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In the post-detection era of gravitational wave (GW) astronomy, core collapse supernovae (CCSN) are
one of the most interesting potential sources of signals arriving at the Advanced LIGO detectors.
Mukherjee et al. have developed and implemented a new method to search for GW signals from the CCSN
search based on a multistage, high accuracy spectral estimation to effectively achieve higher detection
signal to noise ratio (SNR). The study has been further enhanced by incorporation of a convolutional neural
network (CNN) to significantly reduce false alarm rates (FAR). The combined pipeline is termed multilayer
signal estimation (MuLaSE) that works in an integrative manner with the coherent wave burst (cWB)
pipeline. In order to compare the performance of this new search pipeline, termed “MuLaSECC”, with the
cWB, an extensive analysis has been performed with two families of core collapse supernova waveforms
corresponding to two different three dimensional (3D) general relativistic CCSN explosion models, viz.
Kuroda 2017 and the Ott 2013. The performance of this pipeline has been characterized through receiver
operating characteristics (ROC) and the reconstruction of the detected signals. The MuLaSECC is found to
have higher efficiency in low false alarm range, a higher detection probability of weak signals and an
improved reconstruction, especially in the lower frequency domain.
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I. INTRODUCTION

The first direct detection of gravitational waves (GW)
happened in 2015 when the two LIGO detectors [1] at
Hanford and Livingston detected the GW signal from a
binary black hole (BBH) system [2]. Since then, several
BBH signals have been detected by the LIGO detectors. A
watershed moment happened in 2017 when the LIGO and
Virgo [3] detectors detected GW signal from a colliding
neutron star system (BNS) [4]. Yet another landmark
discovery took place in 2019 scientists from LIGO and
Virgo have announced the discovery of an object of 2.6
solar masses, placing it firmly in the “mass gap,” as it
merged with a black hole of 23 solar masses [5].
In the post-detection era of GWastronomy, core collapse

supernovae (CCSN) are one of the most interesting
potential sources of signals arriving at the Advanced
LIGO (aLIGO [6]) detectors. CCSN are rare, but the
associated gravitational radiation is likely to carry profuse
information about the underlying processes driving the
supernovae. Studies have shown [7] that the sources with
neutrino-driven explosions are detectable at the distances
approaching 5 kpc. For magneto-rotationally driven explo-
sions the distances are up to 54 kpc. Waveforms for extreme
emission models are detectable up to 28 Mpc. More details
about the detection ranges corresponding to different types

of explosion models are discussed in Sec. II. Since the
signals from these sources are weak, methods that can
improve the sensitivity of searches for GW signals from
CCSN are desirable, especially in the advanced detector
era. Several methods have been proposed [8–10] based on
various likelihood-based regulators that work on data
from a network of detectors to detect burst signals (as is
the case for signals from CCSN) from potential GW
sources. To address this problem, Mukherjee et al. [11]
have developed and implemented a new technique of signal
estimation and enhancement in the CCSN search pipeline
based on a multistage, high accuracy spectral estimation
to effectively achieve higher signal to noise ratio (SNR)
[12–15]. In the current study the methods has been further
enhanced by incorporation of a convolutional neural net-
work (CNN) [16–20] to reduce false alarm significantly.
The combined pipeline is termed Multi-Level Signal
Estimation (MuLaSE). The MuLaSE works in combination
with LIGO’s coherent wave burst (cWB) [21] pipeline, but
the MuLaSE component enhances the performance of the
search method, as well as provides more effective param-
eter estimation of the detected signal. The results have been
generated using the CCSNwaveforms described by Kuroda
et al. [22,23] and Ott et al. [24]. The former results are
derived from relativistic three-dimensional (3D) CCSN
simulations of a nonrotating 11.2, 15 and 40 solar mass
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star using three different nuclear equations of state (EoS).
In this study, we have used the waveform that was
generated by using the 11.2 solar mass progenitor. The
duration of the simulation is about 350 ms after bounce,
where the development of the standing accretion shock
instability (SASI) is shown to be dependent on stiffness of
nuclear EoS. The generated waveform displays a new
structure in which the typical GW frequency increases
with time due to an accumulating accretion to the proto-
neutron star (PNS). The newly observed quasiperiodic
signal appears in the frequency range from 100 to 200 Hz
and persists for 150 ms before neutrino-driven convection
dominates over the SASI. The GW signal generated in this
study is within the detection limits of LIGO, advanced
Virgo, and KAGRA [25] for Galactic events. The latter
[24] describes a 3D general relativistic simulation of the
post-core-bounce phase of the collapse of a 27 solar mass
star including the development of SASI and neutrino-
driven convection. The waveform is expected to serve as
an observational probe of the post-bounce dynamics and
may determine the primary hydrodynamic instability
when combined with the emitted neutrino information.
The paper is organized as follows. Section II gives an

overview of the work done on GW detection effort for the
core collapse supernovae (CCSN) sources and also a
description of the models used in this study. Section III
summarizes the MuLaSE algorithm and the search pipeline.
Section IV discusses the analysis results and Sec. V gives
conclusions and future directions.

II. A REVIEW OF PREVIOUS WORK

Work done in the domain of GW from CCSN can be
broadly grouped into two categories. These are

(i) theoretical simulation of CCSN explosion mod-
els and

(ii) methods of detection of GW from CCSN.
In case of (i), a wide variety of CCSN explosion

scenarios has been discussed in the literature. Currently
a large repertoire of CCSN waveforms is available. These
waveforms vary in terms of explosion models and param-
eters. With more advanced and faster computing infra-
structure, more extensive simulations involving a wide net
of complexities has been made possible. This review of
waveform simulations is not exhaustive, we will describe
some recently developed ones to provide a broad idea about
the direction in this field and also describe the waveforms
we have chosen to use in this paper. More extensive
information can be sought at [26]
Mezzacappa et al. [27] report on 3D simulation of GW

signal of a 15 solar mass star using the neutrino hydro-
dynamics code CHIMERA [28]. Both time and spectral
signatures of the emitted GW have been calculated. The
main signatures in their waveform include an emission
below 200 Hz that result from neutrino-driven convection
and SASI, and a high-frequency emission (≥600 Hz) from

the PNS convective layer. This study indicates that the GW
spectrum in the range 20–1000 Hz will be accessible for a
galactic event. Powell and Muller [29] have conducted a
recent study using 3D simulations of the core-collapse of
massive rotating and nonrotating progenitors performed
using the general relativistic neutrino hydrodynamics code
COCONUT-FMT [30]. The progenitor models include 39 and
20 solar masses and an 18 solar mass super giant. The 39
solar mass model is a rapid rotator, whereas the two other
progenitors are nonrotating. Their study has shown that the
neutrino-driven explosions are successful but the red super-
giant model fails to explode. It has been found that the
rotation significantly changed the dependence of the char-
acteristic GW frequency of the f-mode on the PNS param-
eters. It was predicted that the GWemission from the CCSN
could be detected up to 2Mpc by the Einstein Telescope [31]
In the current study we have analyzed two 3D general

relativistic CCSN explosion models [22,24] using the
MuLaSE pipeline. Both these waveforms have been chosen
within the LIGO Scientific Collaboration [32] to be used in
the analysis of the third observing run (O3) of LIGO.
Kuroda et al. [22,23] have presented general relativistic

3D simulations with three different nuclear EoS. In this
simulation, a strong SASI development was observed for
softer EoS. The evolution shows the first prompt convec-
tion phase, the sloshing-SASI phase, which shifts to the
spiral mode and finally to the neutrino-driven convection
phase. The study confirmed previously reported emissions
originated from the PNS surface g-mode oscillation
[33,34]). In the softest EoS model, in addition to a strong
SASI, a new low-frequency quasi-periodic emission was
observed between 100–200 Hz. This emission was spatially
localized between 10–20 km. Further analysis of the SASI
modes,the mass accretion rate at 20 km and of the
quadrupole mode of the central core deformation, seem
to indicate that the temporally perturbed mass accretion in
association with the SASI may pierce into the PNS surface
to excite the oscillation between 10–20 km, which is
responsible for the GW emission. Andresen et al. [35]
have also reported a similar result at low-frequency GW.
The predicted waveforms are well within the detectable
frequency range of Advanced LIGO, Virgo and KAGRA
detectors. The peak frequency appears at 635, 671, and
681 Hz in order of the stiffness of nuclear EoS. At this
frequency range, the SNR reaches 10 at 10 kpc. As for the
newly observed low frequency emission at peak frequency
129 Hz, the SNR reaches an approximate value of 50. It is
thus expected that such events will be visible with the
current network of detectors. The current study has been
performed with the s11 waveform.
Ott et al. [24] have carried out four 3D relativistic core

collapse and post-bounce simulations of the 27 solar
mass stars by systematically varying the rate of neutrino
energy deposition. These simulations were free of imposi-
tion of articial inner boundary conditions or of symmetry
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assumptions or approximations for the gravitational field.
Ott et al.’s models show a strong growth of convective
instability which is driven by the negative entropy gradient
left behind by the stalling shock.Subsequently, convection is
driven by neutrino energy deposition in the gain layer. The
SASI remains a sub-dominant instability in all models in this
study. In addition, the SASI has been found to be strongest in
the model with the least neutrino heating and the weakest
neutrino-driven convection.
Much work has been done to address the data analysis

issues associated with detection and parameter estimation
of the signals. In 2016, Abbott et al. [36] published results
from a search for gravitational-wave bursts coincident with
two CCSN observed optically in 2007 and 2011 using
LIGO, Virgo and GEO600 [37] data. The targeted CCSN
were selected within approximately 15 Mpc. Coincident
operation of at least two interferometers at the time of core
collapse were considered. Although no GW sinals were
found, this study laid the foundation of targeted searches
with optical signatures of CCSN. A further study by the
same authors [7] include possibility of detection of GW
from CCSN within a source distance of approximately
20 Mpc. The sources with neutrino-driven explosions are
detectable at the distances approaching 5 kpc For magneto-
rotationally driven explosions the distances are up to
54 kpc. However, waveforms for extreme emission models
are detectable up to 28 Mpc. The GW energy was con-
strained at the levels of 4.27 × 10−4Msunc2 and 0.128 ×
Msunc2 for emissions at 235 and 1304 Hz, respectively.
These constraints are 2 orders of magnitude more stringent
than previously derived. In 2018, Hayama et al. [38]
analyzed the circular polarization of GW using results
from a 3D analysis of CCSN from a 15 solar mass
nonrotating progenitor. The detection analysis was per-
formed by using a coherent network of detectors viz, LIGO,
Virgo and KAGRA. Their result demonstrated that the
SASI-induced accretion owes to the PNS create a low-
frequency modulation in the 100 and 200 Hz range. By
estimating the SNR of the GW polarization, it was shown
that the detection horizon of the circular polarization
extends significantly farther. Gossan et al. [39] have shown
that GWs from CCSN within 5 Mpc are detectable, using
realistic noise at the predicted sensitivity of the Advanced
LIGO and Advanced Virgo detectors. Their study has
considered extreme GW emission scenarios for more
distant CCSN. A three-detector network in such a scenario
is predicted to detect neutrino-driven CCSN explosions out
to ≈5.5 kpc, while rapidly rotating core collapse will be
detectable out to the Large Magellanic Cloud at 50 kpc.
Using phenomenological waveforms [40,41], e.g., long-
lived bar-mode instabilities and disk fragmentation insta-
bilities, Gossan et al.’s study, have been shown to detect
emission from all considered long-lived bar-mode insta-
bility waveforms in the direction of M31 up to 0.77 Mpc
with 2019 LIGO three detector network. In addition, for

CCSN in the direction of M82, it has been seen that the
emission from long-lived bar-mode instabilities will be
detectable out to ≈9 Mpc with the same network. Bizouard
et al. [42] have shown a parameter estimation approach for
GW associated with PNS oscillation. The study involves a
set of 1D CCSN simulations to model evolution of the PNS
properties as a function of frequency of the dominant
g-mode to infer about the time evolution with a combina-
tion of the mass and the radius of the PNS. PNS properties
for a galactic source using the current detectors is shown to
be quite feasible.
In recent times, there is an effort to use machine learning

(ML) in CCSN analysis with a eye to reduce false alarm
(FA). Cavaglia et al. [43] have studied an ML-based
method to discriminate galactic GW CCSN signals from
glitches, which in turn reduces FA and improves detection
statistic. In another study, Iess et al. [44] describe a search
and classification procedure for GW emitted by CCSN,
using CNN combined with an event trigger generator
known as wavelet detection filter (WDF). The authors
used both a 1-D CNN search using time series of GW strain
data, and a 2-D CNN search using time-frequency images.
Using design sensitivities of the current and future detec-
tors, their study indicated a classification accuracy of over
95% for both 1-D and 2-D CNN pipelines. Chan et al. [45]
also demonstrated the application of CNN to distinguish
glitches from CCSN signals. Using simulated time series of
GW detectors, they have shown that a network of
Advanced LIGO, Advanced VIRGO and KAGRA
(HLVK) is likely to detect a magneto-rotational CCSN
out to the large or even small Magellanic clouds. A
neutrino-driven event is likely to be detectable within 5
and 3 kpc respectively. George et al. [46] used a data set of
twenty-two classes of glitches from LIGO’s observation
run, and demonstrated that CNN significantly reduced the
training time and achieved accuracy above 98.8%. Astone
et al. [47] have analyzed data from the LIGO, Virgo and
KAGRA network with a CNN-based classication procedure
of the time-frequency images using phenomenological
waveforms in Gaussian noise. Lopez-Portilla [48] et al.
have used O2 data to demonstrate a newly developed Mini-
Inception Resnet neural network using time-frequency
images of simulated phenomenological signals. The authors
have computed the detection eciency versus the source
distance. Their results indicate a detection efficiency of 70%
at a false alarm rate (FAR) lower than 5%. The current study
is the first that incorporates CNNas an integral part of search
pipeline which also comprises a sophisticated new element
of output SNR enhancement [11] and will henceforth
be termed “MuLaSECc” to represent multilayer signal
enhancement with CNN and cWB.

III. SEARCH ALGORITHM AND PIPELINE

The pipeline is based on the multilayer signal enhance-
ment (termed “MuLaSE”) algorithm that has been
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described in great detail in [11] and hence We will not
repeat the derivation in this paper. A reader can refer to the
previous papers for full information about the method.
Similarly, the cWB algorithm has been described in detail
in [21] and thus we would avoid repetition in this paper.
The CNN [16–20] has been used in a wide range of

classification problems for several decades now. CNN is
very fast and effective in image classification problems
[49]. The CNN is a class of deep learning [50] neural
networks. Image classification is the process of taking an
input (like a picture) and giving an output or a probability
that the input belongs to a particular class of objects. In the
current study, this is provided as time-frequency plots of
glitches or signals detected in the MuLaSECC pipeline. A
CNN convolves learned features with input data and uses
2D convolutional layers, making it suitable for processing
2D images. CNN has an input layer, and output layer, and
hidden layers. The hidden layers usually consist of con-
volutional layers that pass information to following layers,
rectified linear unit (ReLU) layers, pooling layers that
combine the outputs of clusters of neurons into a single
neuron, and fully connected layers that connect every
neuron in one layer to the next level. A reader may see
[51] for an excellent overview.
A CNN works by extracting features from images that

are learned while the network trains on a set of images.
Hidden layers of a CNN increase the complexity of the
learned features. A CNN follows the sequential steps given
below in a repetitive manner until a well-trained network is

obtained. Figure 1 gives a schematic diagram of how the
feature elements are created from a time-frequency image.
The process has the following steps.

(i) starts with time-frequency input image;
(ii) creates a feature map by applying filters to the input

time-frequency image;
(iii) applies a ReLU function to increase nonlinearity;
(iv) applies a pooling layer to each feature map and

creates one single vector of pooled images;
(v) inputs the vector into a fully connected artificial

neural network;
(vi) processes the features through the network. The final

fully connected layer provides the voting of the
classes that were after;

(vii) trains through forward propagation and back propa-
gation for many, many epochs.

In general, for a color image (as is in our case), a 3D
array of pixels with a blue layer, a green layer, and a red
layer is produced. The main purpose of the convolution step
is to extract features from the input image. This, starting
with an input image, a feature detector, and a feature map,
the application of filter to the input image is achieved
through the multiplication of the matrices. In each position,
the filter multiplies the values in the filter with the original
values in the pixel by element wise multiplication. The
multiplications are summed up, creating a single number.
The array thus produced is called a feature map or an
activation map. The ReLU layer involves applying an
activation function onto your feature maps to increase

FIG. 1. This figure shows the main steps involved in a typical CNN. A CNN convolves learned features with input data and uses 2D
convolutional layers, making it suitable for processing 2D images. CNN has an input layer, and output layer, and hidden layers. The
hidden layers usually consist of convolutional layers that pass information to following layers, ReLU layers, pooling layers that combine
the outputs of clusters of neurons into a single neuron, and fully connected layers that connect every neuron in one layer to the next level.
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nonlinearity (images being nonlinear) in the network.
It removes negative values from an activation map by
setting them to zero. The same effect can sometimes be
achieved through application of functions like tanh or
sigmoid. ReLU remains a popular choice because it can
train the network faster without any major penalty to
generalization accuracy. Spatial variance or flexibility is
an important requirement of any image classification
algorithm. This is addressed by the pooling layer.
Pooling helps to reduce the number of required parameters,
the computational cost and controls overfitting. The most
common choice in pooling is max pooling. In max pooling,
the input image is partitioned into a set of disjoint areas.
The outputs of each area are the maximum value in each
area. This makes a smaller size with fewer parameters and
accounts for distortion. Flattening converts the pooled
feature map into a sequential column of numbers (a single
row or column vector). This allows that information to
become the input layer of an artificial neural network for
further processing. At this stage, an artificial neural net-
work (ANN) is added to the convolutional neural network.
The ANN combines the extracted features into more
attributes which help predict the classes with higher
accuracy. The fully connected layer is a traditional multi-
layer perceptron (MLP). The output layer classifier is
usually a softmax [50] activation function. The softmax
function takes a vector of scores and assigns values
between 0 and 1 that add up to 1. Application of the
softmax function can be followed by application of the
loss function. Cross entropy method [52] is often applied
with softmax. Minimization of the loss function leads to
maximization of the performance of the network. Accuracy
and loss functions after implementation of the CNN in this
study are shown in Figs. 2 and 3 and elaborated in the
subsequent paragraph.
Figure 4 shows the search pipeline steps. The pipeline

can be viewed to have two main parts. The first part is
geared toward glitch removal from the data using MuLaSE
and the CNN components, while the second part deals with
an actual search following the data thus processed. The
analysis starts with reading the raw strain data from the
LIGO Hanford (H1) and Livingston (L1). This step is
followed by conditioning the data that involves band-
passing to remove the seismic wall in the lower frequencies
and the shot noise in the higher frequencies and then
resampling the data to 4096 Hz. This is followed by
whitening the data and removal of narrowband noise.
The conditioned data then enters the MuLaSE part of
the analysis where an educated estimate of signals
embedded in the data are processed. The output from
MuLaSE is now applied as input to the cWB pipeline which
generates a number of background glitches as output. Each
background glitch thus recorded is converted into a time-
frequency image. In the next part of the analysis, CCSN
simulated waveforms from the Kuroda 2017 and Ott 2013

catalogs are injected into the LIGO second observation run
(O2) noise. This analysis follows a similar path to the
previous one, the difference being that the output is a set of
CCSN signals that had been injected. The CNN is now
trained on the background glitches as well as on the
recovered CCSN signals. To test the efficiency of the
trained CNN, a new test data set is selected and glitches
produced in from this data set are classified. It has been
noted that the classification accuracy is ≥90%. Figures 2
and 3 demonstrate the validation of the CNN. For Kuroda
2017 s11 waveforms,21478 background glitches and
21446 signals have been used to train the network.
Validation has been done using 7810 glitches and 8051
signals.The accuracy rises to 90% within 1000 iterations
and the loss drops to ≤ 0.5% within the same number of
iterations. For Ott 2013 waveforms, 21478 background
glitches and 22385 signals have been used to train the
network. Validation has been done using 7810 glitches and

FIG. 2. The figure shows accuracy of training on the glitches
and the Ott 2013 waveform.

FIG. 3. The figure shows Loss of accuracy vs the number of
iterations on the glitches and the Kuroda 2017 s11 waveform.
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7999 signals. As before, the accuracy rises to 90% within
1000 iterations and the loss drops to ≤ 0.5% within the
same number of iterations.
At this stage, the analysis is ready for the detection of a

GW signal. It starts with a data streams from the detectors
with an injected signal and follow the MuLaSEþ cWB
steps of the analysis pipeline. Once the glitches have been
identified, it is now time for them to be removed from the

data. In the current study, this is achieved by the method of
statistical imputation [53–58] for glitch removal. In stat-
istical data analysis, imputation is the process of replacing
missing data with an estimated value based on other
available information. Imputation methods run the risk
of introducing a bias unless one is careful. In order to deal
with the problem of increased noise due to imputation,
Rubin [56] developed a method for averaging the outcomes

FIG. 6. The figure shows the spectrogram of the Kuroda 2017
S11 waveform. Only hþ is seen here.

FIG. 5. The figure shows the hþ and hx components of the
Kuroda 2017 S11 waveform. The waveform is 0.16 s in duration.

FIG. 4. The search pipeline is shown here. The pipeline can be viewed to have two main parts. The two left side boxes represent the
identification of glitches, training and testing of the CNN components and classification, while the second part deals with an actual
detection and parameter estimation resulting from data with glitches removed. Details of the pipeline is given in the Search Algorithm
and Pipeline section.
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across multiple imputed data sets to account for this. This
process is known as the method of multiple imputation that
involves imputed values to be drawn m times from a
distribution. At the end of this step, there should be m
completed data sets. At the end of this step there should
be m analyses results that are consolidated into one
result by calculating the mean and variance by combining
simulations from each separate model. The resulting data
set is a clean time series from which glitches identified by
the CNN have been removed. This time series is now
provided as an input to the cWB pipeline. The network
analysis ends with the production of background
and detected events from which the receiver operating
characteristics (ROC) are generated. Coherent event dis-
plays (CED) are also generated that provide time-
frequency plots of the detected events and the waveform
reconstructions.

IV. RESULTS

The results of this analysis were obtained using a 26 hour
data segment from O2. Figure 5 shows the Kuroda 2017
S11 waveform at 10 kpc. The hþ and hx components are

shown for a duration of 0.16 s. Figures 6 and 7 show the
spectrogram of the hþ and hx components. The SASI is
clearly visible around ∼250 Hz. Figures 8–10 show the
same for Ott 2013 S27 waveform respectively. The
waveform duration is 0.25 s and a strong low frequency
component is visible between 100–200 Hz. Figure 11
shows nine randomly selected glitches from the back-
ground as determined by the analysis. These glitches
typically had a duration of 10–16 milliseconds and varied
in frequency anywhere between 150 Hz to 1 kHz.
Figure 11 shows the spectrograms of the injected Ott
2013 s27 waveforms as picked up by the pipeline.
These spectrograms display the characteristics of the
waveform as shown in Figs. 12 and 10. Figure 13 shows
the spectrograms of the injected Kuroda 2017 s11 wave-
forms as picked up by the pipeline. These spectrograms
display the characteristics of the waveform as shown in
Figs. 6 and 7.
Figures 14 and 15 show the receiver operating character-

istics of the twowaveforms under study. In case of Ott 2013
waveform, in a range of FAR below 10−6, the efficiencies of
the MuLaSECC and the cWB pipelines are practically the

FIG. 7. The figure shows the spectrogram of the Kuroda 2017
S11 waveform. Only hX is seen here.

FIG. 8. The figure shows the hþ and hx components of the Ott
2013 S27 waveform. The waveform is 0.16 s in duration.

FIG. 9. The figure shows the spectrogram of the Ott 2013 S27
waveform. Only hþ is seen here.

FIG. 10. The figure shows the spectrogram of the Ott 2013 S27
waveform. Only hX is seen here.
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same, with the MuLaSECC efficiency marginally better.
However, above FAR 10−6, the cWB pipeline’s perfor-
mance efficiency is higher by about 5%. In case of the
Kuroda 2017 s11 waveform, the MuLaSECC pipeline
operates between 5 and 8% higher efficiency than the
cWB pipeline in a range of FAR between 10−7 and close to
10−5 at which point it becomes almost equal.
The last stage of the analysis involves injection of the

Kuroda 2017 s11 and Ott 2013 s27 waveforms into the O2
data (20 injections/600s data with varying SNR’s) and
studying the events detected at the end of the cWB and
the MuLaSECC pipelines. We used SNR’s in the range
5 to 20 with the following steps: 5, 7, 8, 10, 15 and 20.
With the Ott 2013 waveform, the cWB pipeline did not
detect an output event for SNR’s 5, 7 and 8. However,
the MuLaSECC pipeline detected the SNR 8 injection.
Figure 16 shows the spectrogram of signal detected at an
output SNR of 7.8 by the MuLaSECC pipeline for the
L1 (bottom panel) and the H1 (top panel) detectors.

Figure 17 shows the reconstruction of the detected signal
waveform at the H1 and L1 detectors. In this figure, the L1
results are in the left hand column and the H1 results are in
the right hand column. The top panels show the band-
limited signal with the original in black and the recon-
structed signal in red. The middle panels show the injected
(in black) vs reconstructed (in red) whitened signal time
series. The bottom panels display the amplitude spectra of
the injected (black) vs reconstructed (red) whitened
signal data.
Figure 18 shows the reconstruction of the detected

signal spectrum at the H1 and L1 detectors. In this figure,
the L1 results are in the right hand column and the H1
results are in the left hand column. The top panels show the
injected signal time frequency maps, while the bottom
panels show the same for the reconstructed signal. It is
found that the reconstructed signal as detected by the
MuLaSECC pipeline has well reconstructed the low fre-
quency (150–300 Hz) component of the signal, but missed

FIG. 11. The figure shows spectrograms of the different types of background glitches obtained in the analysis. These glitches were
identified to be non-CCSN signals by the trained CNN.
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the 400 Hz component. These results are still significant
given that the MuLaSECC has been able to detect the
signal that otherwise may have gone unnoticed. It is noted
that the reconstruction is only approximately correct in
amplitude and phase and represents the low frequency
domain of the signal. The high frequency components are
missing in the reconstructed plot. However, given the
low SNR signal, the detection is significant and partial
reconstruction, coupled with multimessenger observatio-
nal evidence, if available, will bring together sufficient
information to draw conclusions.
A somewhat similar situation is noticed with the

Kuroda 2017 s11 waveforms as well. The cWB pipeline
did not detect an output event for SNR’s 5 and 6.
However, the MuLaSECC pipeline detected the SNR 6
injection. Figure 19 shows the spectrogram of signal
detected at an output SNR of 7.8 by the MuLaSECC
pipeline for the L1 (bottom panel) and the H1 (top panel)
detectors. Figure 20 shows the reconstruction of the
detected signal waveform at the H1 and L1 detectors.

In this figure, the L1 results are in the left hand column
and the H1 results are in the right hand column. The top
panels show the band-limited signal with the original in
black and the reconstructed signal in red. The middle
panels show the injected (in black) vs reconstructed (in
red) whitened signal time series. The bottom panels
display the amplitude spectra of the injected (black) vs
reconstructed (red) Whitened Signal data. Figure 21
shows the reconstruction of the detected signal spectrum
at the H1 and L1 detectors. In this figure, the L1 results are
in the right hand column and the H1 results are in the left
hand column. The top panels show the injected signal time
frequency maps, while the bottom panels show the same
for the reconstructed signal. It is found that the recon-
structed signal as detected by the MuLaSECC pipeline has
well reconstructed the frequencies of the signal around
200 Hz, but missed the higher frequencies. As in case of
the Ott waveforms, these results are still significant
because the MuLaSECC pipeline has been able to detect
the signal.

FIG. 12. The figure shows spectrograms of the Ott 2013 s27 waveforms as recovered by the pipeline.
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FIG. 13. The figure shows spectrograms of the Kuroda 2017 s11 waveforms as recovered by the pipeline.

FIG. 14. The figure shows the receiver operating characteristics
(ROC) of the Ott 2013 s27 waveform.

FIG. 15. The figure shows the receiver operating characteristics
(ROC) of the Kuroda 2017 s11 waveform.
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We want to demonstrate a comparative study using
injections with SNR 10 and 15 for the two waveforms
under study using the cWB and the MuLaSECC pipelines.
There are three types of figures for each injected SNR.
These are

(i) A set of 2 × 2 spectrogram plots showing the
detected signal. The figures are arranged and de-
picted as follows. The cWB pipeline results are in
the left column, with H1 at the top and L1 at the
bottom. The MuLaSECC pipeline results are in the
right column, with H1 and L1 in the same order; see
Figs. 22, 25, 28 and 31.

(ii) A set of 3 × 4 plots with the two left hand columns
showing results from the cWB pipeline and the
two right hand columns showing results from
the MuLaSECC pipeline. For each pipeline, the
left hand column presents results from H1 and the
right hand column present results from L1. The top
panels show the band-limited signal with the
original in black and the reconstructed signal in

red. The middle panels show the injected (in black)
vs reconstructed (in red) whitened signal time
series. The bottom panels display the amplitude
spectra of the injected (black) vs reconstructed
(red) whitened signal data; see Figs. 23, 26, 29
and 32.

(iii) A set of 2 × 4 spectrogram plots of the cWB
results in the two left hand columns and the
MuLaSECC results in the two right hand col-
umns. For each pipeline, the left hand column
presents results from H1 and the right hand
column present results from L1. The top panels
show the time-frequency plots for the band-
limited signal. The bottom panels display the
same for the reconstructed signal; see Figs. 24,
27, 30 and 33.

Figures 22–24 show the results for a Kuroda 2017
s11 injection with SNR 10. This is detected at an output
SNR of 10.6 by the cWB pipeline and at SNR 11.9 by
the MuLaSECC pipeline. The MuLaSECC pipeline
has been able to better reconstruct the low frequency
part of the signal below 100 Hz. A more extensive
reconstruction of the duration of the signal has been
picked up by the MuLaSECC pipeline. Figures 25–27
show the results for a Ott 2013 s27 injection with SNR
10. This is detected at an output SNR of 8.0 by the cWB
pipeline and at SNR 17.6 by the MuLaSECC pipeline. It
has been able to reconstruct the low frequency part of the
signal below 100 Hz. This has been missing in the cWB
reconstruction. A more extensive reconstruction of the
duration of the signal as picked up by the MuLaSECC
pipeline has been demonstrated. Moreover, the recon-
structed spectrogram shows frequency components
around 400 Hz that has not been reconstructed in the
cWB analysis.
Figures 28–30 show the results for a Kuroda 2017

s11 injection with SNR 15. This is detected at an output
SNR of 14.7 by the cWB pipeline and at SNR 20.8 by
the MuLaSECC pipeline. It is important to note that the
MuLaSECC pipeline has been able to reconstruct the
low frequency part of the signal below 100 Hz. In
addition, the amplitude spectrum seems to have a
stronger feature between the 500–600 Hz range. This
has been missing in the cWB reconstruction. These plots
also demonstrate a more extensive reconstruction of the
duration of the signal as picked up by the MuLaSECC
pipeline. Figures 31–33 show the results for an Ott 2013
s27 injection with SNR 15. This is detected at an output
SNR of 12.1 by the cWB pipeline and at SNR 15.0 by
the MuLaSECC pipeline. It has been able to reconstruct
the low frequency part of the signal below 100 Hz.
This has been missing in the cWB reconstruction. A
more extensive reconstruction of the duration of the
signal as picked up by the MuLaSECC pipeline has
been demonstrated.

FIG. 16. This figure shows the spectrogram of the Ott 2013 s27
signal detected at an output SNR of 7.8 by the MuLaSECC
pipeline for the L1 (bottom panel) and the H1 (top panel)
detectors.
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V. DISCUSSION AND CONCLUSION

The study focused on development and implementation
of a search pipeline that will increase the probability and
efficiency of detecting GW signals from CCSN. The
pipeline is based on a multilayer signal estimation algo-
rithm that works in an integrative manner with the cWB
pipeline to achieve a higher detection SNR at the output,
with corresponding reduction in false alarm using the
CNN that is amalgamated with the search pipeline. The
results obtained are of high significance for several

reasons. These include detection of weak signals (in the
SNR range of 6–7) by the MuLaSECC pipeline. These
input signals eluded the cWB. In addition, the signals
detected at the output of the MuLaSECC pipeline have
consistently higher SNR for all ranges of injected signal
strengths. A notable result is the ability of the MuLaSECC
pipeline to reconstruct the signals over a much broader
range of frequencies, especially in the low frequency
region that is of utmost importance in case of evolution of
the GW signals from CCSN. Looking at the reconstructed
signals in a time-frequency plane, it is found that the

FIG. 17. The figure shows the reconstruction of the detected Ott 2013 s27 signal waveform at the H1 and L1 detectors. In this figure,
the L1 results are in the left hand column and the H1 results are in the right hand column. The top panels show the band-limited signal
with the original in black and the reconstructed signal in red. The middle panels show the injected (in black) vs reconstructed (in red)
whitened signal time series. The bottom panels display the amplitude spectra of the injected (black) vs reconstructed (red) whitened
signal data.
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signals detected by the MuLaSECC pipeline are recon-
structed over a longer (20–30 ms) duration that before.
The Kuroda 2017 s11 model has presented 3D-GR core-

collapse simulations with approximate neutrino transport
for a nonrotating progenitor of 11.2 solar masses. The SASI
produced characteristic time modulations both in the
neutrino and GW signals. The typical frequency was in
the range of around 100–200 Hz. It has been emphasized
in [23] that a GW signal reconstruction study is a
most urgent task that needs to be performed to determine
if the SASI-induced modulation in the GW and neutrino
signals could be detected. The third generation of GW
detectors can possibly observe the SASI-modulated GW
signals; the neutrino signals can be detected by working
neutrino detectors e.g., IceCube [59] and Super-K [60].
The neutrino burst can be used to determine the core
bounce time, and this multi-messenger information can
increase the detection confidence of any CCSN GW
candidates. Thus, the method discussed in the current

paper with its higher detection probability and signifi-
cantly improved signal reconstruction help infer the
CCSN internal dynamics (e.g., the SASI) by observing
the following features:

(i) the low frequency around 100 Hz modulation in
both GW and neutrino signal and

(ii) a 10 ms time delay of the SASI-modulated GW
signal from the SASI-modulated neutrino event
rate. Even a nondetection of the correlation
could be hypothetically used to constrain the
nuclear EOS’s. From the limited number of the
EOS used in generating these waveforms, one
cannot obtain any quantitative conclusion. The
demonstrated improved performance of MuLa-
SECC is crucial to address this urgent scientific
observation during the upcoming GW detector
observation runs.

The Ott 2013 s27 model [24] represents a 3D general-
relativistic core collapse and post-bounce simulations of the

FIG. 18. The figure shows the reconstruction of the Ott 2013 s27 detected signal spectrum at the H1 and L1 detectors. In this figure,
the L1 results are in the right hand column and the H1 results are in the left hand column. The top panels show the injected signal time
frequency maps, while the bottom panels show the same for the reconstructed signal.
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27 solar mass progenitor including the effect of variations
in neutrino heating on the 3D post-bounce evolution in
general and on SASI in particular. These simulations
neither employed an artificial inner boundary nor did they
make any symmetry assumptions or approximations for the
gravitational field. For neutrinos, an energy-averaged three
species neutrino leakage/heating scheme was used in the
post-bounce phase, whose only free parameter had been a
scaling factor in the energy deposition rate. Some of the
results specific to this simulation include an early and
strong growth of convective instability that is initially
prompt, driven by the negative entropy gradient left
behind by the stalling shock. Subsequently, convection
is driven by neutrino energy deposition in the gain layer.
Neutrino-driven convection first manifests itself in small-
scale local hot and cold blobs of post-shock material. The
small scale blobs combine over time to a few large, large
volume high-entropy regions whose expansion pushes
out the shock. While neutrino-driven convection is the
fastest growing dominant instability, the Ott 2013 s27
model shows growth of periodic low-deformations of the

shock front that are characteristic of the linear phase of the
SASI. Furthermore, the SASI is shown to be the strongest
in the model with the least neutrino heating and the
weakest in neutrino-driven convection. As already stated
in [23], the simultaneous observation of neutrino and GW
signals will help scientists unravel the inner mechanisms
of a CCSN through insight into the thermodynamics and
multi-dimensional dynamics of the PNS and the post-
shock region. The Ott 2013 s27 model also suggests that a
study the GWemission from accelerated quadrupole mass
motions could be done. The frequency of GW signatures
include a strong burst of GW’s associated with post-
bounce prompt convection between 100 and 200 Hz,
followed by a higher-frequency between 400 Hz and a
kHz emission, whose amplitudes are dominated by the
deceleration of convective plumes at the edge of the
PNS. If either prompt or neutrino-driven convection
does not develop early, the GW signal would not have
a strong initial burst, but rather a slow rise to smaller
amplitudes at later times, when the SASI becomes strong.
This is a key difference and may allow GW data analysts
to distinguish between convection-dominated and SASI
dominated post-bounce evolution in the next CCSN in the
Milky Way.
Both waveform simulations above strongly hint at the

low frequency behavior of the detected signal as a crucial
discerning factor in determination of the central model
driving the CCSN explosion. What is most noteworthy in
this analysis is the ability of MuLaSECC to reconstruct
the signal with significantly greater completeness toward
the low frequency end. Thus, search for GW using the
MuLaSECC pipeline is of fundamental importance.
Effort will continue to be invested in investigating
methods to further improve the reconstructions, espe-
cially in the higher frequency end. There is a rich
repertoire of waveforms. We will analyze each of these
waveforms in phases using the MuLaSECC pipeline. We
intend to analyze the Kuroda 2017 [23] waveform
resulting from the 15 solar mass progenitor (s15) where
it has been shown by the author that the SASI effects are
more pronounced. We will also be analyzing the
Mezzacappa 2020 [27] waveforms, which indicate that
the GW spectrum in the range 20–1000 Hz will be
accessible for a galactic event. Given the capability of the
MuLaSECC method to successfully reconstruct the
detected waveforms to the very low end of the frequency
spectrum, it will be an important study. Another future
improvement from a technical point of view will be in the
area of fast glitch removal. In the current study, the
method of imputation has been used, but in future studies
we will explore more sophisticated statistically proven
methods like adaptive spline fitting with particle swarm
optimization [61] which are computationally cheap and
thus can help run the MuLaSECC analysis in minimal
latency mode.

FIG. 19. This figure shows the spectrogram of the Kuroda 2017
s11 signal detected at an output SNR of 7.8 by the MuLaSECC
pipeline for the L1 (bottom panel) and the H1 (top panel)
detectors.
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FIG. 20. The figure shows the reconstruction of the Kuroda 2017 s11 detected signal waveform at the H1 and L1 detectors. In this
figure, the L1 results are in the left hand column and the H1 results are in the right hand column. The top panels show the band-limited
signal with the original in black and the reconstructed signal in red. The middle panels show the injected (in black) vs reconstructed (in
red) whitened signal time series. The bottom panels display the amplitude spectra of the injected (black) vs reconstructed (red) whitened
signal data.
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FIG. 22. This figure shows the spectrogram of signal detected at an output SNR of 10.6 by the cWB pipeline (left column, H1 at the
top and L1 at the bottom); MuLaSECC pipeline (right column, H1 at the top and L1 at the bottom) detected an output SNR of 11.9. The
injected Kuroda 2017 s11 signal was at SNR ¼ 10.

FIG. 21. The figure shows the reconstruction of the Kuroda 2017 s11 detected signal spectrum at the H1 and L1 detectors. In this
figure, the L1 results are in the right hand column and the H1 results are in the left hand column. The top panels show the injected signal
time frequency maps, while the bottom panels show the same for the reconstructed signal.
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FIG. 23. The figure shows a comparative picture of the reconstruction of the detected signal waveform at the H1 and L1 detectors for
Kuroda 2017 s11 waveforms as obtained by the cWB and the MuLaSECC pipelines for an injection with SNR 10. In this figure, the
cWB results are in the two left hand columns and the MuLaSECC results are in the two right hand columns. For each pipeline, the left
hand column presents results from H1 and the right hand column present results from L1. The top panels show the band-limited signal
with the original in black and the reconstructed signal in red. The middle panels show the injected (in black) vs reconstructed (in red)
whitened signal time series. The bottom panels display the amplitude spectra of the injected (black) vs reconstructed (red) whitened
signal data.

FIG. 24. The figure shows the reconstruction of the detected signal spectrum at the H1 and L1 detectors for Kuroda 2017 s11
waveforms as obtained by the cWB and the MuLaSECC pipelines for an injection with SNR 10. In this figure, the cWB results are in the
two left hand columns and the MuLaSECC results are in the two right hand columns. For each pipeline, the left hand column presents
results from H1 and the right hand column present results from L1. The top panels show the time-frequency plots for the band-limited
signal. The bottom panels display the same for the reconstructed signal.

STUDY OF EFFICIENT METHODS OF DETECTION AND … PHYS. REV. D 103, 103008 (2021)

103008-17



FIG. 25. This figure shows the spectrogram of signal detected at an output SNR of 10.6 by the cWB pipeline (left column, H1 at the
top and L1 at the bottom); MuLaSECC pipeline (right column, H1 at the top and L1 at the bottom) detected an output SNR of 11.9. The
injected Ott 2013 s11 signal was at SNR ¼ 10.

FIG. 26. The figure shows a comparative picture of the reconstruction of the detected signal waveform at the H1 and L1 detectors for
Ott 2013 s11 waveforms as obtained by the cWB and the MuLaSECC pipelines for an injection with SNR 10. In this figure, the cWB
results are in the two left hand columns and the MuLaSECC results are in the two right hand columns. For each pipeline, the left hand
column presents results from H1 and the right hand column present results from L1. The top panels show the band-limited signal with
the original in black and the reconstructed signal in red. The middle panels show the injected (in black) vs reconstructed (in red)
whitened signal time series. The bottom panels display the amplitude spectra of the injected (black) vs reconstructed (red) whitened
signal data.
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FIG. 27. The figure shows the reconstruction of the detected signal spectrum at the H1 and L1 detectors for Ott 2013 s11 waveforms as
obtained by the cWB and the MuLaSECC pipelines for an injection with SNR 10. In this figure, the cWB results are in the two left hand
columns and the MuLaSECC results are in the two right hand columns. For each pipeline, the left hand column presents results from H1
and the right hand column present results from L1. The top panels show the time-frequency plots for the band-limited signal. The bottom
panels display the same for the reconstructed signal.

FIG. 28. This figure shows the spectrogram of signal detected at an output SNR of 14.7 by the cWB pipeline (left column, H1 at the
top and L1 at the bottom); MuLaSECC pipeline (right column, H1 at the top and L1 at the bottom) detected an output SNR of 20.8. The
injected Kuroda 2017 s11 signal was at SNR ¼ 15.

STUDY OF EFFICIENT METHODS OF DETECTION AND … PHYS. REV. D 103, 103008 (2021)

103008-19



FIG. 29. The figure shows a comparative picture of the reconstruction of the detected signal waveform at the H1 and L1 detectors for
Kuroda 2017 s11 waveforms as obtained by the cWB and the MuLaSECC pipelines for an injection with SNR 15. In this figure, the
cWB results are in the two left hand columns and the MuLaSECC results are in the two right hand columns. For each pipeline, the left
hand column presents results from H1 and the right hand column present results from L1. The top panels show the band-limited signal
with the original in black and the reconstructed signal in red. The middle panels show the injected (in black) vs reconstructed (in red)
whitened signal time series. The bottom panels display the amplitude spectra of the injected (black) vs reconstructed (red) whitened
signal data.

FIG. 30. The figure shows the reconstruction of the detected signal spectrum at the H1 and L1 detectors for Kuroda 2017 s11
waveforms as obtained by the cWB and the MuLaSECC pipelines for an injection with SNR 15. In this figure, the cWB results are in the
two left hand columns and the MuLaSECC results are in the two right hand columns. For each pipeline, the left hand column presents
results from H1 and the right hand column present results from L1. The top panels show the time-frequency plots for the band-limited
signal. The bottom panels display the same for the reconstructed signal.
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FIG. 32. The figure shows a comparative picture of the reconstruction of the detected signal waveform at the H1 and L1 detectors for
Ott 2013 s27 waveforms as obtained by the cWB and the MuLaSECC pipelines for an injection with SNR 15. In this figure, the cWB
results are in the two left hand columns and the MuLaSECC results are in the two right hand columns. For each pipeline, the left hand
column presents results from H1 and the right hand column present results from L1. The top panels show the band-limited signal with
the original in black and the reconstructed signal in red. The middle panels show the injected (in black) vs reconstructed (in red)
whitened signal time series. The bottom panels display the amplitude spectra of the injected (black) vs reconstructed (red) whitened
signal data.

FIG. 31. This figure shows the spectrogram of signal detected at an output SNR of 14.7 by the cWB pipeline (left column, H1 at the
top and L1 at the bottom); MuLaSECC pipeline (right column, H1 at the top and L1 at the bottom) detected an output SNR of 20.8. The
injected Ott 2013 s27 signal was at SNR ¼ 15.
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