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GW170817 has provided valuable constraints on the equations of state of merging binary neutron stars,
which can be considered as the most probable candidate for the source of gravitational waves. On the other
hand, these natural laboratories of extreme temperature and density may lead to the estimation of some
exotic matter like deconfined quark matter in their cores. In this paper, we investigate the neutron star
matter equation of state (EoS) with the lowest order constrained variational (LOCV) method considering
the excluded volume effect (VLOCV) for nucleons to compute the tidal deformability of binary neutron star
mergers (BNSMs). Within this approach, the size of nucleons makes the EoS so stiff that requires a phase
transition in order to avoid causality violation. Therefore, this phase transition may lead to the appearance
of the third family of compact stars including “twin star” configurations. Our EoS models are confronted
with observations from GW170817, GW190814, GW190425, and also NICER. We find out that regarding
all these constraints, the EoS models having the transition pressure ≈ 30–100 MeV=fm3 and the energy
density discontinuity Δε ≲ 300 MeV=fm3 are preferable.
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I. INTRODUCTION

The study of nuclear matter equation of state (EoS) has
long been interesting for both theoretical and experimental
physicists. The EoS plays an important role in hydrody-
namical models of nuclear collisions [1]. It is common to
determine the nuclear matter properties by the energy per
nucleon as a function of density [2]. The most probable
assumption for the nucleons in nuclear matter is that they
can be considered as structureless particles with a bare mass
mN caused by the strong interaction of quarks [3]. The MIT
bag model was invented to approve that nucleons are the
composite systems of elementary particles [4], which
can be called extended objects. One of the simplest models
that considers the finite volume for nucleons is the Van der
Waals (VDW) equation of state. The VDW model has the
form as below [5]

PðT; nÞ ¼ nT
1 − bn

− an2; ð1Þ
in which a > 0 and b > 0 are VDW parameters describing
attractive and repulsive interactions, respectively, and
n≡ N

V is the particle number density.

A similar approach that takes into consideration this
excluded volume resulting from the finite size of nucleons
has been developed in [6]. The resulting equation of state is
rather stiff, its speed of sound growing unbound as the
density increases to the point of causality breach where this
approach is no longer valid. New degrees of freedom are
expected in this high-density region, possibly in the form
of deconfined quark matter entailing a phase transition in
neutron star matter. Transitions into quark matter may be
crossover or first order, as considered in our manuscript.
From a more fundamental point of view, the quark
substructure of nucleons has to be considered. It leads to
strong repulsion at high densities due to the action of the
Pauli exclusion principle on the quark level provoking the
deconfinement transition, see Ref. [7]. A recent study [8]
has shown that a special region exists for this quark matter
model in the mass-radius diagram where hadronic con-
figurations cannot be located. As a result, they postulate
that a NICER measurement of the PSR J0740þ 6620
radius, 8.6–11.9 km, would be an indication of a quark
matter core. On the one hand, data from heavy-ion collision
experiments suggest deconfinement may occur in com-
pact star interiors. On the other hand, binary neutron
star mergers (BNSMs) are believed to have the capa-
bility of demonstrating the deconfinement of quarks at
high densities and temperatures following the event [9].
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High density nuclear matter in compact stars and the
appearance of exotic states have been widely studied in
many papers [10–13]. As density increases, hadronic
matter experiences two phase transitions: deconfining
hadrons to quarks and gluons, and restoring chiral sym-
metry [14]. According to the fact that QCD is asymptoti-
cally free, the high-density and high-temperature phases
consist of quarks and gluons, in which QCD symmetries
are restored [15]. In the particular case that the phase
transition is strong, fulfilling the so-called Seidov condition
[16], a third branch in the mass-radius diagram of compact
stars may appear. Moreover, a typical manifestation is mass
twins stars: two stars of about the same mass but different
radius lying in the second and third branches of the mass-
radius diagram. This effect is merely due to their internal
composition: the smaller star bears a quark matter core in
contrast to the larger one, a pure hadronic star. A possible
realization of twins stars, including realistic equations
of state, can be found in Ref. [7]. In addition, the twins
phenomenon has been extensively studied with Bayesian
methods [17,18], as well as in the framework of the physics
of relativistic heavy-ion collisions [19] and tidal deform-
abilities from gravitational wave signals [20–23]. A review
of the astrophysical aspects of mass twins can be found in
[24]. On the contrary, different approaches for hybrid stars
with a smooth transition at the interface do not lead to third
branches in the mass-radius relations [25]. See, for in-
stance, Ref. [26] for substitutional compounds phases or
quarkyonic matter [27]. Interestingly, there exists a poten-
tial tension between the results of the compact star EoS
based on nuclear calculations and multimessenger obser-
vations, see Refs. [28,29], for which third branch models
with an early mass onset below the 1.4 M⊙ provide a
solution to this quandary.
In this work, we focus on the tidal parameters of BNSMs

considering the volume for nucleons in neutron star matter,
which is approximated by pure neutron matter within the
framework of the LOCV method. In general, this model
makes the EoS so stiff that the maximum mass of the
neutron star increases substantially. In addition, we con-
sider an EoS [30] that features the three nucleon interaction
(TNI) for the sake of comparison. At the same time, the
constant speed of sound (CSS) parametrization is utilized
for the high-density region considering the first order phase
transition from hadronic matter to quark matter. As a result,
we revisit the four categories defined in Ref. [31] with our
candidate EoS. In order to study the validity of the models
considered in this work, we consider a set of constraints
from multi-messenger observations, i.e., x-ray observations
of PSR J0030þ 0451, and gravitational wave detections of
mergers, events GW170817, GW190814, and GW190425.
The latter event corresponds to the second observation of a
gravitational-wave signal indicating the coalescence of a
BNS system [32]. It has been estimated that the masses of
components range from 1.12 to 2.52 M⊙ for the high-spin

prior (1.46–1.87 M⊙ for the low-spin prior). It is to be
noted that the chirp mass 1.44þ0.02

−0.02 M⊙ and the total mass
3.4þ0.3

−0.1 M⊙ of this binary are larger than any known BNS
system. Recently, Tatsuya Narikawa et al. reanalyzed the
BNSMs GW170817 and GW190425 employing a numeri-
cal-relativity calibrated waveform model [33]. Unluckily,
the binary system in the GW190425 event is massive and
little information can be obtained on its tidal deformability.
For instance, they reported that this event restricts Λ̃ to be
≤700 using TF2+_PNTidal model for the low-spin prior.
This article is organized as follows. Section II includes

the models and formalisms, namely the LOCV approach
considering the excluded volume effect in order to inves-
tigate the equation of state of neutron star matter. The
formalism for the bag model is also presented in this section
for taking into account the changes of the structure of
nucleons inside the compressed nuclear matter. Section III
refers to the CSS parametrization, classifications of twin
stars, and the results provided for the mass-radius relation
within our EoS models. BNSMs tidal deformability results
for our two candidate approaches are presented in Sec. IV.
Finally, Sec. V includes a brief summary of the results and
concluding remarks.

II. FORMALISM

We consider neutron matter as an infinite system of
strongly interacting A neutrons with finite size. The proper
volume defined as,

b ¼ 16

3
πr3; ð2Þ

where r is the hard-sphere radius of neutrons. The number
density of the system is ρ ¼ A=V. The energy per particle
and pressure of such a system can be obtained from the
VLOCV model as

EðρÞ ¼ E�
nucðρ�Þ;

pHðρÞ ¼ ρ2
∂EðρÞ
∂ρ ¼ ρ�2

∂E�ðρ�Þ
∂ρ� ¼ p�

Hðρ�Þ; ð3Þ

where ρ� ¼ ρ=ð1 − bρÞ and E�
nuc is the energy per nucleon

which is calculated by using the LOCV method as follows.
We adopt a trial many-body wave function of the form,

ψ ¼ Fϕ, where ϕ is the uncorrelated ground state wave
function of A independent nucleons, F ¼ S

Q
i>j fðijÞ is a

Jastrow form of an appropriate A-body correlation operator,
and S is a symmetrizing operator. Now, we consider the
cluster expansion of the energy, in terms of correlation
function, f, and its derivatives, functional up to the two-
body term [34],

E�
nucð½f�Þ ¼

1

A
hψ jHjψi
hψ jψi ¼ E1 þ E2· ð4Þ
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E1 is the one-body term,

E1 ¼
X
k≤kFn

ℏ2k2

2mn
; ð5Þ

where kFn ¼ 3π2ρ� is the fermi momentum.
In Eq. (4), the two-body energy E2 can be written as

E2 ¼
1

2A

X
ij

hijj − ℏ2=2m½fð12Þ; ½∇2
12; fð12Þ��

þ fð12ÞVð12Þfð12Þjij − jii; ð6Þ

which is as a function of two-body correlation operator
fð12Þ [35], and two-body potential Vð12Þ. In our calcu-
lations, we use the two-body potential AV18 [36] with and
without TNI [30]. Applying the contribution of TNI [37] to
this potential causes the saturation properties of symmetry
energy to be in good agreement with the experiment,

E ¼ EðAV18 þ TNRÞ þ TNA: ð7Þ

Here, TNA ¼ γ2ρ
2 expð−γ3ρÞð3 − 2β2Þ refers to the three

nucleon attractive part of TNI. TNR is the repulsive
part given by multiplying the tensor function by a factor
expð−γ1ρÞ. The γi parameters are chosen so that the
saturation properties of symmetric nuclear matter can be
fulfilled (See Ref. [30] for the details). From the functional
minimization of the two-body cluster energy with respect to
the variations in the correlation functions but subject to the
normalization constraint,

1

A

X
ij

hijj
�
1 −

9

2

�
J2JðkFτ rÞ
kFτ r

�
2
�−1

− f2ð12Þjijia ¼ 0; ð8Þ

we get a set of coupled and uncoupled Euler-Lagrange
differential equations [35,38]. By solving these differential
equations, we can obtain correlation functions to compute
the two-body energy term.
The properties of nucleons, e.g., mass and radius, inside

the compressed nuclear matter can be altered. However, the
change in the nucleon invariant bare mass mN is negligible
at the saturation density ρ0 in comparison with its value
in vacuum according to the deep inelastic phenomenology
(See Ref. [3] and the references therein). Thus, the
assumption of constant nucleon mass in nuclear matter
is taken into account in our work. The bag model is one of
the simplest models to describe the nucleons as the particles
with structure. In this model, nucleons have the spherical
volume of ΩN as the systems with internal components of
three quarks in the lowest state, which have the energy [4]

E0
Bag ¼

3ω0 − Z0

r0
þ 4π

3
Bðρ0Þr30: ð9Þ

Here, r0 is the radius of nucleon at saturation density, ω0

and Z0 are phenomenological constants, and BðρÞ is the
bag constant (for the details, see Refs. [39–41]). The
following condition

pB ¼ −
�∂E0

Bag

∂ΩN

�
surface

¼ 0; ð10Þ

for the pressure inside the bag pB generated by the partons
yields the relation between r0 and B,

r0 ¼
�
3ω0 − Z0

4πBðρ0Þ
�
1=4

↔ Bðρ0Þ ¼
3ω0 − Z0

4πr40
ð11Þ

Replacing E0
Bag by the nucleon mass mN at saturation

density and applying Eq. (11) to Eq. (9) leads to the
following equation,

3ω0 − Z0 ¼
3

4
mNr0: ð12Þ

Assuming that in a compressed medium, pB is equal on the
bag surface to the nuclear pressure pH, generated by the
elastic collisions of other hadrons, the density dependent
radius of the nucleon is given by

pH ¼ pB → rðρÞ

¼
�

3ω0 − Z0

4πðBðρÞ þ pHðρÞÞ
�
1=4

↔ BðρÞ ¼ 3ω0 − Z0

4πr4ðρÞ − pHðρÞ: ð13Þ

A mass m(ρ) in nuclear medium can be obtained from
Eq. (9) [3,42]:

mðρÞ ¼ 3ω0 − Z0

rðρÞ þ 4π

3
BðρÞr3ðρÞ: ð14Þ

Using Eqs. (12),(13), the above equation takes the form as
below

mðρÞ ¼ mN
r0
rðρÞ − pHΩN: ð15Þ

The assumption of constant nucleon mass mðρÞ ¼ mN in
nuclear medium results in

mNrðρÞ þ pH
4π

3
r4ðρÞ ¼ mNr0: ð16Þ

Obtaining the nuclear pressure pH by the VLOCV
method, rðρÞ can be solved in this equation. Therefore,
we have plotted the radius of nucleon as a function of density
within our approach for r0 ¼ 0.4 fm in Fig. 1. One can
observe that the radius of nucleon remains approximately
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constant for the densities of ≃ð0.1–0.25Þ fm−3, and then its
value reduces slightly.
Figure 2 displays our candidate EoSs for the hadronic

phase in order to examine the tidal deformabilities of twin
star solutions. It can be deduced that the EoS obtained by
our new approach leads to a great stiffness. The results of
maximum mass obtained for three different EoSs with
AV18 potential, which manifests the interaction of two
nucleons, have been demonstrated in Table I. It is obvious
that including TNI fulfills the maximum mass constraint
for neutron stars, while the VLOCV approach makes the
EoS very stiff so that the causality condition is violated
at the density of 0.45 fm−3. The value calculated for the
maximum mass before this violation is 2.19 M⊙. On the

contrary, the EoS without TNI plus finite size effects is so
soft that the maximum mass constraint cannot be fulfilled.

III. HYBRID EQUATION OF STATE WITH
FIRST ORDER PHASE TRANSITION

Deconfinement of hadrons is probable when the density
inside compact stars increases, and as a result, the quark
matter core arises. As we previously mentioned, we use
our calculated EoSs applying VLOCV (AV18) and LOCV
(AV18 þ TNI) approaches for the hadronic phase, while
employing the widely used parametrized CSS equation of
state presented by Alford for the high-density quark phase
[44]. This EoS, which has three control parameters, is
parametrized as shown below for a fixed hadronic EoS,

ε ¼
�
εðpÞ p < ptrans

εðptransÞ þ Δεþ c−2QMðp − ptransÞ p > ptrans

ð17Þ

where ε, p, ptrans, and Δε are energy density, pressure,
transition pressure, and energy density discontinuity at the
transition, respectively. It is to be noted that the speed of
sound in the core of stars cQM is assumed to be 1.
Moreover, for large discontinuity in energy density at

the transition, the star undergoes instability when central
pressure equals transition pressure. This will happen
whenever the value of Δε is equal or greater than the so
called Seidov limit [16]:

Δεcrit
εtrans

¼ 1

2
þ 3

2

ptrans

εtrans
; ð18Þ

where Δεcrit is the threshold value, while εtrans and ptrans
are energy density and pressure at the phase transition,
respectively [31]. All the EoSs in this work fulfill the above
equality, thus leading to third branches in the mass-radius
relation.

A. Categories of twin stars

Twin stars, consisting of neutron stars with similar masses
but different sizes, originate from a EoS with a strong first
order phase transition [45–47]. As introduced and defined in
[14,31], it is of a great advantage to categorize twin star
solutions into four groups. Therefore, a brief definition of
these classes of twin stars is provided here. We start by
noting that M1 and M2 refer to their respective maximum

FIG. 1. Radius of nucleon as a function of density for
r0 ¼ 0.4 fm.

FIG. 2. Candidate equations of state with AV18 potential
considering the impact of nucleon size and TNI.

TABLE I. The maximum mass (M⊙) of neutron star obtained
for the candidate EoSs.

EoS
LOCV

(AV18) [43]
LOCV

(AV18 þ TNI) [30] VLOCV (AV18)

Mmax 1.623 2.11 2.19
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masses of hadronic and twin star branches, related to
nonrotating compact stars. In fact, the structural parameters
of the neutron star can be obtained by solving the Tolman-
Oppenheimer-Volkoff (TOV) equations [48,49],

dP
dr

¼ −
εm
r2

�
1þ P

ε

��
1þ 4πPr3

m

��
1 −

2m
r

�
−1

dm
dr

¼ 4πr2ε: ð19Þ

Samples of these categories are displayed in Fig. 3 and
defined as follows [31]:

(I) BothM1 andM2 exceed 2 M⊙ due to the high values
of ptrans. Moreover, the twin branch is approxi-
mately flat.

(II) The conditions of M1 ≥ 2 M⊙ and M2 < 2 M⊙ are
satisfied, which manifests the high values of ptrans
found only in massive compact stars.

(III) The hadronic branch has the property of 1 M⊙ ≤
M1 ≤ 2 M⊙, however, M2 exceeds 2 M⊙. There-
fore, ptrans is lower compared to the previous classes
and the twin branch becomes steeper.

(IV) The condition for M2 is the same as category III,
while M1 is below 1 M⊙. Consequently, the twin
branch has the steepest slope in this category.

Table II displays the high density parameters ptrans and
Δε for the two EoS approaches in our study. We have
obtained the lowest and highest limits of these parameters
for each category, which indeed satisfies the definitions of

their classification by mass. Category I would be only
of interest for Mtotal ≥ 4 M⊙ by definition. Moreover,
since the estimated mass values of the components of
GW170817 are below 2 M⊙, the corresponding stars
described by this category must be pure hadronic configu-
rations. Category II, whose second branch is flat, implies
high ptrans, ð108–127Þ MeV=fm3, with the maximum mass
of above 2 M⊙ in the hadronic branch. The values of ptrans

within the range ð31–107Þ MeV=fm3 satisfy the definition
of category III and lead to a steeper mass increase
compared to categories I and II. The lowest values of
ptrans ð5–30Þ MeV=fm3 generate category IV, which results

FIG. 3. The schematic trend of mass-radius relation for the classes of twin stars, I-IV, defined in the text.

TABLE II. The categories of twin stars defined by the values of
maximum mass associated with the hadronic and hybrid star
branches applying the EoS discussed in the text. Columns labeled
low and high correspond to the lowest and highest values of the
CSS EoS parameters for each category. ptrans and Δε values are
given in units of MeV=fm3.

VLOCV (AV18) Low ptrans High ptrans Low Δε High Δε

CI 108 130 380 430
CII 108 127 420 700
CIII 31 107 250 415
C IV 5 30 250 430

LOCV (AV18 þ TNI)
CIII 40 41 250 273
C IV 4 39 250 445
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from the definition that the maximum mass in the hadronic
branch must be below 1 M⊙ andMmax in the hybrid branch
must be higher than 2 M⊙. It is worth mentioning that the
conditions for category I and category II have not been
produced for the EoS with LOCV (AV18 þ TNI).
The corresponding mass-radius diagrams for the two

candidate EoS approaches are shown in Figs. 4 and 5,
respectively. These plots are typical examples of different
ptrans and Δε values related to every possible category, as
presented in Table II. Due to the fact that category I
dissatisfies the constraint of the total mass of BNSM in
GW170817, 2.73þ0.04

−0.01 M⊙, its compact star sequence is
displayed in neither figure. Furthermore, some constraints

obtained from recent observations are also shown in these
figures. Utilizing the observation of the GW170817 event,
modeling of GRB 170817A, and the quasiuniversal
relations, Rezzolla et al. set limits for the maximum
mass of nonrotating stars to lie in the range 2.01þ0.04

−0.04 ≤
MTOV=M⊙ ≲ 2.16þ0.17

−0.15 [50]. Additionally, the radius of the
stellar structure of 1.6 M⊙ nonrotating NSs must be larger
than 10.68þ0.15

−0.04 km, which is obtained by the binary mass
measurement of GW170817 and the assumption of delayed
collapse in this event [51]. Moreover, Annala et al.
demonstrated that the maximum radius of a 1.4 M⊙ NS
is 13.6 km [52]. According to the most recent detection
GW190814 [53], Most et al. estimated a lower boundary on
the maximum mass of nonrotating neutron stars: MTOV >
2.08þ0.04

−0.04 M⊙ [54]. They achieved this result by stating that
the secondary in this event was either a black hole resulting
from the rapidly rotating NS collapse or a stable rapidly
rotating NS. The recent x-ray observation of the periodic
signal of the object PSR J0030þ 0451 by NICER has
reported either M ¼ 1.44þ0.15

−0.14 M⊙ with R ¼ 13.02þ1.24
−1.06 km

[55] or M ¼ 1.34þ0.15
−0.16 M⊙ with R ¼ 12.71þ1.14

−1.19 km [56].
In Fig. 4, one can observe that all the displayed hybrid stars
generated by the VLOCVmodel satisfy the maximummass
constraint presented by Rezzolla et al. [50] except the one
related to the category IV with ptrans ¼ 30 MeV=fm3 and
Δε ¼ 250 MeV=fm3. It is also apparent in this figure that
low values of ptrans for categories III and IV, 5 and
31 MeV=fm3, respectively, together with particular values
of Δε result in the hybrid stars that do not fulfill the
constraint presented by Bauswein et al. [51]. Furthermore,
it can be seen that all the EoS models shown in this figure
satisfy the constraint set by Annala et al. [52]. In general,
the transition pressure in each mentioned category should
increase in order to meet the constraint set for the radius of
1.6 M⊙ NS structure. For instance, changing the value of
ptrans from 5 MeV=fm3 to 30 MeV=fm3 in category IV
leads to a better result in accordance with this criterion. The
maximum mass boundary obtained by GW170817 puts
another constraint on our EoS models of category IV,
for which the low value of Δε reported in Table II should
rise from 250 MeV=fm3 to 268 MeV=fm3. Furthermore,
the maximum value of this parameter for the particular
case of ptrans ¼ 30 MeV=fm3 cannot increase more than
275 MeV=fm3 since it does not satisfy the radius constraint
of the structure of 1.6 M⊙ NS. The lower bound on the
maximum mass obtained by GW190814 [54] also restricts
our results at higher values of Δε. Taking into account
the results obtained for category III, one can notice that
the increase in the value of transition pressure from
31 MeV=fm3 to 60 MeV=fm3 yields the EoS model, in
which all the constraints can be met except the lower bound
on the maximum mass obtained by GW190814. Thus,
by lowering the amount of Δε from 350 MeV=fm3 to
300 MeV=fm3, the value of maximum mass is obtained

FIG. 4. The mass-radius relation of VLOCV (AV18) EoS with
categories II, III, and IV. It should be noted that the values of ptrans
and Δε are given in units of MeV=fm3.

FIG. 5. The mass-radius relation of LOCV (AV18 þ TNI) EoS
with categories III and IV. The values of ptrans and Δε are given in
units of MeV=fm3.
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around 2.08 M⊙, which agrees well with maximum mass
limits. The desirable EoS models fulfilling all these
limits are the ones with ptrans ≈ 30–100 MeV=fm3 having
Δε≲ 300 MeV=fm3, which are also in good agreement
with NICER results [55,56].
It should be noted that due to the softness of the LOCV

(AV18 þ TNI) EoS compared to the VLOCV model, the
instability region disconnected from the hadronic branch
has been only provided for two values of ptrans, 40 and
41 MeV=fm3, in the case of category III as displayed in
the second part of Table II. Moreover, high values of Δε
have changed for both categories of this EoS compared to
the VLOCV approach. Figure 5, which is the mass-radius
diagram of LOCV (AV18 þ TNI) with the possible cat-
egories of III and IV, depicts that all the hybrid stars
generated by the selection of particular values of ptrans and
Δε do not yield appropriate results in accord with the left-
hand band (GW170817 excluded: Bauswein et al. [51]).
However, all the stellar configurations do satisfy the right-
hand band (GW170817 excluded: Annala et al. [52])
and also the maximum mass constraint (GW170817
excluded: Rezzolla et al. [50]). In addition, it is easily
seen that the EoS models related to the category IV meet
the lower bound on the maximum mass (GW190814:
Most et al. [54]).
Our obtained results for three quantities of transition

density ρt, the maximum mass of hybrid star configurations
Mmax together with its central densities ρc are displayed in
Table III for categories presented in Figs. 4 and 5. ρc is
expected to be lower in the case of fast-rotating stars. In
addition, it might serve as a guide for comparison with the
densities reached in the compressed baryonic matter by
heavy-ion collisions. Furthermore, a combined analysis of
GW170817 and GW190425 results in a range of densities
of the neutron star core in between three to six times

nuclear density, i.e., 0.48–0.96 fm−3 [32]. From this table,
we can see that the compact star central density values for
our models are compatible with this estimation.

IV. TIDAL DEFORMABILITY

Since GW170817 has established limits on the tidal
deformability of BNSMs during the inspiral phase, the EoS
of these compact stars can be restricted in addition to the
maximum mass constraint above 2 M⊙. The tidal defor-
mation of BNSs, which occurs in the early stages of the
inspiral, is defined by [57]

λ ¼ −
Qij

εij
: ð20Þ

Indeed, the tidal deformability λ is the ratio of the induced
quadruple moment to the tidal field of its companion. It can
also be related to the tidal Love number of l ¼ 2 through
the equation below

λ ¼ 2

3
k2R5: ð21Þ

In addition, the dimensionless tidal deformability Λ is
defined by k2 as

Λ ¼ 2

3

k2
β5

; ð22Þ

where β ¼ M
R is the compactness of the star. The tidal

deformability is calculated along with the TOVequations in
order to get the structural properties. In our calculations, we
constrain our EoSs by using the precisely measured chirp
mass M ¼ 1.186 M⊙ in the inspiral phase of GW170817
[58]. Within this work we investigate the low spin prior
case for every EoS.
In this section, we present our results for the tidal

deformability of the components of BNSM in the form
of a Λ1 − Λ2 diagram to constrain our EoSs with
GW1701817. In Fig. 6, one can see the Λ1 − Λ2 diagram
for the equation of state related to the VLOCV model with
three possible combinations of neutron star branches:
neutron-neutron (NN), hybrid-neutron (HN), and hybrid-
hybrid (HH), in which the first label refers to the massive
component of the binary (M1) and the second to the lighter
one (M2). The results are presented for categories III and IV
considering particular values of ptrans and Δε. Note that
the purple dotted line corresponds to the condition that
Λ1 ¼ Λ2. The NN combination, displayed by a solid green
line in this figure, is generated by the VLOCV approach
without considering a phase transition. As it is clearly seen,
this combination lies inside the 90% credible region which
is bordered by the dashed black (dashed red/dashed dark
green) line and the solid black (solid red/solid dark green)
line of the probability distribution function (PDF) for

TABLE III. The values of transition density ρt, maximum mass
of twin branch Mmax and its corresponding central density ρc for
the categories displayed in Figs. 4 and 5 with particular values of
ptrans and Δε, which are given in units of MeV=fm3.

VLOCV (AV18) ρt (fm−3) Mmax (M⊙) ρc (fm−3)

CIV, ptrans ¼ 5, Δε ¼ 350 0.21 2.15 0.77
CIV, ptrans ¼ 30, Δε ¼ 250 0.33 2.18 0.90
CIV, ptrans ¼ 30, Δε ¼ 268 0.33 2.15 0.92
CIII, ptrans ¼ 31, Δε ¼ 350 0.33 2.004 0.98
CIII, ptrans ¼ 60, Δε ¼ 350 0.38 2.004 0.99
CIII, ptrans ¼ 60, Δε ¼ 300 0.38 2.08 0.96
CIII, ptrans ¼ 100, Δε ¼ 300 0.42 2.15 0.90
CII, ptrans ¼ 112, Δε ¼ 700 0.43 1.72 1.03
CII, ptrans ¼ 120, Δε ¼ 470 0.44 1.97 0.90

LOCV (AV18 þ TNI)
CIV, ptrans ¼ 4, Δε ¼ 390 0.19 2.1 0.77
CIV, ptrans ¼ 25, Δε ¼ 250 0.36 2.11 0.97
CIII, ptrans ¼ 41, Δε ¼ 269 0.42 2.003 1.08
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the precessing waveform TaylorF2 (PhenomPNRT/
PhenomDNRT) [58]. Moreover, the short-dotted magenta
and cyan lines located in the lower part of this figure are
related to category III and IV, respectively. These two lines,
which are representative of low ptrans (with the same value
of Δε ¼ 350 MeV=fm3), lead to similar results for the
tidal deformability of twin stars compared to the short-
dotted black line having ptrans ¼ 30 MeV=fm3 and
Δε ¼ 268 MeV=fm3. These three lines located in the
second branch as HH star combinations of the mentioned
categories lie within the 50% credible region.
In addition, the solid magenta line refers to the HN star

combinations generated by CIII, while the dashed-dotted
cyan and black lines belong to CIV. On the one hand,
applying the low limit of ptrans for both categories yields
approximately identical results for Λ, while selecting
greater values of ptrans, namely 60 MeV=fm3 in the case
of category III leads to higher tidal deformability values.
On the other hand, the HN lines generated by low values
of ptrans for each mentioned category are partly inside
the 50% credible region, whereas their major part is
located outside. The dotted gray (dark purple) line pro-
duced by ptrans ¼ 60 MeV=fm3 and Δε ¼ 350 MeV=fm3

(Δε ¼ 300 MeV=fm3) lies completely inside the 90%
credible levels. We have also computed the combined
dimensionless tidal deformability Λ̃ considering the chirp
mass related to the GW190425 event for these particular
EoS models. In other words, by restricting our EoS to the
chirp mass of 1.44 M⊙ and the mass ratios between 0.8 to 1
leading to the total mass of 3.3 M⊙ for the low-spin prior
case, we have obtained Λ̃ in the range of 55-100 (83-138)

for the EoS model with ptrans ¼ 60 MeV=fm3 and Δε ¼
350 MeV=fm3 (Δε ¼ 300 MeV=fm3). Although these
results agree with the value reported in [32], Λ̃ ≤ 600,
this event cannot put any meaningful constraints on our
EoS due to the less information on this parameter.
Unfortunately, this is also the case of the recently reported
merger event GW190426, where only an estimate of the
mass of the possible neutron star component of 1.5þ0.8

−0.5 M⊙
is provided [59].
In our previous work [60], we have computed the tidal

deformability of binary neutron stars with four distinctive
EoSs without phase transition, which the EoS of AV18 þ
TNI resulted in better outcome compared to other ones.
Therefore, we have selected this EoS in order to draw a
comparison between the nucleon size and TNI, which is
presented in Fig. 7 for category III. It can be seen that both
EoSs lead to the three possible combinations of neutron
stars, which their existence in GW170817 is to some extent
disputable. In this figure, the short-dotted style refers to the
results of the VLOCV method, while the solid one depicts
those of LOCV (AV18 þ TNI). One can observe that the
NN combination of neutron stars is within the 90% credible
region in the case of VLOCVmethod due to their large tidal
deformability values. On the contrary, NN combinations for
the LOCV (AV18 þ TNI) model are marginally consistent
with the 50% credible region, displaying lower tidal
deformability values than the ones of VLOCV. The HH
combination for both models, located in the lower part of
the figure, predicts even smaller tidal deformability values
with respect to NN and HN combinations. Although the

FIG. 6. The relation between tidal deformabilities of the
components of binary system considering strong first order phase
transition for the VLOCV (AV18) model. The values of ptrans
and Δε are given in units of MeV=fm3. Dashed (solid) lines
correspond to the 50% (90%) credible region for the TaylorF2,
PhenomPNRT and PhenomDNRT waveform models [58].

FIG. 7. Comparative relation between tidal deformabilities of
the components of binary system for category III of both VLOCV
(AV18) and the LOCV (AV18 þ TNI) models. The short-dotted
style refers to the results of VLOCV method, while the solid one
depicts those of LOCV (AV18 þ TNI). Dashed (solid) lines
correspond to the 50% (90%) credible region for the TaylorF2,
PhenomPNRT and PhenomDNRT waveform models [58].
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HN and HH combinations of the EoSs with low values of
ptrans for both approaches are allowed in this figure, they
are ruled out by the constraint presented by Bauswein et al.
[51] in the mass-radius diagrams 4 and 5.

V. SUMMARY AND CONCLUSIONS

In this work, we have introduced two approaches to
describe the stiffness of dense matter in the core of neutron
stars, the three nucleon interaction LOCVðAV18 þ TNIÞ
and prescription of the excluded volume effect for nucleons
VLOCVðAV18Þ. In all our models for the hadronic nuclear
matter, we have used the two-body potential for the nuclear
forces, which has recently been found to successfully
describe nucleon interactions in the laboratory [61]. One
of the implications of the stiff hadronic matter is the
possible existence of a phase transition into deconfined
quark matter in order to avoid a causality breach of the EoS.
It may happen that a hadron-quark mixed phase is unlikely
to be stable for a reasonable value of surface tension
[62,63]. As a result, the situation is similar to the Maxwell
construction case, in which two pure phases are directly in
contact with each other. Therefore, the phase transition in
our work is obtained by the sharp hadron to quark matter
phase transition (Maxwell construction). Thus, if the EoS
features a strong first order phase transition, it will result in
the mass twin scenario which brings the possibility to probe
a critical end point in the QCD phase diagram.
To model the quark matter phase, we have introduced the

simple constant speed of sound description and have taken
the extreme limit of cQM equal to the speed of light. Under
these assumptions, we were able to produce EoS models
characterized by the critical values at the phase transition.
Consequently, when solving the relativistic equations for
the compact star structure, we were able to classify the
resulting neutron star properties, namely the topology of
sequences in the mass-radius diagram, following the
convention introduced in [31]. We have obtained limits
for these phase transition parameters in each category,
which indeed satisfies the definitions according to the
stellar mass. Furthermore, we have computed the tidal
deformabilities of our models in order to be able to compare
with the estimations derived from the compact star merger
GW170817, presented in a Λ1-Λ2 diagram. The combined
dimensionless tidal deformability has also been computed
for particular cases of category III related to the VLOCV
approach in order to check the validity of our results with
the GW190425 event. It turns out that this event cannot
restrict our EoS models since there is little information
about it. For both models, the merger of neutron stars (NN)

is possible in the light of the GW170817 event, while
neither of the other two combinations (HN and HH)
is allowed for the LOCV (AV18 þ TNI) model consider-
ing the Bauswein constraint [51] in the mass-radius
diagrams. Moreover, the HN and HH combinations of
the VLOCV EoS with low values of ptrans (having
Δε≳ 300 MeV=fm3) for both categories of III and IV
are also ruled out by this constraint. It is important to note
that if the limits for the maximum compact star mass are
lifted, namely by new, compelling observations of massive
compact stars above 2.5 M⊙ for instance of the type of the
GW190814 event but undeniably featuring a compact star,
then the space of parameters of our EoS models will also
increase.
In this paper, we have also considered the measurement

of the object PSR J0030þ 0451 by NICER, which
allowed us to assess the validity of our results. It is found
out that depending on the parameter values, transition
pressure ≈ 30–100 MeV=fm3, and the energy density dis-
continuity Δε≲ 300 MeV=fm3, both CIII and CIV of the
VLOCVmodel can satisfy all the observational constraints,
however, CIV has more limitations. It is also deduced that
in the case of the LOCV (AV18 þ TNI) approach, neither
CIII nor CIV can meet all the mentioned limits.
An astrophysical application of a category CIII EoS

based on multiple polytropes can be found in [64] whereas
for the CSS EoS is found in [65].
As all models, our EoS model has its own pros and cons.

The number of free parameters in the high-density region
may be one of the limitations, as well as the only free
parameter we consider in the hadronic part of our model:
the radius of nucleon at equilibrium. However, all these
parameters finally lead to a space of parameter that fulfills
most of the current observational constraints. Regarding the
improvements of our model, we can modify the neutron star
matter and also the EoS model for the high-density region
substituting the CSS parametrization model in order to be
in accordance with future observations.
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