PHYSICAL REVIEW D 103, 096027 (2021)

Phenomenology of J'¢ =3~ tensor mesons

Shahriyar Jafarzade
Institute of Physics, Jan Kochanowski University, ul. Uniwersytecka 7, P-25-406 Kielce, Poland

Adrian Koenigstein'

Institute for Theoretical Physics, Goethe-University, Max-von-Laue-Str. 1,
D-60438 Frankfurt am Main, Germany

Francesco Giacosa

b

Institute of Physics, Jan Kochanowski University, ul. Uniwersytecka 7, P-25-406 Kielce, Poland,
and Institute for Theoretical Physics, Goethe-University, Max-von-Laue-Str. 1,
D-60438 Frankfurt am Main, Germany

® (Received 19 January 2021; accepted 15 April 2021; published 28 May 2021)

We study the strong and radiative decays of the antiquark-quark ground state JPC =37~
(n*ST1L; = 13D3) nonet {p3(1690), K3(1780), ¢p3(1850), w3(1670)} in the framework of an effective
quantum field theory approach, based on the SUy (3)-flavor symmetry. The effective model is fitted to
experimental data listed by the Particle Data Group. We predict numerous experimentally unknown decay
widths and branching ratios. An overall agreement of theory (fit and predictions) with experimental data
confirms the gg nature of the states and qualitatively validates the effective approach. Naturally,
experimental clarification as well as advanced theoretical description is needed for trustworthy quantitative
predictions, which is observed from some of the decay channels. Besides conventional spin-3 mesons,
theoretical predictions for ratios of strong and radiative decays of a hypothetical glueball state G;(4200)

with JP€ = 37~ are also presented.
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I. INTRODUCTION

The spectroscopy and the phenomenological description
of conventional mesons is important for many reasons. It
allows to test quantum chromodynamics (QCD) in the
nonperturbative regime. Furthermore, it aims to the correct
and systematic understanding and assignment of experimen-
tally measured states, resonances, and mesons [1]. It is also
fundamental for the search of mesons that go beyond the
antiquark-quark (ggq) picture, such as glueballs, hybrids, and
multiquark states. Namely, both in the light-quark and heavy-
quark sectors, it is possible to search for “exotics” only, if the
conventional gg mesons are fully under control [2].

Consequently, our work is just an incremental contribu-
tion to this extensive project in high-energy physics.
In our work, we provide a (qualitative) analysis of the
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phenomenology of the spin-3 mesons p;(1690), K5(1780),
$53(1850), w3(1670) with JP€ = 37 (n**1L; = 13D3) as
well as the potential spin-3 tensor glueball G5(4200) [3-5].
This involves a fit of our effective model to experimental
data as well as predictions for decay widths and ratios of the
decays of the spin-3 mesons. Although we provide explicit
values for the decay widths and branching ratios, these
should be considered only as first estimates and mainly
interpreted as qualitative results. Hence, this study may for
example help in identifying dominant decay channels etc.

A. Contextualization

In the low-energy sector of QCD, conventional mesons
contain the light up («), down (d), and strange (s) quarks,
hence they can be grouped into nonets: iud, us, etc.
Nonets are classified by the quantum numbers J”¢, where
J is the absolute value of the total spin of the meson
(|L — S| <J < |L + S|, where L is the angular momentum
and S the spin of the system), P is the sign-change under
parity transformations, and C the sign-change under charge
conjugation. For gq states, besides JXC, also the older
spectroscopic notation n*5*!'L;, with L = S, P, D, ... and
with n = 1,2, ..., which is the radial quantum number, is
used. In the following, we shall restrict to the radial ground
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state nonets with n=1. For a gq system, where
P = (=1)I*! and C = (=1)E*5, notice that L and S are,
strictly speaking, not well-defined quantum numbers in a
relativistic setup; hence, the mixing of states with the same
JFC but with different L and S is possible—even if it is
oftentimes a subordinate effect. However, this nomencla-
ture for the states is still well upheld also in presence of
mixing for practical purposes.

In the low-energy regime of QCD the “classical”
symmetries of QCD at high-energy scales still play a
crucial role—more precisely the spontaneous, anomalous,
or explicit breaking of these symmetries. Quickly
recapitulated, the situation is as follows: gluons are
“democratic”: they interact equally strongly with right-
and left-handed quarks implying that in the so-called chiral
limit (i.e., assuming negligibly small bare quark masses m,,,
my, and m) the QCD Lagrangian is invariant under
Uy (3) x Ug(3) transformations. However, this symmetry
of the classical action is broken due to quantum effects,
which is called the U, (1) anomaly [6-9]. Still, the baryon
number is conserved, which corresponds to the unaffected
Uy(1) symmetry. The remaining SUy (3) x SUR(3) sym-
metry is spontaneously broken at low energies into SUy (3)
[10,11]. The SUy(3) amounts to a rotation in the flavor
space spanned by u, d, and s and is consequently called
“flavor symmetry” or “vector symmetry.” Hence, at the
composite mesonic level, chiral partner-mesons, which are
linked through a chiral transformation, are not degenerate
anymore. After all, the residual realization of an approxi-
mate SUy (3), which is only explicitly broken by the bare
quark masses, is the reason why nonets of g¢ states can be
used to classify the low-energy spectrum of QCD [12-14].

Typical examples of very well known mesonic nonets are
the pseudoscalar states,

{z K.n'(958).n}, (1)

with JP€ = 0= (n*5*1L, = 1'S,), the vector mesons

{p(770), K*(892), p(1020), 0(782)}, (2)
with JPC =177 (n®*'L, = 13S)), the pseudovector
mesons,

{b(1235),K; g, h (1415), h{(1170)}, (3)

with JP€ =1+~ (n?5t1L; = 11 P,), the axial-vector meson,
{a(1260). K 4. f1(1420). f,(1285)}, (4)

with JP€ =11+ (n?*1L ;= 13P,), and the well-established
tensor mesons,

{a,(1320), K5(1430), f5(1525), f,(1270)},  (5)

with JP€ =2+ (n®5*1L; = 1°P,), compare with Ref. [15]
or the quark model review by the Particle Data Group
(PDG) [1].

The aim of this work is to study the gg nonet with
quantum numbers J¢ = 377, resulting from L =2 and
S =1, therefore n*>S*'L; = 1°D5 states, in a relativistic
effective quantum field theory (QFT) model based on
SUy (3)-flavor symmetry. The mesons belonging to this
nonet, corresponding to the lightest states with the proper
quantum numbers in the PDG [1], are

{p3(1690), K%(1780). b5(1850), 5 (1670)}.  (6)

The study of these states is very interesting for a series of
reasons (for previous studies on related subjects see also
Refs. [15-22] and references therein):

(1) It is the only well-known mesonic ground-state
nonet with J > 2, which is confirmed by several
experiments [1].

(2) Many decay channels are known [1], which allows
for further theoretical and experimental tests of the
assignment.

(3) Predictions for not-yet measured strong and radia-
tive decay rates are possible.

(4) The spin-3 ground-state nonet (6) is also measured
in lattice QCD calculations [22,23].

This nonet is therefore tailor made for an effective QFT
study of decays. In particular, we shall answer whether and
to what extend the ggq assignment works, we can test
validity of flavor symmetry for various decay channels,
make various ‘“postdictions” and—most interestingly—
predictions for many decay channels. In view of the
ongoing experimental efforts in hadron physics at GlueX
[24-26] and CLAS12 [27] at Jefferson Lab, at COMPASS
and LHCb at CERN [28,29], at BESIII in Beijing [30,31],
and at the future PANDA experiment [32] at the GSI
facility, we consider a revival of interest on such resonances
valuable.

As an additional application of our approach, we also
study some decays of the JP¢ = 37~ glueball state. This
can be done by a simple modification of the action of spin-3
mesons and by using the mass of approximately 4.2 GeV
found in lattice simulations [3—5] (in the quenched approxi-
mation) as an input. Due to the flavor-singlet nature of the
glueball, only few decay channels are possible.

B. Method

From a technical point of view, we construct SUy(3)-
invariant effective actions/Lagrangians that involve the
mesonic nonet (6) as well as its various decay products
consisting in the well-established gg nonets that were
previously introduced. From a (functional) renormalization
group (FRG) perspective, the effective actions/Lagrangians
can be interpreted as residual infrared (IR) effective actions
with coupling constants that already involve all quantum
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effects from higher energy scales: the ultraviolet (UV).
These coupling constants are determined via fits to exper-
imental data, rather than by ab initio QCD calculations.
All calculations for the decays are therefore performed at
tree level. This approach was already implemented in
earlier works for studies of various light mesonic nonets,
such as tensor mesons [33], axial-vector, and pseudo-
vector mesons [34], the scalar mesons [35,36], the pseu-
dotensor mesons [37], and the orbitally and radially excited
vector mesons [38].

C. Organization and structure

We organize the paper as follows: in Sec. II, after a
discussion of our low-energy effective model, we present
quark-anti-quark nonets, their transformation rules, and
the corresponding Lagrangian of the model. It consists of
seven interaction terms. In Sec. III we show the results for the
decay widths and branching ratios of spin-3 mesons, while
in Sec. IV we list some branching ratios for an hypothetical
heavy 37~ glueball. A discussion of the validity of the
employed effective interaction terms is reported in Sec. V
and conclusions can be found in Sec. VI. Many technical
aspects concerning the QFT treatment of J = 3 fields can be
found in the numerous and detailed appendices.

II. EFFECTIVE MODEL FOR JP¢ =3-— MESONS

As mentioned in the introduction, in the chiral limit
(my 45 =0) the SUL(3) x SUR(3) x Uy(1) symmetry of
QCD is spontaneously broken into flavor symmetry
SUy(3) and baryon-number conservation—the Uy(1)
symmetry. One of the first successful models that describes
this process using four-Fermi interactions is given by
Refs. [39,40]. At the level of confined light hadrons, this
symmetry is evident: quark-antiquark mesons are clearly
grouped into nonets, some of which were already listed in
the Introduction [12-14]. One possibility to describe low-
energy QCD makes use of effective low-energy hadronic
models. If the degrees of freedoms are only hadrons, then
confinement and color neutrality is automatically built in.
Typically, these models are defined by a proper action that
mimics the chiral symmetry of QCD and its spontaneous
and explicit breaking.

The chiral symmetry is for example the guiding principle
of chiral perturbation theory (CPT) [41-51], in which chiral
symmetry is nonlinearly realized, as well as for linear o
models [52-57], in which it is linearly realized. In effective
models the nonets usually appear in pairs of chiral partners.
The breaking of chiral symmetry generates a mass differ-
ence between them. This dynamics can also be studied at
nonzero temperatures and/or nonzero baryon or isospin
chemical potentials. Within the last years, the Functional
Renormalization Group [58-63], turned out to be one
particularly interesting framework to describe chiral sym-
metry breaking (and phase transitions) in these kinds of
models, see for example Refs. [64-75].

Hadronic models in which only the residual flavor
symmetry SUy(3) is explicitly conserved have also been
constructed for a variety of nonets in a series of publications
by one of the authors and collaborators [33-38]. These
models can be interpreted as the effective emerging terms of
chiral models after spontaneous symmetry breaking is
worked out. When the effective action is written down,
only flavor symmetry is retained and an expansion in
dominant and subdominant terms in 1/N, is carried out.
Moreover, terms that break explicitly flavor symmetry,
either because of the underlying breaking due to nonzero
and unequal quark masses (m, ~ 2 MeV, m,; ~ 5 MeV, and
mg =~ 93 MeV) or due to the chiral anomaly, can be included.

In this work, we study the decays of the gg ground-state
JP€ = 37~ nonet by constructing such a model. We shall
consider only the dominant terms in the large-N, expansion
[76-78] and neglect flavor-symmetry breaking corrections,
since the present level of data accuracy does not allow for
their investigations.

A. Particle content

1. Symmetries

Mesonic nonets that transform under the adjoint repre-
sentation of the approximate flavor symmetry SUv (3) are
the main ingredients of the current work. Transformation
rules under parity, charge conjugation and flavor trans-
formations of the mesonic nonets of our model are
summarized' in the Table I. On the other hand, the mesonic
nonets are in direct correspondence to the physical states,
which is listed in Table II.

Each gq nonet can be assigned to a certain microscopic
antiquark-quark current N;; = (g,;I'q;)/ V2, where I is a
combination of Dirac matrices and derivatives, which—in
the nonrelativistic limit—reduces to the corresponding
nonrelativistic configuration with the desired L and S.

2. Mesonic nonets in the model

Pseudoscalar mesons.—The first nonet of Table I
describes the matrix of pseudoscalar mesons P with
quantum numbers L =S =0, leading to J’¢ =07
(n**1L; = 1'S;). The elements are P;; = (g,ir’q;)/V2
and the mesons are {x, K, ' (958), 1}, where the first entry
represents the isospin / = 1 triplet (the three pions), the
second entry the two I = 1/2 isodoublets (the four kaons),
and the last two entries the two isoscalar states (the etas).
Pseudoscalars form the basis of almost all low-energy
effective hadronic models/limits or theories of QCD,
e.g., CPT [41-50] and ¢ models [52-55,57] (for an link
between CPT and ¢ models, see Refs. [68,69,71,82]).
Explicitly, the matrix P reads

'Other mesonic nonets constructed in the same way can be
found for instance in Refs. [34,37,53,79].
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TABLE I. Transformation properties of the pseudoscalar P (7),
the vector V| (9), the pseudovector B; (11), the axial-vector A,
(15), the rank-2 tensor A, (13), and rank-3 tensor W5 (20) nonets
under parity transformations P, charge conjugation C, and
SUy(3)-flavor transformations U. Notice the position of the
Lorentz indices for parity transformations, since spatial and
timelike indices do not transform identically. We use the
Minkowski metric in the (1, ) =diag(+1,—1,—1,—1) convention.

Charge
Nonet Parity conjugation Flavor
JPC = Fy P Cc SUy(3)
0t =P —P(t,—X) (P)T UPU"
1= =W V(1. —X) -(vr uviu?
1"~ =B -By (1, —):c:) —(By)T UBLU?
1t = Ak —Ay,(t,-X) (AnT vAYU?
2t = A Ay (1, =X) (AT UAs Ut
37 = Wi W3, (2, —X) —(WE)T UWEPUT
ny+a° + +
1 7 b4 K
P=—| z m2z Ko |, (7)
V2 V2
K~ KO Ns

where 5y = (@iy’u + diy’d)/+/2 stands for the purely
nonstrange state and 74 = 5iy’s stands for the pure strange
state. For the pions and kaons, the physical states are
directly assigned to the fields in the model. In the isoscalar
sector, physical and model fields are related by mixing2

< n ) B < cosf, sinﬂp>(;7N> (8)
1 (958) —sing, cosp,)\ns/)
Here we shall use 3, = —43.4° obtained in Ref. [80]. Note
that the rather large mixing angle and the unexpectedly
high mass of the #/(958) result from the chiral (or axial)
anomaly U, (1) [83,84]. According to a classifications
introduced by two of the authors of the present work in
Ref. [81], pseudoscalar mesons, together with their chiral
partners (the scalars), belong to what we call a “heterochiral
multiplet,” which allows for the constructions of chirally
anomalous mass and interaction terms.

Vector mesons.—Next, the second entry in Table I refers
to the JP€ =1"" (n**'L; = 13S,) nonet with L =0
and S = 1. These are the very well-known vector states

*We refer to Appendix A for the description of the mass terms
of the corresponding Lagrangian(s) and for the derivation of the
PDG-mixing formula, which was applied in the PDG [1] in
the case of ground-state vector and pseudoscalar mesons as well
as for the ground-state tensor mesons with J°¢ =2** and
JPC€ = 37~. We shall also present the link between the singlet-
octet basis used in the PDG and the strange-nonstrange one
employed in this work.

TABLE II. Assignment of physical resonances to gg states in
the model.
Physical Mixing
JPC  resonances Nonet gq states angles
0" z z
K K B, = —43.4°
n 1N COS B, +ngsin B, Ref. [80]
H(958)  —nysing, +nscosp,
1= p(770) ”
K*(892) K By, = —3.9°
w(782) ) ycosp, + o gsinp, Ref. [1]
$(1020) —o) ysinf, + @, gcos B,
1+ b, (1235) b,

KTB K p pp, unknown
h1(1170) hl,NCOSﬂbl +I’l1‘s Sinﬁbl 0° and _400
hi(1415)  —hy ysinf, + hygcosfy, are tested

]++ ay (1260) ay

K, Kia Bay =0
f1(1285) fincosp, + fissinp, — Refs. [34,81]
£1(1420)  —f ysinp,, + f15cosf,,

2++ a2(1320) as
K5(1430) K; Bo, =5.7°
f2(1270) fZ.N COSﬁaz + fZ.S Sinﬁaz Ref. [1]
[3(1525)  =fonsinp,, + fr5c08 B,

377 p3(1690) P3
K3(1780) K} P, =3.5°
w3(1670) w3y cos B, + ws gsinf,, Ref. [1]
¢3(] 850) _wZ,N SinﬂW3 + a)Z,S cos ﬁW3

"The isospin 1/2 states in the pseudovector and axial-vector
sectors are strong mixtures of K;(1270) and K,(1400), see
Ref. [1] and references therein.

{p(770), K*(892), w(782), ¢(1020) }, which are for exam-
ple also included in certain extensions of CPT [47-50] as
well as in enlarged (and realistic) versions of hadronic

models [52-56]. The matrix V/ with elements V’]‘J.j =
(éﬂ/"qi)/\/i has the form

@ A + *+
ALl u U
2 P1 K,
U Ou
V= — —u LN 1 «Op |, 9
v o T K ®
*—p =+%0u
Kl Kl w}lt,S

where wy and wg are purely nonstrange and strange states,
respectively. Similarly as before, the physical fields arise

upon mixing
60(782) N COSﬂvI Sinﬁv] w1 N 10
(¢(1020)) ; (—sinﬁvl cos f,, ) (m)’ (19)
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where the very small isoscalar-vector mixing angle f, =
—3.9° is taken from the PDG [1]. Hence, the physical states
®(782) and ¢(1020) are dominated by nonstrange and
strange components, respectively. This is in agreement with
the “homochiral” nature of these states [81]. In fact vector
and axial-vector mesons form a “homochiral multiplet,” for
which the effect of the chiral anomaly is of subleading
order and can safely be ignored.

Pseudovector mesons.—Next, we consider L = 1.
The choice L =1 and S =0, leading to JF¢ =1%-
(n**1L; = 1'P,), contains the established pseudovector
mesons {b;(1235), K, g, h{(1170), h;(1415)}. The corre-

sponding nonet with elements BY ;; = (g;7°9"q;)/ V2 is

“ Op
hlf\:;%b] bf’ll KIH;?
1 0
Bi=——| ou M 0 11
1 \/i blﬂ ”\’/Z 1 KI},JB ( )
- 70,
Ky K Mg

The mixing angle

h(1170) cos By, sinpy, hiy .

<h1(1415>> <— sinf},  cos fy, ) ( hy s ) 12)
is not known. Quite interestingly, since this nonet belongs
to a heterochiral multiplet (the chiral partners are the
orbitally excited vector mesons) the mixing angle could
be non-negligible, just as for pseudoscalar mesons. Here,
we shall consider two scenarios for our model calculations:
in the first, the mixing angle f3;,, is set to zero; in the second
we consider a large mixing similar to both the pseudoscalar
sector, f3, ~ —40°, and to what two of the authors found for
the pseudotensor meson nonet in Ref. [37] and elaborated
on in Ref. [81].

Tensor mesons.—For L = S =1 three nonets are pos-
sible. The well-known JPC =2+ (n?5t1L, =13p,)
tensor states {a,(1320), K3(1430), f,(1270), f5(1525)},
with elements A’Z“U = [g,(iy"0" + ...)q:]/V/2, represent
an almost ideal nonet of quark-antiquark states

0
,2‘?N+azm +uv K*‘Hﬂ’
—ha % 2
1 Ouv
A =— —pv et #Opy (13)
2 V2 a - K :
2 2 72 2
*— U = +0uy HU
K2 KZ 2,8

The physical isoscalar-tensor states are

sinf3,, ) (fz,zv >
Cos ﬂaz fas ’

cos ﬁaz

(?ZSZ(S)D - (—sinﬂa2

where f,, = 5.7° is the small mixing angle reported in the
PDG [1], in agreement with the fact that tensor mesons
belong to a homochiral multiplet. The decays of tensor
mesons were studied in great detail in Refs. [33,85] and fit
very well into the gq picture [15].

Axial-vector mesons.—The choice L =S =1 allows
also for the JP€ =17+ (n®*t1L; = 1°P)) axial-vector
nonet A;, which contains the resonances {a;(1260),
Ky, f1(1285), f1(1420)}, and which are linked to the
vector mesons mentioned above by chiral transformations,
see, e.g., Refs. [86,87] (building a homochiral multiplet).
The nonet matrix, whose microscopic currents are

Aﬁl,ij = ‘_Iﬂ’s}’”q,-/\/i, reads

M Op
1.1\\'/+;1 ;rﬂ KTZ
1
A= — - fiy—a 0 15
=2l @ T Ky (15)
. )
Ky K fis

For the isoscalar sector we find,

S I (S TEA W
f1(1420> - Sinﬁal COSﬁal fl,S

The mixing angle f, is expected to be small, as the
homochiral nature of the multiplet [81] and the decay
properties [34] suggest. We set 5, = 0 for simplicity (an
anyhow small mixing angle would not affect our results
very much).

It is important to note at this point that the kaonic
states K 4 and K p mix. For a study of the axial-vector
and pseudovector nonets, with focus on the
K,(1270)/K,(1400) system, using an approach similar
to the one used in this work, see Ref. [34]. The main result
concerning the kaonic mixing reads

CoOSQg

<K1(1270)> ( —isingoK> <K1.A> (17)
K,(1400) ) \ —isingg cospgx ) \Ki5/)
Equivalently, in terms of kets and the angle 0y = ¢ + 90°
typically used in the literature [86—88]:

<|K1+(1270)>> (sinek cosfy ) <|KtA>> (18)
K7 (1400)) ) \cosOx —sinfg ) \|K{,))
The final result reads g = (56.4 +4.3)°, or equivalently
Ox = (=33.6 £4.3)°% hence K,(1270) is predominantly
K, p, and K(1400) is predominantly K, 4, yet the mixing
is still large.

Scalar mesons.—For completeness, we recall that
L=S=1 vyields also the scalar states J’C =0%"

(n**1L; = 13P;), corresponding to the chiral partners
of the pseudoscalar mesons. The scalars are subject to an
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ongoing controversial debate on the correct assignment
of measured states. The identification is still uncertain, but
the set

{ao(1450), K;5(1430), £0(1710), £o(1370)}  (19)

seems to be favored (for the description of mixing
with, e.g., the long-searched scalar glueball, see, e.g.,
Refs. [35,36,89-94] and references therein). The reason
why this nonet is so peculiar is due to the fact that it has the
quantum numbers of the QCD vacuum, hence condensation
of the scalar-isoscalar fields should take place. The corre-
sponding nonet S, whose microscopic currents are
Sii=(g,9:)/ V2, is not included in this work, since no
decays of spin-3 states into scalars can be realized in our
model approach, see Sec. II B 3.

Moreover, light scalar four-quark states (in the form and
combination of tetraquark/molecular/companion poles)
below 1 GeV also exist [1]. Nevertheless, they are also
not included our work.

Higher-spin mesons.—Besides the peculiar case of the
scalar nonet, all other nonets mentioned above are well
established. Yet, what about nonets with L = 2? For L = 2
four nonets can be constructed, one of which is the main
subject of this work. Thus, even if, besides spin-3 fields,
they do not enter into the Lagrangian of this work, since
they are too heavy, they allow us to put the nonet of mesons
with J = 3 into the correct physical framework. Hence, we
briefly discuss them.

The easiest choice is L =2 and § = 0, which implies
JPC =271 (n**1L; = 1'D,): these so-called pseudoten-
sor states with currents [g,(iy°0"d" + ...)q;]/ V2 are
assigned to {m,(1670), K,(1770),1%,(1870),1,(1645)}
[37,95-97]. Moreover, as recently described in Ref. [81],
the chiral anomaly may also be important for this nonet,
explaining a potential large mixing between strange and
nonstrange components, leading to the isoscalar states
11,(1650) and 75 (1870). The details of the need for a large
mixing angle can be found in Ref. [37], in which strong
decays of these mesons are studied in a similar relativistic
effective model.

For L =2 and S =1 one can construct the orbitally
excited vector JPC=1"" @**'L;, =13D,) states
{p(1700), K*(1680), $(??7??), w(1650)}, which are the
(hetero)chiral partners of the pseudovector mesons
[79,81]. Microscopically, the elements are (g,i0"q;)/ V2.
The predominately strange member of the nonet ¢(??2?)
could not be identified yet. For predictions of a possible
¢(1930) meson, see Ref. [38] and references therein, in
which a flavor-symmetry-based QFT model is employed
for two nonets of excited vector mesons.

The quantum numbers L = 2 and S = 1 may also lead to
a axial tensor nonet with J*¢ =27= (n>**!L;, = 1°D,)

with currents [g;(y°y"0” + ...)q,]/v/2, which is however

poorly understood. In fact, only the state K,(1820) is
identified and listed by the PDG [1]. This nonet
builds together with the 27" tensor mesons a homochiral
multiplet.

The latter two nonets are omitted in this work, because
their members are too heavy.

Spin-3 mesons.—Finally and most importantly, the
choice L =2 and S=1 can also lead the nonet of
JPC =37 (n®*1L; = 13D3) states {p3(1690), K’ (1780),
$3(1850), w3(1670)}. The nonet with elements W};” =

[q;(r*00F + ...)q;]/\/2 reads

Jvp Ouvp

D3N TP3 +uvp K—‘r/wp
X 2 3 3
Uy Opuy,
WEY = — —wp P oy | (20)
V2| P ) 3
—pup - Opvp vp
K 3 K 3 w{;,S

In this case, the mixing angle

<w3(1670) ) < COSﬁW3 SinﬂW3 > <w3~N> (21)
$(1850) ) \ - sinf,, cosp,, w35

is f3,, = 3.5° [1]. The small mixing is also in agreement
with the homochiral nature of the corresponding chiral
multiplet in which this nonet is embedded [81]. In the next

section we couple this nonet to the other nonets listed in
Table 1.

B. Effective mesonic interactions

In this section, we present the effective mesonic inter-
actions and discuss the derivation of the tree-level decay
widths from our model.

1. The effective action

Using the nonets introduced in the previous subsection,
we construct the effective Lagrangian describing the strong
decays of spin-3 tensor mesons as follows:

‘CW.total = Lmass + ‘Ckin + £w3pp + ‘Cwyjlp
+ ‘CW302P + £W3H1P + ‘CW3b1P + ‘CWWM‘] ’ (22)

where Ly, = %tr(aﬂP)2 + .-+ contains the usual kinetic
terms and L, contains all the quadratic mass terms
describing the masses of all relevant nonets. In this work,
all masses are taken from the PDG [1] and assumed to be
exact, while some mixing angles are derived from the
masses following the quark model review of the PDG [1],
see also Appendix A. The other terms describing the decays
are listed explicitly in Table III. The quantities g,,,,, are the
coupling constants, which are fitted to experimental results,
e"? is the antisymmetric Levi-Civita pseudotensor, [o, o]_
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TABLE IIL

Effective relativistic interaction terms describing the strong decays of mesons with J'¢ = 3~

Decay mode

Interaction Lagrangians

3= 50t 40t

350+ 17
37 5 0t 42+
37 50+ 1
37 S 0 1
3 s 11

Lyvspp = Gwypptt W5 [P, (0,0,0,P)]_]
Lo p = G, p€°0[W3 ,05{(0,V1 ). (0°0P0,P)} ]
‘CW3a2p Gwsayp ;wp(rtr[WS aﬁ[(ayA/)a) (Waﬁp)]—]
‘CW3b1p - gw;h]ptr[ 3 p{Bl.ﬂ’ (8 a P)}+]
‘CW3alp = QW3a|ptr[W§Uﬂ[Al,/A7 (6v8pP)}—}
Ew;r,m = gw;vlvltr[Wgyp[(aﬂVl,u)v Vl,p}—]

stands for the commutator, and {o,o} for the anti-
commutator.

All the interaction Lagrangians in Table III are invariant
under CPT, Poincaré, and flavor transformations listed in
Table I. We considered only couplings involving a minimal
number of derivatives within each single interaction term.
This strategy turned to be successful in previous works,
e.g., Refs. [33—38].3 Later on, in Sec. V, we shall also argue
how to justify this strategy using insights from the extended
linear sigma model (ELSM) and the Functional
Renormalization Group (FRG) approaches to low energy
QCD. The explicit form of the Lagrangians (after having
carried out the traces) in Table III are reported in
Appendix B. Each Lagrangian represents the dominant
contribution in the large-N expansion in the given channel,
hence each coupling constant scales as 1/4/N..

2. Decay width

The tree-level decay widths have the following general
form [1,10],

FW" —A+B (mw; , My, mb)

|kab|
8 m?,

|M|2K ®< my, —mg — mb)7 (23)
where m,,, is the mass of a (decaying) spin-3 particle, while
m, and m;, are the masses of the decay products “A” and
“B,” ©(x) denotes the Heaviside step function, and the
modulus of the outgoing particles momentum has the
following analytic expression:

- 1
Runl =5 — (0, = i = mid)? = A}, (24)

We obtain the factors x; in Eq. (23) for the ith decay
channel from the explicit forms of the Lagrangians in the
tables in Appendix B by considering the square of the
coefficients for a given decay channel as well as eventual
sum over members of the same isospin multiplet. The «; for

*Note, Ref. [16] included higher derivative couplings and form
factors in their approach to strong decays of spin-3 mesons
involving charm quarks.

TABLE IV. Decay amplitudes for different decay modes.

Decay mode

377501407
377 0"+ 17"
377 > 07T 27

7 IMP

ggvﬂ’p % |kp(1).p(3) |6
Forsp 105 Koy p O,
7 m?, -
o s el 25 P+ T

T [
gg‘}hﬁ% |kb| P|4(7 + Shl—ll)

Ik P
ng.alP 105|k01[)| (7 +3 al x )
ggvzvmﬁ(mim 1.(2J) l|k, 2J| [6|k l
)\ ) s

i
]
2 G o PO )

l l

37 S 0t 4 1

377 50t 4 1+

e S Lol

+35m2mm
Yy

all interaction Lagrangians and all relevant channels are
presented in Appendix C. The decay amplitudes | M |? are
derived via Feynman rules under the use of the polarization
vectors and tensors as well as their corresponding com-
pleteness relatlons in Appendix D. The results for 1 5 |IM|?
are listed in* Table IV,

3. Remarks on the exclusion of scalar mesons

As a final side remark, we note that we cannot couple the
spin-3 nonet (20) to scalar mesons (19). In fact, if we try to
couple them to scalars and pseudoscalars, the only possible
CPT- and flavor-invariant interaction term,

gﬂvpvtr(aﬂw3ya/3[(aps)’ (aaaaaﬂp)]_) = O’ (25)

vanishes identically since it involves the contraction of
antisymmetric and symmetric tensors. Correspondingly,
scalar mesons do not enter our study, which agrees with
the experimental results reported in the PDG [1]. This is
also of direct advantage for our work, since we do not have
to deal with the identification of the scalar states, which, as
already mentioned, is a long-standing and yet unsolved
issue of low-energy QCD [89-94].

*Since the decaying particles are spin-3 mesons we multiply by
the factor %, averaging over the different spin states.
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4. Suppression of next to leading order terms

The Lagrangian terms considered in Table III are
large-N. (and thus Okubo-Zweig-lizuka) dominant and
symmetric under Uy(3). As we shall discuss later on, this
approximation is expected to be acceptable in view of the
|

[full L= gw3b,ptr[W”W{Blﬂ’ (8ﬂapp)}+]

wib

precision of the experimental data presently available. Yet,
by considering the W3 B, P interaction as an example, the
Lagrangian L, , , can be regarded as the first term of an
expansion in large-N, and/or symmetry breaking terms that
takes the form:

+ %, w[Wmr)u(B,,(9,0,P)]

3bip

3 v 4 SV,
+ gy, W)t B, Jt[0,0,P) + g, u[WH (B, (9,0,P)},]
5 STAHY) 6 v S
+ gy, I BWRP (B, (8,0,P)] + g, e[ WH ]t [5B 1, (D,0,P)] + ... (26)
The first term, reported in Table III, is a flavor-symmetric 1“;0‘(1 690) = (161 + 10) MeV, (28)
term and scales as g,,.,, ¢ Nc v %, hence it is the dominant ’
term in a large-/N expansion. The second and the third term
8 CXpAnS o < I (1750 =(159 £21) MeV, (29)
are also flavor symmetric but scale as g, , & Nc* and ’
s
9533)171 , & N¢?, respectively. They involve gluon exchanges rﬁg;wo) =(168 £ 10) MeV, (30)
and are therefore suppressed. The fourth term is not large-
N, suppressed, but it breaks flavor symmetry via the matrix Ft/OI (1850) :(87*225) MeV. (31)
@3 —

5 = diag{0,68,,5,}. (27)

Isospin violation is proportional to 6, o my; —m, and is
expected to be very small, yet the breaking due to the s
quark o, x my; —m, can be non-negligible following

Refs. [89,90], it could be along the order of gii)b]p ~
Gwsb, pdi2g{0,0,0.1 — 0.2}, but the actual value for J =3
mesons should be determined by an independent fit to data.
It is however expected to be sufficiently small to be

neglected in this work. At this stage, the first large-N,

correction 2)
wsbip
(4)

Gyup, p are expected to be of the same intensity and should
be the first to be included. Further terms g(”i? are both

w3b1p
large-N . subdominant and flavor suppressed, and thus are

regarded to be very small.

The same analysis can be carried out for all the
interaction terms, yet it is interesting to observe that
the second and the third term would vanish whenever
the commutator is present. (Flavor-symmetry violation is
expected to be the main next-to-leading-order contribution
for those interaction terms.)

and the first flavor-symmetric correction

III. PHENOMENOLOGY OF THE JP¢ =3~ NONET

In this section we present our results for decay rates
and branching ratios of the J”¢ = 37~ mesons. In each
subsection and for each interaction Lagrangian term, we
compare the experimental data to our theoretical results.

We recall that the total decay widths of the J¢ = 37~
mesons under consideration are [1]

We shall verify that the sum of all the single decay channels
from our theoretical calculations never overshoots these
values.

For what concerns the accuracy of our results, whenever
possible we determine the coupling and its error via a
simple fit of experimental decay width and ratios. We
ignore the experimental uncertainties for all masses of the
particles of the model and assume the masses to be exact,
because their errors are small and they are of minor
importance for the overall errors. The experimental errors
for the decay widths and branching ratios as well as the
systematic errors in the model are much larger, which
justifies this approximation. Yet, the quoted errors repre-
sents a lower(!) limit of the actual error of this work, since
other indeterminacy features are inherent in the approx-
imations, that lead us to the effective action, where only
those terms are included, which are expected to be
dominant in terms of large-N., flavor, and momentum-
space expansions. Moreover, the decay widths are calcu-
lated at tree level. Since the width/mass ratio for the
decaying resonances is rather small, contributions due to
loops are expected to be negligible [98,99], if seen from a
perturbative perspective. Otherwise, if the interaction terms
are interpreted as effective couplings in a full quantum
effective IR action, then calculations have to be performed
at tree level anyhow.

A. Decay process W3 - P+P

The effective interaction term describing the decay of
spin-3 tensor mesons into two pseudoscalar mesons has the
following form

096027-8
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['w3pp = gw3pptr[W/;yp[P’ (8/481/8,01))]—]‘ (32)
Its extended version is listed in Appendix B in Eq. (B1).
Correspondingly, the tree-level decay rate is

Ly p 4 p) (M 10,00, 1 ,0))

7 7
_ lk,m ol '
wabp 140ﬂm§h !

(M, =m0 —m,e),  (33)

compare Eq. (D11). The factors «; are reported in
Table XIX. In order to determine the coupling constant
9w,pp> We use the above formula and the following
experimental data:
(1) For p3(1690) — 7z one finds k; = 1. Using the
experimental result

T o0)ns = (38.0 £3.2) MeV,

(34)
one obtains a first determination of the coupling
constant squared and its error. We shall denote them
as g7 and AZ?.

The experimental value

@

FZ?I@O)_,KK = (2.54 £0.45) MeV,

(35)

together with k, =2(})? yields an independent

determinations of 73 and AZ3.

(3) From
F?;l)(1780)—>n1'< =(29.9+43)MeV  (36)
and k3 = (3)* + (@)2 we get 73 and AZ.
(4) Finally, from
F%p(nso)—»i(q = (48 +22) MeV (37)

and k4 = [ (—cosB, + V2sinp,)]> we obtain g,
and Ag,.
The coupling constant and its indeterminacy are evaluated
using a simple »2 approach,’

4 0
i=1 Ag i
Gispp = =i 1 Popp = - (38)
J=1Ag; =137
which results in
gv2v3pp - (15 :t 01) X 10_10 Mev_4' (39)

*We are aware of the fact that some of the data might be
correlated because it is taken from similar measurements at the
same experiments. Within the level of accuracy of our approach,
there is no need to take care of these effects.

The comparison of theoretical and experimental results,
which is obtained by using this value for the coupling
constant, is reported in Table V. A good overall agreement
is obtained, but there is also a sizable mismatch: the
experimental value for K3(1780) — K7 is much larger
than our theoretical prediction. Still, the experimental error
is large and a better experimental determination would be
interesting. Moreover, a noteworthy prediction concerning
$3(1850) — KK is obtained. From the theoretical large
prediction, we conclude that an experimental determination
should be feasible.

B. Decay process W3 — V{+P

The interaction Lagrangian for the vector and pseudo-
scalar decay mode reads

L

w3 p

= gw;vlpgﬂupatr[wlﬂaﬂ{(avvl,p)v (aaaﬁaaP>}+]' (40)

An extended version is given by Eq. (B2) in Appendix B. In
this case, the tree-level decay rate formula has the form

Dy, v, p(my, m, .m,)

&, |7
rl @
1057 <O,

_ 2
= Gwyoip

- m, —mp), (41)
see also Eq. (D14), where the factors k; are reported in
Table XXX. In order to define the coupling constant we
proceed as in the pseudoscalar-pseudoscalar case. We use

e = (25.8 +9.8) MeV,

3(1690) >0 (782)7
Tt 7s0)prroyc = (493 £ 15.7) MeV,
e _=(31.8£9.0) MeV.

K;(1780)—-K" (892)

The coupling constant and its error are

3 | 9i_ 1
=1 Ag;

2 _ g; 2 _

Gwsvip =3 10 AGwyv,p = 1 (42)
J=1 Az J=1 Ag;

TABLE V. Decays of J°¢ = 37 mesons into two pseudosca-
lars. Experimental data is taken from Ref. [1].

Decay process Theory I'/MeV  Experiment I'/MeV

p3(1690) — nx 327423 38.0+3.2
p3(1690) > KK 40403 2.54+0.45
K3(1780) — 7K 18.5+13 29.9+43
K3(1780) — Kn 74£05 48 +£22
K3(1780) — Ki/(958)  0.021 £ 0.001

w3(1670) > KK 3.0+02

$5(1850) - KK 18.8 + 1.3 Seen
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hence

Grvp = (92£1.9) x 1071 MeV~5. (43)
This value leads to the results listed in Table VI. We
observe that an acceptable agreement is reached, although
the FK§(1780)QI,(770) x mode is theoretically underestimated
(the experimental error is nevertheless large). Quite remark-
ably, the two theoretically sizable and dominant decays
@3(1670) — p(770)K and ¢5(1850) - K*(892)K have
been indeed seen in experiments, though they could not
be quantified. Their future determination would represent a
test of our approach—at least on a qualitative level.
In addition, we present the following ratio

Ly, (1850)= & (892)k

— 19404, (44)
L4, (1850)= kK

which does not totally contradict the PDG [1] average taken
from Ref. [100],

Xp
$5(1850)=K*(892)K

exp
F¢3(1850)—>1‘<K

= 055798, (45)

Interestingly Ref. [101] even reports a slightly larger
ratio of

exp
F¢3(1850)—>K*(892)K

eXp
F¢3 (1850)—KK

=0.8+04. (46)

TABLE VL. Decays of JP¢ = 37~ mesons into a pseudoscalar-
vector pair. Experimental data taken from Ref. [1].
Experiment
Decay process Theory I'/MeV I'/MeV
p3(1690) — p(770)n 3.8+0.8 Seen
p3(1690) — K*(892)K 34+0.7
p3(1690) —» w(782)x 358+74 25.8+9.8
p3(1690) — ¢(1020)% 0.036 £ 0.007
K3(1780) — p(770)K 16.8 £3.5 493 £15.7
K%(1780) — K*(892)x 272+5.6 31.8£9.0
K3(1780) — K*(892)n 0.09 +0.02
K3(1780) — w(782)K 43£09
K3(1780) = ¢(1020)K 1.2+0.3
3(1670) - p(770)x 97 £20 Seen
5(1670) — K*(892)K 29+0.6
03(1670) - w(782)n 2.8+0.6
3(1670) — ¢(1020)n (7.6 £1.6) x 107°
¢g(1850) — p(770)% 1.1+0.2
$3(1850) — K*(892)K 355+73 Seen
$3(1850) — w(782)n 0.015 £ 0.003
$3(1850) = @(782)7'(958) 0.003 £ 0.001
$3(1850) — ¢(1020)n 3.8+0.8

Furthermore, we would like to mention a recent lattice
QCD study [22], which also confirms our overall predic-
tions on dominant and less dominant vector-pseudoscalar
decay channels. Reference [22] predicts (without providing
explicit errors due to large uncertainties),

Fj);]?1690)—>w(782)ﬂ =22 MeV, (47)
F;;%wo)qk*(wz)x =2 MeV, (48)
Fi;?(1670)—>p(770)7z = 62 MeV, (49)
rif(1670)—»1’<*(892)1< =2 MeV, (50)
F(L?mo V—a(782)n — =1 MeV, (51)
Ff/)?(lSSO)—»K*(SQZ) =20 MeV, (52)
Ff/)ilSSO)—»(,b(lOZO) =3 MeV. (53)

It is quite remarkable that our (quite simple) model is able
to predict at least qualitatively rather similar results to such
an advanced and comprehensive lattice QCD study. This
leads us to the conclusion, that even for high-spin mesons
with masses above 1 GeV like the conventional 37~ -nonet
chiral symmetry (breaking) is the decisive guiding principle
for their phenomenology.

C. Decay process W3 - y+P

As a next step, we also present the results for the
radioactive decays W3 — yP, where y represents the
photon. These can be obtained by using vector meson
dominance [102-104], which takes into account of the
photon-vector-meson mixing through the shift

V=V + QFW, (54)

g/)
where V,, =9,V, - 9,V, and Q = diag(3, -1, — 1) is the
charge quark matrix, which includes the charges of the up,
down, and strange quarks. The electromagnetic field tensor
is denoted as F,, = 0,a, — d,a,, with a, being the photon
field, while e = v/4za is the electric coupling constant, and
g, =~ 5.5 parametrizes the photon-vector-meson transition.
By applying the shift of Eq. (54) into Eq. (40) we obtain the
Lagrangian for radioactive decays

L

wiyp

e
:gwﬂqpg_gwpg(avap)tr[WB,ﬂaﬁ{Q’(aaaﬁaap)}Jr]' (55)
P

The extended version of this Lagrangian is provided by
Eq. (B3) in Appendix B. For the tree-level decay rate
formula, we obtain via Eq. (D17),
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k 7
FW3—>y+P (mm ’ ) gnglp <gp) |16§7|T K
where one of the masses m, and m, in Eq. (24) is set to
zero, because the photon is massless. The factors ! are
listed in Table XX. (The Heaviside function is not needed,
because all pseudoscalars are lighter than the conventional
spin-3 mesons and the photons can be arbitrarily soft.)

Various predictions for the radiative decays W5 — yP are
calculated and presented in Table VII. Because of the
rather large errors in the coupling constant (43), we
round all results to integers in units of keV. Quite large
radiative decay channels are w;(1670) — yz° as well as
K9(1780) — yK°.

In general, these processes imply that a photoproduction
of mesons with spin JP¢ =37~ can take place at the
ongoing GlueX [24-26] and CLAS12 [27] experiments at
Jefferson Lab.

D. Decay process W3 — A, +P
The interaction Lagrangian describing the decay of the
spin-3 tensor mesons into a spin-2 tensor and a pseudo-
scalar mesons has the following form

L

= gvv3a2p8yvpatr[W3”a/}[(GUA/2)a>7 (868,5}))]_]' (57)

widy p
The extended version is provided in Appendix B in Eq. (B4).
Using Eq. (D20) the corresponding decay formula is
FW3—>A2+P(mW3 ’ mm ,m )

Ky,
— 2 as,p
"2l 420mm?,

x O(m,,

(2|ka2,p |2 + 7m%¢2)’<i
(58)

3 maz - ml’)’

where the k; are listed in Table XXI. For this channel, there
are no experimental reported branching ratios that allow for a

TABLE VII.
W3 = yP.

Theoretical predictions for the radiative decays

Decay process Theory I'/keV

pE°(1690) — ya*/0 69 + 14
0(1690) = 71 157 +£32
P(1690) — 717/ (958) 20+ 4
K$(1780) > yK* 58+ 12
K2(1780) — yK© 231 £ 48
w3(1670) — yz° 560 + 120
w3(1670) - yn 19+4
03(1670) = 717/ (958) 14403
$3(1850) — yx° 4+1
$(1850) = 7 129 + 26
$(1850) — 717/ (958) 3547

direct determination of the coupling constant. Yet, we can use
the experimental ratio listed by the PDG [1] and taken from
Ref. [105],

exp
3(1690)—a5 (1320)x

R
£3(1690)—p(770)y

=55+20, (59)

together with the previously determined theoretical value
T, (1690)p(770); = (3.8 £ 0.8) MeV reported in Table VI.
The corresponding value for the coupling constant is

gg'/%azll

Once the coupling constant is fixed, we get the results for the
decay rates reported in Table VIII. The decay width
r K;(1780)—K5(1430)z is safely smaller the experimental upper

(2.84+1.2) x 107 MeV ™. (60)

limit [1,106]. Moreover, the quite large mode p;(1690) —
a,(1320)x is seen in experiments, but also in this case no
branching ratio is listed in the PDG [1].

E. Decay process W3 — B; +P

The interaction Lagrangian describing the decay into a
pseudovector and pseudoscalar meson is given by

L gwxblptr[Wﬂup{Bl 7Rl (a 0 P)}Jr] (61)

wsbip —
where the extended form is given in Eq. (B5) in
Appendix B. The tree-level decay rate takes the form

FW;—»BI+P(mww mb1 s p)

_ g | blpl 7Jr3|l?bl,p|2 .
0P 4207m3, my )

x O(m,,, —m, —m,). (62)
Here, we use Eq. (D25) and the k; can be found in
Table XXII. Also in this case, a direct determination of
the coupling constant g, , is not possible due to the lack
of experimental information. In order to estimate it, we
proceed as it follows.

(1) According to the PDG [1], there exists a lower limit

for the ratio

TABLE VIII. Decays of J*¢ =3~ mesons into a pseudoscalar-
tensor pair. Experimental data taken from Ref. [1].

Theory Experiment
Decay process I'/MeV I'/MeV
p3(1690) — a,(1320)x 209 +8.7 Seen
K3(1780) — K3(1430)x 58+24 <254+34

K3(1780) — f,(1270)K (5.4 +2.2) x 107
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(@)

T o (1670) b, (1235}
03(1670)=b,(1235)x 75

(63)
Fw3 (1670)—»w(782)zx

The PDG [1] extracts this lower bound for the ratio
from Ref. [107] and does not list this bound as
confirmed data. In Ref. [107] the authors in fact
report

Fw3(1670)—>b|(1235)7t _ 1.04_0'0

-0.25*

64
rw3(1670)—>w(782)n’ﬂ ( )

They further argue that the decay mode w3 (1670) —
b(1235)z is the dominant contribution to the
w(782)zn final state via the subsequent decay
b(1235) - @(782)x. They claim that one can
assume that

Fr;}3(1670)—>h|(1235)7{ ~ Fu)3(1670)—>m(782)mr7 (65)
and deviations are expected to be smaller than 10%.

Based on this assumption we use the following
approximation:

Lo, (1670) =5, (1235)x

ng (1670)—p(770)x

Eq.(65 Fw —wnr
499 L ay(1670)wmr_ PDG ) 71 4 ()57

(66)
I—‘a)3(1670)—>p(770)ﬂ

Here, one should mention that the PDG [1] cites

Ref. [108] for the second ratio but still excludes it

from their confirmed data. Additionally, Ref. [108]

even lists a different branching ratio,

F(U —WRT
—ea(T0=emr 0474018, (67)
1—‘(1)3(1670)—”)(77())71
as well as
I =
ws(1670)=b,(135) _ 035 1 16 (68)

Fu)3 (1670)—p(770)x

It is not clear to the authors of this work, how the
PDG [1] extracted their ratio from Ref. [108].
Nevertheless, we will stick to the data reported in
the PDG [1] and assume that there was some
reasonable reanalysis of the data of Ref. [108]. In
this context, it might be worth mentioning that all
experimental data concerning the w;(1670) is rather
old, and its mass and total width could not be
determined up to high accuracy at the time when
Refs. [107,108] were published. Definitely, there is a
need for future experimental investigations of this
state.

For what concerns our work, we use the result
L0, (1670)=p(770)z = (97 £20) MeV presented in the pre-
vious section as well as the ratio (66). We obtain the
following estimate for the coupling constant
gaigblp ~ (0.008 + 0.003) MeV~2. (69)
We are aware that this value and the corresponding results,
which are listed in Table IX, are only first rough estimates.
Still, they might again help identifying dominant decay
channels. Additionally, we consider the following aspects

for the determination and interpretation of our results.
(1) We consider K, 3~ K;(1270), since this is the
dominant contribution; then, the decay rate
L4, (1850)~k, z& 18 rather small. A disclaimer is in
order: due to the large mixing between K 4 and K
the results involving the identification K=
K (1270) can be only considered as a first approxi-
mation. The more correct procedure should be to
consider the full mixing in Eq. (17); hence K, p
should be expressed as a superposition of K (1270)
and K (1400). Yet, this is not an easy task, since the
interaction in Eq. (61) alone is not enough. One
should also take into account the interaction terms
for the decays W5 — AP in Eq. (70), which
includes K, 4, see next section. Then, the decays
into K;(1270) and K;(1400) should be calculated
by the joint Lagrangians (61) and (70) together with
the mixing (17). Furthermore, interference between
the two Lagrangians is expected. This calculation is
however not possible, since the coupling constant
9wsa,p cannot be determined by the present exper-
imental data (see next subsection). Hence, we must
limit our study to the dominant assignment K, p ~
K (1270) (in this subsection) and K, 4 ~ K;(1400)

(in the next subsection).

TABLE IX. Decays of J’¢ = 3=~ mesons into a pseudoscalar-
pseudovector pair obtained by using the mixing angle f, =0
and B, = —40°, respectively. No experimental value is listed in
the PDG [1]. The decay channel w;(1670) — b,(1235)x is
possibly seen.

Theory for Theory for
Decay process By, =0T/MeV p, =-40°T'/MeV
p3(1690) — h(1170)x 53+23 31+13
p3(1690) — hy(1415)x 0 0.73 £0.31
K;(1780) — b, (1235)K 0.55+0.24 0.55+0.24
K;(1780) — K, gz 37+16 37+ 16
K3(1780) — hy(1170)K 1.61 £0.70 0.03 £0.01
3(1670) — by (1235)x 69 + 30 69 + 30
P3(1850) — b, (1235)% 1.17 £0.51 1.17 £ 0.51
$3(1850) — K 3K + c.c. 9.1+3.9 9.1+3.9
¢3(1850) — h,(1170)n 0.006 £ 0.003 1.1+0.5
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(2) We present the results in Table IX for two values of
the unknown mixing angle in the isoscalar sector. In
one case, we assume that the mixing angle vanishes,
Py, =0, in the second we study S, ~ —40°, which is
a quite large and negative value similar to the mixing
angle for the pseudoscalar isoscalars. Note, the
mixing angle f, appears in the decay channels
p3(1690) = h (1170)7,  p5(1690) — hy(1415)x,
K3(1780) — hy(1170)K, and $5(1850) —
hy(1170)n, see Table XXII. The only experimentally
possibly seen decay w;(1670) — b,(1235)z, see
Ref. [108], corresponds to a quite large theoretical
partial decay widths and is independent of any
assumption on f, .

The decay p3(1690) — h(1170)x is also quite large
for both choices of the mixing angle, hence it is a
potentially interesting channel for future search.
Moreover, it is also an interesting decay channel
in order to determine the value of the mixing angle
Py, - The remaining decay channels are pretty small,
which might be an explanation for why they could
not be observed in experiment.

3

F. Decay process W3 - A; +P

The interaction Lagrangian and the decay formula for the
decay into an axial vector and a pseudoscalar meson are
given by

Lyiarp = Gwa pt W5 [A1,, (0,0,P)]], (70)
and
FW3—>A1+P(mw3 ’ mal ’ mp)
Ko, [
= 7 L) LA B iy B NI UV AN I
Fusar 20mmz \' 7 w2, )"
x O(m,,, —m, —m,). (71)

The extended version of the Lagrangian is given by
Eq. (B6) in Appendix B. The «; values for each channel
are taken from Table XXIII, and the decay formula was
derived by using Eq. (D26). As explained previously, for a
first rough estimate, we assume here that K| 4 ~ K;(1400).

Since we do not have enough experimental information
for obtaining the coupling constant g, , ,, We can only get
some theoretical predictions for ratios among different
decay channels, which are reported in Table X. Note that
the mixing angle f3, does not appear in any of the nonzero
reported decay channels, as it can be read from Table XXIII.
Anyway, the mixing is expected to be small [81].

In the end, it is interesting to mention that there
might be an option to size the coupling constant by linking
the present model to an wunderlying chiral model,
e.g., the ELSM. This approximately predicts 2 MeV for

TABLE X. Predictions for the nonzero branching ratios of
W3 — A P. We choose as a reference the a; (1260)7z decay mode.

Branching ratio Theory
rkgmxa)—»k]ﬂn 0.12

L (1690)—ay (1260)7

rK;‘(HXl))—»nl (1260)K 0.01

T (1690)>a; (1260)7

p3(1690) — a;(1260)x, see Sec. V for an estimate of
Gwsa,p- 1t seems therefore that the decays of the type
W3 — A; + P are suppressed.

G. Decay process W; — V{+V,
The interaction Lagrangian describing the decay into two
vector mesons is given by
‘CW31/‘]1/‘] = QW31)|1;|tr[WgW)[(auvl,v)’ Vl./}]—]v (72)
see Eq. (B7) in Appendix B for the extended version. The
corresponding decay rate reads

r )7m,(2))

(lz) (mw3, mv(ll o,

W=V 1y
|k
v

2
= Gwyviv ,
S BA0m? \ mP ym?,
vy v, 3

ol

(1)
1Y

+ 35mi(1>mi<2> + 14|kv§1). (2)|2(m2(1) + mz(z))}
1 1

v X
1 U U

o mv<12>), (73)

x k;0(m,,, —m
where the ;s are listed in Table XXIV. For the derivation of
the decay formula, we use Eq. (29). Also in this case, we
cannot determine the coupling constant, but we can present
the branching ratios reported in Table XI.

Moreover, we can find an upper limit for the coupling
constant by considering

F/)3 (1690)—>zr

L. (1690)=p(770)p(770)

F/)3 (1690)—zx PDG

= 0.35=£0.11,

4%

_ 74)
03(1690) >z 7t 7~ 7"

TABLE XI. Predictions for the branching ratios of W; —
V1 4+ V4. We choose as a reference the pp decay mode.

Branching ratio Theory

0.49

rK*; (1780)—p(770)K* (892)
T 5(1690)=p(770)p(770)
FK§ (1780)—K* (892)a(782) 0.17
L3(1690)~p(770)(770)

T 5 (1850)— K* (892)K* (892)
13(1690)~p(770)p(770)

0.35
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which follows from the fact that the p;(1690) —
p(770)p(770) mode is part of the z¥z "z~ 7" decay mode
(and eventually it is one of its dominating contributors).
Since the experimental value for I, (1600)~zz = (38.0 +
3.2) MeV is known, we find

P, S535+ 174, (75)

Based on this information we can predict upper limits for
the decay rates in Table XII. The theoretically largest decay
is p3(1690) — p(770)p(770), which has been experimen-
tally seen. Yet, the decay width of about 108 MeV is surely
too large, since using a value close to this upper limit would
|

et =161 MeVw

P3

imply that the sum of all the decays of the state p3(1690)
would overshoot the experimental total width of
(161 = 10) MeV. This is in agreement with the ratio

L), (1690)=p(770)p(770)

(76)

9
Fp; (1690)—r* 7t 72"

which is smaller than 1 for all experimental measurements
[109-112], which are listed by the PDG [1].

However, we can then obtain a second, more realistic
estimate of these decay channels by summing up the largest
decay channels:

=1,,1690)=rr T U py(1600) =k T 15(1690)=p(770)0 + L'y (1690)~ K (892)K

+ ) (1690) s w(782)7 T L, (1690) 5 ¢(1020)2 + Lp, (1690) > ay (132007 + Ly (1690) >4, (1260)x

+ ) (1690) =1, (1170)7 + Lpy(1690) =y (1415)2 T 1(1690)=p(770)0(770) T 15 (1690) = other (77)

where I, _ e, refers to all other decay channels not listed
above. Anyhow, these should be small. For ", (1600) 1, (1170)x
we use the smaller value presented in Table IX, assuming a
large mixing f3,, = —40°. In this way we estimate the more
reasonable upper limit

L. (1690)=p(770)p(770) < 30 MeV, (78)

from which follows

Py < 148, (79)

The corresponding estimates for the other channels can be
found in Table XII.

Following this estimate, we perform the sum of the
predicted and sizable decay channels for the other spin-3
mesons, obtaining:

TABLE XII.  Upper limits for the decays of J°¢ = 37~ mesons
into a vector-vector pair. Two different estimates are used,
see text.

Theory using  Theory using

(74) & (75) (77) & (79)
Decay process I'/MeV I'/MeV
p3(1690) — p(770)p(770) <108.6 +35.3 <30
K3(1780) — p(770)K*(892) <53.6+174 <15
K;(1780) — K*(892)w(782) <19.0+6.2 <5
$3(1850) — K*(892)K*(892) <383+ 125 <11

Ffrgf}(qnso) ~ 146 MeV, (80)
T3 o) & 175 MeV, (81)
T3 o) ~ 80 MeV, (82)

which are in agreement with the experimental values from
the PDG [1],

F[Kog(nso) = (159 £21) MeV, (83)
L (670) =(168 £ 10) MeV., (84)
T 1ss0) =(87133) MeV. (85)

These results demonstrate that the model is internally
consistent.

IV. PHENOMENOLOGY OF THE
JP€=3-- GLUEBALL

In this chapter, we study the branching ratios of the
decays of a hypothetical glueball with J*¢ = 3=, Similar
to all other bound states of gluons, this glueball is not yet
experimentally detected. However, lattice QCD calcula-
tions in the quenched approximation predict its mass of
approximately 4.13 GeV [3], 4.33 GeV [4], or 4.20 GeV
[5]. For general works on glueballs, see, e.g., Refs. [113—
116]. For model approaches to the phenomenology
of glueballs, which are similar to this one, see for
example previous publications by some of the authors
[33,37,56,79,117].
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TABLE XIII.
with Eq. (22)].

Strong interaction Lagrangian terms for the hypothetical glueball state G3(4200) [in comparison

Decay mode

Interaction Lagrangians

G3; -V, +P
G; = Vi +4
Gy - B+ P
G; —» B + A

£g3v]p Cysv lpG3 Maﬂgﬂbpatr[{(auvl‘p)’ (aaaﬁanp)}wJ
E.U}”Ial = !Jﬂ]“] G3qﬂaﬂ8ﬂblmtr[{(al/vlﬂ)’ (aaaﬁAlﬁ)}Jr]
Lobip = Co,pGs 0[{B1,, (0,0,P)}.]
L cg3b1a]G§yﬂtr[{Bl.ﬂ7 (aUAl,/))}+]

gbra, —

Before we start our discussion, we explicitly state that all
branching ratios should be considered as first indicative
results.

A. The effective model for glueball decays

The Lagrangian describing the decays of this glueball
can be obtained by making use of the fact that each glueball
is a flavor singlet—an object that is invariant under SUy (3)
transformations. Hence, we can perform the simple replace-
ment

Wﬂl-/p g G/?:l/p . 113)<3 (86)

in the effective interaction terms, where 15,3 is the flavor-
space-identity matrix and G4 is the glueball field
[33,117]. As a consequence, the interaction terms that
come with a commutator vanish, and the only nonzero
contributions to a residual IR-effective action for the 37~
glueball can be derived from the former interaction terms
involving the anticommutator. Thus,

LG, 4200-v,+p # 0, L', 4200-8,4p # 0. (87)

The corresponding Lagrangian terms are reported in
Table XIII. In addition, there are also decays of the type
G5(4200) —» V| + A, and G5(4200) —» B; + A, that were
not included in for the lightest conventional mesons with
JP€ =37 because they were kinematically forbidden.
They are however possible for the glueball G5(4200) since
it is expected to be much heavier than the 37~ nonet (6).
Below we present the theoretical predictions for ratios of
decays, which can be easily calculated following the same
steps of the previous sections. The only ingredients that are
needed for a determination of the branching ratios are the
masses of the particles, which are for the sake of simplicity
again assumed to be exact. For the 37~ glueball mass, we
use m,, = 4.2 GeV [5].

B. Decay process G3 — V{+P

The interaction Lagrangian for decaying spin-3 tensor
glueball into a vector and a pseudoscalar meson reads
Lo

= Cyy0,pG3 uape°w[{(0,V1,). (0°0P0,P)},].  (88)

An extended version is given by Eq. (B8) in Appendix B.
The corresponding decay formula is analogous to Eq. (41),

FG3—>V|+P(mgg’m mp)

1Ky, |7
=Clop 10]517 k®(my —m, —m,). (89)

Here, the «;s can be taken from Table XXV. We use again
Eq. (24) for the momenta of the outgoing particles
throughout this chapter, while replacing the mass of the
conventional spin-3 mesons m,, with the glueball mass
= 4200 MeV. Since the coupling constant ¢, , is
unknown we calculate the nonzero ratios in Table XIV.
This is an interesting decay channel to search for this
glueball. Since the vector mesons further decay in two (or
three) pseudoscalar mesons, one should search for final
channels with three (or four) pseudoscalar mesons.

C. Decay process G3 —» y+P

Using vector meson dominance via the shift of Eq. (54)
and analogous replacements, we can also construct a
radioactive decay term for the spin-3 glueball,

L

g3rp

tm/pg G3 ya/i(a a )gﬂylmtr[{Q’ (aaaﬂaﬁp)}+] (90)
14

An extended version of this Lagrangian can be found in
Eq. (B9) in Appendix B. For the decay formula one derives

TABLE XIV. Predictions for the branching ratios of glueball

Branching ratio Theory

TG, (4200)~ k* (892)k 1.11

LG5 4200)p(770)7

LG, (4200~ w(782)1 0.17

65 (4200)p(770)2

6, 4200) 0 (752)1/ 958) 0.089
'G5 (4200)—p(770)2

LG5 4200)~g1020) 0.098

LG5 (4200)p(770)2
L3 200)~g10200 058) 0.11
LG5 (4200)p(770)2
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2 [k,
e

I'; p(m, ,m,) = c? T
3—’J’+( 93° P) g301p 9 1057

where the corresponding factors «! are listed in
Table XXVI. Similar to Eq. (56) one of the masses m,
and m, in Eq. (24) has to be set to zero, due to the
masslessness of the photon.

From these formula, we calculate ratios for the radio-
active decays I'g,_,,p with respect to the strong decay
channel I'g, (4200)(770)=- The results are listed in Table XV.

D. Decay process G; — V{+A;

We also present the glueball decays into vectors and axial
vectors by considering the Lagrangian in which G5 couples
to V1A1

L

g3viay

= Cyvyq, G3.ﬂa/)’€”yp6tr[{ (8DV1./))’ (aaaﬂAl,(r)}+]' (91)

The extended version is provided in Appendix B in
Eq. (D20). The tree-level decay formula is given by

FG3—>V1+A] (mg3 ’ mvl > mal)

— 2 |%”17a1|5 I_{’ 2( 3 2m§3 T2
_ngmalm | vl.a1| =+ m—gl + /my;,

X k®(my, —m, —m,), (92)
where we used Eq. (D30). The coefficients k; are listed in
Table XXVII. Results are listed in Table XVI.

E. Decay process G3 - B; +P

The second dominant decay of the J°¢ = 37~ glueball is
the one into a pseudovector and a pseudoscalar meson. The
interaction Lagrangian is given by

Lobp = Cgp,pGs 0{By 4, (0,0,P)} ], (93)

and its extended version can be found in Eq. (B11) in
Appendix B. This implies that the formula for the decay
width is identical to Eq. (62),

TABLE XV. Predictions for the branching ratios of glueball
G3(4200) — y + P with the G5(4200) — pr reference decay
mode.

Branching ratio Theory
Loy 129 x 107
LG5 /(4200)p(770)2

IG5 (4200) -7 37 x 1073
LG5 (4200)p(170)2
T3 (4200 (958) 1x107

LG5 (4200)-p(770)2

TABLE XVI. Predictions for the branching ratios of glueball

Branching ratio Theory

U5 (4200)-k* (892K 4 0.78

L65(4200)p(770)a; (1260)

LG, (4200~ w(782) £ (1285) 0.29

FG3 (42(](J)—>/}(77(J)a| (1260)

LG5 (4200)~w(782) £, (1420) 0.0009

L64(4200)—p(770)a; (1260)

G, (4200)> (1020, (1285) 0.0011

'G5 (4200)p(770)a; (1260)
L64(4200)-(1020) £, (1420) 0.16
'G5 (4200)—p(770)a; (1260)

FG3—>BI+P(mg3v mp,, mp)

Ky pl° [k,
) | by.p by.p
= e 320202 (7 358 )
93 by
X k@®(my, —m, —m,). (94)

The factors «; are listed in Table XX VIII. Again, we study
two possible choices for the mixing angle (5, ~ 0° and
pp, & —40°) and upon using mg, , & Mg, (1270), We present
the results in Table XVIIL.

F. Decay process G; — B; +A;

Moreover, we present the results for the glueball into a
pseudovector and an axial vector, G3 — By +A; in
Table XVIII for §, = 0°. Namely, the Lagrangian for this
decay can be obtained from Eq. (93) as

‘ngblal = ngblangyptr[{Bl,w (avAl,p)}+]' (95)

The extended form is presented in Eq. (B12) in
Appendix B. The corresponding decay formula is given by

TABLE XVII.  Predictions for the branching ratios of glueball
G3(4200) - B, + P.

Theory for Theory for
Branching ratio Py, = 0° By, = —40°
T'63(4200- Ky & 1.15 1.15
LG5 4200)~b, (1235)7
'G5 (4200~ (170} 0.17 0.33
LG5 (4200~ b, (1235)2
FG3(4200)M| (1170)' (958) 0.12 0.001
LG5 (42001 (1235)7
634200y (1415)n 0.10 0.001
LG5 420006, (1235)7
L3001, 01530 058) 0.08 0.16

LG5 (4200) b, (1235)2
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TABLE XVIII. Predictions for the branching ratios of glueball

Theory for Theory for
Branching ratio By, =0° By, = —40°
UG5 4200)~Ky Ky 4 0.96 0.96
TG, (4200)~ b, (1235)a; (1260)
LG, (4200)hy (170)£, (1285) 0.34 0.20
LG5(4200)- b (1235)a; (1260)
IG5 (4200~ 1, (170) £, (1420) 0 0.11
r(73 (4200)—by (1235)ay (1260)
TG4 (4200)~ 1, (1415)7, (1285) 0 0.092
LG5(4200)— b (1235)a; (1260)
IG5 (4200~ 1y (1415) £, (1420) 0.17 0.10
LG5 (4200)— b, (1235)a; (1260)
FG3—>B|+A| (m!]3’ Mp, > Mg, )
-
3
2 |kb1,a1 ‘ 7 4
= Cgbia 8407m2 m2 m2 [6|kb|,tl| |
T, M, My,
2 2 T 2( 12 2
+ 35mj, mg, + 141ky, o |*(my +mg,)]
X Kk@(my —my, —my), (96)

where the k;s are listed in Table XXIX.

V. DISCUSSION OF THE CONSTRUCTION
OF THE MODEL

In this section we discuss the interpretation of Eq. (22),
the interaction Lagrangian Ly .1, Which was constructed
by keeping only the lowest possible number of derivatives
for a given interaction term. We justify this choice by
following two different lines of argumentation. First, our
effective model naturally emerges if the Lagrangian
Ly o 18 interpreted as being part of a more general
and complete chiral hadronic model in the vacuum, such as
the (extended) linear sigma model [57], which was already
mentioned in the Introduction. Second, a (Functional)
Renormalization Group perspective also indicates that
terms with the lowest derivatives might be retained as
the dominant contributions within our effective had-
ronic model.

The ELSM is built under the assumption of chiral
symmetry, thus

UL(3) x Ug(3) = SUL(3) x SUR(3) x UL(1) x Ur(1),

and the assumption of scale invariance. Besides the small
explicit breaking of both of these symmetries, because of
the nonzero bare quark masses, which derive from the
electro-weak sector, the symmetries are also broken
dynamically. The SU; (3) x SUi(3) breaks down to a
SUy(3) symmetry spontaneously, which was already dis-
cussed before. Also the scale invariance breaks down via
gluonic quantum fluctuations and the emergence of a gluon
condensate, which is also called the “conformal (trace)

anomaly” [10,118,119]. Additionally, a second anomaly—
the chiral anomaly—breaks U, (1) and explains the heavy
mass of #/(958) as well as the large pseudoscalar mixing
angle [84]. As discussed in Ref. [81] and commented in
various parts of this work, this anomaly may affect
also the masses and the decays of other nonets (those
being part of homochiral multiplets). In the chiral limit, and
ignoring the chiral anomaly, all the interaction terms of the
ELSM are invariant under scale/dilatation transformations.
Consequently, they are parametrized by dimensionless
coupling constants.

The Lagrangian L, o (22), which we use in this work,
contains various decay constants, see Table III. With the
exception of the last entry, all of them are dimensionful. At
a first sight, this feature seems in disagreement with the
requirement that should descend from a chiral model such
as the ELSM [53,56]. Yet, this is not the case and a closer
inspection also shows why the lowest number of derivatives
should be kept. First, let us recall that the spontaneous
symmetry breaking implies a peculiar scalar-axial-vector
mixing, which is removed by the a shift of the axial-vector
nonet A;. In the simplified case with vanishing bare quark
masses, where Uy(3) is exact (this is enough for our
illustrative purposes), it takes the following form [53,120]:

A > AY 4 Zwdr P, (97)

where Z~1.6 and wx g,lgN’
ay

m, ~14GeV, and ¢py~Zf, (f, =924 MeV is the
pion decay constant).

Now, the ELSM was studied in a variety of frameworks:
besides (pseudo)scalar and (axial-)vector mesons [53] and
the aforementioned calculation of glueballs [56,79,117], it
was also applied to study hybrid mesons [120] and excited
scalar mesons [121]. Even if various mesonic nonets were
not included in the ELSM yet, it is clear which features
such terms should have.

Within this framework, the W3 PP Lagrangian,

where g, ~g,~3.5,

£w3pp = gw3pptr[WWp[P’ (8/481/8,0]:’)]—}’ (98)
where g, ,, has dimension E72, and the W3A,P
Lagrangian,

Lyiap = Gwsa, pttWH[A . (0,0,P)]_]. (99)
where g,,.,, , has dimension E~!, can be seen as the result of
the interaction Lagrangian

£w3a]a1 = gw3a|a|tr(Wﬂyp[A1,w 81/‘41,/)]—)7 (100)
involving solely the dimensionless coupling g,,.,,4, Via the
shift of Eq. (97) applied once/twice. In other words, only
the Lagrangian L, ,, is part of a generalized ELSM
Lagrangian that includes fields with J = 3 in agreement
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with dilatation invariance. Then, upon spontaneous sym-
metry breaking and mixing/shifts, the Lagrangians L, , ,
and L, ,, are a consequence of L,, , ., thus explaining
how dimensional couplings appear in the model, even if
one starts solely with dimensionless ones.

While the decay W; — AjA; is not kinematically
allowed, the corresponding term explains how the first
and the fifth entries of Table III emerge. The simple
relations

gw;pp ~ ZZWzgw3ala] (101)

and

gw3a1p ~ ZWgw3a1a1 (102)
follow. Moreover, the ratio g, p/Gw,pp = (Zw)~", out of
which we may estimate that

~3 x 1074 MeV—2 (103)

gV2V3¢l1P

is obtained (it should be however stressed that the present

heuristic discussion cannot provide a precise determination

of ratios of couplings, but it solely offers a guide to

understand the origin of the model). This value leads to

L), (1690)—a, (1260)z & 2 MeV, as previously mentioned.
Next, let us consider the W3B ;P Lagrangian,

£w3b1p = gw3b1ptr(W;wﬂ{Bl,/u (8Dapp)}+)’ (104)
with g, ,» which can be seen as emerging from
£w3b]a1 = gw;blaltr[WMw{Bl.w (auAl,p)}Jr]’ (105)

with a dimensionless coupling g,.; 4. The A; shift
introduced above implies that

gw3b1p ~ ZWgW3b1a1 . (106)
Next, let us study the remaining terms. The W3V,V,
Lagrangian is already dilatation invariant, while the two
other Lagrangians L,,, , and L, ,,, are not, since they
involve the coupling g,,.,, , and g,,.,,,, having dimensions
E~3 and E2. In this case, one could build analogous
Lagrangians L,,,, , and L, ., , but their coupling con-
stants g,,., 4, and g,,. 4,4, still have dimensions E~2 and E~".
This is however understandable, since these terms involve
the Levi-Civita pseudotensor ¢,,,, and hence are a mani-
festation of the chiral anomaly.

In conclusion, terms being part of the model are
(1) dilatation invariant, (ii) can be obtained from dilatation
invariant terms of a more general underlying chiral model
via the shift of the axial-vector nonet, or (iii) they are linked

to the chiral anomaly. Now, one also understand why only
terms with the lowest number of derivatives appear.

For the effective interaction terms of the 37~ glueball, the
argument is completely analogous.

Still, we also provide a brief alternative motivation for
the construction of the model from a renormalization group
perspective. In this framework, we know that the UV limit
of all hadronic physics is QCD, where the degrees of
freedom are quarks and gluons. However, we want to
describe low-energy QCD and the effective hadronic
degrees of freedom. By integrating out quantum fluctua-
tions of gluons and quarks via renormalization group
transformations from the UV scales to the IR scales,
including dynamical hadronization, one finally ends up
with an effective hadronic theory, where hadrons are the
effective degrees of freedom. While integrating out quan-
tum fluctuations momentum shell after momentum shell,
all kinds of effective couplings/vertices, which are in
accordance with the UV symmetries of the theory (the
symmetries of QCD), will be generated. This process is
effectively described as the RG flow of the coupling
constants of the theory, where effective couplings of
hadrons are initially zero and only generated dynamically
during the RG flow. The same applies to the effective
fermionic and hadronic quantum fields.

An efficient and modern framework to describe this
process, which effectively is an implementation of Wilson’s
idea of the RG [122-124], is the FRG in its formulation via
the exact renormalization group equation [60,61], see for
example Refs. [58,59,63,125-127] and Ref. [62] for an
comprehensive up-to-date review. For our purpose, it is
solely important to note that the FRG is most efficiently
formulated on the level of the quantum effective IR action
I'[®], which is the generating functional of all 1PI-n-point-
correlation functions. The FRG allows us to calculate
I'[®]—at least within certain truncations—from the UV
theory, which here is QCD. The interesting part is that the
quantum effective IR action contains all kinds of effective
vertices, which were generated during the RG flow and
contain all information about the higher energy scales. For
the calculation of decays etc., however, only these effective
couplings are relevant and calculations are performed at
tree level because all loop contributions are already con-
tained in the couplings and because we are working with
the 1PI-n-point-correlation functions. Dynamical sym-
metry breaking is realized in this framework as a nontrivial
vacuum/ground state, which is realized as a minimum of
the effective action I'[®@]. All 1PI-n-point functions must be
extracted at this physical point, which yields shifts like
in Eq. (97).

In practice, it is almost impossible to really do this
calculation from first principles, especially concerning
couplings for mesons with higher spin and large masses.
Nevertheless, we know from the previous argumentation
that a low IR-effective action I'[®] must contain all possible
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interaction terms, which are in accordance with the sym-
metry of the theory, and if shifted to the physical point, then
it must contain all symmetries of the vacuum of the theory.
This also applies to the effective couplings of our spin-3
mesons. Thus, we can use the following argument: instead
of calculating all interaction terms and couplings, which are
in accordance with the symmetries of QCD, via an RG flow
from first principles (which is anyhow impossible), we just
write down all possible effective interaction terms that are
invariant under the residual IR vacuum symmetries of QCD
and simply fit the effective coupling constants to exper-
imental data. This approach additionally justifies the use of
tree-level calculations, because experimental measure-
ments for decay widths etc. already contain all information
about the high energy scales of QCD and so does an
effective IR action I'[®], from which information is
extracted at tree level. We therefore interpret all effective
Lagrangians L,,... as being part of an effective IR action
I'[®] for QCD.

Last, we argue, that as long as the momentum exchange
in processes like three-point-interactions (decays) is small,
we can expand an effective IR action in powers of momenta
of the effective hadronic fields. In the context of the FRG,
this approach is denoted as a “derivative expansion” and
turned out as a decent approximation in a lot of low-energy
models of QCD [64-75].

All in all, both approaches complement each other and
explain that we only retain terms that are of the lowest
orders in the derivatives of the fields, that are of leading
order in a large-N, expansion, and that are flavor invariant.

VI. CONCLUSIONS

In this paper, we have studied the decays of the lightest
mesonic §g nonet with quantum numbers J*¢ = 37~ using
an effective QFT model based on flavor symmetry. Our
model retained only the dominant terms in an large-N,
expansion and the lowest possible number of derivatives.
By comparing the theoretical results with the current status
of experimental data for decay width and some known
branching ratios, which are all reported by PDG [1], we
conclude that the gg assignment works quite well. Still, we
remark that there are also other rather successful
approaches different from the gg picture towards a coherent
description of the nature of the J*¢ = 37~ states, see, e.g.,
via multi-p(770) resonances [128,129]. However, also in
our work some of the decay channels deserve deeper
theoretical and experimental investigation. Additionally,
we presented decay ratios of a putative and not yet detected
JP€ = 37~ glueball by considering decays into the vector-
pseudoscalar and pseudovector-pseudoscalar mesonic
pairs. In summary, we provide many qualitative predictions
of strong and radiative decays of conventional J©¢ = 3=~
mesons and the JF¢ = 37~ glueball for future experimen-
tal tests.
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APPENDIX A: MASSES AND STRANGE-
NONSTRANGE MIXING ANGLES

For a certain nonet, we denote as a the triplet of fields
describing the isospin I = 1 elements du, id, % (au — dd),
with K* the complex kaonic fields representing the doublet
5u and s, and K the analogous fields ds and 5d for the
neutral kaonic elements, and as fg and f the octet and the
singlet elements, whose quark-antiquark configurations are
ﬁ (iu + dd — 25s) and % (itu + dd + 5s), respectively.
The corresponding SUvy(3)-invariant mass term reads
(omitting possible Lorentz indices for simplicity)

1. _
5m%;a2 +m%(K*K~ + K°K?)

1 1
+§m§f§+§m<2)f%+mosfof87 (A1)
where also a singlet-octet mixing parameter m,g has been
introduced. The masses of the fields @, K%+, and fg are
expressed as

m% = mgonet + 25%’ (AQ’)

My = Maonet + 85 + 53, (A3)
2 4

m% = m%onet + 553 + 55?’ (A4)

where 1, 1S the mass of the nonet in the chiral limit as a
consequence of spontaneous symmetry breaking (see, e.g.,
Ref. [53]), and &2 represents the (almost negligible)
contribution of the bare nonstrange quarks u and d and
62 the (on hadronic scales) small but nonnegligible con-
tribution of the bare quark s. (Besides the pseudoscalar
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nonet, one simply approximates &, «m, ~m  and 5, x m;.)
From the expressions above it follows that

4 1
m} = gm%{ - §m§
2 4
= m%onet + 56% + 55% (AS)

The mass of the singlet member of the nonet may contain
an additional unknown contribution (due to the anomaly
and/or conversion to gluons), parametrized by

4 2
m% = mrzlonet +§5;% +§5? +a

1
="myx +-mi+a (A6)

3 3

Next, we diagonalize the system in the isoscalar sector. We
then introduce the physical fields f and f’ as

(‘f’) _ <C?SﬂPDG _SinﬂPDG)<f8>, (A7)
f sinfppg €08 fppg fo

where fppg is the corresponding mixing angle,

2m,
tan(2fppg) = P — _O;xnz , (A8)
0~ Mg

which is obtained via diagonalization of the mass matrix
together with the relation,

m} = m‘}%/ cos? fppg + m)z( sin? Bppg. (A9)

2

mgy = m3 cos” fppg + m7, sin” fepg. (A10)

In Eq. (A7) the extra minus sign in front of f” is introduced
for later convenience. Using Eq. (A9) one gets

3m3 — 3mJ2u 3m§,coszﬂPDG + 3m7sinfepg — 3mJ2d

—3m} +3m? —3m3,cos’ fppg — 3misin® ppg + 3m;

= tanzﬂPDG, (Al 1)

but on the other hand using the above expressions for the
masses the lhs can be written as
3mg —3m3,  dmg —mg —3m,

= . Al2
—3mZ + 3m;- —4m% + m, + 3m} (A12)

leading to expressions used in the PDG [1] to calculate the
mixing angle in the singlet-octet basis:

4my —mg — 3m3,

tan® fppg = (A13)

—4m% +m, + 3m?- .

In the last step we relate this to the (for our purposes) more
convenient nonstrange-strange basis f, and f that corre-
sponds to the configurations % (au + dd) and 5s. Via

W) BV ) e

(fo V3L 1 V2 \fn /) (A14)
we introduce the strange-nonstrange mixing f as

(‘f’) :L(COSﬂPDG —SinﬁPDG) (—\/5 1 > <fs>
f V3 \sinflppg  €osfepg 1 V2)\fn

B —cosf sinp fs
_< sin /3 008ﬁ> (m)’
or, as reported in the main text, as
()= G ) (1) 09

f —sinf  cosf fs

The strange-nonstrange mixing angle £ and the angle fppg
can be obtained by Eq. (A15) as

1 2 .
\/; COS fippg — \/; sin fppg

(A15)

= sin 8 = sin(—fepg + fo). (A17)

thus
P = —Prepc + Po (A18)

with
fo = arccos \@ ~35.3° (A19)

The mixing angle fppg (and hence ) has been calculated in
the PDG for certain well-known mesonic nonets (pseudo-
scalar, vector, as well as J°€ = 27+ and JP¢ = 377). While
for the pseudoscalar case we employ the result of Ref. [80]
(where not only masses but also decays are used to get f3),
in the remaining three cases we used the value fppg to
determine the strange-nonstrange mixing angle. With the
exception of the peculiar pseudoscalar nonet, where the
axial anomaly is large, the other values of f calculated from
Prpg are quite small—in agreement with the theoretical
expectations presented in Ref. [81]. As a consequence, the
parameter a of Eq. (A6) is negligible. In particular, for
J =3 the numerical value § = f3,, = 3.5° has been used
throughout our calculations. When future experimental data
will be more accurate, one could also include S, as a fit
parameter in an improved model. In this respect, better
experimental data for radiative decays would be useful.
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APPENDIX B: EXTENDED FORM OF THE LAGRANGIANS OF THE MODEL

In this Appendix, we provide the explicit form of the interaction Lagrangians in Tables III and XIIL

wipp

w3U1p

:gw3pptr(Wgyp[P’ (aﬂavapp)}—>
= Sware (0 {4 RO(9,0,0,K°) — K°(8,0,0,K0) + K*(9,0,0,K")

4
—K~(9,0,0,K) +2[1"(8,0,0,77) -~ (8,0,0,7)]}

+p " {(V2[-K~(0,0,0,K°) + K°(,0,0,K7)] +2[x~(9,0,0,7°) - 2°(3,0,0,77)]}
+p3_‘””p{\/§[K+(8,,8,,8pK0) -Kk%0,0,0,K%)]+2[-7"(9,0,0,7°) +°(0,0,0,77)]}

+ KM {K0(0,0,0,1") = 7°(0,0,0,K°) + V2[=K*(8,0,0,77) +7(8,0,0,K )]

+ KO[(aﬂabapn)(—cosﬁp + \/Esinﬁp) +(0,0,0,1")(sinf, + \/Ecosﬂp)]

—[n(=cosp,+ \/Esinﬂp) +1/(sinf, + \/icosﬂp)](f)ﬂabapl(o)}

+ KM {-K°(8,8,0,2°) +°(9,0,0,K°) + V2[K~(9,0,0,x" —x7(8,0,0,K7)]
-K°[(0,0,0,n)(—cosp,+ \/Esin/}p) +(0,0,0,1)(sinf, + \/Ecosﬁp)]

+ [n(=cosp, + \/isinﬂp) +1n/(sinf, + \/Ecosﬂp)](aﬂaﬁpl_(o)}

+ Ky {+K(0,0,0,7°) —2°(9,0,0,K”) +V2[K°(8,0,0,7~) — 2~ (0,0,0,K°)]

- K~[(0,0,0,n)(—cosf, + \/Esinﬂ,,) +(0,0,0,1')(sinf, + \/Ecosﬂp)]

+n (—Cosﬁ,,+\ﬁsinﬁp)+l7’(sinﬂ,,+\fZCOSﬂP)](a 0,0,K7)}

+ K" {-K*(0,0,0,2°) +2°(0,0,0,K") + vV2[-K"(9,0,0,7") + n*(9,0,0,K")]

+ K*[(0,0,0,m)(—cosp, + \/ismﬁp) +(0,0,0,1")(sin ), + \/Ecosﬁp)}

—[n(=cosp, + \/Esinﬁp) +1/(sinf, + \/Ecosﬁp)](aﬂayapK*)}

+ ah"{(=cosp,, +\/§smﬂm) x [K*(9,0,0,K°) - K°(0,0,0,K°) - K*(0,0,0,K~)+ K~ (8,0,0,K")]}
+ 57 {(sinp,,, + \/_cosﬂWS) x [K*(9,0,0,K°) -K°(0,0,0,K°) - K*(0,0,0,K~)+ K~ (8,0,0,K")]}).  (BI)

_gw3171p Mypo-tr[W'% ;wcﬁ{(a Vl p)’ (aaaﬁanP)}+]

gw;f'” e (+p3 s {—(0,K0)(0°0P0,K°) = (0,K;°) (0° 0 9,K°) + (9, K ;") (0"0P D, K ™) +(0,K;7) (009, K ™)
+2[(0,@,)c08,~ (0,¢,)sinp,](0°0°9,2°) +2(0,p))[(0°0° D) cos f, — (0*0P D1’ )sin B | }
+03,apV20(0,K;7) (0790 0,K) + (9,K;°) (0°0P 0,K )] +2[(9,0,) cos p, = (9,6, ) sin B, ] (00 D7)
+2(0,0;)[(0°0P D) cos B, — (0P D ) sin B, 1} +p3,.p I V20(D,K ) (0°0P9,K0) + (0, K;0) (0°0P 9, K )]
+2[(0,@,)cosB, = (0,,)sinB,) (0" Dy ) +2(9,p) ) [(0°0P D) cos f, = (0°0P D) sin B, |}

+ K30 A= (0,K,0) (0700 0,5°) +V2(0,K;,) (0700 Dy1) = (0,00) (07 0P 0,K°) +V2(0,p; ) (0°0 D, K )
+(0,K0)[(0°0PD ) (cos B, +V2sinf,) + (0D, ) (=sinf, +V2cos )]

+[(9,@,)(cosp,+ V2sin,) +(9,¢,)(—sin, +v2cosp,)|(0°0P0,K")}
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+ K30,y {—(0,K;0)(0°0P0,1°) + V2(0,K;7)(0°0P 0,1 ™) = (0,00)(0°0PD,KO) + V2(0,p5 ) (0°0P 9,K7)
+ (0,K0)[(8°0P9 ) (cos B, + V2sin B,) + (0°0PD,n') (—sin B, + V2 cos B,)]
+[(0,m,)(cos B, + V2sin,) + (D,¢,)(—sin B, + V2 cos §,))(0°0°9,K°)}

+ K3 H(0,K57)(0°0P9,7°) + V2(0,K;0) (07090, ) -

+ (0,p))(0°0PD,K) + V2(D,p; ) (0°0PD,K)

+ (0,K57)[(0°0P0,m) (cos B, + V2sin B,) + (0°0PDpn') (= sin B, + V2 cos B, )]
+[(0,0,)(cos B, + V2sin p,) + (9,0h,) (= sin B, + V2 cos )] (0°0°0,K ™)}

+ Ko {+(0,K57)(07090,2°) + V2(0,K;°) (0°0P0,m" )~

+ (0,9)(0°0P0,K*) + V2(0,p; ) (0°0PD,K")

+ (8,K5)[(0°0P0,m) (cos B, + V2sinf,) + (0°0PD ') (—sin B, + V2 cos B,)]
+[(0,m,)(cos B, + V2sinB,) + (D,¢,)(—sin f, + V2 cos ,))(0°0PD,K*)}

+ @3 4qp{ (cos p,,, + \/Esinﬁw}) x [(0,K;%)(0°0P0,K°) + (0,K")(0°079,K°)

+ (DK (0P OK™) + (0,K57) (0P O,K )]

+2¢08 B, [(9,00)(0°P Dy1°) + (,p) )(3°0P Dyr™) + (8, ) (0P Dy )]

+2co0s f,,[(0,w,) cos B, — (D,¢,) sin p,] x [(0°0PD,n) cos B, — (0°0P0,n) sin ]
+2vV2sinp,, [(0,0,) sin B, + (9,¢,) cos B,] x [(0°0P0,n) sin B, + (0°0P0,n') cos B, ]}
+ 3 papl (= sin B, +V2c0s ) x [(0,K:0)(3°0P0,K°) + (9,K:0)(8°0PD,K°)

+ (0,K;7)(070P0,K™) + (0,K;7)(0°0P9,KT )|+

= 2sinf,, [(0,p0)(0°0P0,2°) + (D,p; ) (0P Dpm™) + (8, ) (0" Dyr™ )]+
—2sinf,,[(0,0,) cos B, — (D,¢,) sin B,] x [(0°0PD,n) cos B, — (070PD,n) sin ]
+2v/2cos B, [(O,@,) sinf, + (D,,) cos B,] x [(0°0P8,n) sin f, + (80P 1) cos B,]}). (B2)

»cw3yp = gW31)1p gigﬂvpg(auap)tr[wluaﬁ{Q’ (aaaﬂaap)h]
P
= gm%gigﬂvw(aya,,)(+pg,ﬂa,}{(aaaﬂa,,n0) + 3[(2°0°0 1) cos(B,) — ("D, ) sin(B,)]}
P
+ 03 0ap (70 ) 4 P31y (0°P Do) = 2K, (3P 9, KO) = 2K35, 5 (9° 0P D,KO) + K57,y (0° P D, K7)
+ K30y (090 0,K™) + @345 {3 cos(B,) (0°0P 0,2°) + [cos(B,,,) cos(B,) — 2sin(B,.,) sin(B),)] x (0P 0pm)+
= [cos(By,) sin(B,) + 2sin(B,,,) cos(B,)] x (0P O;n')} = b3 yap{3 sin(B,.,) (070 0,2°)
+ [sin(B,,) cos(B,) + 2 cos(B,.,) sin(B,)] x (0 d,n) + —[sin(B,,)sin(B,) — 2cos(B,.,) cos(B,)]
x (0°9P0,1)}. (B3)
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Lovsarp = Gwsar p€upott (Wi ap[ (07 A5%), (070 P)])
=Bt g (ORI @PKO) - (KLY ORY) + (K ) (070K
— (VK (0P OPK) 4 2[(0Pay ") (0°0Pr) — (87 ") (0° 0P nH))}
+ Paap (V2= (K (070 K) + (0°Ky ) (97K )] + 2[(8ay ™) (000 5°) = (0 ay™) (079 x7)]}
+ P {V2L( KT (07 0PKO) — (07 KS7) (00 0P K )] 4 2[—(0ay **) (970 5°) + (0 ay”*) (070 x )]}
+ Kaof {27 K (0700 a0) = V(2 K, ) (070 ™) = (07 ay ™) (970 K®) + V2(0*a; ") (0P K+)
+ (0K *Op“)[(ﬁ”aﬂn)(— cosf3, + \ﬁsinﬁp) + (0°0Py')(sin B, + \/Ecosﬁp)]
+[(09157) (cos o, = V2sinf,) + (0 f1) (= sin B, = V2 cos B,,)](°0°K°) }
+ Ko {= (0" K ) (070 2°) + V2 Ky ") (070 x") + (8a5"") (07 0P KO) = V/2(a ") (07 O K™)
+ (8K [(0°0n) (cos B, — V2sin B,) + (079Pn ) (= sin B, — V2 cos B,)]
+[(09157) (= cos Ba, + V2sinf,,) + (0*f17)(sin B, + V2 cos fi,,)| (7P K°) }
+ Ko (07K ") (070 2%) + V2(P RS ) (000 ) — (0#ay") (07 P K ™) = V2(0ay ") (0° O KP)
+ (VK57 [(0°0n) (cos B, — V2sin ) + (0°0Pn)(—sin B, — V2 cos B,)]
+[(9157) (= c08 B, + V2sin B,,) + (9 f37)(sin By, + V2 cos B, (07 K™)}
+ K {07 KT (070 5°) = V2(0 K ) (07 P rt) + (00 ay ") (070K ™) + V2(8a) ") (07 KO)
+ (VK5 [(8°0Pn) (= cos B, + V2sinB,) + (870 ) (sin B, + V2 cos B,)]
+ [(09157) (cos Ba, = V2in fo,) + (O f5) (= sin B, — V2 cos B,,)](°0PK ™)}
+ o gyl (= cos B, + V2sinp,,,) x [(PK3") (0P PKO) — (07K ") (07 OPKP)+
— (K5 ") (070PK™) + (K5 ") (07 PK )]} + ¢ p{ (sin B, + V205 )
x [(K5*) (07 P KO) — (0°K") (07 0P KO)+
— (K ) (0P KT) + (97K (0P K], (B4)

Lo p = Gwsbyptt[W57{B1 . (0,0,P)} ]
g’“ 2L (40K (0,0,K°) = K9 5, (8,0,K°) + K, (0,0,K7) + K7 ,,(0,0,K")
+ Z[hL” cos i, — ]’” sin B, ](0,0,7 0) + 2b [(8,,8,);7) cosf3, = (0,0,1') sin ]}
+p3 "{V2IKT 5, (0,0,K°) + K 5 ,(0,0,K7)] + 2[hy  cos B, — hy, sin By, ](0,0,77)
+2b7,[(0,0,1) cos B, — (0,0,1') sin B, |} + p3""{V2[K{ ,(0,0,K°) + KV, (0,0,K")]
+ 2[hy y cos By, — Iy, sin By, 1(9,0,m") + 2b1 ,[(0,0,1) cos B, = (0,0,1) sin B, ]}
+ K=K (0,0,1°) + V2K{ ,(0,0,27) = bY,,(9,0,K°) + V/2b7 ,(9,0,K")
+KY 5, [(8,0,1)(cos B, + V2sinf,) + (8,0,1) (= sin B, + V2 cos )]
+ [y, (cos By, + V2sin By, ) + Ry, (=sinp, + V2 cos B, )1(0,0,K°)}
+ K=K 5 ,(0,0,7°) + V2KT 5 ,(0,0,2") = Y ,(0,0,K°) + V2b{ ,(9,0,K")
+ K 5, [(0,0,n)(cos B, + V2sin,) + (8,0,1) (= sin f, + V2 cos )]
+ [hy u(cos By, + \/Esinﬂbl) + 1y, (=sinfy + \/Ecosﬂb] )(0,0,K°)}
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+ K3 4K, (0,0,7°) + V2K 5 (0,0,27) + b ,(,0,K7) + V2b7,(0,0,K°)

+ KI‘,B’”[(ayapn)(cosﬂp + \/Esinﬁp) + (0,0, )(=sinp,, + \/Ecosﬂp)]

+ [hy 4 (cos By, + \/isinﬂb )+ 0y, (=sinfy, + \/icosﬂb )1(0,0,K7)}

+ KM {4K ,(0,0,2°) + V2K 5 (0,0,7) + b9 ,(9,0,K") + V2b{ (9,0,K°)

+ K 5, [(0,0,1)(cos B, +V2sinp,) + (9,0,1)(—sin B, + V2cos 3,)]

+ [hy 4 (cos By, + \/isinﬂbl) + h’lﬂ(— sin 3, + \/Ecosﬂb )1(0,0,K")}

+ a5 {(cos B, +V2sinp,,) x K9, (8,0,K°) + K ,(8,0,K°) + K, (8,0,K7) + Ky, (8,0,K")]
+2cos [0} ,(0,0,7°) + by ,(0,0,27) + b7, (0,0,7")]

+2cos By, [hy, cos By, =y, sin By, | < [(9,0,n) cos B, = (0,0,1) sin ]

+2V25sinB,, [y, sin By, + Ry, cos By, | x [(0,0,n) sin B, + (0,0,1") cos 3, ] }

+ ¢ {(=sin B, + V2cos ) x [KY 5 (0,0,K°) + K9 5 (0,0,K°) + K (0,0,K™) + K7  ,(0,0,K*)]+
—2sinf,, [0} (9,0,7°) + b ,(0,0,77) + b7 ,(0,0,7" )|+

—2sinp,, [hy , cos By — H, p sin B, ] x [(0,0,1) cos B, = (0,0,1") sin 3]

+2v2 cos By, [h1 sinfy, + Ry, cos By, | X [(0,0,n) sinf, + (0,0,1") cos B,]}). (B5)

L :gw3a,ptr(Wﬂyp[Alﬂv(auapp)]—)

=9W;;"”< AR (0,0,K°) = KD 1, (0,0,K°)
+K{4,(0,0,K7) = K7 »,(0,0,K")+2[a],(0,0,7) — a7 ,(9,0,7")]}
+p3 V2K 4, (0,0,K°) + K3 4 ,(0,0,K7)]+2[a7 ,(0,0,2°) — ' ,(8,0,77)]}
Py V2K, (0,0,K0) =K 4 ,(8,0,K4)|+2[-a] ,(0,0,7°) +a) (8,0,7%)]}
+K*0”W{—|—K1A”(8y8ﬂﬂ) V2K, ,(0,0,n7) =} ,(0,0,K°) +V2a7 ,(0,0,K™)
+K9 4 [(8,0,m) (=cosp, +V2sinf,) +(,0,1)(sinf, +V2cosf, )]
+[f14(c08 o, = V2sinp, )+ f1,(=sinf, —V2c0sp,)](9,0,K°)}
+KP =K, ,(0,0,7°) + V2K, ,(0,0,7%) +a) ,(0,0,K°) —2a ,(0,0,K™)+
+K0,,[0,0,1)(cosp, = V2sinp,) +(8,0,n) (=sinf, —V2cosp,)]
+[F1u(=c08fa, +V2sinf,,) + [, (sin By, +V2c085,,))(8,8,K°)}
+K P 4K, ,(0,0,2°) + V2K, (0,0,77) - dl ,(0,0,K7) = V2a7 ,(0,0,K°)
+ K74 ,,[(8,0,m)(cosp, —V2sinp,) +(8,0,1) (=sinf, — V2cos )]
+[f1u(=cospy, +V2sing,, ) + ) L (sinfg, +v2cos B, )1(9,0,K7)}
+ K=K, (0,0,1°) = V2K 1 (8,0,7%) +a),,(0,0,K) +V2a{ ,(8,,K°)
+K1Aﬂ[(6,,8p )(— cosﬂ,,—k\/ismﬂp (0,0,1)( smﬂp—k\/icosﬂ,, ]
+[f1(cosfa, = V2sin, )+ [, (=sinfy, —V2c0sp,,)](8,0,K*)}
+a{(—cosp,, +V2sinp, ) x[KY , (0,0,K°)-K? , (0,0,K°) =K, ,(0,0,K™)+ KT 4, (0,0,K)]}
+ @i {(sinB,, +V2cosp,. ) x K3, ,(0,0,K") - 1A,4(3 9,K%) =K, ,(0,0,K7) + K7 ,,(0,0,K)]}).  (B6)

wsd|p
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‘Cwyj]v] = gw3vlvltr(W/;yp[(aﬂV1,v)’ Vl,p]—)
Gwyvyv 0.1 7 * %0 T * *— *— * - —
== QKK — (0,K0)K + (0,K)KS™ = (0,K7)KG + 2((0,0)p; = (i) ]}

+p3 M AV2[=(0,K57)K + (0,K°)K57] + 2((0,07)05 — (0,005 1}
+p3 "MPIV2((0,K K = (0,K) K]+ 2[=(0,0)ph + (0,001}
+ K (0,K:0)p0 = (0,0 K, + V2[=(9,K: )y + (0,07 K]
+ (0,K;:°) @, (—cos p, + \/Esmﬁﬂl) + ¢,(sinp, + \/-COSﬂUI)]
—[(0,@,)(=cos f, + V2sinp,,) + (9,¢,)(sin B, + V2cos B, )IK;"}
+ KM =(0,K:0)00 + (0,00 K" + V2((0,K57 ) = (9,08 K]
— (0K, (= cos B, +V2sinB,,) + ¢,(sin p,, + V2 cos B,,)]
+[(8,0,) (= cos B, + V2sin B, ) + (9,4,)(sin p, + V2 cos p,, )K"}
+ K5 {4(0,K57)00 = (0,00) K™ + V2((0,K:0)p; = (0,07 K]
— (0,K;7)[w,(—cos B, + V2sin B, ) + ¢, (sin B, +v2cos )]
+[(0,@,)(=cos B,, + V2sinB,,) + (3,¢,)(sinp, + vV2cos B, )K;}
+ Ky M= (0,K50)05 + (0,00) Kt + V2[=(0,K.°)py + (0,0)K;]
+ (0,K;7)|w,(—cos f,, + \/Esinﬁ,}]) + ¢, (sinp, + \/Ecosﬁvl)}
—[(0,@,)(=cos B, +V2sinp, ) + (9,,)(sinf,, + V2cosp, )K"}
+ @ {(=cos B, + V2sin ) x [(9,K.0)K;0 = (9,K.°) K0 = (9,K1)K;™ + (9,K7)K )
+ 47 {(sin p,,, + V2cosf,,) x [(0,K:O)K: — (9,K0) K — (0,K:H)K5™ + (9,K:7)K5H1}). (B7)
Loop = Cou0pGapape?u[{(9, V1), (0°0P0,P)} ]
= Cy0pGi s {+(0,K3,) (0709 0,K°) + (0,KY ) (0°0P9,K°) + (9,KT,)(9°0PD,K")
+ (9,K7,)(0°0P 0K ) + (9,07 ,)(0°0P 052°) + (0,07, )(0°0 Dyr™) + (0,7, ) (0° 0P Dpr™)
+ [(0y@1,,)(0°0P D) 4 (Oyp1,,) (0° P01 )] x cOS(B), = P,
+ [(0,01,)(0°0P o) = (9,0, ,) (0P Den)] x sin(B, — ) }- (B8)

L

grp = Cgvip

< G up (0,0, )7 {Q, (09000, P)} ]
P

= L Gy (D,,)e 430+ [eos(f,) ~ VI sin(B )l sin(B,) + Vcos(B ). (BY)

L = Couna Capap "t [{(0, V1), (0°0°A, )} ]

= Coa, Gapape{+(9,K7 ) (0°0°K] 4 ,) + (0,KY ) (0"PKS )
+ (0K, )(0°0°K1 4 ;) + (0.K7,) (070K {4 ,) + (0P} ,)(0°0Pai ) + (0,0, ) (0" a )
+ (0,07, )0 at ) + (0,01 ,) (0P f15) + (0yh1,) (0P f1 )] X c08(Ba, = Poy,)
+(0,01,)( 0P f14) = (0,01,) (£ )] X sin(Ba, = Po, )} (B10)

93014y
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‘Cg3b117 = ngblpGgyptr[{Bl,/w (abapp)}Jr]

= ngblpGgyp{_‘_K(l),B.ﬂ(avaﬂKO) + K?.B,ﬂ(avapi{o) + KTL.B,y(avapK_) + KI_,B.u(avapK+)
+6Y,(0,0,2°) + by ,(0,0,n7) + b7,(0,0,7") + [h1 ,(9,0,n) + My ,(0,0,n)] cos(B,, = By,)

+ [hlly(auapn) - hl.y(abapn/)} Sin(ﬂp _ﬂbl )}

EQSblal = Cgsblangvptr[{Bl,w (al/Al.p)}+]

(B11)

= C!Isbﬂl]vap{+K?.B,y(aDK(l).A,p) + K?,B,y(avk(l).A,p) + KtB,ﬂ(avKl_,A,p) + KI_.B,y(aDKT,A.p)
+00,(0,4 ) + b1, (0,a1,) + b1 ,(0,a,) + [, (Ouf1,) + 1, (S} )] cos(Ba, = Bo,)

+ [h/l,ﬂ(aufl.p) - hl,}t(al/f/l,p)] Sin(ﬁal _ﬁhl)}'

APPENDIX C: COEFFICIENTS FOR THE
DECAY CHANNELS

In this Appendix we present the explicit forms of the
coefficients k; and «” in Eq. (23) based on the extended
form of Lagrangians presented in the previous section in
Tables XIX-XXX.

TABLE XIX. Coefficients k; for the decay channels of W5 —
P + P decays that are not kinematically forbidden.

Decay process K;
3(1690) — 7z 1
p3(1690) — KK 2(%)2
K3(1780) — zK (%)2 + (g)z

3
K3(1780) — Ky L (=cosp, +v2sinp,)?
K3%(1780) — Kn'(958) L (V2cosp, +sinp, )

103(1670) - KK 2[% (_ Cosﬂw3 + \/ESinﬂn@)P
$3(1850) > KK 2 (V2cosp,, +sinf,, )

TABLE XX. Coefficients «! for the decay channels of radio-
active W3 — yP decays.

Decay process Kl
p3/(1690) — ya*/° ®?
p3(1690) = vy (3c08f8,)?
p3(1690) — y17'(958) (3sin,)*

KSi(l780) — yK* (%)2

K9(1780) — yK° (3)?

w3(1670) — yz° (3008 B, )?

@3(1670) = yn & (cos B,,, cos B, — 2sin f,,. sin B,)]?
w3(1670) - }/}7/(958) % (COSﬂIV3 Sin/}p +2 Sinﬂwg COS/))p)}z
$3(1850) — yz° (3sinf,,)?

¢5(1850) — yn [} (sin B, cos B, +2cos B, sinf,)]
$3(1850) — y1'(958) [ (sinp,,, sin B, —2cos B, cos B,)]?

(B12)

TABLE XXI. Coefficients «; for the decay channels of W5 —
A, + P decays that are not kinematically forbidden.

Decay process K;
p3(1690) — a,(1320)x

2)°
K%(1780) — K3(1430)x ()2 + (L)

K3;(1780) = f,(1270)K [ (cosB,, — V2sinp,,)]?

TABLE XXII. Coefficients k; for the decay channels of W5 —
By + P decays that are not kinematically forbidden.

Decay process K;

p3(1690) = h(1170)x (Scos )
p3(1690) — hy(1415)x Isinfy, )?

(
1780) — b,(1235)K ¢
K 1

Ki( )2 + (42)2
K3(1780) — K, g7 (12 + (42
K3(1780) — hy(1170)K [ (cos By, + V2 sin iy, )]?
@5(1670) — b (1235)z 3(3cosB,,)?
¢5(1850) — b, (1235)7 3(%sin g, )
$3(1850) — K, zK 4[k (V2 cos B, —sin,,)]?
$5(1850) — hy(1170)n [} (= sinB,, cos B, cos f,+

+v2cos B, sinpy, sinf,)]?

TABLE XXIII. Coefficients «; for the decay channels of W5 —
A + P decays that are not kinematically forbidden.

Decay process K;
p3(1690) — a;(1260)x 2(3)?
K5(1780) — K47 (41_1)24_(\/%2
K3(1780) — a,(1260)K )2+ (%5)2
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TABLE XXIV. Coefficients «; for the decay channels of
W3 — V| 4V, decays that are not kinematically forbidden.

Decay process K;

p3(1690) — p(770)p(770) 1

K3(1780) — p(770)K*(892) L2+ (@)2
K3(1780) — K*(892)w(782) [ (cos B, —V2sinp, )]?
$5(1850) — K*(892)K*(892) 2[L(v2cos B, +sinB,,)]?

TABLE XXV. Coefficients «; for the decay channels of
G3(4200) — V| + P decays that are not kinematically forbidden.

Decay process K;
G5(4200) — p(770)x 3
G5(4200) - K*(892)K 4
G5(4200) — o(782)n [cos(f, — f,,)]*
G5(4200) — o(782)1/(958) [sin(8, — B, )]
G3(4200) — ¢(1020)y [sin(B, = £,,)]?
G3(4200) — $(1020)7'(958) [cos(B, — B,
TABLE XXVI. Coefficients «’ for the decay channels of
radioactive G3(4200) — y + P decays.
Decay process Kl
G;(4200) — ya° 1
G5(4200) - yn [ (cosB, — V2sinp,)]?

1

G5(4200) — yi/'(958) [ (sing, + V2cosB,)?

TABLE XXVII. Coefficients «; for the decay channels of
G3(4200) - V| + A, decays that are not kinematically forbidden.

Decay process K;
G3(4200) — p(770)a;(1260) 3
G3(4200) — K*(892)K 4 4
G3(4200) - w(782)f(1285) [cos
G;(4200) - w(782) f}(1420)

G3(4200) — ¢(1020)f,(1285)
G;(4200) — ¢(1020) /1 (1420) [cos

TABLE XXVIII. Coefficients «; for the decay channels of
G3(4200) — B; + P decays that are not kinematically forbidden.

Decay process K;
G5(4200) — b, (1235)x 3
G5(4200) — 1<l 2K 4
G3(4200) — h,(1170)n [cos(B, = By,
G5(4200) — h;(1170)5'(958) [sin( > = Bo, )?
G,(4200) — h, (1415)y [sin(8, =, )I*
G4(4200) — h, (1415)1(958) [cos(B,, — By, )]?

TABLE XXIX. Coefficients «; for the decay channels
of G3(4200) — B, + A, decays that are not kinematically
forbidden.

Decay process Ki
G3(4200) — b (1235)a,(1260) 3
G;(4200) - K| 3K 4 4
G;(4200) — hy(1170)f,(1285) [cos(ﬂd1 )]2
G;(4200) — hy(1170)f7(1420) [sin(f, ﬁ,,l)]2
G3(4200) — h,(1415)f,(1285) [sin(f, )]2
G;(4200) — hy(1415)f7(1420) [cos(ﬂa1 )]2

APPENDIX D: UNPOLARIZED INVARIANT
DECAY AMPLITUDES

This Appendix is devoted to the calculation of the
unpolarized invariant decay amplitudes. These form the
normal decay amplitudes by multiplication with factors «;
depending on the specific decay channels. We apply the
following Feynman rules for each interaction vertex in
order to derive the expressions for the decay amplitudes,

M > ks, (D1)

VE b e#(2,, Ky, ), (D2)
B! > e (X, kp, ), (D3)
A s (R Ky, (D4)
A5 > e (A, k, ) (D5)
WA > e (L, k), (D6)
GY 1> e (A, ky,), (D7)
a' > e(4,, ky) (D8)

where ¢#)#) are the polarization vectors (tensors), 4 is the

specific polarization,6 k* is the four momentum, and kis the
three momentum.
(1) For the interaction Lagrangian

L = Guipp Wi, PV (048 0°P?), (DY)

w3pp

®For massive spin-3 tensor fields A= —3,-2,—1,0,+1,
42,43, for massive spin-2 tensor fields 1= -2,-1,0,
+1,+2, whereas for massive vector fields A = —1,0, +1, repre-
senting the spin orientations in a magnetic field, or respective
degrees of freedom of the massive fields. For massless vector
fields (photons) there are only two polarizations 4 = 1, 2.
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(@)

TABLE XXX. Coefficients k; for the decay channels of W3 — V| + P decays that are not kinematically forbidden.

Decay process Ki
p3(1690) — p(770)1 (Leos )
p5(1690) — K*(892)K 4(y
p3(1690) - w(7182)x (3cosp, )?
p3(1690) — $(1020) (Lsing,,
K3(1780) — p(770)K (1?2 + (@)2
K3(1780) — K*(892)x (12 + ()2
K3(1780) — K*(892)y [ (cosp, + V2sinp,)]?
K3(1780) — K*(892)'(958) L (V2cosp, —sinp,)?
K3(1780) - o(782)K [ (cosp,, +V2sing, )
K;(1780) — ¢(1020)K L (v2cos B, —sinB,, )
3(1670) — p(770)x 3(3cosp,,)?
w3(1670) — K*(892)K 4[ (cos B, + V2sinB,,)]?
05(1670) — w(782)n [} (cos B, cos B, cos B, + \/Esin/iw3 sinf3, sinf,)]*
w3(1670) — ¢(1020)n I (= cosp,, sinB, cosfB, + v2sinfB,, cosp, sinp,)?
$5(1850) = p(770)x 3(Lsing,, )
$3(1850) — K*(892)K 41k (V2cos B, —sin B, )]?
$3(1850) — w(782)n i (~sinp,, cosf, cosp, + V2cosp,, sinp, sinf,)?
$3(1850) — w(782)n'(958) [l (sinp,, cos B, sinf, +v/2cospB,, sinp, cosp,)
$3(1850) — ¢(1020)n [} (sinB,, sin B, cospf, + \/zcosﬁw3 cos 3, sinf8,)]*

which describes decays of massive spin-3 fields into two massive pseudoscalar fields, the unpolarized invariant
decay amplitude has the following form

iMw;pp lgwwp uw)(iw;’k ) k/} (DIO)

The square of the amplitude reads

+3 2

1 1 - . >
7|Mw3pp|2 :ggv3pp7 Z eyup(ﬂw3’kw3>€ﬁz7ﬁ(/1w3vkw3)k”a)k;(z>kf](z)kj;(z)k;(z)ki(z) :g%v3pp§|kp(l)’p(2)|6- (Dll)

P
Ay =3

The unpolarized invariant decay amplitude for the interaction of massive spin-3 fields, massive vector fields, and
massive pseudoscalar fields

£W3L1p gw3v1p 6W3,ﬂaﬂ(8yvl,p)(aaaﬂavp) (D12)

reads

1 7 7 a 4

le3v1p gw/3v1p€ ;m/)’(j'wy kW3)kvly€p(’11)]’kvl)kpkék}m' (D13)
The square of the amplitude is

+
|MW3L1[]|2_9W3D|[7 Mo ghiipa z ya/} o) W3 6ﬁaﬁ(’1w3»kW3)
‘13
+1 . . o
X koo D €500, ko )es (A, ko KRG K po kKK s
h =1

8
gw3z)1p 105 | vy, p|6 My, . (D14)
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(3) For the decays of massive spin-3 fields into massive pseudoscalar fields and photons, the generic interaction
Lagrangian is of the general type

L

e
wirp — Ywsvp g_8Wﬂ6W3,/mﬁ<abap)<8aaﬂaap)' (DIS)
p

The corresponding decay amplitude reads
i € guwpo @
iM,,, = gwwmg_gﬂ P eﬂaﬂ(lm, km)ky 1€,(4y, ky)k oKy o (D16)
P
The averaged square of the amplitude is

1 e\? _
? |MW3yp|2 = gvzv3v1p (g_) el el Zklﬂ’ Zk'f;

P

+ 2
X Z uaﬁ (’1w3 ’ kW3 )eﬁ Ezﬁ ()“W3 ’ kW3 )k;/,vky,ﬂ Z €p (AW k;')e[) (ﬂ}/’ k}/)

Ay ==3 J=1

2
2 ¢ 61
2 (& D17
gWg@][) (gp) 105 | Y P| W3 ( )

(4) Decays of massive spin-3 fields into massive spin-2 tensor and massive pseudoscalar fields is described by the
following interaction

Lovsarp = Gwsarp€urpo W3 s (0°A5") (07O P), (D18)
which leads to the amplitude
My arp = =190, pEupolay€"” (l,vg,k ki, e”’(/luz,k ) oK pp- (D19)
Squaring the amplitude, we find
1 +3 L R
|MW3w|2 = Gusazp 5 Eurpois pallayla; 1236"“ (Ay Koy JE* O (R Ky

w3

a»

2
Z " (Rays Ky )€ (A Ky JKE KD, KO K sk K

2

= ngazl’ 105 | day, P|4 az <2|k(12 P|2 + 7m07) (Dzo)

(5) The amplitudes for the decays of massive spin-3 fields into massive pseudoscalar and massive axial-/pseudovector
fields, which are described via the interaction Lagrangians

'Cw3b1p = gw3b1prDpBl.ﬂ(auapP) (D21)
and
['w3a]p = gw3a1pW’3prl,ﬂ<avapP), (D22)
have the same shape,
iMw3b1p = _gw3b1p€wp ()“W3 ’ kW3 )eﬂ (’?'bl ’ kbl )kpvkpp’ (D23)
iMw3a1p = _gw3a1p€lwp (lw3 , kW3 )614 (Aal ’ kal )kpvkpp' (D24)

Their squares have the following form:
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1 1 +3 - +l - -
7 |MW3b|p |2 ng bip 7 kPl/kp/)kpvkpp E eﬂyp(lm ’ kw;) ﬂy/)(iw3 s kw3) E €4 (lb] ) ka )6,—4(/117] ’ ka )
Ay =3 dy =1
1Ky, 1
Ky, ol 7+ 3722 D25
gw;[)]]) 105 | by, [)| < + mb] ( )
1 - +1 z
2 _ 2 v, [iop
? |Mw3a1p| - gw3a1p 7 pvkppkpukpp E et p ww €ﬂ p(’lwy kw;) E : 6/4(/101 ’ ) ﬂ(’lal 1)
Ay =3 hgy =1
2 - Ky 2
2 4 a,.p
= Gwya |ka , | (7 +3 ) (D26)
3a p 105 1.P mﬁ]

(6) The interaction Lagrangian, which describes the decay of massive spin-3 fields into two massive vector fields

vp 1 2
£w31}1v1 = Gwsv,v, ng ! (8ﬂvg,3)v< )

o, (D27)

leads to the following amplitude
. . 1) 70 2) (2
iMoyin = 10,0, € (Ao Koy Voo, (A5, Ve, (A, 62). (D28)

The square of this amplitude is given by

1 1 +3 o o N
? |MW3171’01 |2 = 93\/31111)1 7 Z €;wp(/1w3’ kw3)€ﬂyp()“w3v kW3)
PR
1)~ 1) 70y, 1) 70 o @ 70\ ;0 7)
= ko k) e, () ko Ves () deo) D e () ki e (20 Ky
ﬂ(,]):—l )’(2>:_1

vy vl

1 - -
:g%vwlylﬁ(mimmi@)_l%v(] o o ? [6|k 2|4—|—35mi(,)mi(2> + 14|kv<1>.v§2)|2(mim —I—mim)]. (D29)
1

1 1 1 1 L 1 1

(7) For the decays of massive spin-3 fields into massive vector and axial-vector fields, we use the following Lagrangian

£W31}1a| = gw3v1a1eﬂylmwiyaﬂ(avVl,/})(aaaﬂAl,o) (D30)
to obtain the amplitude
iMw3vla1 = _igw31)lalgﬂypo-e;taﬂ(ﬂwy kW3) Vv p(lvl s knl )kg] kﬁl (lal ’ kal ) (D31)
The square of the amplitude is
1 -3 +1 R
7 |Mw3r]a| |2 g\%v;vlu] 7 Z Ma/i ww nap (/Iww k vlu vlzx Z v] (A’bl ) kv])
P +1 . N
X kzl k{ll kgl k{h Z €¢7<’1a1 ’ ka, )66'()“a1 ’ kal)
g =1
=g ! Ky [ 1Ky |2 3+2m%”2 + Tm? (D32)
w3V a, 105 1/] a vy m%] mvl .
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We remark that the form of the amplitudes M of most of
the decay channels was already derived in Ref. [16]. In
contrast to Ref. [16] we neglect higher order derivative
couplings and purely rely on the lowest order contribution
in derivatives of the fields. Furthermore, we do not include
form factors.

In order to obtain the results of this appendix one has to
average over all incoming spin polarizations, sum up all

completeness relations for massive particles, which are
discussed in the subsequent appendix,

+1
> eud ke, (A k) = =Gy, (D33)
A=-1
+2 . N 1 1
Z €/41/ (j" k)eaf)’ (l’ k) 3 G/,wGa/)’ +3 (Gﬂ(lGl/ﬂ + G,u/}Gzza) ’
A==2

possible outgoing polarizations, and consider the following (D34)
|
- 1
Z €up (A K)eapy (4, k) = 151G (GpaGpy + GppGay + Gy Gap) + Gp(GoaGpy + GopGay + GoyGap)
==3
+ Gvﬂ(GﬂaGﬂr + GﬂﬁGW + GwGaﬁ)]
1
- 6 [Gya(Gyﬁpr + GwGpﬂ) + Guﬂ(Gvapr + Gvpra) + Gﬂ}/ (GvaGpﬂ =+ GvﬂGpa)]’ (D35)
[
where We begin by deriving the completeness relation for
massive spin-1 fields explicitly. This derivation is based
G = B k,k, 2 m? (D36) on the discussion in Ref. [130] and presented here for
w =T =72 e reasons of consistency. Starting from this result for spin-1
fields, we generalize the procedure and show, how the
and (,,) = diag(+1,-1,-1,-1). completeness relations for massive higher-spin fields can

For the square of the amplitudes of the radioactive
decays in Eq. (D17) the following completeness relation
for photons is used [130]:

2
> €A ke, (2.K)

=1
k,k,
(k-n)*

kyn, + k,n,
(k- n)

= MNw — <D37)

Here, n = (1,0,0,0)" is the unit vector in temporal
direction and k is the four momentum of the outgoing
photon.

The summations over Minkwoski spacetime indices in
the squares of the amplitudes were performed on a
symbolic level with Wolfram Mathematica 12.1 [131]
using SUM and PARALLELSUM. We work in the center of
mass frame of the decaying particle. In order to reduce the
number of addends in the sums drastically, w.l.o.g. we
choose the three momenta of the outgoing particles in the
z direction.

APPENDIX E: COMPLETENESS RELATIONS

In this Appendix, we present how the completeness
relations for the polarization vectors and tensors of massive
higher-spin fields, like Eqgs. (D33)—(D35), are constructed.
These completeness relations are used for the calculation
of the unpolarized decay amplitudes in the previous
Appendix D.

be constructed. We then provide an explicit derivation of
the completeness relations for massive spin-3 tensor fields.
We close the discussion by elaborating on the degrees of
freedom of massive fields of arbitrary integer spin-J and
their description via rank-J tensor fields.

None of the results in this appendix is original to our
work. However, we think that the discussion might still be
useful for a nonexpert reader.

1. Spin-1 fields

The construction of the completeness relation for the
polarization vectors € (4, k) of the massive (real) vector
fields V#(x) is based on the field equations that describe
free massive vector particles.” These field equations are
given by the Proca equations, which are the Klein-Gordon
(KG) equation and a transversality condition (which is
explicitly not a gauge),

0= (O + m?)V¥(x), 0=0,V¥(x). (El)

For neutral massive vector mesons, the solutions to the
Klein-Gordon equation are plane waves,

¢k 1 l o H[E(K)—k-%]
VE(x) = = E e”/l,k a(, ket x
) /(2”)3 2E(k) /= (4. k){al®.k)

K)1+k-X] }

+a* (A, K)eIEC (E2)

7 . .
For free massive axial- and pseudovector fields, the con-
struction is identical.
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where a(4, I;) = a*(4, —l?) are the Fourier amplitudes and

E2(K) = K>+ m? is the square of the energy. The trans-
versality condition further implies that the polarization

vectors €(4, 75) have to be transversal to the four momentum
k = (E(k), k)T of the fields,

0 = ket (4, k). (E3)

From this equation, we can construct the completeness
relation for the polarization vectors.

We start with the most general ansatz for a dimensionless
rank-two tensor that only depends on the four momentum

k= (E(k). k)",

+1

k,k,
> e (A K)e,(2.K) = an, k2 ,

A=-1

(E4)

where a and b are dimensionless constants. The trans-
versality condition (E3) implies

+1
0=k 3" €,(Lk)e, (1K) = k(a+b), (ES)
A=—1
which simplifies our ansatz to
+1
.- k.k,
> e nd =a(n, ). @
A=—1

The coefficient a can be fixed by choosing an appropriate
normalization condition. This is done by demanding that in

the rest frame k = (m,0) for the spatial components the
completeness relation should reduce to the Kronecker delta,
to have a three-dimensional orthonormal basis of polari-
zation vectors:

+1
!
;= €(1.0)e;(.0) = —asy;. (E7)
=1
We obtain the completeness relation
Z €y (17 k)ev(’L k) Muw k = _G;wv (ES)
o

and define the projector G, which projects on the subspace

of the Minkowski space that is transversal to the four-
momentum vector k = (E(k), l_é)T of the massive spin-1 field.

2. Higher-spin fields

For all kind of higher-spin tensor fields, we proceed
analogously. The starting point are the so called Fierz-Pauli
equations for a massive field with integer spin J. The field
is described by a rank-J tensor field that fulfills the
following equations (see also Refs. [130,132-137] for
more details on wave equations and degrees of freedom
of higher-spin fields),

0= (O+ m?)gpm(x), (E9)
and V1 <m#n<lJ,
0 = g (x) — s (), (E10)
0 = g, @5 (x), (E11)
and V1 <m<J,
0 = 0y, @™ (x). (E12)

These equations reduce the 4/ degrees of freedom of a
general rank-J tensor field in four-dimensional Minkowski
space to the (2J + 1) degrees of freedom that are necessary
to describe a massive spin-J field. (We will come back to
this point at the end of this Appendix.) Note that the Proca
equations (E1) for spin-1 fields are merely a special case of
the Fierz-Pauli equations (E9)—(E12).

Completely analogous to the vector field, we can thus
find a solution to the KG equation and derive the following
constraints for the corresponding polarization tensors,
Vi<m#n<J:

0 = ety (), k) — e (), k) (E13)
0 = 1y g €0 (], ]—C')’ (E14)

Vi<m</J,
0 = ke (], ]z), (E15)

Next, to find the corresponding completeness relation, one
has to start with an appropriate ansatz for

Zeal o) K)eg g (A K) = ... (E16)

A==J

Consequently, one should write down the most general
rank-2J tensor, which only depends on the four momentum

k = (E(k),k)T and the metric tensor. This means that all

possible combinations of 7,, and 22”, with all possible

permutations of the indices ay,...,a;, Bi,...,5; of the
polarization tensors have to be included:
Z €y, (2 K)eg, g, (. K)
p—
= +aiNyq *Mp,_,p, + all permutations
kg k
+ b1y, ﬁ’]'clz b1 1 all permutations
+ ...
ky k ks k
+z; a]'czaz . ﬁ’; b1 4 all permutations. (E17)
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Here, a;, b;, ..., z; stand for the various dimensionless
coefficients of the ansatz. An alternative approach is to
write down the ansatz for the rank-2J tensor on the rhs of
the above equation in terms of projection operators

k,k, _ kuk,

- (E18)

G;w:’/[;w_ﬁ’ uv 2

which also form a complete basis.

What follows is identical for both approaches. To deter-
mine the various coefficients, one has to use Egs. (E13)—-(E15)
(or combinations of these constraints) successively until one
reaches the point, where only one overall coefficient/factor is
left, see for example Ref. [ 132] for massive spin-2 fields. The
leftover constant can only be fixed by appropriate normali-
zation. For most problems, a normalization, which produces
an orthonormal basis of polarization tensors in the rest frame,
like for the vectors in Eq. (E7), is suitable.

Following these procedures, one eventually arrives at the
completeness relations (D34) and (D35) for the polarization
tensors of spin-2 and spin-3 fields.

We remark, that an expression for arbitrary spin fields
was already presented in Refs. [19,138]. The expressions
for spin-2 and spin-3 were already presented among others
in Refs. [16-18,132,139].

|

3. Spin-3 fields revisited

Here, we explicitly present the derivation of the com-
pleteness relation for massive spin-3 fields.

We start by adopting the constraints (E13), (E14), and
(E15) to the polarization tensors of rank-3 tensor fields.
Thus, the polarization tensors of spin-3 fields have to fulfill
the following conditions,

0 = ) (1, %), (E19)
0 =€, (A,k), (E20)
0 = k,e"? (2, k). (E21)

Next we construct the completeness relation for these
polarization tensors. We use the definition

k.k,

o (E22)

G/w = nyy -

and write down the most general ansatz for the complete-
ness relation, which contains all possible combinations of
the metric and the four momentum or the projection
operators (E18), respectively,

+3
Z €,u1//} (’1’ k) 6(1/3}' (’1’ k) = +a 1 Gmx G/)a G/)y + a G/,w G/)/i Gay + as G;,w G/)y G(l/)’ + ay GW) Gua G/)’y + ds Gﬂ/} Gl/ﬂ Guy

p—

+a6G,,G,,Gop + 047G 4G, Gy, + a3G L0 G 3G, + a9GLeGL,Gp + a10G G, Gy,
+a11G,3G G,y + 126G, Gy + 413G, G, Gop + 014G, G Gop + a15G,, GG,
+b1G,, G oksk, + b:G,, G pkok, + b3G,,G, ko kg + byG Gopk, k, + bsG Gk, kg

+ b6G,, Gk ky + b7G,Goksk, + bsG,,Gskok, + boG,,G, k,ks + b10G,,Gupk,k,
+b11G,, Gy k kg + b1,G,,Gp k ko + D13G oG kpk, + 014G 0 Gopk k, + bi5G, G,k kg
+ 016G G sk k, + b17GLoG ok kg + b13G o Gp k k, + b19G 3Gy kok, + byyGupGak,k,
+ 021G pGy k kg + b2GupG ook ky, + b3GuG k kg + b2y G pGo k k, + bysG,, Gk kg
+ b26G i, Gook kg + 027G, Gupk kg + by G G ook kg + broG, Gopk kg + D30 G, Gk k,
+ b31k,k, G Gp, + b3k, k,G,5Go, + b33k, kG, Gop + b3sk,k,Go Gy, + bisk,k,G 3G,
+ bk, k, G, Gop + b3rk, kG, Gy, + bigk, koG 3G, + b3ok, kG, Gop + baok,ksG,,G,
+ by k, k3G oGy + bank, kG, G + bisk,k, G Gop + bask,k,GLoGp + bysk, k, G 3G,y
+ c1Gkpkokpk, + Gk kokpk, + 3G ok k kk, + 4G pk k kok, + csG ok k,kokg
+ c6Gypk kokpk, + c1G ok k kgk, + csGypk, k kok, + coG k,k ko kg + c10G ek, k ksk,

u up

+ Clle/;kﬂkykaky + C12G k kykak/; + C13G(l/}kﬂkl,kpk}, + C14Gaykﬂkykpkﬁ + C15G/}ykﬂkyk/,ka

PYTH

+ dk k,k kkgk,. E23
utuftp Py

Next, we have to determine the coefficients a;, b;, c;, and d by applying the constraints (E19), (E20), and (E21). Note, that

for convenience only, the coefficients a; are dimensionless, while b;, c;, and d contain factors of

1

el in order to have the rhs

of the equation dimensionless.
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First, we use Eq. (E19). The symmetry under the

exchange of y < v yields

a, = ay,
ag = dqy,
by = by,
bip = by,
b1y = by,
b17 = by,
by = bys,
byg = by,
¢ = Cq,
C5 = Co,

whereas for the symmetry of the completeness relation

The last symmetry, which includes all other possible index

interchanges, is puvp <> affy, from which follows that

as = dy, ag = dy3, ap = days, ap = dg, a4 = dyo,

ag = a4, ap, = as, app = dyg, by = b3, by = b3,

bg = b9, by = bys, by = b, bs = by, b = by,

b1 = by, b1, = b3, by = by, by = bss, by = b3,

b5 = by, b1 = bya, b1y = by, bz = by, bis = by,

big = bay, by = by, big = by, by = by, byy = by,

by3 = bag, byy = bss, by3 = by, bys = by, by7 = bys,

byg = b3, b3y = bz, byg = by, €1 = €13, €y = Ca,
c3 = C7, C4 = Cg, C4 = C7, Cs = €10, Ce = Ci5;

(E24) €9 =Cn (E26)

Therefore, we define new coefficients

under the exchange v <> p we obtain

a; = dy,
ag = do,
by = by,
by = by,
b1y = by,
by = by,
b3 = by,
byg = b3,
¢ = Cp,
Cg = Cp2.

a=da; =4y =da3; =d4 = a5 = dg = d7 = djp = 13,

/

ar = as, as = dg, a =dag = dg = day = djp = dy = dis,

ay = dip, ayy = dis, b=by=by=Db3=0b;=0bg=Dbyg=Db13=>b15=>by
by = by, by = by, = byy = bys = b3y = b3y = b3y = b33 = b3y = b5
bs = by, b = by, = b3,

bis = by, by = by, b'=byy = b5 =big = b7 = by = by = by = by3

bag = bag, by = by, = bys = by7 = bag = b9 = b3g = b3g = byy = byy
by, = bss, b33 = bsg, = byy = bys,

by = by, byy = bys, b=by=bs=bs=byg= by = by = by = byy = by,
€7 = €105 €8 = C11; C=C =Cy=C=C13=Ciq=Cys;

(E25)

and replace the coefficients of our ansatz:

/] — — _ _ — _ — _ _
C =03=0C=C5=C7=C=C=Cj9g=1C11 =C12

+3
> €up(dk)eas, (1.k) = +0G,,GuGp, + aGGpGay + GG, Gop + a6, GGy + GyGopGoy + aG,G oy Gy

=3

+ 060G, Gpy + d'GuaGpGyy + d'GuoGy Gy + aGpGyyGoy + d'GupGuoGyy + d'GupGyy Gy
+ 4G, GG + @Gy GuGop + @Gy GG + bGro G ks, + bG G sk,

+ bG,, G, koky + bG,, G sk k, + bG,,G ok ks + bG,, Gk ky + bG,,G,oksk,
+5G,, G pkak, + bGyGyykaks + 5G,yGughok, + Gy Gk ks + 5G,, G g

+ 5GyG,pksk, + B'GuGopk sk, + b'G oGy koky + /G oG ok e, + H'G oGk ki

+ 5G oGk ky + bGyGokak, + D'G Gk, + B'GyGyk ki + B'G Gk K,

+ B'GpG ko kg + bGyGakok, + bG,yGpkaks + 5'G, Gk ks + B'G Gk

+ DG Gk + VGG oshoke + G Gashok, + bh,k,G oG, + bk, k, G sGo

ur I pa [
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+ bk,k,G,,Gop + bk,k,G,,Gy, + bk,k,G,5G,, + bk,k,G,, Gy + bk,k,G,,Gp, + b'k,ksG,5G,,

+ b'k, koG, Gy + bk, ksG,,G oy + bk, k3G oG,y + bk, k3G, G + bk, G, Gop + bk, k, GGy

+ b'k,k,G 3Gy + Gk koksk, + cG, ok koksk, + €' Gk, kksk, 4+ ¢'G, gk, k kok, + ¢' G,k b,k kg
+ G,k kokgk, + ¢'G, ok, k ksk, + ¢'G, sk k,kok, + ¢'G, kK ko ks + ¢'G ok k ksk, + ¢'G sk, k, Kok,

vyfu
+ Gk k ko kg + cGogkyk k k, + Gy k kb kg + cGp k, kb ky + dk,k k ko kgk,. (E27)
|
To determine the remaining eight constants, we use +3 - -
Egs. (E20) and (E21). We note that 0 = ktk“nP " Z 6/41//)(’1’ k)eaﬂy(/la k)
=3
= (K*)*b(G,»G,* + 2G,,,G"
KG,, =0 (E28) (K)b(GG 26, G)
= 15b(k?)?, (E31)

and contract the last expression with k*kk”k“, ) o -
which states that also b = 0. To eliminate b’ and b, we have

to contract the whole expression with k*k*n“Pn”,

+3
0= kKKK €,,(4 k)eqs, (1K)
A==3

+3
0 = kHtkyBprr A,l; ’ /1’]‘{’
= (k)*(cGy, + dkgk,). (E29) NP (A k)eas, (4. k)

=3
= (k*)*(3b + 12b"), (E32)
The only solution to this equation is ¢ = d = 0, which
eliminates two of the remaining constants. In complete

and with k*k%*PnP?,
analogy the contraction with k*k*k“k” leads to T

7

+3 R R 0 = Kk S €, (A, K)ens, (A, K)
0= KKK S € (2 K)ens, (2. F) ; " "
o =3 = (K*)%(9b + 6b'). (E33)
= (K*)*'G,,, (E30)

Thus, we conclude b’ = b = 0. Before we calculate the
which sets ¢’ = 0. Next, we contract with k*k*5n**y’ and  relation between the coefficients a and a’, we provide the
find remainder expression for the completeness relation.

,
> €up(h K)eas, (4. k) = +0G,,G oG, + a6 GGoy + a6 G, Gop + aG,,GooGyy + aGyGopGoy + G,y Gy Gog
A=1

+aG,4G,, Gy, + d'GyGoyG,y + d'G G,y Gy + 4G yG,y Gy + 0/ GipGuuG,, + d' GG, G
404G,y GyGp + a' GGy oy + d'G GG (E34)

The easiest way to eliminate ' in favor of a is, to contract this expression with 7****nP",

+3
0 = ppronfr Z €up (A k)€gp, (A, k) = T5a + 304’ (E35)
J==3
Thus, a' = —%a. Reordering the completeness relation gives
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+3
Z €uup (/1’ k)eaﬁy (’17 k) = a{G;w(GpaG/}y + G/)/}Gay + G/)yGa/})

A==3

+ Gﬂp(GyaGﬂy + sz/)’ Gay + GuyGa/)' ) + Gb/)(GﬂaGﬂy + Gﬂ/i Gay + GﬂyGa/)’ )

5

Y [G/m(Gvﬁpr + Gvprﬁ’) + Gﬂﬂ(Guapr + Gvpra) + G/t}/(GuaGpﬂ + GuﬂGpa)}}'

2

(E36)

The last constant a can be chosen arbitrarily. Nevertheless it might be convenient to orthonormalize the polarization tensors,

€ (A K)er (X, K) = =81,

(E37)

which is the higher-spin equivalent to the orthonormality condition Eq. (E7). Then it directly follows that

+3 +3
—T=- Zéﬂ = Z eﬂl/p(’l’ k)e'? (A, k) = —105a.
-3

J==3
The final result is
+3

=3 5

(E38)

- -1
> €up(dak)eqs, (2. k) = 151Gu(GpuGpy + GppGay + Gy Gap)

+Gp(GoGpy + GpGyy + Gy Gop) + G,y (GuuGpy + GupGoy + Gy Gop)l

1

-z [Gﬂa(Gy[)’ G/Jy + Guy G/)/)’ ) + G/lﬂ (GvaG/)y + Guy Gpa) + Gm/ (GyaG/)/)’ + Gy/} Gpa)] .

6

4. Spin-J tensor degrees of freedom

As a last step, we recapitulate for the sake of complete-
ness, how to determine the number of degrees of freedom
for a massive bosonic field (see Refs. [133,134] for the
original discussion). A Lorentz tensor ¢+*- of arbitrary
rank J in four-dimensional Minkowski space has 4/
degrees of freedom. The Klein-Gordon equation (E9) does
not reduce the degrees of freedom, whereas the symmetry
condition (E10) does. A combinatorial analysis is necessary
and we use for simplicity an urn model: for each index of
the rank-J tensor components there are four possible
entries, which is equivalent to four different balls in the
urn. The tensor field is symmetric in all indices, which
means that the order of drawings does not matter. Indices
can also be “drawn” several times. This leads to

@—-1+J)  [(4=1+4J
T () e

possibilities, or better degrees of freedom. The next
reduction is done using the traceless condition (E11),

which leads to
<4—1—|—(J—2)> (E41)
41

(E39)

additional constraints [this is exactly the number of degrees
of freedom of a symmetric tensor of rank (J — 2)]. The last
constraint, also refereed to as Lorenz constraint or trans-
versality constraint (E12), leads to restrictions:

0=0d,p " (E42)

Now it is easy to conclude, that the number of these
constraints are exactly the degrees of freedom of a rank-
(J — 1) symmetric traceless tensor, which are

4—-14+ (1) 3 4-14(J-3) (E43)
4-1 4-1 '
In total, the Fierz-Pauli equations lead to
4-1+J\ 4—-14(J-2)
4-1 4-1
4-14+ (-1 4-14(-3)
4-1 4-1
=2J+ 1. (E44)

degrees of freedom for a rank-J massive tensor field.

096027-36



PHENOMENOLOGY OF J*¢ = 37— TENSOR MESONS PHYS. REV. D 103, 096027 (2021)

On the other hand, we know that a massive particle of
total spin-J has also 2J 4+ 1 degrees of freedom, which
correspond to the 2J + 1 possible orientations of the
particles spin in a magnetic field. Furthermore, one could

study the behavior of particles of spin-J under rotations or
Lorentz transformations, which would also emphasize the
use massive rank-J tensor fields to describe those spin-J
particles.
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