin

tbh;idmig ðrÞd ln r ¼ Tdisk: ð42Þ

In right panels of Fig. 5, we plot the timescales of different
processes: tmig;I; twav [Eq. (31)], tgw ≔ J=j _Jgwj [Eq. (40)],
and twind ≔ J=j _Jwindj [Eq. (36)], from which we can
roughly read the critical radius rcritðTdiskÞ.
Different from sBHs, the gas accretion onto stars is more

complicated considering that both the radiation heating and
solar wind are supposed to alter the local gas environment
by heating up and blowing away the surrounding gas. In the
presence of an strong isotropic outflow from stars, the star-
gas interaction could be completely different from the
classical Bondi accretion [91,92]. Here we simply take
_Jstarwind ¼ 0 for both in-disk stars and stars outside, i.e.,

tstar;idmig ≃ tstar;odmig ¼ mbh

mstar
tbh;odmig : ð43Þ

In this paper, we do not include possible contribution
from dynamic friction as sBHs moving through the gas
disk, which is negligible due to subsonic sBH-gas relative
motion for sBHs orbiting in the disk [42]. However the
relative gas velocity at different radii (rsBH �H) is super-
sonic, and the dynamic friction with respect to gas in this
region may be important. In this case, the supersonic
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relative velocity is mostly due to the shear (differential
rotation) of the accretion flow instead of the local pressure
gradient, and the standard dynamic friction is automatically
incorporated in the migration torque [69]. For inclined
sBHs, dynamic friction is still weaker than the effect of
density waves: consider a sBH on an inclined orbit,
penetrating the gas disk with relative velocity vrel ∼ rΩ,
the dynamic friction (per unit mass) on the sBH is fdf ∼
G2mbhρ=v2rel [68,69], and the timescale for the dynamic
friction to change the sBH’s orbit is tdf ∼ ðrΩÞ2=ðfdfHΩÞ,
which is ∼tmig;Ih−2 ≫ tmig;I. Another possible contribution
which we do not include here is the heating torque [70]
arising from the asymmetric distribution of low-density gas

around the sBH due to the accretion heating and the shear
of disk flow. As estimated in [71], the heating torque might
be comparable with the type-I migration torque assuming a
thermal feedback of Eddington luminosity, but neither
gravity nor dynamical feedback from the sBH. In fact,
the local gas distribution is sensitive to both the sBH
gravity and the gas outflow which carries away the angular
momentum of the sBH as explained in the beginning of the
section. A simple estimate shows that the disk flow shear
timescale 1=ΔΩ ∼ 1=ðλcdΩ=drÞ > 1=ðΩhÞ for the charac-
teristic size λc < H of the thermal feedback is much longer
than the dynamical timescale λc=cs < 1=Ω on the same
length scale. Therefore the local gas distribution should be

TABLE I. Average EMRI rate per MBH hΓemriðTdiskÞi ½Gyr−1� for different models. In the 1st column are the parameters of initial
stellar cluster profiles, in the 2nd and 3rd columns are the MBH massM• and the parameter μcap, in the 4th column is the α parameter in
(default) α disks or X parameter in TQM disks, in the 5th column is the MBH accretion rate, and in the 6th column is the wind state (on
or off). In a few models with TQM disks, the EMRI rates are nearly zero for short disk lifetime Tdisk because the migration timescale in
inner parts of the disk is longer than Tdisk; consequently almost no sBH successfully migrates into the MBH within Tdisk.

ðγ; δÞ M•=M⊙ μcap α or X _M•= _MEdd
• Wind hΓemriðTdisk ¼ 106 yrÞi hΓemriðTdisk ¼ 107 yrÞi hΓemriðTdisk ¼ 108 yrÞi

(1.5,0.001) 1 × 107 1 10−1 10−1 On 1.6 × 105 1.3 × 105 1.8 × 105

4 × 106 2.9 × 105 2.4 × 105 1.7 × 105

1 × 106 2.9 × 105 4.5 × 105 7.0 × 104

4 × 105 2.1 × 105 1.7 × 105 2.2 × 104

1 × 105 5.7 × 103 4.2 × 103 1.3 × 103

1 × 107 10−1 10−1 10−1 On 1.9 × 104 2.5 × 104 1.3 × 105

4 × 106 4.2 × 104 5.8 × 104 1.5 × 105

1 × 106 4.3 × 104 1.9 × 105 9.3 × 104

4 × 105 3.2 × 104 1.4 × 105 2.2 × 104

1 × 105 2.2 × 103 5.7 × 103 1.6 × 103

4 × 106 1 10−1 5 × 10−1 On 2.8 × 105 2.2 × 105 1.5 × 105

10−1 10−2 3.4 × 105 3.4 × 105 2.5 × 105

3 × 10−1 10−2 3.3 × 105 2.0 × 105 2.1 × 105

10−2 10−1 2.7 × 105 1.4 × 105 1.1 × 105

1 × 107 1 ð10−1ÞTQM 10−1 On ∼0 ∼0 2.7 × 105

4 × 106 ∼0 1.6 × 104 2.6 × 105

1 × 106 ∼0 2.5 × 105 1.7 × 105

4 × 105 3.4 × 102 1.3 × 105 7.1 × 104

1 × 105 1.0 × 102 1.4 × 104 5.0 × 103

1 × 107 1 10−1 10−1 Off 1.2 × 105 1.1 × 105 1.8 × 105

4 × 106 2.7 × 105 2.2 × 105 1.7 × 105

1 × 106 2.3 × 105 4.5 × 105 6.9 × 104

4 × 105 1.9 × 105 1.7 × 105 2.2 × 104

1 × 105 5.0 × 103 4.0 × 103 1.3 × 103

(1.5,0.002) 1 × 107 1 10−1 10−1 On 2.8 × 105 2.4 × 105 3.6 × 105

4 × 106 4.4 × 105 4.1 × 105 3.6 × 105

1 × 106 4.1 × 105 8.7 × 105 1.4 × 105

4 × 105 3.5 × 105 4.5 × 105 5.4 × 104

1 × 105 7.7 × 104 2.4 × 104 4.2 × 103

(1.8,0.001) 1 × 107 1 10−1 10−1 On 4.2 × 105 2.8 × 105 2.4 × 105

4 × 106 4.2 × 105 3.0 × 105 1.5 × 105

1 × 106 2.1 × 105 1.9 × 105 3.3 × 104

4 × 105 7.2 × 104 3.8 × 104 6.2 × 103

1 × 105 6.4 × 103 1.9 × 103 4.6 × 102
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more sensitive to the dynamical processes of gas inflow and
outflow, and the heating torque should be much weaker
than the estimate assuming neither sBH gravity nor
dynamical feedback.

D. Migration traps

In the middle panels of Fig. 5, we plot the torques exerted
on the sBH _Jgw; _Jmig;I, and _Jwind for α and β type of disks,
respectively. For the α disk, we find that the torque Jmig;I

changes its sign around the local density maxima
r ∼ 100M•, which is known as the migration trap
[93,94]. However, the migration trap is not present for
the β disk, simply because there is no sign change in _Jmig;I

as the surface density decreases monotonically with r. In
addition, although there is a sign change in _Jmig;I for the α
disk, _Jwind and _Jgw dominate in the region where _Jmig;I is
positive. As a result, the combined torque never changes
sign and there is no migration trap in the α disk either.
To compare with previous studies about migration traps

[94], we also calculate the disk structure of a comparison α
disk with M• ¼ 4 × 108 M⊙, _M• ¼ 0.5MEdd and α ¼ 0.1,
and we show all the disk variables, torques, and timescales
in Fig. 7. From the middle panel, we see two special radii
(∼10M• and ∼103 M•) where _Jmig;I changes its sign from
negative to positive in the decreasing r direction. These two
radii are called migration traps by previous studies, and
there have been extensive studies on the consequences of
migration traps in AGN disks accumulating compact
objects [25–29,31–34]. As shown in Fig. 7, the migration
traps are supposed to be overcome by two counteracting
processes: GW emission and wind. We have explored the
parameter space α ∈ ð0.01; 0.5Þ, _M• ∈ ð0.01; 0.5Þ _MEdd

• ,
M• ∈ ð105; 109ÞM⊙, where no migration trap is found in
either α disks or β disks.
In the example TQM disk model of Ref. [24], a salient

feature is the presence of an opacity gap and consequently a
sharp density increase on its inner edge, where the type-I
migration torque changes sign according to Eq. (30) and has
been interpreted as a possible location of migration trap [94].
As mentioned in Sec. III A, the sharp density increase on the
edge of the opacity gap is in fact resulted by the improper
equation of radiation pressure.With a more general equation
of radiation pressure, we find the density increase is
much milder and there is no sign change in the type-I
migration torque. We also explored the parameter space
X∈ ð0.01;0.1Þ, _M•∈ð0.01;0.5Þ _MEdd

• , M• ∈ ð105; 109ÞM⊙,
where no migration trap is found in TQM disks.
To summarize, we find nomigration trap in the threeAGN

disk models in a large parameter space we considered. In α
disks, there are locations where the type-I migration torque
changes sign, but the total torque is always negative because
of the negative torque from headwind andGWemission. For

EMRI hostswithM• < 107 M⊙, we find nomigration trap in
their accretion disks even if there was no head wind
contribution, i.e., _Jwind ¼ 0. In β disks, there is no sign
change in the type-I migration torque because of the
monotonical density and temperature profiles. InTQMdisks,
there is no sign change in the type-Imigration torque either as
explained above [95].
In previous studies of hierarchical BBH mergers in

migration traps of AGN disks, the existence of migration
traps was established on a fiducial α-disk model in
Ref. [23] and a fiducial TQM disk model in Ref. [24].
As shown above, the migration traps no longer stand after
taking account of the head wind and/or using a more
reasonable equation of radiation pressure. Therefore, the
analysis here raises concerns about the feasibility of
hierarchical BBH formation channel in migration traps
of AGN disks (see, e.g., Refs. [30,36,38] for the impact of
migration traps to general BBH mergers in AGN disks).
According to the three disk models considered in this

work, we do not expect any migration trap, but it does not
exclude the possibility that these disk models are not good
approximations to the AGN accretion disks in nature. If a
migration trap indeed exists in an AGN disk, sBHs would
be trapped and hierarchical BBH mergers would conse-
quently happen until the remnant BH is so massive that it
opens a gap and tears down the trap. The critical BH mass
for gap opening is sensitive to the trap location and the local
disk structure [42]. For example, in the scenario considered
in [37] to associate possible AGN flares with BBH merger
in the disk, the trap is assumed to be ∼700M• away from
the MBHwith massM• ∼ 108 M⊙ and the critical BH mass
is ∼Oð102ÞM⊙ assuming an α disk with α ¼ 0.1 and
accretion rate _M• ¼ 0.1 _MEdd

• . This means for typical
10 M⊙ sBHs, Oð10Þ-times mergers are expected before
a gap opens up and the final BH starts its type II migration.

IV. EMRI FORMATION ASSISTED BY AGN
ACCRETION DISKS

A. Fokker-Planck equation

As shown in the right panels of Figs. 5 and 6, and in
Eq. (15), the timescale of orbit eccentricity and inclination
decay twav, as driven by density wave generation, is much
shorter than the sBH migration timescale tmig and the stellar
cluster relaxation timescale trlx. As a result, one may
naively expect that all stars-sBHs are captured onto the
disk on the shortest timescale twav, which turns out to be
incorrect. In fact, due to the dense distribution of scatters
(dominated by stars) in the disk, a large portion of stars-
sBHs captured by the disk will be scattered back into the
cluster. As demonstrated in previous studies of star-disk
interactions [96–98], a local equilibrium is built between
the net rate of stars captured onto the disk and the rate of
inward migration within the disk. Assuming a net fraction
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μstar of in-cluster stars are captured on to the disk and
migrate inward in a timescale tstar;idmig , the in-cluster star loss
rate due to disk capture can be formulated as

�∂fstar
∂t

�
cap

¼ −μstar
fstar
tstar;idmig

: ð44Þ

From another aspect, the loss rate should be proportional to
the ratio of two timescales, the inclination damping time-
scale tstarwav and the timescale in which a star is scattered by
in-disk scatters (mainly stars), where the latter is inversely
proportional to the local density of in-disk scatters nstar;id,
i.e., ð∂fstar∂t Þcap ∝ 1=ðtstarwavnstar;idÞ. In the same way, the in-
cluster sBH loss rate due to disk capture depends on
the inclination damping timescale tbhwav and the local density
of in-disk scatters (mainly stars) nstar;id. As a result, we
obtain

1

fbh

�∂fbh
∂t

�
cap

¼ tstarwav

tbhwav

1

fstar

�∂fstar
∂t

�
cap

¼ −μstar
mbh

mstar

1

tstar;idmig

:

ð45Þ

The net fraction μstar should fall in the range ∼ðh; 1Þ, with h
being the disk aspect ratio. The exact value of μstar depends
on the detailed balance between the rate of stars captured to
the disk, the fraction of which scattered away from the disk,
and the inward migration rate of in-disk scatters, which
require separate numerical studies to determine.
Because of the interactions with the accretion disk, stars

and sBHs settle as two components: a cluster component
and a disk component. The evolution of disk-component
sBHs is relatively simple: their orbits tend to circularize on
the eccentricity damping timescale tbhwav, which is much
shorter than the migration timescale. Therefore, the orbital
eccentricities of sBHs in the disk have been damped to
essentially zero long before they migrate to the vicinity of
the MBH. This is in stark contrast with EMRI formation via
the loss-cone mechanism [12]. On the other hand, we
expect the distribution functions of cluster-component stars
and sBHs acquire some dependence on the orbital incli-
nation as interacting with the disk. For convenience, we
choose to integrate out the inclination and work with the
inclination-integrated distribution functions fiðt; E; RÞ of
the cluster-component stars and sBHs. The orbit-averaged
Fokker-Planck equation (13) for cluster-component sBHs
or stars is modified as

C
∂f
∂t ¼ −

∂
∂EFE −

∂
∂RFR þ S; ð46Þ

where FE, FR are defined in Eq. (14), with the advection
coefficients modified as

DE;bh → DE;bh − C
E

tbh;odmig

;

DR;bh → DR;bh − C
1 − R

tbh;odwav
;

DE;star → DE;star − C
E

tstar;odmig

;

DR;star → DR;star − C
1 − R

tstar;odwav
; ð47Þ

where the corrections are due to interactions with the
accretion disk and GW emission. The (negative) source
term arises from stars or sBHs capture onto the accretion
disk,

Sbh ¼ −μcapC
fbh
tstar;idmig

; Sstar ¼ −μcap
mstar

mbh
C
fstar
tstar;idmig

; ð48Þ

where we have defined μcap ¼ μstarmbh=mstar, which we
expect to be in the range of ∼ðh; 1Þmbh=mstar. In this paper,
we treat μcap as a free parameter and take two representative
numbers μcap ¼ 1 (fast disk capture) and μcap ¼ 0.1 (slow
disk capture) as working examples.
Given a disk lifetime Tdisk, only sBHs within some

critical radius rcritðTdiskÞ have enough time to migrate
within the disk to reach the central MBH within Tdisk.
Therefore, the EMRI rate is formulated as

Γemriðt;TdiskÞ ≃
Z Z

E>Ecrit

−SbhðE;RÞdEdR; ð49Þ

where EcritðTdiskÞ ≔ ϕðrcritðTdiskÞÞ=2 (see Fig. 8).
To compute the EMRI rate per MBH in the presence of

an accretion disk, we evolve the distributions fiðt; E; RÞ
using Eq. (46) for a period of time Tdisk. On the low energy
E → 0 (far away from the MBH) boundary, both the sBH
and star-disk interactions and two body scatterings are
slow, therefore

FIG. 8. The dependence of Ecrit½σ2� on the disk lifetime Tdisk½yr�
for the fiducial α disk shown in Fig. 5.
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fiðt; E; RÞjE→0 ¼ fiðt ¼ 0; E; RÞjE→0: ð50Þ

On the R ¼ 1 boundary, the vanishing flux FR for both
sBHs and stars still applies

FRjR→1 ¼ 0: ð51Þ

On the R ¼ Rlc boundary, we again impose the vanishing
flux condition

FRjR¼Rlc
¼ 0: ð52Þ

This boundary condition is different from the one imposed
in the no-disk case, simply because the fast eccentricity
damping by density waves drives stars and sBHs away
from the loss cone.

B. Numerical method

The numerical method for solving Eq. (46) is the same as
the one used for solving Eq. (13) in Sec. II. The only extra
numerical subtlety is due to the scale separation: the
timescales of migration and orbit eccentricity decay
tmig; twav are smaller than the cluster relaxation timescale
trlx. As a result, the advection coefficient will be much
larger than the diffusion coefficient: jDE=Ej ≫ DEE=E2

and jDRj ≫ DRR. To avoid numerical difficulties for
resolving the large scale separations, we choose to regu-
larize the advection coefficients in Eq. (47) as follows:

DE;bh → DE;bh − C
E

tbh;odmig þ ϵT0

;

DR;bh → DR;bh − ηð1 − RÞD0;

DE;star → DE;star − C
E

tbh;odmig þ ϵT0

mstar

mbh
;

DR;star → DR;star − ηð1 − RÞD0

mstar

mbh
; ð53Þ

where ϵ is a small number ensuring a numerically resolv-
able scale separation, T0 ¼ 10 Gyr, η is a large number
ensuring a large scale separation between the regularized
advection coefficient DR and the diffusion coefficient DRR,
and D0ðEÞ is defined as the maximal value of DRR;bhðE;RÞ
for given E.
We choose ϵ ¼ 10−4 and η ¼ 102 as default regulariza-

tion parameters. In Appendix B, we will show that different
choices of these two regularization parameters do not affect
the EMRI rate assisted by accretion disks as long as ϵ is
sufficiently small.

C. Comparison with loss-cone rate

In order to compare with the canonical EMRI rate
associated with the loss cone mechanism, we consider a
fiducial model assuming the same MBHþ sBH and star
cluster model and parameters as those considered in Sec. II
and shown in Fig. 5. We take the final state of Eq. (13)
(Fig. 1) as the initial condition of Eq. (46), and evolve the
equation for a period of time Tdisk.

FIG. 9. We show the distribution functions for the case of fast disk capture (μcap ¼ 1) in the upper row: fstarðt ¼ 107 yr; E; RÞ (left
panel), fbhðt ¼ 107 yr; E; RÞ (middle panel), the time dependence of EMRI rate Γemri, where fi are shown in units of
105 pc−3=ð2πσ2Þ3=2 and E is shown in units of σ2. The counterparts of the slow disk capture (μcap ¼ 0.1) case are in the lower row.
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In Fig. 9, we show the sBH-star distribution functions
fiðt; E; RÞ. In combination with the initial condition
(Fig. 1), we see that sBHs are migrating toward larger R
and larger E driven by the density waves. In Fig. 10, we
show the time dependence of the disk assisted EMRI rates
for two different cases: μcap ¼ 1 or μcap ¼ 0.1. For both
cases, we find that the dependence of Γemriðt;TdiskÞ on Tdisk
is relatively weak [the Γemriðt;TdiskÞ curves for different
Tdisk roughly overlap with each other]. This is because of
the weak dependence of Ecrit on Tdisk (Fig. 8). For short
time t, Γemri mainly depends on the initial distributions
fiðt ¼ 0; E; RÞ and is proportional to the parameter μcap.
For long time t, we expect an equilibrium between sBHs
migrating inward from E < Ecrit and sBHs captured onto
the disk in the region E > Ecrit, where the EMRI rate is
determined by the sBH supply rate irrespective of μcap. For
the case of μcap ¼ 1, we find that the initial EMRI rate per
MBH is Γemriðt ¼ 0;TdiskÞ ∼ 4 × 105 Gyr−1 (irrespective
of disk lifetime); after a rapid initial settling (see Fig. 11),
Γemri then (t≲ 20 Myr) slowly increases as more sBHs
migrate inward from E < Ecrit than those captured onto the
disk; after t ∼ 20 Myr, the migration supply and the capture
consumption has reached an equilibrium, where Γemri
slowly decreases due to the decreasing supply arising from
the decreasing number of sBHs around E ∼ Ecrit. For
μcap ¼ 0.1, the evolution track is similar except starting
with a lower initial EMRI rate.

In both examples we see that the disk-assisted rate per
MBH is much higher (Oð102–103Þ) than the loss-cone rate,
which is due to much more efficient capture and transport
mechanisms by the disk. It turns out that this observation is
generally true as we vary the parameters for MBH, disk,
and star cluster. In the following subsection we explore the
dependence of disk-assisted EMRI rate on various model
parameters.

D. EMRI rate for different models

In this subsection, we investigate the dependence of the
disk-assisted EMRI rate on different parameters: the MBH
mass M•, the accretion rate _M• and the α parameter of α-
disk models. We also explore the EMRI rate for the TQM
disk model and different cluster initial condition. We take
the fiducial model M• ¼ 4 × 106 M⊙; _M• ¼ 0.1MEdd

• ; α ¼
0.1; μcap ¼ 1 as reference.
For each MBH with mass M•, we initialize the distri-

butions of surrounding stars and sBHs according to the
Tremaine’s cluster model outlined in Sec. II B 1, and evolve
the distributions using the Fokker-Planck equation (13) to
t ¼ 5 Gyr. We then take this finial-state distribution as the
initial condition of the disk-modified Fokker-Planck equa-
tion (46), and evolve them to t ¼ 108 yr. In Fig. 11, we
show the EMRI rate Γemriðt;Tdisk ¼ 108 yrÞ for each M•

(the results of different Tdisk and μcap can be easily inferred
from reading Fig. 10). The initial EMRI rates are
∼Oð105Þ Gyr−1, except for the low mass M• ¼ 105 M⊙
case, for which the high EMRI rate via loss cone has
consumed sBHs close to the central MBH. Their sub-
sequent evolution basically follow the description given in
the Sec. IV C: an increasing phase where the supply from
inward migration dominates and then a decreasing phase
where the supply-consumption equilibrium is built. The
relevant timescale is longer for larger M•. As a result, Γemri

is roughly a constant in 108 yr for M• ¼ 107 M⊙, while
Γemri changes by orders of magnitude for low MBH
massses. In contrast with the loss-cone EMRI channel,
the average disk-assisted EMRI rate (for long disk lifetime)
Γemri increases with the MBH mass M•, because the
capacity of sBH reservior (∝ M•) is larger for more massive
MBHs.
We conclude this section by collecting the average disk-

assisted EMRI rate

hΓemriðTdiskÞi ≔
1

Tdisk

Z
Tdisk

0

Γemriðt;TdiskÞdt ð54Þ

of the representative models in Table I, and briefly outline
its parameter dependence as follows.

1. Parameter μcap
The average EMRI rate hΓemriðTdiskiÞ should be propor-

tional to the parameter μcap for Tdisk → 0, while it is

FIG. 10. The time dependence of disk assisted EMRI rate per
MBH Γemriðt;TdiskÞ for different disk lifetimes Tdisk and different
disk capture parameters μcap. The dashed line is the average
EMRI rate via loss cone of the fiducial model.

FIG. 11. The disk-assisted EMRI rate Γemriðt;Tdisk ¼ 108 yrÞ
for different MBH masses M•, where take μcap ¼ 1.
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independent of μcap for long Tdisk as explained above. For
the fiducial model with M• ¼ 4 × 106 M⊙, hΓemriðTdisk ¼
108 yrÞi ∼Oð105Þ Gyr−1 (irrespective of the parameter
μcap and the α-disk model used), which is higher than
the average loss-cone EMRI rate Γ̄emri by a factor
of ∼Oð103Þ (Fig. 4), and hΓemriðTdisk ¼ 106 yriÞ≳
Oð105μcapÞ Gyr−1 is higher by a factor of ≳103μcap.

2. MBH mass M•

The average EMRI rate hΓemriðTdiskÞi with long Tdisk is
usually higher for a heavier MBH because more sBHs are
available in the stellar cluster (∝ M•) while hΓemriðTdiskÞi
with short Tdisk is more initial condition dependent.
In a model the same as the fiducial model except with
a lighter MBH M• ¼ 105 M⊙, hΓemriðTdisk ¼ 108 yrÞi ∼
Oð103Þ Gyr−1 (irrespective of μcap and the disk model
used), which is higher than the average loss-cone EMRI
rate Γ̄emri by a factor of ∼15, and hΓemriðTdisk ¼ 106 yriÞ ∼
ð2 − 6Þ × 103 Gyr−1 (depending on the value of μcap) is
higher by a factor of 30 to 100.

3. Disk model

The dependence of disk-assisted EMRI rate on the α
viscosity parameter and on the accretion rate _M• are weak,
which can be understood from their impact on the migration
timescales of stars and sBHs. Accretion disks with smaller α
parameters or higher accretion rates are thicker (higher disk
aspect ratio h) and therefore the migration timescales arising
from density waves are longer [Eq. (31)], so that the EMRI
rate is lower for a disk with a smaller α and a higher _M. Note
that this trend does not sustain all the way to the regime of
extremely low accretion rates ≲α2 _MEdd

• [99], where the thin
accretion disk description breaks down. But hΓemriðTdiskiÞ is
sensitive to which disk model is assumed (α disk or TQM
disk). Because of the large difference in the two diskmodels,
the sBHmigration timescales tbh;idmig are quite different in these
two disks, and consequently the critical radii rcritðTdiskÞ
[Eq. (49)] in these two disks differ significantly for short
Tdisk, where rcritðTdisk ¼ 106 yrÞ ∼ 106 M• for α disks and
rcritðTdisk ¼ 106 yrÞ ∼ 102 M• for TQM disks (see Figs. 5
and 6). This explains why hΓemriðTdisk ¼ 106 yrÞi is much
smaller for TQM disks. However, we notice that the α-
viscosity prescription is more favored by the current knowl-
edge of turbulence viscosities driven by magnetorotational
instability in inner parts of AGN disks. The sharp difference
in hΓemriðTdisk ¼ 106 yrÞi for TQM disks is likely an artifact
of too efficient angular momentum transport assumed in
TQM disks.

4. Initial density profile of stellar cluster

The linear dependence of hΓemriðTdiskÞi on the relative
abundance of sBHs δ is natural for long Tdisk, while the

dependence is more complicate for short Tdisk because the
sBH fraction has been substantially changed in the predisk
evolution. The dependence on the initial stellar density
profile (parameterized by the power index γ) varies for
different MBH masses. For the Galactic nuclear stellar
clusterlike model (γ ¼ 1.8), sBHs are more concentrated in
the vicinity of the MBH, and therefore hΓemriðTdiskÞi is
higher in the case of heavy MBHs (irrespective of Tdisk).
For lighter MBHs, the dependence reverses because more
sBHs have been depleted via the loss cone in the predisk
phase and therefore less sBHs are available for disk capture.
In this model with a steeper initial stellar density profile, the
average EMRI rate hΓemriðTdiskÞi changes only by a factor
of few ≲3 compared with the rate in the fiducial model.
To summarize, the average disk-assisted EMRI rate

hΓemriðTdisk ¼ 108 yrÞi is higher than the average loss-
cone rate by Oð102–103Þ for M• ¼ 4 × 106 M⊙ and by
Oð101–102Þ for M• ¼ 105 M⊙ (irrespective of disk mod-
els, initial stellar profiles and the value of parameter μcap).
In the case of short disk lifetime Tdisk ¼ 106 yr,
hΓemriðTdiskÞi depends on the disk model used and the
value of parameter μcap: hΓemriðTdiskÞi is higher than the
loss-cone rate by Oð103μcapÞ for M• ¼ 4 × 106 M⊙ and is
higher by Oð102μcapÞ for M• ¼ 105 M⊙ assuming an α=β
disk, while hΓemriðTdiskÞi is much smaller assuming a
TQM disk.

V. SUMMARY AND DISCUSSION

A. Model uncertainties

There are several caveats in this analysis that possibly
affect the estimate for disk-assisted EMRI rates.

1. Disk model

In this work, we have used the α, β, and TQM model to
describe the profiles of accretion disks around MBHs. The
difference between the α-disk model and β-disk model
mainly comes from the prescription of modeling disk
viscosities, where the β-disk viscosity prescription was
introduced to avoid the α-disk thermal instability in the
radiation pressure dominated region [100,101]. We also
note that these two models yield similar disk structures for
larger distance r≳ 103 M•. On the other hand, the TQM
model was developed for consistently modeling the star
formation in AGN disks and the disk structure in large
distance. In particular, we point out that in Ref. [24], an
equation of radiation pressure which holds only in an
optically thick regime was used in both optically thick and
thin regimes, which gives rises to an artificially large
density variation on the edge of the opacity gap.
Although these models are the state-of-the-art tools for
describing the AGN accretion disks, there is still large room
for improvement before accurately describing the reality,
because of various simplification or approximations taken
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in the models and the complexity of disk conditions or
states in nature. Therefore the real disk profiles may or may
not be accurately described by these models, which is a
possible source of uncertainty in the rate analysis. From α
disks and TQM disks, we find different disk models affect
the disk-assisted EMRI rate because of the difference in the
migration timescales which mildly affect the EMRI rate for
long disk lifetime but change the EMRI rate hugely for
short disk lifetime ∼106 yr because the migration timescale
is longer in inner parts of TQM disks (Fig. 6) and only
nearby sBHs (r≲ 102 M•) can migrate into the MBH
within the disk lifetime. Based on the current understanding
of turbulence viscosities driven by magnetorotational
instability in fully ionized accretion disks, the α viscosity
is a good approximation. Therefore the sharp difference in
the disk-assisted EMRI rate for short disk lifetime in TQM
disk models is likely the consequence of the artificial
angular momentum transport assumed in TQM disks.

2. Repeating AGNs

Disk lifetime characterizes the time duration of the active
phase of AGNs. However, it is possible that before the
current active phase, there are already a sequence of active
phases of AGN, with various lifetimes [102,103]. These
active periods may introduce significant change in star
cluster distributions due to disk-star or sBH interactions. In
fact, if we neglect the evolution of the star cluster
distribution during the “quiet” periods between those active
periods, the presence of previous active periods effectively
extends the disk lifetime from Tdisk to Tdisk þ t0 in Eq. (49)
and shifts t to tþ t0 in Fig. 11, where t0 is the summation of
the lifetimes of all previous active cycles. In other words,
the integration upper and lower limit may also need to be
shifted by t0 in Eq. (54). In addition, the distribution of stars
and sBHs may still evolve during the quiet phase, which
further complicates the picture. To fully account for these
effects, we will need (from observations) information about
the fraction of active cycles vs quite cycles for AGNs and
the total duration of AGN outside which there is no more
active phase. In this work, we use Tdisk ∈ ð106–108Þ yr as
examples, while the total duration of AGN active phases
(effective disk lifetime) should be longer ∼ð107–109Þ yr
according to Soltan’s argument [104].

3. Initial condition of stellar clusters

We initialized the stellar cluster following the Tremaine’s
cluster model, and explored the dependence of both the
loss-cone EMRI rate and the disk-assisted EMRI rate on the
sBH fraction δ and the density profile (parametrized by γ).
We find the loss-cone EMRI rate dependence on δ is
shallower than linear scaling and the disk-assisted EMRI
rate dependence is linear (for long disk lifetime). Different
initial density profiles affect the loss-cone EMRI rate by
changing the total number of stars/ or sBHs within the

influence sphere Nstar;bhðr < rhÞ. After a few Gyrs, the
distributions within the influence sphere have reached a
local equilibrium and the details of initial distributions has
been mostly erased except the total number of stars or
sBHs. With the accretion disk turned on, the disk-assisted
EMRI rate again roughly only depends on the total number
instead of other erased details of the initial distributions.
Therefore we do not expect much uncertainty in the EMRI
rate estimation arising from unknowns in the initial con-
dition of stellar clusters except the total number of stars
within the influence Nstarðr < rhÞ which can be inferred
from the MBH mass as ∼M•=M⊙.

4. Torque for inclined orbits

Based on the studies for planetary systems, a point mass
moving along an inclined orbit with respect to a disk excites
density waves of various kinds that modify the orbit period,
eccentricity, and inclination in time [18–22]. However, we
notice that these studies mainly focus on low-inclination
orbit. For highly inclined orbits, while the qualitative
density wave generation and propagation picture should
still apply, the actual torque may deviate from the formulas
derived or fitted for low-inclination orbits. The migration
speed of sBHs is proportional to the magnitude of the
migration torque. The disk-assisted EMRI rate for short
disk lifetime is determined by the capture rate of sBHs
within the critical radius rcrit, so that it is insenstive to the
torque; for long disk lifetime the rate is determined by the
migration supply-capture consumption equilibrium, so that
it should be proportional to the torque magnitude. The
uncertainty in the torque magnitude should proportionally
propagate to the EMRI rate estimation. Though the
dependence of the migration torque on the inclination ι
has not been well explored, we expect the inclination
introduces an Oð1Þ correction to the migration torque of
low-inclination perturbers. As shown in previous studies
[18–20] of a perturbermp orbiting at radius rp in a gas disk,
the perturbation potential can be decomposed into Fourier
components as ϕpðr; tÞ ¼ P

lm ϕp
lm cosðmϕ − ωlmtÞ, and

the torque _Jlm arising from density waves of each Fourier
component is proportional to ðϕp

lmÞ2. For the most impor-
tant Lindblad resonances, their components of perturbation
potential are

ϕp
m�1;mðι ¼ 0Þ ∝

Z
2π

0

mp

jr⃗ − r⃗pj
cosðmϕÞdϕ

¼
Z

2π

0

mp cosðmϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2rrp cosϕþ r2p

q dϕ: ð55Þ

Following the same argument, we expect the components
in the case of an inclined perturber to be
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ϕp
m�1;mðι ≠ 0Þ ∝

Z
2π

0

mp

jr⃗ − r⃗pj
cosðmϕÞdϕ

¼
Z

2π

0

mp cosðmϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2rrp cosϕ cos ιþ r2p

q dϕ:

ð56Þ

Comparing the above equations, we find the two compo-
nents (ϕp

m�1;mðι ¼ 0Þ vs ϕp
m�1;mðι ≠ 0Þ) and therefore the

two migration torques ( _Jðι ¼ 0Þ vs _Jðι ≠ 0Þ) are the same
within a factor of Oð1Þ, respectively.

B. Application and future work

With the EMRI rate computed for different models, the
next natural step is to predict the corresponding event rate
for space-borne detectors such as LISA and TianQin, based
on mass distribution of MBH, star cluster distribution, disk
parameters, and detector sensitivity. We will leave this part
as future work. It is, however, evident from the rates listed
in Table I, the loss-cone rate (Fig. 4) and the AGN fraction
[44,45], that the disk-assisted EMRIs should be a good
fraction of all EMRIs detected by LISA and TianQin (see
the similar estimate in [38]).
It is then important to explore how to distinguish disk-

assisted EMRIs from loss-cone EMRIs within future
observations. Based on the analysis in [12], the eccentricity
of loss-cone EMRIs ranges from 0 to 0.2 with long tail
extending to 0.9 near plunge, and the inclination distribu-
tion should be nearly isotropic. On the other hand, we
expect disk-assisted EMRIs are of effectively zero eccen-
tricity considering that the eccentricity damping timescale
is much shorter than the migration timescale, and the
inclination with respect to the MBH spin equatorial plane
should be confined by the disk thickness (ι≲ h) if the MBH
spin direction is aligned with rotation direction of the
accretion disk. Both parameters of LISA detectable EMRIs
are expected to be measured to subpercent or higher
accuracy [105,106], and therefore can be used for distin-
guishing the EMRI origins.
As a good fraction of EMRIs detected by LISA should

come from systems with AGN, it is possible that the
electromagnetic emission from some of these AGNs can be
observed. This brings up the opportunity for multimes-
senger analysis for these EMRIs. According to Ref. [9], a
fraction of low-redshift (z≲ 0.3) EMRIs can be traced back
to their host galaxies with LISA observations alone, and
host galaxies of ∼50% EMRIs in low-redshift (z≲ 0.5)
AGNs can be identified with LISA observations alone
considering the lower density of AGNs. If the host galaxy
of such EMRI can be identified, the distance measurement
from gravitational wave observable and redshift measure-
ment from optical observables should allow accurate
determination on the Hubble’s constant. On the other hand,
for those distant EMRIs without host galaxy identification,

one may still be able to measure the Hubble’s constant
using all AGNs in the error volume with the same statistical
method introduced in [107]. In addition, for certain disk
profiles the EMRI waveform may be significantly modi-
fied, so that certain disk properties are able to be con-
strained with GWobservations [7,42]. This information can
be further compared with electromagnetic observables from
the AGN to help reveal the unknowns about accretion
physics.
Lastly, in [6] we observed that a pair of sBHs embedded

in the accretion disk may be locked into mean motion
resonance and then migrate together towards the MBH. The
resonance breaks when the pair is close to the MBH, at
which stage the inner EMRI should be affected by the
gravitational force from the outer sBH, so that the gravi-
tational waveform should be correspondingly satisfied [5].
Such resonance locking for a pair or a chain of objects has
been discussed previously for planetary systems [108],
which is also interesting to explore in this disk-assisted
EMRI scenario.
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APPENDIX A: DIFFUSION AND ADVECTION
COEFFICIENTS IN THE FOKKER-PLANCK

EQUATION (13)

Following Ref. [61], we extend the calculation of the
diffusion and the advection coefficients of a single-com-
ponent cluster in Refs. [49,55,56] to our two-component
(stars and sBHs) case. We first define a few auxiliary
functions:

FðiÞ
0 ðE; rÞ ¼ ð4πÞ2m2

i lnΛ
Z

E

−∞
dE0f̄iðE0Þ;

FðiÞ
1 ðE; rÞ ¼ ð4πÞ2m2

i lnΛ
Z

ϕðrÞ

E
dE0

�
ϕ − E0

ϕ − E

�
1=2

f̄iðE0Þ;

FðiÞ
2 ðE; rÞ ¼ ð4πÞ2m2

i lnΛ
Z

ϕðrÞ

E
dE0

�
ϕ − E0

ϕ − E

�
3=2

f̄iðE0Þ;

ðA1Þ

where i ¼ fstar; bhg, lnΛ the Coulomb’s logarithm which
take as ln Λ ¼ 10, and
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f̄iðEÞ ≔
Z

1

0

fðE;RÞdR: ðA2Þ

With these auxiliary functions, the coefficients are written as

DðiÞ
EE¼

8π2

3
J2c

Z
rþ

r−

dr
vr
v2ðFðiÞ

0 þFðiÞ
2 Þþði↔jÞ;

DðiÞ
E ¼−8π2J2c

Z
rþ

r−

dr
vr
v2FðiÞ

1 þmi

mj
×ði↔jÞ;

DðiÞ
ER¼

16π2

3
J2
Z

rþ

r−

dr
vr

�
v2

v2c
−1

�
ðFðiÞ

0 þFðiÞ
2 Þþði↔jÞ;

DðiÞ
RR¼

8π2

3
R
Z

rþ

r−

dr
vr

�
2
r2

v2

�
v2t

�
v2

v2c
−1

�
2

þv2r

�
FðiÞ
0

þ3
r2

v2
v2rF

ðiÞ
1 þr2

v2

�
2v2t

�
v2

v2c
−1

�
2

−v2r

�
FðiÞ
2

�
þði↔jÞ;

DðiÞ
R ¼−16π2Rr2c

Z
rþ

r−

dr
vr

�
1−

v2c
v2

�
FðiÞ
1 þmi

mj
×ði↔jÞ;

ðA3Þ

where j ¼ fstar; bhg, i ≠ j, and vt ¼ J=r is the tangential
velocity.

APPENDIX B: SANITY CHECK FOR THE
REGULARIZATION ALGORITHM

As discussed in Sec. IV B, the scale separations between
different timescales can be as large as 10 orders of

magnitude. Therefore, we need to regularize the advection
coefficients ensuring the scale separations are numerically
resolvable. There are two parameters our regularization
algorithm [Eq. (53)]: ϵ and η, where ϵ is a small number
determining a constant floor of migrate timescale as ϵT0,
and η is a large number determining a numerically
resolvable scale separation of DRR and DR. In the main
text, we choose ϵ ¼ 10−4 and η ¼ 102 as our default values
of the two regularization parameters. In Fig. 12, we show
the time dependence of the EMRI rate of the fiducial fast-
disk-capture model with different ϵ and η, where we see the
EMRI rate has no dependence on the two parameters.
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