
 

Modeling in-ice radio propagation with parabolic equation methods
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We investigate the use of parabolic equation (PE) methods for solving radio-wave propagation in
polar ice. PE methods provide an approximate solution to Maxwell’s equations, in contrast to full-field
solutions such as finite-difference-time-domain (FDTD) methods, yet provide a more complete model of
propagation than simple geometric ray-tracing (RT) methods that are the current state of the art for
simulating in-ice radio detection of neutrino-induced cascades. PEs are more computationally efficient than
FDTD methods, and more flexible than RT methods, allowing for the inclusion of diffractive effects and
modeling of propagation in regions that cannot be modeled with geometric methods. We present a new PE
approximation suited to the in-ice case. We conclude that current ray-tracing methods may be too simplistic
in their treatment of ice properties, and their continued use could overestimate experimental sensitivity for
in-ice neutrino detection experiments. We discuss the implications for current in-ice Askaryan-type
detectors and for the upcoming Radar Echo Telescope, two families of experiments for which these results
are most relevant. We suggest that PE methods be investigated further for in-ice radio applications.
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I. INTRODUCTION

Accurate modeling of radio-wave propagation in the ice
is essential for experiments seeking to detect in-ice
neutrino interactions at the highest energies. These experi-
ments (past, present, and planned) consist of radio
frequency (RF) antennas above or buried in the ice from
0 to 200 m below the surface that seek to detect radio
waves a) emitted by the cascade produced by an ultrahigh
energy neutrino interaction in the ice (the Askaryan effect

[1–6]) or b) reflected from the ionization deposit left in the
wake of the cascade (the radar echo method [7–10]). Due
to the very low flux of neutrinos with energies in excess of
1015 eV (PeV), large volumes must be instrumented in
order to detect a statistically significant number of
neutrinos. Radio-based methods for in-ice neutrino detec-
tion exploit the relative transparency of ice at radio
frequencies, which allows for radio detectors to instru-
ment very large volumes with sparse apparatus. In many
cases, a radio signal will be propagating at least in part
through a region with a changing index of refraction (nðzÞ
for the depth coordinate z), typically the top 100–200 m of
an ice sheet, called the firn.
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Typically, such propagation is treated using a formalism
of ray tracing (RT) [11–16], where a ray is propagated
along a path with discrete straight-line segments according
to the rules of geometric optics, applicable when the
wavelength is much smaller than any feature size, and
wave effects such as diffraction and interference can be
neglected. The direction of each segment is dictated by the
given refractive index profile, which is typically a func-
tional fit to data. These methods are computationally
efficient, reaching solutions on the order of a millisecond
(ms). This allows for use in Monte Carlo simulations.
Recent studies [17] have shown, however, that more
complete modeling of the firn, simulated using finite-
difference-time-domain (FDTD) methods, can replicate
observed signal features in data [18,19] that ray-tracing
solutions can not. Moreover, it has been shown that density
fluctuations in the ice can complicate propagation.
A density profile, ρðzÞ, can be converted to an index of
refraction profile, nðzÞ, via the expression nðzÞ ¼
1þ 0.845ρðzÞ [20]. These fluctuations can result in unex-
pected amplitudes as a function of source and receiver
geometry (if the exact density profile is not known, which is
typical), as well as horizontally propagating modes for
certain source and receiver configurations. These effects
are most pronounced at shallow depths, near the surface of
the ice, where density variations are maximized. So, while
RT methods have many strengths, they do not provide a full
picture of radio propagation, and therefore result in
limitations on event reconstruction, both for neutrino arrival
direction and primary energy, for which the properties of
the received signal spectrum are of paramount importance.
The FDTD formalism is robust [21] but is computationally

expensive. The entire purpose of using radio to instrument
large volumes of ice in search of ultrahigh energy neutrino
interactions is to cover a massive volume with minimal
apparatus, and detect signals across great distances, yet it
is intractable (and in some cases impossible) to simulatewide
band time-domain signals over kilometer scale baselines
using FDTD methods. Therefore, in this article we explore
whether simple parabolic equation (PE) solvers, similar to
those used for decades in atmospheric propagation studies
[22] and undersea acoustic studies [23–27], can be applied
to the problem of in-ice radio wave propagation. [28] An
example of a PE solution for a 350 MHz continuous-wave
radio from a transmitter 100 m beneath the ice is shown in
Fig. 1.We find that, while prone to phase errors due to the rate
of change of the nðzÞ profile, PEmethods generally provide a
more accurate modeling of the spectral content of a signal
(using FDTD as a baseline) than RT methods. A better
modeling of the spectral content of simulated signals may
improve energy and arrival direction reconstruction relative to
methods currently being used.
The article is organized as follows. We first introduce the

PE method and show validation studies against an open
source FDTD package (meep [30]) over a small domain

where FDTD routines are tractable. We compare also to
ray-tracing solutions in the range of their validity. We then
extend the study to simulate time-domain signals at long
baselines with PE and RT methods. We conclude by
discussing next steps and the implications for current
and future experiments.

II. IN-ICE SIMULATION METHODS

There are three simulation methods that we discuss in
this paper: PE, FDTD, and RT. In this section, we introduce
these, focusing on the PE methods, which are being
introduced to the problem of in-ice radio detection of
neutrinos for the first time.

A. Ray-tracing methods

In-ice ray tracing is currently the standard simulation
technique for experiments seeking to detect in-ice neutrino
interactions using radio. RT methods take the infinite
frequency limit and solve for the multiple paths that a
signal can travel from source to receiver, often designated
“direct” (the signal that travels from a source to receiver on
an arc without intercepting the surface) and “reflected” (the
signal that reflects from air/ice interface). In general, a
particular transmitter–receiver geometry will admit one or
two ray path solutions. In all cases, rays travel along curved
paths when traversing the firn. RT methods have analytic
solutions for some forms of the index of refraction profile
and, in general, are numerical solvers that can provide
vertexing (identification of the location of the RF source)
based on time-difference-of-arrival (TDOA) of different
antennas. If a receiver is in a geometry where both direct
and reflected signals are present, then a TDOA between
direct and reflected can be an additional powerful variable

FIG. 1. An example of radio propagation modeled by the para-
bolic solver, using the indexof refractionprofile from the southpole,
derived from SPICE [29] core data in the top 100 meters and a
functional fit below. For this figure we model a 350 MHz continu-
ous-wave radio from a dipole source 100 m below the surface.
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for vertex resolution. RT methods are computationally
efficient and some implementations can use arbitrary
(i.e., nonfunctional) nðzÞ profiles. In all cases, however,
they rely on geometric optics to calculate propagation. In
this article, we use RT for a functional nðzÞ profile, as well
as a data-driven nðzÞ profile as explained below. To
optimize the RT simulation, the step size scale factor
was reduced until convergence, with time delay precision
better than 0.1 ns.

B. Finite-difference-time-domain methods

These methods solve Maxwell’s equations numerically
on a spatial grid in the time domain. They are a standard for
time-domain electromagnetic modeling in antenna design,
interference analysis, and numerous other applications.
Because they involve approximations only in the discre-
tization of the problem, they are accurate as long as the grid
spacing is sufficiently small for the frequencies of interest
(a good approximate rule is a minimum of ten cells per
wavelength). In this work we have simulated everything on
a 5 cm grid for both FDTD and the PE methods described
below, which is sufficient for frequencies up to 600 MHz,
in excess of what we simulate in the work. The primary
drawbacks to FDTD methods are the large memory
requirements (which for cylindrical volume of R by Z
with resolution r scales with RZr2) and the long computa-
tional time (which scales with RZr3).

C. Parabolic equation methods

The PE is an approximation of the full wave equation,
which can be solved to allow for stepping solutions for field
propagation. Simply, this means that in order to calculate
the electric field at some distance from your source (the
range coordinate, here denoted x) you only need the electric
field at the previous range step. This stepping, as opposed
to solving for the electric field across the entire simulation
domain at each time step (FDTD), results in significantly
lower computational cost. It does, however, come at the
expense of accuracy. The parabolic equation is only valid
within a certain angular range of the propagation direction
(called the paraxial direction) and only (at least for the
simple simulation shown here) includes forward propagat-
ing fields.
Our implementation of the PE method (a wide-angle

split-step solver, described below) is based on the afore-
mentioned standard reference works for in-air electromag-
netic and in-water acoustic PE solvers. We extend these
standard methods with a new modified split-step approxi-
mation motivated by the in-ice problem. We present the
derivation and details of the PE in Appendix A, including
the updated split-step approximation. Wide angle means
that the solution is valid at wider angles to the paraxial
direction (up to 90° depending on frequency). Split step
means that at each step in range, the solution is split into

diffractive and refractive components, solved for sequen-
tiality (this is equivalent, in this case, to splitting the
solution at each step into time and frequency domain
components). The cylindrically symmetric field
ψðx; θ; zÞ, polarized along θ, is solved for via Eq. (1),
which shows the reduced field uðx; zÞ ¼ ffiffiffi

x
p

e−ik0xψ
(assuming an eiω0t time dependence) for a range step
xþ Δx. Use of the reduced field in this form allows for
the solution of the wave equation for ψ [see Eq. (A4)] in a
convenient form. It is only dependent on the previous range
step, is cylindrically symmetric, and valid in the far field.
Denoting by F and F−1, a forward and backward

Fourier transform, respectively, and k0, kz, the reference
wave number and the Fourier space wave number, respec-
tively, the field at range step xþ Δx is given by
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where n ¼ nðx; zÞ, and n0 is a reference index of refraction
corresponding to the reference wave number. This is built
into a FOSS PYTHON code [31] available on GitHub.
The PE method, as described, is a spatial solver. To

implement the PE solver in the time domain, we decom-
pose the spectrum of a time-domain source pulse into the
individual Fourier modes and simulate each mode using
the associated complex amplitude. We then synthesize a
received spectrum in the same way at a particular receiver
position and take the inverse transform to arrive at a
received signal. An example of this is shown in Fig. 2
where a time-domain impulse bandlimited from 90 to
250 MHz, using a fourth-order Butterworth filter, is
simulated in FDTD, PE, and RT from a transmitter at
30 m depth. The received signal for a receiver 100 m
away in range at a depth of 25 m, using a functional form
for nðzÞ at the South Pole (nðzÞ ¼ A − Be−Cz, with
A ¼ 1.78, B ¼ 0.43, and C ¼ 0.0132 m−1), is shown.
Clearly visible in all three time-domain waveforms, result-
ing from the three propagation methods, are the direct and
reflected signals, as the signal will be seen both directly and
reflected from the ice/air boundary for this geometry. We
also show the spectrum for the direct and reflected pulses
separately. We will discuss the properties of this waveform
in detail in a later section, where we make more compar-
isons between the three methods for a variety of transmitter/
receiver locations and for different nðx; zÞ profiles.
The two main differences between the parabolic equation

and the FDTD solutions are the source definitions and
boundary conditions. In a typical FDTD simulation, a
physical source is defined, an excitation applied to this

MODELING IN-ICE RADIO PROPAGATION WITH PARABOLIC … PHYS. REV. D 103, 103007 (2021)

103007-3



source, and the fields are calculated as a function of
position and time. For the PE methods, a source is defined
as the full reduced function (see Appendix B) along a single
range step (e.g. definition of a source at range step 0 means
defining the reduced function at every point along z at that
range step). Boundary conditions in FDTD simulations are
handled by solving the solutions numerically for varying
material properties on a grid. Boundary conditions, includ-
ing boundary roughness, are handled in PE in various ways.
For the present studies, we implement a flat surface with air
above and an nðzÞ profile below, corresponding to either a
uniform density or the density profile of the South Pole, but
we implement this “boundary” as part of a complete nðzÞ
profile. That is, boundary conditions are not put in “by
hand” as they sometimes are in PE applications, but
instead, the fields are reflected from the surface as though
it were a density fluctuation within a continuous nðzÞ
profile. This results in good agreement with FDTD for
direct and reflected amplitudes when using the split-step
approximation shown here. Further study is needed to
verify the validity of our implementation of this boundary
treatment but comparison to FDTD implies that it is a
reasonable approach.

III. RESULTS

In this section we show several comparisons between
the various methods for different geometries and nðx; zÞ
profiles. The first section presents the results for a selection
of receiver geometries and a functional profile for the ice at

the South Pole, which is the same profile at every range step
x, hence n ¼ nðzÞ. The functional form of nðzÞ is a three
parameter fit to the measured data as used in radio codes.
The second section shows the results for the same geom-
etries, albeit with data-derived n profiles. We show the case
where we apply the same nðzÞ profile to every range step
for two different density data samples taken at the South
Pole Ice Core Experiment (SPICE) core [29]. These
profiles are obtained from experimental data but applying
them uniformly in range may result in waveguidelike
behavior, overestimating the effect of the firn, so some
care is needed in the interpretation of the results. To address
this, we also show the results for the case where we linearly
interpolate between the two SPICE cores along the range
domain of the simulation, hence n ¼ nðx; zÞ, a scenario
justified by experimental data, discussed below. In the
comparison figures in this article, we compare normalized
amplitudes to emphasize relative timings and spectral
content. All signals are aligned via cross-correlation in
the time domain.
The source for all waveforms is a vertically-polarized

(axis along z at x ¼ 0) dipole. This is implemented in
FDTD as a dipole current source, and in PE as an initial
source model (detailed in Appendix B). To get a time-
domain waveform out of RT [32,33], one needs four
parameters: the time of arrival of the first pulse, the time
of arrival of the second pulse, the Fresnel coefficient for the
reflection from the surface (if there is a reflected path), and
the “launch angle” of the transmitted signal(s). We use this
launch angle to select the appropriate output pulse(s) at 1 m
from the FDTD source. We then delay the first and second
pulses by their associated time delays and scale the second
pulse by the (complex) Fresnel coefficient and by the
relative path length difference between the first and second
pulse to obtain an amplitude (and appropriate phase shift
for pulses undergoing total internal reflection). Ice signal
absorption is not currently included in any of the methods
shown here but will be investigated in future work. In
general, we find that PEs consistently outperform RT
(qualitatively) for agreement with FDTD in the time
domain, and most noticeably in the frequency domain.

A. Functional nðzÞ profile
An example of a received signal has been shown in

Fig. 2, as described above. In this configuration, the source
and receiver are at roughly the same depth, and the vertical
receiver is 100 m horizontally displaced from the source.
In such a configuration, both the direct and reflected
pulses are evident. The path from source to receiver is
not described by a straight line in either case. The wave
front, instead of radiating away with uniform velocity, as
would be the case in a uniform medium, progresses with a
depth-dependent phase velocity, distorting its shape. For a
smoothly varying index of refraction that increases with
depth, this results in lower velocities deeper down and

FIG. 2. Time domain (top) and frequency domain (bottom)
comparisons between FDTD (thin solid line), PE (thick solid
line), and RT (dashed line) for a source at x; z ¼ ð0;−30Þ m and a
receiver at x; z ¼ ð100;−25Þ m, with a functional nðzÞ profile
corresponding to a fit to South Pole data. The two frequency
domain plots correspond to the direct (left) and reflected (right)
pulses in the time-domain signal.
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higher velocities near the surface. Thus, a horizontally
propagating wave front will be “bent” down from hori-
zontal when moving through such a depth-dependent index
of refraction profile. Small scale fluctuations will cause
local variations in the phase velocity, further distorting the
wave front.
In Fig. 3 we show the peak field at discrete range steps in

x for PE and FDTD for a 135MHz continuous-wave signal.
We note the following: First, the envelope of the two shows
good agreement. The depth of the troughs in the interfer-
ence pattern is a measure of the relative strength of the
direct and reflected signals as they interfere, and here we
see that the z profiles, normalized to their peak amplitude,
show good similarity throughout the depth. If, for example,
the surface reflection coefficient were higher, then the peak/
trough ratio in the interference pattern would be increased
since the reflected signal strength would be closer to the
direct. In addition to the depth of the troughs, the general
shape of the envelopes (that is, the overall trend with z of
the left and right extent of the interference pattern) is
similar, indicating that the source function in PE is a decent
approximation of the dipole simulated by the FDTD
methods. The envelopes would differ if, for example,
one were a directive antenna (which would see higher
amplitudes at the peak of the antenna’s gain pattern).
Second, the location of the “shadow zone” boundary, that
is, where the fields “turn on” in depth, is well matched
between the methods at all ranges. This is important for
studies about horizontal propagation and will be discussed

in more detail below. Third, we see that there is some
disagreement in the phase of the interference pattern
between the methods as a function of depth. We found
that some of this disagreement can be mitigated by the use
of an appropriate reference wave number (discussed later),
but some disagreement persists. Some methods [26] have
introduced modified indices of refraction to solve this issue
for the acoustic case, but as yet, we have not found a
suitable method to do so for the large values of nðzÞ in ice.
We believe this is a solvable problem. In any case, this
interference pattern does not seem to measurably affect the
time-domain signals being analyzed in this paper; perhaps a
detailed phase analysis would shed some light, but for now
this is beyond the scope of our introductory study.

B. Measured nðx;zÞ Profile
The SPICE [29] extracted a 1751-meter long ice core at

the South Pole. While drilling the main core, two shallow
samples were taken from the top ∼100 m of the ice sheet
(also known as “firn”). These shallow cores were measured
every half meter for density, and from that, an index of
refraction can be calculated. Figure 4 shows the data for the
two cores along with the functional fit used in RT. It is clear
that there are differences between the cores and the func-
tional fit but also between the two cores themselves. The
dataset does not provide measurement errors on these
density measurements, though density measurements from
other sites in Antarctica and Greenland [34,35] show
similar variations with depth. We use these measurements
as is for purposes of investigating how changes in the
density profile affect propagation and whether this can be
modeled with PE methods.

FIG. 3. A comparison for discrete range steps for the maximum
value of the received field, for PE (solid line) and FDTD (dashed
line). This is for a continuous-wave 135 MHz signal, with the
direct and reflected interference pattern evident. From left
to right, range steps of 200, 275, and 350 m are shown. The
curves have been normalized to the peak x-axis value to assist
comparison.

FIG. 4. The nðzÞ profile (top panel) as measured by the two
SPICE core [29] firn holes (core 1, thick solid line, core 2 thin
solid line), along with the functional fit (dashed line) to these data
used for ray-tracing codes at the South Pole. Residuals are
shown below.
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RT methods do not (in general) take into account
reflections from small-scale density fluctuations, which
seem to contribute to the overall change in the propagated
signal. We find, as one might expect, that when density
fluctuations are taken into account in PEs, the agreement
between FDTD and PE improves, while the agreement
between RTand the wave methods gets worse. We simulate
three different scenarios for the data-driven case:

(i) SPICE core #1 at all x.
(ii) SPICE core #2 at all x.
(iii) nðx; zÞ with each slice in x linearly interpolated

between SPICE core #1 at x ¼ 0 and core #2 at
x ¼ 300 m.

Note that in the following comparisons, the third case
(linear interpolation) is shown compared to the RT result
from SPICE core #2. This is due to limitations in the RT
implementation used, for which n cannot vary with range.
This limitation is present in all known RT methods for in-
ice radio propagation at the time of this writing.
From ground-penetrating radar (GPR) data [36,37], we

see that fluctuations in nðzÞ remain more-or-less constant
over hundreds of meters to kilometers. Therefore, for this
present study, we have decided that 300 m is a reasonable
range over which to linearly interpolate between two
different profiles in order to simulate a more realistic ice
profile. In Fig. 5 we show the two cores and two simulated
cores at 1=4 and 3=4 of the way in range, used to make the
full nðx; zÞ map. The full nðx; zÞ is likely the truest to the
actual configuration of the firn, though truly local defects
are not included, and the 300 m correlation length is a data-
driven approximation. Future models can perhaps use the
density information from GPR surveys to back out a more
accurate ice density model. In reality, all three of these
methods may over or underestimate the amplitude or the
discretization of the nðx; zÞ profile in either range or depth,
and the present study is simply meant to show that changes
in the nðzÞ profile can alter the received signal spectrum

with respect to idealized ice models. We note that this
nðx; zÞ model also, in all three cases, preserves the
deviation in the top ∼20 m of the ice that has been
observed experimentally [18] to cause time-of-arrival
inversions for horizontally propagating signals.
First, we show the same configuration as Fig. 2

(source ¼ ð0;−30Þ m, RX ¼ ð100;−25Þ m) for each of
the three configurations listed above in Figs. 6, 7, and 8,
respectively. Notice the agreement in waveform shape,
timing of the direct and reflected pulses, and the relative
amplitudes of the two pulses in each. For this configuration,
where the first and second pulses are clearly distinguish-
able, we show individual spectra for the direct and reflected
pulses below the time-domain waveform, with each spec-
trum corresponding to the pulse above it. The agreement
between all three methods for the functional profile is quite
good; discrepancies become apparent between RT and the
wave methods as nðx; zÞ deviates from the pure functional
form. We do not explore in this article whether modifica-
tions can be made to existing RT methods to capture the
physics of the wave methods.
We then show plots for the three different n configura-

tions as above but this time for a source at ð0;−100Þ m and
RX at ð250;−2Þ m in Figs. 9, 10, and 11, respectively. We
see that the difference between RT and the wave methods
becomes pronounced, particularly in the frequency domain.
There is some discrepancy between PE and FDTD in the
frequency domain as well, but the overall shapes are
qualitatively similar. The wave solutions lose more low

FIG. 5. The residuals of the nðzÞ profile and the functional fit
fðzÞ, as measured by the two SPICE core firn holes (core 1, thick
solid line, core 2 thin solid line), along with profiles linearly
interpolated at 1=4 (dashed) and 3=4 (dotted) interval between
these two, used in the interpolated nðx; zÞ case.

FIG. 6. Time domain (top) and frequency domain (bottom)
comparisons between FDTD (thin solid line), PE (thick solid
line), and RT (dashed line) for a source at x; z ¼ ð0;−30Þ m and a
receiver at x; z ¼ ð100;−25Þ m, with an nðzÞ profile correspond-
ing to the first of 2 SPICE core firn samples. The two frequency
domain plots correspond to the direct and reflected pulses in the
time-domain signal.
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frequency power as they advance spatially and temporally
and, in some cases, become more peaked, which can be
understood intuitively: the nðx; zÞ profile acts as a rough
lens. As the field propagates through this lens, a) low
frequency power is lost more rapidly simply due to
aperture, and b) certain frequencies are (de)focused more

than others for particular geometries. The envelope of the
RT spectrum is always bounded by the envelope of the
initial pulse (by construction since the eventual signal is
constructed from the initial pulse, shifted in time, scaled,
and in some cases phase shifted), but the wave methods
allow for physical frequency dependent effects to be more
readily modeled. We also note that the alignment of the
traces, performed with cross-correlation, becomes poorer at

FIG. 8. Time domain (top) and frequency domain (bottom)
comparisons between FDTD (thin solid line), PE (thick solid
line), and RT (dashed line) for a source at x; z ¼ ð0;−30Þ m and a
receiver at x; z ¼ ð100;−25Þ m, with an nðx; zÞ profile corre-
sponding to a linear interpolation between the first SPICE core at
x ¼ 0 and the second SPICE core at x ¼ 300 m.

FIG. 9. Time domain (top) and frequency domain (bottom)
comparisons between FDTD (thin solid line), PE (thick solid
line), and RT (dashed line) for a source at x; z ¼ ð0;−100Þ m and
a receiver at x; z ¼ ð250;−2Þ m, with an nðzÞ profile correspond-
ing to the first of 2 SPICE core firn samples.

FIG. 10. Time domain (top) and frequency domain (bottom)
comparisons between FDTD (thin solid line), PE (thick solid
line), and RT (dashed line) for a source at x; z ¼ ð0;−100Þ m and
a receiver at x; z ¼ ð250;−2Þ m, with an nðzÞ profile correspond-
ing to the second of 2 SPICE core firn samples.

FIG. 7. Time domain (top) and frequency domain (bottom)
comparisons between FDTD (thin solid line), PE (thick solid
line), and RT (dashed line) for a source at x; z ¼ ð0;−30Þ m and a
receiver at x; z ¼ ð100;−25Þ m, with an nðzÞ profile correspond-
ing to the second of 2 SPICE core firn samples. The two
frequency domain plots correspond to the direct and reflected
pulses in the time-domain signal.
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this distance, as the shapes of the pulses diverge. In these
cases, it is instructive to look at the frequency domain plots
to see the spectral content, as the time-domain signals can
show deceptive (dis)agreement. This is most evident in the
pulses in the interpolated nðx; zÞ case (Fig. 11), where the
time-domain signals look similar “by eye,” but the spec-
trum shows clear peaking and is quite similar for FDTD
and PE. The loss of low frequency power is significant;
at 120 MHz for example, the discrepancy between PE and
RT is ∼15 dB in power.

C. Shadow-zone propagation

A distinct advantage of wave methods is that they can be
used to simulate propagation in regions where RT methods
find no solution, the so-called “shadow” or “forbidden”
zone. This is the region beyond the most distant caustic of
the field that bends from source to receiver (in Fig. 1 a
receiver at ðx; zÞ ¼ 325;−5 would find itself in the shadow
zone). Wave or field methods solve for the field at each
point in the domain, so there are no forbidden zones. We
show in Figs. 12 and 13 a comparison between FDTD and
PE for a receiver position for which ray tracing does not
permit a solution, because it is in the shadow zone.
Figure 12 is for a functional nðzÞ profile, and Fig. 13 is
for the linearly interpolated nðx; zÞ profile. There is decent
agreement between FDTD and PE in time and frequency in
both cases (albeit with discrepancy in arrival time of the
second pulse for the functional nðzÞ parametrization, see
Fig. 12, top right panel). The source of this discrepancy is
not known but investigation of such signals could identify

the specific processes (see e.g. [38] for a tutorial on
boundary phenomena) behind these shadow zone signals.
Since shadow zone signals have been observed [18,19],
studied with FDTD [17], and investigated phenomenologi-
cally [39], any new simulation must include such effects,

FIG. 11. Time domain (top) and frequency domain (bottom)
comparisons between FDTD (thin solid line), PE (thick solid
line), and RT (dashed line) for a source at x; z ¼ ð0;−100Þ m and
a receiver at x; z ¼ ð250;−2Þ m, with an nðx; zÞ profile corre-
sponding to a linear interpolation between the first SPICE core at
x ¼ 0 and the second SPICE core at x ¼ 300 m.

FIG. 12. Time domain (top) and frequency domain (bottom)
comparisons between PE (thick solid line) and FDTD (thin solid
line) for a source at x; z ¼ ð0;−30Þ m and a receiver at
x; z ¼ ð250;−2Þ m, with a functional nðzÞ profile for the South
Pole. The columns in the time and frequency domain plots
correspond to the first and second signals, respectively.

FIG. 13. Time domain (top) and frequency domain (bottom)
comparisons between PE (thick solid line) and FDTD (thin solid
line) for a source at x; z ¼ ð0;−30Þ m and a receiver at
x; z ¼ ð250;−2Þ m, with nðx; zÞ corresponding to a linear inter-
polation between the SPICE core 1 at x ¼ 0 and SPICE core 2 at
x ¼ 300. The columns in the time and frequency domain plots
correspond to the first and second signals, respectively.
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which PE method does (at least qualitatively). Further
investigation into these effects is underway.

D. Larger simulation domain

The results presented so far have been shown for a
domain tractable for FDTD simulations, however, true
neutrino vertices are expected to be much deeper in the
ice. The PE solver can produce time-domain waveforms
over arbitrarily large domains on manageable timescales.
This code computes a time-domain waveform for the
bandwidth in this paper on a 1.5 × 1.5 km domain in
about 0.5 CPU thread hours (compared to ∼40 for FDTD)
and has not been optimized. The Fourier synthesis time-
domain method is well-suited for parallelization and is
being explored. We note that, while these times offer
improvement over FDTD, they are still much longer than
RT solutions. Therefore, PE solvers would not (at this
stage) replace RT for all operations but only for those in
which, greater spectral accuracy is sought. In this section
we present some waveforms comparing RT and PE on a
larger domain and summary figures showing how the
spectrum of a waveform changes as a function of viewing
angle for a receiver, with implications for experimental
design and neutrino event reconstruction. We place a
transmitter at 1050 m below the ice surface and model
the same band-limited pulse from a dipole source as before.
This time, however, the domain is large for the FDTD, so
we only compare PE and RT. We use a SPICE profile for
nðzÞ. In Fig. 14, the receiver is placed at a horizontal
displacement of 1350 m and a depth of 120 m beneath the

ice surface. The four panels correspond to the direct (left)
and reflected (right) pulses in the time (top) and frequency
(bottom) domains. There are several things specifically to
note. First, the direct pulse has a spectrum that agrees
fairly well between PE and RT, with some distortion.
Second, the reflected pulse is far more distorted than the
direct pulse, as this has traversed more of the firn en route
to the receiver. For this particular geometry, the spectrum
largely traces out the envelope of the frequency-domain
spectrum of the RT signal, but this may not be true, in
general. Third, there is a time offset between PE and RT
for the reflected signal. Further work is needed to inves-
tigate the source of this offset.
Next, Fig. 15 plots the same setup but for a receiver just

2 m beneath the ice surface. Note the disagreement between
RT and PE. The time-domain signals are aligned by their
maximum cross-correlation value, but the pulses are so
dissimilar that this alignment is largely meaningless here.
There is evidence of interference from the surface, but also
the signal in the PE is more strongly peaked, indicating that
there could be evidence of waveguidelike phenomena at
this particular distance. The envelopes of the spectra, also,
do not agree well.
Finally, we show two plots that generalize (qualitatively)

the importance of developing a wave simulation method
(PE or otherwise) to apply to the in-ice radio propagation
problem. In Fig. 16 we plot the received spectra as a
function of depth for receivers in the top 200 m of the ice at
a horizontal displacement of 1 km from a transmitter buried
1050 m in the ice. This is the spectrum of the first 100 ns of
a received pulse (with the same parameters as the pulses in

FIG. 14. Time domain (top) and frequency domain (bottom)
comparisons between PE (thick solid line) and RT (thin solid
line) for a source at x; z ¼ ð0;−1050Þ m and a receiver at
x; z ¼ ð1350;−120Þ m, with a nðzÞ profile corresponding to
the second of 2 SPICE core firn samples. The columns in the
time and frequency domain plots correspond to the direct and
reflected signals, respectively.

FIG. 15. Time domain (top) and frequency domain (bottom)
comparisons between PE (thick solid line) and RT (thin solid
line) for a source at x; z ¼ ð0;−1050Þ m and a receiver at
x; z ¼ ð1350;−2Þ m, with a nðzÞ profile corresponding to the
second of 2 SPICE core firn samples.
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the rest of this article). We restrict the spectrum to this
window to reduce the effect of interference from
directþ reflected signals, which is still evident in the
near-surface pulses for which direct and reflected both lie
within this 100 ns window. (Note that, in general, the direct
pulse is affected less than the reflected pulse, spectrally.) This
is for an index of refraction profile corresponding to the first
of two SPICE core profiles applied at all x. While this may
overestimate certain waveguide behavior, it is also an
appropriate guess for a possible realistic ice profile, as
discussed previously. Clearly visible near the surface are
interference patterns (from direct and reflected pulses in
close proximity) but also oscillations in the overall amplitude
of the spectrum with depth. These oscillations gradually
diminish with depth, with the spectrum becoming smoother

as receivers get deeper, and are not an interference effect but a
result of propagation through the firn. There is a band at
around −140 m that shows some deviation from the smooth
spectrum; this is perhaps somewaveguidelike phenomena or
interference from multiple scattering.
Figure 17 shows the same but for RT methods. The

interference near the surface is evident, but the oscillatory
behavior as a function of depth is not.

IV. IMPLICATIONS FOR CURRENT
AND FUTURE EXPERIMENTS

The initial results from this first work on in-ice PE suggest,
in agreementwith previous studies using FDTD [17], that the
effect of the ice on propagation may be significant, particu-
larly for receivers in the firn. Specifically, Fig. 16, which
shows a marked difference in the spectral content received at
receivers shallow and deep from the same deep pulse,
warrants further investigation into PE methods.
Preliminarily, these results suggest that to avoid the

effects of the firn, receivers should be placed below it in the
denser more uniform ice from centuries past. These results
further suggest, in agreement with previous studies, that ray
tracing alone oversimplifies propagation through the ice in
ways that can have an effect on energy and position
reconstruction for in-ice neutrino detectors, particularly
for shallow receivers near the top of the domain in Fig. 16.
Receivers in this location reside in regions with the most
strongly varying density profile (Fig. 4). In this section we
briefly discuss the potential implications for the two classes
of radio based in-ice neutrino detectors, Askaryan and
radar echo.

A. Askaryan detectors

Askaryan detectors rely on detecting the impulsive
signals produced via the Askaryan effect. These impulsive
signals are broadband and achieve their maximum band-
width directly at the preferred Cherenkov angle, which in
deep ice is approximately 55° from the cascade axis. The
spectral content of the received signal (via useful variables
such as spectral slope [40]) can elucidate where the
received radio originated from with respect to this
Cherenkov angle (radio at the Cherenkov angle is typically
called “on-cone” because this radiation is radially sym-
metric on a cone at this angle about the cascade axis). A
knowledge of where on the cone radio originated from
allows for a signal’s radio direction to be translated into a
neutrino arrival direction, which can then be used to look
for sources on the sky.
The received signal is affected by propagation through

the ice in ways that affect the spectrum. For some
geometries (such as Fig. 15), we see that the spectra are
very different for signals simulated with PE and RT. If an
idealized ice model is assumed, as in RT methods, then the
received spectrum is assumed to be the source spectrum

FIG. 16. Spectrum of the first 100 ns of a received signal for
varying receiver (RX) depth using parabolic equations. This is for
a transmitter buried 1050 m in the ice, displaced 1 km in range
from the receivers. The scale is dB (power) relative to the
transmitter output.

FIG. 17. Spectrum of the first 100 ns of a received signal for
varying receiver (RX) depth using ray tracing. This is for a
transmitter buried 1050 m in the ice, displaced 1 km in range from
the receivers. The scale is dB (power) relative to the transmitter
output.
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(i.e. no spectral changes occur as a result of propagation).
As such, measurements of the spectral properties will lead
to error in reconstructing the neutrino arrival direction, due
to spectral changes that happened to the signal en route. By
studying and classifying these changes, reconstruction of
neutrino arrival direction may be improved.
These results are not in tension with other studies,

such as Ref. [41], that show good vertex resolution for
near-surface systems. These studies rely on the time of
arrival difference between antennas (measured by cross-
correlating the signals in different receivers) to point back
to the source (in the case of Ref. [41] a transmitter lowered
down the SPICE borehole), which does not rely on the
shape of the pulse itself. The error in a measurement like
this is then primarily down to the ability to identify the
arrival time of a pulse. Signals such as those in Fig. 15 may
have different arrival times depending upon how this is
measured, that being first rise above some threshold, peak
amplitude of some envelope, or cross-correlation between
channels, but this error results in a fairly small error in
actual pointing (and in fact, if relying on the average of
many pulses, tremendously precise measurements may be
achieved in this way [33]). However, the pulses in Fig. 15
themselves, and more importantly their spectra, are sig-
nificantly dissimilar such that if one wanted to extend a
study from vertexing a neutrino interaction to an arrival
direction study, which requires analysis of the spectrum to
know where the event lies on the Cherenkov cone, these
different pulses would provide different results. Therefore,
while RT may allow for event vertexing with small error,
the error on the actual neutrino arrival direction could
be significant. A quantitative analysis of these effects is
beyond the scope of this article, but we suggest based on
these results that such analysis be performed. A more
complete understanding of the spectral content of received
signals can lead to an improvement in reconstruction over
what is currently available in simulation codes.
Furthermore, if we look instead at the way an arrival

spectrum changes for a fixed receiver as the transmitter
is swept in depth, then we see another subtle issue with
assuming an idealized ice model. In Figs. 18 and 19 we see
that the signal in a single antenna does not change
significantly except for the interference pattern from the
direct and reflected timing and simple 1=r changes. But this
information, coupled with that in Fig. 16, is cause for
concern because one may not know whether they lie in the
peak or trough of a large-scale oscillation or waveguidelike
structure that may artificially enhance or diminish certain
frequencies, or the overall amplitude. Therefore, for anten-
nas in this part of the ice, in situ surveys with antennas at
various depths and positions may be able to give a handle
on this potential reconstruction systematic.

B. Implications for radar echo detection

The Radar Echo Telescope (RET) is a new detector
technology that seeks to detect in-ice neutrinos via active

radar sounding. When an ultrahigh energy (UHE) neutrino
interacts in the ice, it produces a cascade (the same cascade
that emits radio via the Askaryan effect). As this cascade
moves relativistically through the medium, it ionizes the
medium, leaving behind a short-lived cloud of ionization
that can reflect incident radio waves. RET plans to deploy
transmitting antennas to illuminate a volume of ice, as well
as receiving antennas to monitor that same volume of ice, in
order to detect neutrino-induced ionization deposits in this
illuminated region. The radar echo method has recently
been validated in the laboratory [10], and a prototype in situ
detector is under development.
The received signal that RETwill detect is very different

from the Askaryan signal. Because RET uses active radar,
the received signal is largely a function of the transmitted
signal, coupled with the effects of the transmitter-cascade-
receiver geometry. Similarly to Askaryan methods,

FIG. 18. Spectrum of the first 100 ns of a received signal (using
PE) for a receiver at ðx; zÞ ¼ 1350, −2 m as a function of
apparent arrival angle, measured with respect to the local
horizontal of the receiver.

FIG. 19. Spectrum of the first 100 ns of a received signal (using
PE) for a receiver at ðx; zÞ ¼ 1350, −200 m as a function of
apparent arrival angle, measured with respect to the local
horizontal of the receiver.

MODELING IN-ICE RADIO PROPAGATION WITH PARABOLIC … PHYS. REV. D 103, 103007 (2021)

103007-11



however, the radar echo signal is subject to the effects of the
ice density profile in transit; perhaps even more so because
the radar echo signal makes two trips through the ice
(transmitter—cascade, cascade—receiver). Therefore, an
understanding of the ice is essential to know what effects
(geometry or the ice) are responsible for which signal
characteristics, if the receivers are placed in such a way as
to detect radio that will travel through the firn. Previous
studies [8] have avoided this complication by stipulating
that receivers and transmitters lie in deep uniform ice.
The National Science Foundation (NSF)-supported pilot

implementation of RET is the Radar Echo Telescope for
Cosmic Rays (RET-CR), which seeks to test the method in
nature by detecting the in-ice cascade produced when an
ultrahigh energy cosmic ray (UHECR) air shower impacts
the ice. For a UHECR of sufficient energy (≳10 PeV) and a
high enough ice elevation (≳1.5 km), a fraction ≳10% of
the primary energy actually reaches the ice. This energy is
tightly collimated around the cascade axis and produces a
dense in-ice cascade near the surface of the ice. RET-CR
will place a transmitter and receivers below the surface to
test the radar echo method on this in-nature source. Because
RET-CR will be situated near the surface, the effects of
the nðzÞ gradient will be pronounced. This present study,
which qualitatively confirms (albeit with a different sim-
ulation method) the results from previous studies using
FDTD [17], highlights the importance of accurate modeling
for near-surface propagation. For example, in Fig. 20 we
show two propagation maps for continuous-wave radio
from a receiver 10 m beneath the surface. We see that the
interference pattern changes drastically depending upon
which ice model is used. Therefore, accurate modeling is
essential for RET to calculate an effective collection area
and to optimize the detector geometry. We also show, in
Fig. 21, another important example of why wave methods

like PEmay be useful for such a study. In this figure, we have
placed a transmitter just 1m beneath the surface. In the lower
panel we can see a very clear horizontally propagatingmode,
which is likely trapped in the deep nðx; zÞ profile inversion
visible in Fig. 4, which is not present in the functional profile
(top panel). While such effects may be local to only certain
sites, it is nonetheless critical to have an understanding of the
effects that different nðx; zÞ profiles can have on propagation
for an eventual radio system deployment.

V. DISCUSSION AND CONCLUSIONS

We note that this is the first application of PE methods
to the in-ice problem, and the simulation is still in an
introductory state. Considerations such as propagation at
extremely large baselines, curvature of the Earth’s surface,
reflections from the ice bottom, and ice surface roughness
have not been thoroughly investigated nor included in the
public version of the code. The effects of receiving
antennas are not included; these results represent the field
as it would arrive at the antenna. For a physical, extended
receiver the effects could be pronounced, especially if the
antenna is spread across several wavelengths in z, but this
requires further study. The conclusions we present here are
those that we feel confident to draw from the simulation
as it currently exists, which show effects of propagation
through the firn, vetted by FDTD, that are not modeled in
current simulation codes.
We have presented the first application of parabolic

equation methods to in-ice radio propagation and have
shown a modified split-step solution that reduces overall
phase error for the in-ice case relative to existing solutions.
We have shown that the received spectrum of a signal is
affected by propagation through a medium with changing
index of refraction, an effect which cannot be replicated with
RT methods due to the infinite-frequency approximation.

FIG. 20. Comparison of peak power received for the functional
(top) and data-driven (bottom) nðx; zÞ profiles, for 350 MHz
continuous-wave radio transmitted from a source 10 m beneath
the surface of the ice.

FIG. 21. Comparison of peak power received for the functional
(top) and data-driven (bottom) nðx; zÞ profiles, for 350 MHz
continuous-wave radio transmitted from a source 1 m beneath the
surface of the ice.
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We showed that this effect is more pronounced when
realistic nðx; zÞ profiles are used, rather than the simplified
functional nðzÞ profile often used in ray-tracing codes. The
results herein are from a single RT implementation, courtesy
of the ARA experiment simulation package (AraSim) and
have been validated by a second RT implementation. We
validated the PE method against FDTD simulations and
then made comparisons between PE and RT in realistically
large domains.
In conclusion, we suggest that PEmethodswarrant further

investigation and that wave simulations are critical for
simulating in-ice radio propagation. We see qualitatively
that signals propagating through more of the firn have more
significant distortion than for receivers below the firn inmore
uniform ice (see e.g. Fig. 16). In agreement with previous
studies, we find that the ice has a significant effect on spectral
content and pulse shape. Though significant phase error is
present in the PE methods presented here (seen in their
deviation from FDTD), we can conclude that the PE
formalism is useful for the in-ice problem. To that end, a
more rigorous split-step approximation—or other PE solving
routines entirely—would be welcome and useful. An under-
standing of these apparent ice effects on the received signal is
critical for energy and direction reconstruction of neutrino
events for in-ice radio neutrino detectors.
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APPENDIX A: IN-ICE PARABOLIC EQUATION

1. Derivation

We begin by assuming that we have a system with
cylindrical symmetry ðρ; θ; zÞ, which is appropriate for
many RF applications. The PE literature uses symbol x
for the cylindrical radius ρ, which we adopt to assist

comparison, but note that this x is not the Cartesian-x.
For an arbitrary field ψ , which is polarized along θ, the
scalar wave equation for a field (assuming an eiω0t time
dependence) is

�
∇2 −

1

v2
∂2
t

�
ψ ¼ 0 ðA1Þ

∇2ψ þ k20n
2ψ ¼ 0; ðA2Þ

where k0 ¼ ω0=c and v ¼ c=n for the vacuum speed of
light c and index of refraction n. Using

ψ ¼ 1ffiffiffi
x

p ueik0x; ðA3Þ

we rewrite Eq. (A2) as

∂2
xuþ 2ik0∂xuþ ∂2

zuþ k0ðn2 − 1Þu ¼ −
u
4x2

: ðA4Þ

The ansatz u is called the “reduced function” and is used
primarily because it allows for the convenient form of
Eq. (A4) to be solved. By inspection, it can be seen that
in the far field, that is, for large x, the rhs of Eq. (A4)
approaches zero. We thus take this far-field approximation
in what follows, which is valid, in general, for the problems
of interest in radio propagation applications.
The parabolic approximation begins by formally factor-

ing Eq. (A4),

½ð∂x þ ikð1 −QÞÞð∂x þ ikð1þQÞÞ�u ¼ 0; ðA5Þ

where we have taken the far-field ðx ≫ 0Þ approximation
and introduced the pseudodifferential operator

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2
z

k20
þ n2

s
: ðA6Þ

We focus on solutions of the form

uðx; zÞ ¼ uþðx; zÞ þ u−ðx; zÞ; ðA7Þ

∂xu� ¼ −ik0ð1 −QÞu�; ðA8Þ

where the � indicate forward and backward propagating
fields. The formal solution of the forward propagating
field is

uðxÞ ¼ eik0xð−1þQÞ: ðA9Þ

Then, if we want to solve for uðxþ ΔxÞ, then

uðxþ ΔxÞ ¼ eik0ðxþΔxÞð−1þQÞ ¼ eik0Δxð−1þQÞuðxÞ; ðA10Þ
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meaning that the solution at uðxþ ΔxÞ only relies upon the
previous solution uðxÞ. This means that the solution can be
marched along in code, drastically simplifying the compu-
tational time needed to calculate a full domain. Focusing
solely on the forward propagating field is the crux of
several so-called parabolic approximations.
The operator Q is nonlocal and does not have simple

analytic properties, so much care is needed when attempt-
ing to find ways to use it in numerical calculations. The
simplest thing to do is to take the lowest order expansion
of Q, which results in the expression

∂2
zuþ 2ik0∂xuþ k20ðn2 − 1Þu ¼ 0; ðA11Þ

which is called the “standard parabolic equation” (SPE) in
the literature. This approximation is quite good for small
values of n that change very slowly with height z and for
propagation angles within a few degrees of the propagation
direction. However, for many problems (such as in-water
acoustic propagation) it is useful to simulate propagation at
wider angles and for a more strongly varying n. To that end,
a different form of Q attributed to Feit and Fleck [24,25] is

QFF ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂2

z

k20

s
þ n − 1: ðA12Þ

This expression has the same lowest-order expansion as the
SPE but differs at higher order. Notice this expression splits
the operator into two parts, which may be classified as
“diffractive,” involving the partial derivative with respect
to z, and “refractive,” dealing with the index of refraction.
Such splitting makes for efficient numerical solution. This
splitting will be discussed below when addressing the
implementation of a solution in software.
Further inspection finds that this expression will be most

accurate for n ∼ 1, which may be suitable for the in-air
radio or in-water acoustic cases, but this approximation is
not suitable for the in-ice application. We, therefore,
introduce a reference index value n0 and an in-ice approxi-
mation for Q that leads to efficient splitting,

Qice ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂2

z

k20

s
þ n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n20

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

n20

s
: ðA13Þ

This also has the same lowest-order expansion as the SPE,
differing at higher orders. We reach this approximation by
using a reference wave number equal to that at the depth of
the source. Meaning, instead of using k0 ¼ ω=c, we use
k0 ¼ ωnðz0Þ=c. Implementation shows improved agree-
ment with FDTD calculations, as presented in this article.

2. Numerical Solution

There are several methods to solve the parabolic equa-
tion. The form of the PE above, using Q in the various

approximate forms shown here, is solved using what are
called “split-step” numerical methods in which the dif-
fractive part of the field is solved for in Fourier space,
and the refractive part of the field is solved for via simple
multiplication. These solutions are computationally effi-
cient, but the manipulation of Q introduces error. The
analysis of this error and desire to minimize it under certain
use cases leads to the various approximations of Q.
The split-step method hinges on the Fourier identities

F ð∂2
zuÞ ¼ −k2zF ðuÞ and F ð∂xuÞ ¼ ∂xF ðuÞ in order to

come to a solution that can be solved computationally,
where F is the forward Fourier transform, and kz is the
vertical wave number bounded by �π=Δz. We begin by
showing the solution for the SPE. First, we take the Fourier
transform of Eq. (A11), which gives

∂xU ¼ ik0
2

�
ðn2 − 1Þ − k2z

k20

�
U; ðA14Þ

where Uðx; kzÞ ¼ F ðuðx; zÞÞ. By analogy to Eq. (A9),
we find

Uðx; kzÞ ¼ exp

�
ik0
2

�
ðn2 − 1Þ − k2z

k20

�
x

�
; ðA15Þ

and then using the same stepping idea as Eq. (A10),
we write

Uðxþ Δx; kzÞ ¼ exp

�
ik0Δx
2

�
ðn2 − 1Þ − k2z

k20

��
Uðx; kzÞ:

ðA16Þ

From here, we take the inverse Fourier transform of
Eq. (A16), taking the part that does not rely on the
transform variables outside of the transform, to arrive at

uðxþ Δx; zÞ ¼ exp

�
ik0Δx
2

ðn2 − 1Þ
�

× F−1
�
exp

�
−iΔx
2

k2z
k0

�
Uðx; kzÞ

�
: ðA17Þ

This is the split-step solution to the SPE, Eq. (A11). By a
similar procedure, we use Qice from Eq. (A13) to arrive at
the form of the split-step solution used in this article and in
PARAPROPPYTHON,
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uðxþ Δx; zÞ

¼ exp

"
ik0

 
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n20

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

n20

s !
Δx

#

× F−1

(
exp

"
−ik0Δx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

k2z
k20

s
þ 1

#
Uðx; kzÞ

)
; ðA18Þ

where n ¼ nðx; zÞ is written for clarity.

3. Implementation notes

Following [22,42,43], PARAPROPPYTHON uses artificial
filtering at the top and bottom of the simulation domain to
eliminate artificial reflections. The simulation domain in
PARAPROPPYTHON is twice the maximum user-specified
depth (e.g. it simulates a region above the ice the same
height in z as the simulation domain is deep in z) plus a
small buffer region above and below. Future releases will
allow the user to specify the exact simulation domain, to
speed up computation, if the in-air portion is not needed,
but in all cases this buffer region above and below is
necessary. For this reason, reflections from the bottom of
the ice are not considered currently in the code.
Surface roughness is also not included at this current

time, though we expect this to have some impact on the
reflected signal properties. Surface roughness will vary
from site-to-site and is an important feature to include in
future versions of the code.
The default implementation of PARAPROPPYTHON is to

use the split-step approximation outlined here. The user can
also specify other split-step approximations for comparison

purposes, including the standard wide-angle, and the
original Feit and Fleck splitting.

APPENDIX B: SOURCE MODELING

Many parabolic equations model a source as a Gaussian
beam of some width, to simulate a directional antenna over
the surface of the earth. We are interested in what the
propagation might look like from a dipole source since it is
much simpler to bury a dipole deep into the ice than it is a
high-gain antenna. We, therefore, define a dipole at a depth
of z0 with halves of approximately L ¼ λ=4. We approxi-
mate this distance as closely as possible to the nearest grid
spacing in the simulation. We then define the reduced
field within this source region, for a vertically polarized
dipole, by

uð0; z0 − L∶z0 þ LÞ ¼ A½n̂ × ϵ̂ × n̂�z; ðB1Þ
where A is a (complex) amplitude, n̂ is a unit vector
that points out radially from the dipole (such that
n̂xðz0 − LÞ ¼ 0, n̂xðz0Þ ¼ 1, and n̂xðz0 þ LÞ ¼ 0), ϵ is
the polarization vector of the antenna (ϵ ¼ ð0x̂; 0ŷ; 1ẑÞ
for a vertically polarized antenna), and the subscript z
indicates that the reduced field u corresponds to the ẑ
component of this expression. Such a formalism results
in the typical sin2θ pattern of a dipole antenna. In two
dimensions, this results in a cross-sectional slice of the
antenna beam pattern along the halves of the source. Such a
source shows better agreement with a dipole FDTD source
than sources typically used in the literature.
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