
 

Correlation between multiple scattering angle and ionization energy loss
for fast electrons

M. V. Bondarenco *

NSC Kharkov Institute of Physics and Technology, 1 Academic Street, 61108 Kharkov, Ukraine

(Received 25 November 2020; accepted 21 April 2021; published 26 May 2021)

A correlation between the angle of multiple scattering and the ionization energy loss for relativistic
electrons in an amorphous medium is computed by solving the combined transport equation. The
correlation is found to be the most pronounced at deflection angles larger than typical, reflecting the
underlying single-scattering kinematical correlation, but is also sizable at typical deflection angles, where
the width of the angular distribution increases with the increase of the energy loss. The mean energy loss as
a function of the deflection angle is calculated. It grows quadratically both at small and at large angles, but
the proportionality coefficient at large angles is greater than at small ones.
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I. INTRODUCTION

Fast charged particles passing through amorphous matter
deflect and lose energy by elastic and inelastic collisions
with randomly located atoms. The corresponding angular
distribution was calculated by Molière [1], while the
ionization energy loss distribution, by Landau [2], with
subsequent refinements summarized in [3–9]. However,
those theories only correspond to simplest experimental
configurations, in which the fast particle emerging from the
target is directed into a single large detector measuring only
one of the numbers characterizing the particle motion at the
expense of erasing the rest of the information.
Modern thin detectors, easily penetrable by fast charged

particles, sensitive even to small deflection angles and
energy losses, and connectable into coincidence schemes,
allow more detailed reconstruction of the particle motion
history. For instance, a target made of a semiconductor
material can serve as an in situ detector of ionization energy
losses [10], while the particle incidence and emergence
angles can be measured in the same event by a sequence of
thin pixelized plates placed upstream and downstream the
target (a “telescope”—cf. [11]). For such more advanced
setups, Molière and Landau theories do not completely
describe the particle distribution, insofar as they do not
bring out possible correlation between the deflection angle
and the energy loss. One should then evaluate the complete
two-variable probability distribution function allowing for

correlation. The correlated function is also needed for some
applied problems on fast charged particle passage through
matter (see, e.g., [12,13]).
Specific mechanisms of angle-energy loss correlation

depend on the particle energy. Historically the first kind
thereof, being due to the curvature extension of the particle
path (“detour”) in a slab target, increasing with the increase
of the emergence angle, was predicted in [14,15] (for a
more detailed treatment, see [12,16]). Since correlation of
this kind is quadratic in the particle deflection angles,
which are inversely proportional to the large particle
momentum, it becomes negligible at high energy.
Another correlation mechanism is owing to sampling a

higher electron density by particles passing near atomic
nuclei, where the deflecting Coulomb field is stronger
[17–20]. It is pertinent to slow (with velocities v≲ 10−2c)
ions, which act on the encountered atomic electrons
semiclassically. Juxtaposing the single-collision mean
energy loss Δϵðr⊥Þ as a function of the impact parameter
r⊥ with respect to the atomic nucleus [13], and single-
collision deflection angle χðr⊥Þ, one derives the elementary
correlation between Δϵ and χ. With the increase of the
incident ion energy, the semiclassical character of the
scattering process eventually breaks down, but experimen-
tally, the correlation was found to persist out to ion
velocities v ∼ 10−1c [21,22], where all the above men-
tioned mechanisms, as well as the target thickness non-
uniformity [23], seem to be not enough to explain the data
[13,24,25].
At sufficiently high energies, when both scattering and

ionization processes are quantum mechanical, it becomes
possible to compare contributions from different correla-
tion mechanisms by counting the minimal necessary
number of interactions of the fast charged particle with
electrons and the nucleus within a single atom in the
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medium. The mentioned correlation of the electron density
with the location of the deflecting atomic nucleus requires
at least two-photon exchange, in which one photon is
exchanged with the static but highly charged nucleus,
efficiently deflecting the incident charged particle, while
another one is exchanged with the knocked-out electron,
transferring its energy. But a positive correlation must arise
even at the single-photon exchange level, when a virtual
photon knocks out an atomic electron, imparting it trans-
verse momentum and energy simultaneously. That mecha-
nism, being of the lowest order in the small electromagnetic
coupling constant, should dominate in the high-energy,
quantum-mechanical domain.
Besides comparing magnitudes of different effects in

single scattering, it is important to take into account that
targets for energetic, highly penetrating particles are usually
made thick enough, in order to increase the deflection
angle or the interaction rate. Some types of angle-energy
correlation may then be ruined by multiple interactions with
different atoms. In this regard, it is essential that Coulomb
scattering of pointlike charged particles involves significant
momentum transfers in single scatterings, contributing both
to Rutherford “tails” at large deflection angles [1,3,5] and to
an anomalous (logarithmically modified) diffusion at typical
angles [26]. That should support the dominance of single-
photon exchange in the correlation.
In problems of high-energy multiple scattering in matter,

it may thus important to investigate angle-energy loss
correlation induced by a charged pointlike particle scattering
on individual atomic electrons (hard incoherent scattering).
This effect is expected to be the strongest for incident
electrons or positrons, because a projectile of the same mass
as the struck electrons will be able to transfer them a large
fraction of its kinetic energy in “head-on” collisions. As for
the target materials, more favorable should be low-Z ones,
for which the relative role of incoherent scattering increases.
The objective of the present paper is to calculate the

angle-energy loss correlation for relativistic electrons or
positrons traversing low-Z amorphous matter. This process
is governed by a spatially uniform transport equation,
solvable by conventional integral transformation tech-
niques (Sec. II). In the multiple scattering regime, the
solution further simplifies based on the same logarithmic
approximations as in Molière, Fano, and Landau theories,
whose ranges of validity have a broad enough intersection.
It proves that for characterization of the substance, there is
no need to introduce phenomenological parameters other
than the elastic and inelastic screening angles χa and χin,
and the mean excitation energy Iδ including the density
correction δ. Furthermore, Iδ only contributes to an overall
shift in the mean energy loss (just like for Landau
distribution), whereas χa and χin coalesce into a single
parameter (like in Fano theory). In Secs. III–V, we inves-
tigate the distribution function dependence on the two
kinematic variables characterizing the final electron, and on

two parameters (Z and thickness) characterizing the target.
We find that the correlation remains substantial even in
thick targets, but its underlying mechanism differs from
extension of the path or impact-parameter-mediated corre-
lation discussed formerly. Wewill also study the correlation
in terms of conditional mean values for the two-variable
distribution function (Sec. VI).

II. SOLUTION OF THE TRANSPORT EQUATION

The correlated process of small-angle scattering of a fast
electron on atoms of an amorphous substance, and the
associated ionization energy loss, may be described by a
transport equation

∂
∂lfðθ;ϵ; lÞ

¼−na
Z

dσelðχÞ½fðθ;ϵ; lÞ−fðθ− χ ;ϵ; lÞ�

−na

ZZ
dσinðχ;ΔϵÞ½fðθ;ϵ; lÞ−fðθ− χ ;ϵ−Δϵ; lÞ�; ð1Þ

where the first line in the right-hand side represents
contributions from elastic collisions, whereas the second
line, from inelastic ones (atom excitation or knock-out of an
atomic electron). Here f is the probability distribution
function depending on the fast electron cumulative deflec-
tion angle θ and cumulative ionization energy loss ϵ, and
normalized by Z

d2θ
Z

∞

0

dϵf ¼ 1: ð2Þ

dσel and dσin are the elastic and inelastic scattering
differential cross sections depending on the single-
scattering deflection angle χ and energy transfer Δϵ.
Also, l designates the length of the electron path in the
target, and na the density of atoms. It is presumed that
θ ≪ 1, and ϵ is much smaller than the fast particle energy,
wherewith dσel and dσin virtually do not depend on the
latter, as in Molière and Landau theories.
Besides that, fast electrons emit electromagnetic radia-

tion, accompanying their scattering (bremsstrahlung). In
principle, bremsstrahlung correlates with the electron
scattering angle, as well [27,28]. But compared to elastic
scattering, radiation emission probability is suppressed by a
factor e2=ℏc ¼ 1=137. It is known that radiative energy
losses dominate at high electron energies, because even a
single photon can take away a large fraction of the electron
energy. However, we will be interested in the energy
loss distribution near the Landau peak (cf. [10]), where
radiative losses can be neglected [10,11].1 Furthermore,

1Formally, dσin in Eq. (1) can include radiative processes
(cf. [29]), but below we shall make specific assumptions about
dσin, pertinent to the ionization process.
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soft radiation is suppressed by the density effect, whereas
hard radiation freely escapes from the target detector. In this
respect, the situation is completely similar to that in
Molière and Landau theories.
For our purposes, it is thus sufficient to deal with

transport equation (1), and complete it by an initial
condition

fðθ; ϵ; 0Þ ¼ δðθÞδðϵÞ; ð3Þ

corresponding to a monokinetic initial beam. The solution
of this problem is obtained as usual, by applying Fourier
and Laplace transformations, which reduce (1) to a first-
order ordinary linear differential equation, solved by an
exponential e−lκðb;sÞ, where2

κðb; sÞ ¼ na

Z
dσelðχÞð1 − e−ib·χ Þ

þ na

ZZ
dσinðχ;ΔϵÞð1 − e−ib·χ−2mp−2sΔϵÞ ð4Þ

(b- and s-factorization). The inverse transformation yields a
formal solution of our problem:

p2

2m
fðθ; ϵ; lÞ ¼ 1

ð2πÞ2
Z

d2b

×
1

2πi

Z
i∞

−i∞
dseib·θþ2mp−2sϵe−lκðb;sÞ: ð5Þ

A factor 2mp−2 at sϵ in the exponent, where m and p are
the electron mass and momentum (which also degrades
negligibly with the increase of l), has been introduced in
Eqs. (4) and (5) for further convenience, in order to render s
dimensionless and commensurable with b2. Granted that
neither dσel nor dσin depend on the χ azimuth, the
azimuthal integration yields zero-order Bessel function
of the product of b ¼ jbj and χ ¼ jχ j:

κðb;sÞ ¼ na

Z
dσelðχÞ½1− J0ðbχÞ�

þna

ZZ
dσinðχ;ΔϵÞ½1− J0ðbχÞe−2mp−2sΔϵ�: ð6Þ

The generic 2-variable dependence dσinðχ;ΔϵÞ takes
account of all the effects, which can give rise to an angle-
energy loss correlation. Which of them survives under
conditions of multiple scattering will be seen next.

A. Multiple-scattering approximation

In general, dσel and dσin are complicated functions of χ
and Δϵ, reflecting the shell structure of atoms, and possibly
even their binding effects in the solid. But under the
conditions of multiple scattering, accumulated θ and ϵ
are much greater than typical contributing χ and Δϵ in the
single-scattering cross sections. Given that b ∼ θ−1 and

s ∼ p2

2mϵ, arguments bχ ∼ χ=θ and 2mp−2sΔϵ ∼ Δϵ=ϵ
of functions in (6) are typically small, so, differences
1 − J0ðbχÞ and 1 − J0ðbχÞe−2mp−2sΔϵ may be expanded
in them to the leading orders:

1 − J0ðbχÞ ≃
b2

4
χ2; ð7Þ

1 − J0ðbχÞe−2mp−2sΔϵ ≃
b2

4
χ2 þ 2mp−2sΔϵ: ð8Þ

However, straightforward application of such a procedure
under conditions of Coulomb scattering leads to a loga-
rithmic divergence of the integral, as long as both the elastic
and inelastic differential scattering cross sections at large χ
feature Rutherford asymptotics3:

naldσelðχÞ ≃
χ≫χa

naldσRuthðχÞ ¼ 2Z2χ̄2c
dχ
χ3

; ð9Þ

and

naldσinðχ;ΔϵÞ ≃
χ≫χa

2Zχ̄2cδ

�
Δϵ −

p2

2m
χ2
�
dχ
χ3

dΔϵ: ð10Þ

Here dσRuth
dχ ¼ 8πZ2e4

p2v2χ3 is the Rutherford cross section for

scattering on a bare nucleus with charge Ze, and v the
particle velocity. Factor [32]

χ̄2c ¼
4πe4nal
p2v2

ð11Þ

common both for elastic and inelastic processes, includes
all the dependencies on the properties of the target except
Z. Note that Z-dependence of the elastic scattering con-
tribution (9) is quadratic, reflecting its coherent nature,
whereas inelastic scattering contribution (10), which is
incoherent, is proportional to the number Z of electrons per
atom. Direct implementation of asymptotics (10) is the key
property of our approach.

2To reconcile nomenclatures used in Molière and Landau
theories, and make them more naturally connected, we introduce
here some new notations.

3In treatment of electron scattering on atomic nuclei, we
neglect nuclear size effects [30] and spin corrections at wide
scattering angles [31]. In contrast to the primary electron,
knocked-out electrons in (10) are regarded as nonrelativistic,
wherewith their dispersion law is Δϵ ¼ p2χ2

2m . As in the case of the
Landau distribution, that is sufficient for description of the
straggling far from the upper end of its spectrum.
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To treat the logarithmically divergent integrals accu-
rately, one needs to reach the next-to-leading logarithmic
accuracy (NLLA). The standard procedure is to break the
semi-infinite χ integration interval by an intermediate χ1,
such that χa; χin ≪ χ1 ≪ χ̄c, and treat the large-χ contri-
bution exactly, not resorting to expansions (7), (8), whereas
the small-χ contribution—phenomenologically [beyond
Rutherford asymptotics (9), (10)].

B. Soft scattering contribution

In the inner region χ < χ1, expansions (7), (8) are safe to
use. Additive constants in logarithmic χ1-dependencies of
the integrals can be related to phenomenological parame-
ters via definition

dσel¼ qðZ;pχ=ℏÞdσRuth; qjχ∼χ1 ¼ 1; qðZ;0Þ¼ 0 ð12Þ
for the elastic scattering function q, further definitionZ

χ1

0

q
�
Z;

pχ
ℏ

�
dχ
χ

¼ ln
χ1
χ0a

þ γE − 1 ð13Þ

for the Molière’s screening angle χ0aðZÞ [1,3],4 similar
definitionZ

∞

0

dΔϵ
dσin

dΔϵdχ
¼ dσin

dχ
¼ S

�
Z;

pχ
ℏ

�
1

Z
dσRuth
dχ

; ð14Þ

Sjχ∼χ1 ¼ 1; SðZ; 0Þ ¼ 0

for the inelastic scattering function S, further definitionZ
χ1

0

S
�
Z;

pχ
ℏ

�
dχ
χ

¼ ln
χ1
χ0in

þ γE − 1 ð15Þ

for the corresponding Fano angle χ0inðZÞ [32],5 and

Z Z
χ<χ1

dσinΔϵ ¼
4πZe4

mv2

�
ln
pγχ1
Iδ

−
v2

2c2

�
; ð17Þ

ln Iδ ¼ ln I þ 1

2
δ ð18Þ

for the mean excitation energy IðZÞ (see [34] and refs.
therein). Density correction δðZ; γÞ in (18) accounts for
dispersive dielectric susceptibility of the medium [7].6

Combined, that gives

nal
Z

χ1

0

dχ
dσel
dχ

½1 − J0ðbχÞ� ≃ nal
b2

4

Z
χ1

0

dχ
dσel
dχ

χ2

¼ Z2χ̄2cb2

2

�
ln
χ1
χ0a

þ γE − 1

�
;

ð19Þ

nal
Z Z

χ<χ1

dσin½1 − J0ðbχÞe−2mp−2sΔϵ�

≃ nal
b2

4

Z Z
χ<χ1

dσinχ2 þ 2mp−2nals
Z Z

χ<χ1

dσinΔϵ

¼ 2Zχ̄2c

�
b2

4

�
ln

χ1
χ0in

þ γE − 1

�
þ s

�
ln
pγχ1
Iδ

−
v2

2c2

��
:

ð20Þ

Notably, this part does not give rise to any angle-
energy loss correlation, including that mentioned in the
Introduction (sampled higher electron density in regions of
stronger deflecting field near atomic nuclei). The reason is
that this contribution is concentrated at limited energy and
momentum transfers, but the lowest-order expansion in
their Fourier-reciprocal variables involves no cross terms. If
the diffusion was normal, that would be the end of the story
for thick targets.

C. Hard scattering contribution

There exists, however, an equally important contribution
from the hard scattering region χ > χ1. For its treatment, it
is justified to apply Rutherford asymptotics (9), (10), but
the integrals

nal
Z

∞

χ1

dσel½1−J0ðbχÞ�≃2Z2χ̄2c

Z
∞

χ1

dχ
χ3

½1−J0ðbχÞ�; ð21Þ

4Following the notation of [3], the prime at χ0a, discriminates it
from the unprimed value χa ¼ χ0ae1=2−γE , whose advantage is that
it coincides with the inverse screening radius times p−1 for Born
scattering in a purely exponentially screened Coulomb potential
[1]. But since such a potential is rather artificial in atomic physics,
not being realized even for hydrogen atom, we work from the
outset with the primed notations, in which the final results have
simpler form. A similar relationship is implied for χ0in.5Assuming electrons to be sufficiently fast, and targets to have
low or moderate Z, here we will neglect so-called Coulomb
corrections, i.e., the cross section nonlinear dependence on
Ze2=ℏv. Then, constants χa and χin are determined solely by
atomic form factors. For their evaluation at low Z, Thomas-Fermi
model is too crude, and Hartree-Fock calculations are necessary
[33]. For hydrogen, one analytically evaluates ln χin=χa ¼R
∞
0

dχ
χ ðq − SÞ ¼ −5=6, wherewith χin ¼ e−5=6χa ≈ 0.4χa,

pχat=ℏ ¼ 2=eaB,

pχ0at
ℏ

¼ pχat
ℏ

eγE−1=2 ¼ 2

aB
eγE−3=2 ð16Þ

[with χ0at defined by Eq. (32) below].

6At γ → ∞, the behavior of δðZ; γÞ is such that

ln
p
Iδ

¼ ln
m

ℏωpðZÞ
þ 1

2
;

where ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πZe2na=m

p
is the plasma frequency of the

medium, so, δ=2 and ln γ compensate each other, and the
logarithmic growth in Eq. (17) saturates.
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nal
Z Z

χ>χ1

dσin½1 − J0ðbχÞe−sχ2 �

≃ 2Zχ̄2c

Z
∞

χ1

dχ
χ3

½1 − J0ðbχÞe−sχ2 � ð22Þ

need to be evaluated without resorting to Bessel and
exponential function expansions (7), (8).
Integral (21) is exactly the same as that arising in the

Bethe-Molière theory, with the known result:

Z
∞

χ1

dχ
χ3

½1 − J0ðbχÞ� ≃
bχ1→0

b2

4

�
ln

2

bχ1
þ 1 − γE

�
: ð23Þ

Integral (22) is somewhat more sophisticated, and is
evaluated in Appendix A:Z

∞

χ1

dχ
χ3

½1 − J0ðbχÞe−sχ2 �

≃
bχ1;sχ21→0

b2

4
þ s
2
e−b

2=4s

−
1

2

�
sþ b2

4

��
ln sχ21 þ γE þ Ein

�
b2

4s

��
; ð24Þ

with Ein the complementary exponential integral function
specified by Eq. (A6). Again, the χ1-dependence here is
simple logarithmic. As for b and s dependencies, in
contrast to Eqs. (19), (20), they get intermixed. It is this
mixing that induces a correlation between θ and ϵ.

D. The combined result

Ultimately, piecing together (21), (23) with (19), and
(22), (24) with (20), we cancel the delimiting parameter χ1,
and are left with

lκðb; sÞ ¼ Zχ̄2c

�
b2

2

�
Z ln

2

bχ0a
þ ln

1

χ0in
þ γE

�

þ s

�
2 ln

pγ
Iδ

þ e−b
2=4s −

v2

c2

�

−
�
sþ b2

4

��
ln sþ γE þ Ein

�
b2

4s

���
: ð25Þ

The final integral can be cast in a more compact form by
changing b and s to reduced integration variables

y ¼ Z2χ̄2cb2; u ¼ Zχ̄2cs; ð26Þ

which absorb the energy dependence and partly the thick-
ness dependence. Accordingly, kinematic variable θ is
changed to

Θ ¼ θ

Zχ̄c
; ð27Þ

and ϵ to

λðZ; l; ϵÞ ¼ 2m
p2Zχ̄2c

ϵ − λ0; ð28Þ

with a shift

λ0 ¼ ln
p2γ2Zχ̄2c

I2δ
− γE þ γ−2 ð29Þ

arising after combining the term ϵu in the exponent with the
other terms linear in u. In this notation, the distribution
function expresses as

p2

2m
Z3χ̄4cfðZ; l; θ; ϵÞ ¼ FðZ; y0;Θ; λÞ

¼ 1

4π

Z
ymax

0

dyJ0ð
ffiffiffi
y

p
ΘÞeΩelðy0;yÞ

×
1

2πi

Z
i∞

−i∞
dueλuþΩinðy=4Z;uÞ; ð30Þ

where dimensionless parameter

y0ðl; ZÞ ¼ 4Z

�
Zχ̄2c
χ02at

�
1þ1=Z

eγE=Z ≫ 1 ð31Þ

serves as a measure of the target thickness for given Z, and
is independent of v, because in the ratio χ̄c=χ0at both χ̄c and
the effective screening angle

χ0at ¼ χ0
Z

Zþ1
a χ0

1
Zþ1

in ð32Þ
of elastic and inelastic scattering are reciprocal to v.
Functions

Ωelðy0; yÞ ¼ −
y
4
ln
y0
y
; ð33Þ

ΩinðY;uÞ¼ðuþYÞ½lnuþEinðY=uÞ�þuð1−e−Y=uÞ ð34Þ

are defined so that they vanish at the origin:

Ωelðy0; 0Þ ¼ Ωinð0; 0Þ ¼ 0:

As can be verified with the use of identitiesZ
∞

−∞
dλ

1

2πi

Z
i∞

−i∞
dueλuþΩinðY;uÞ ¼ eΩinðY;0Þ; ð35Þ

Z
∞

0

dΘΘ
Z

∞

0

dyJ0ð
ffiffiffi
y

p
ΘÞeΩelþΩin ¼ 2eΩelþΩin

				
y¼0

ð36Þ

(being particular cases of inverse Fourier and Fourier-
Bessel transformations), F is normalized to unity in
variables Θ and λ:
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2π

Z
∞

0

dΘΘ
Z

∞

−∞
dλFðZ; y0;Θ; λÞ ¼ 1; ð37Þ

in accordance with its interpretation as a probability
density. Note that compared with (2), by virtue of a very
rapid convergence of the λ-integral, its actual lower
integration limit −λ0, where λ0 is logarithmically large,
was replaced by −∞ (as in Landau theory).
Before proceeding, let us analyze the structure of the

obtained integral (30). Even though one of its entries, Ωin,
looks somewhat cumbersome, involving a special function
Ein, its second u-derivative is very simple:

∂2

∂u2 ΩinðY; uÞ ¼
1

u
e−Y=u: ð38Þ

[This relation can be derived directly by double differ-
entiating (24) over s, and setting thereupon χ1 ¼ 0, granted
that the integrand vanishes at this endpoint.] We will take
advantage of property (38) below.
Next, it is worth noting that besides the dependence of

the exponent Ωel þ Ωin on variables y and u, in terms of
which the transport equation has been factored, it depends
yet on parameters Z and y0. In total, that amounts to a
4-variable dependence, but in Eq. (30) it actually splits into
a sum of two functions, each depending only on two
variables. That by no means implies any factorization of the
resulting Fourier integral, because both Ω’s depend on y.
After the integration over y, the dependencies on Θ and λ
intermix. In this regard, it is worth reminding that y is a
rescaled square of b [Eq. (26)], where b may be thought of
as an analogue of an impact parameter. The correlation
between Θ and λ may thus be attributed to correlations
of each of them with b, resembling impact-parameter-
mediated correlation for slow ions (cf. Introduction). It
should be understood, however, that b is not a physical
transverse coordinate r⊥, but a Fourier reciprocal to θ at the
probability level.
The dependence of Ωin on y and Z only through their

ratio reflects the fact that aggregate scattering on atomic
electrons, because of its incoherent character, is Z times
weaker than that on atomic nuclei. (Recall that a coherent
scattering factor Z2 has been included in the definition of y,
while the incoherent scattering factor Z in the definition
of u.) Besides that, Ωin involves functions depending only
on a ratio Y ¼ y=4Zu. As we will see in Sec. IV, this
implies asymptotic dependence only on the ratio of λ and Z.
To determine whether Eq. (30) is suitable for numerical

evaluation, it is also necessary to assess the rate of
convergence of its y- and u-integrals. The u-dependence
of the integrand is determined by asymptotics of the
real part of Ωin, which is defined by Eq. (34). Therein,
EinðY=uÞ →juj→∞0, 1 − e−Y=u →juj→∞0, hence, at imaginary

integration variable u ¼ iu00 and large ju00j, Ωin behaves
asReðu ln uÞ ¼ − π

2
ju00j, linearly tending to −∞. Hence, at

infinity the u-integral converges exponentially, which is
rapid enough. In the opposite limit of small imaginary u,
functions e−Y=u and EinðY=uÞ rapidly oscillate, and even
though the exponent at that does not blow up (see Fig. 1), it
may be expedient to introduce a small lower cutoff,
e.g., ju00jmin ∼ 10−5.
As for the y-integral in Eq. (30), it is primarily deter-

mined by the behavior of Ωel. In the limit y → 0, both Ωel
and Ωin are finite, but Ωel begins to grow indefinitely when
y > y0=e (see Fig. 2), threatening with divergence of the
entire integral. Such a divergence was absent in the original
integral, so, it is a byproduct of the small-y approximation.
Just like in the Molière theory, it can be precluded merely
by introducing a sizable upper cutoff ymax, being not larger
than ∼y0=e:

1 ≪ ymax ≲ y0=e: ð39Þ

The result of the integration is then insensitive to ymax. The
subscript 0 actually indicates that y0 serves as the upper
limit for y integration. Taking into account the inequality
Ωel > −0.08y0 (see Fig. 2), the necessary condition for the
target to be physically thick (−minΩel ≫ 1) is [5]

0.5 0.5
u Y

0.02

0.02

0.04

Re in Y , u in Y , 0 Y

FIG. 1. The real part of the exponent in the u-integral (30), with
Ωin defined by Eq. (34), for Y ¼ y=4Z and imaginary u ¼ iu00.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
y y0

0.08

0.06

0.04

0.02

el y0, y y0

1

FIG. 2. The behavior of the exponent in the y-integral (30),
with Ωelðy0; yÞ defined by Eq. (33). Dotted line indicates the
location of its minimum. The corresponding y sets the upper
scale for ymax [Eq. (39)].
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y0 ≳ 102: ð40Þ

As a practical guide, the correspondence between the
target thickness and values of y0 used in further examples is
given Table I, for Z ≤ 6.

III. DISTRIBUTION SHAPES

Examples of density plots for the computed correlated
distribution in the Θ-λ plane are presented in Figs. 3(a)
and 4(a). Their characteristic features are an elliptic
concentration at moderate λ, Θ (formed in the process of
multiple scattering), and a “spur” along the parabola

λ ¼ ZΘ2; ð41Þ

extending to higher λ and Θ, and being due to single hard
scattering. The oblique orientation of this spur is a vivid
illustration that the joint distribution does not reduce to a
product of single-variable, Θ- and λ-dependent functions.
One can also observe that when the spur merges with the
dominant central spot, it somewhat skews the latter. Further
inspection of slices of those distributions along Θ and λ
axes [Figs. 3(b), 3(c), 4(b), 4(c), 5, and 6] reveals that their
shapes are qualitatively similar to Landau and Molière
distributions (cf. Figs. 7 and 8 below), but the width of the
conditional Θ distribution depends on λ, and vice versa.
At sufficiently large λ, the maximum of the conditional
Θ-distribution is at Θ ≠ 0 [the slice of the spur—see
Figs. 3(b), 3(c), and 4(b)].
The presence of two dissimilar concentration regions in

the probability distribution hints that in each of them the
double Fourier integral representation (30) may admit
further simplifications under suitable approximations.
But in any case, the description of F can not be simpler
than that of its single-variable (λ- or Θ-) projections, which
are Landau and Molière distributions, known to be irre-
ducible to elementary functions. The intrinsic simplicity of
the latter owes instead to their stability—invariance with
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0.001
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F Z, y0, ,

L

(b)

0 20 40 60 80 100 120 140

10 7

10 6

10 5

10 4

0.001

F Z, y0, ,

(c)

FIG. 3. Correlated angle-energy loss distribution of electrons
multiple scattered in hydrogen (Z ¼ 1) target with thickness
parameter y0 ¼ 104 (see Table I). (a). Contour plot of logF, with
F given by Eq. (30). Dashed parabola, the midline of the spur
[Eq. (41)]. (b). Angular distributions at fixed values of the
ionization energy loss straggling variable λ. Solid curves,
calculation by exact formula (30), at λ ¼ 0 (red), λ ¼ 7 (yellow),
λ ¼ 20 (green), λ ¼ 50 (blue). Dashed, approximation (72) for
same values of λ. Dot-dashed, approximation (82), (84). (c). Ion-
ization energy loss distribution at fixed values of the scattering
angle. Solid curves, Θ ¼ 0 (red), Θ ¼ 4 (yellow), Θ ¼ 8 (green),
Θ ¼ 16 (blue). Dashed and dot-dashed curves correspond to the
same approximations as in (b).

TABLE I. Target thicknesses corresponding to different values
of y0, for low Z. The calculations are performed in the Born
approximation (neglecting Coulomb corrections), based on
atomic elastic scattering form factors and inelastic scattering
functions tabulated in [35].

Z pχ0at=ℏ y0 ¼ 102 y0 ¼ 104 y0 ¼ 106

1 1.50 Å−1 l ¼ 0.28 mg
cm2 l ¼ 2.82 mg

cm2 l ¼ 28.2 mg
cm2

2 2.91 Å−1 l ¼ 2.29 mg
cm2 l ¼ 49.3 mg

cm2 l ¼ 1.06 g
cm2

3 3.10 Å−1 l ¼ 51.5 μm l ¼ 1.63 mm l ¼ 5.15 cm
4 3.44 Å−1 l ¼ 15.6 μm l ¼ 0.62 mm l ¼ 2.47 cm
5 3.75 Å−1 l ¼ 11.3 μm l ¼ 0.526 mm l ¼ 2.44 cm
6 3.88 Å−1 l ¼ 12.63 μm l ¼ 0.651 mm l ¼ 3.37 cm
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respect to convolutions, as exemplified by Eq. (45) below.
By virtue of that, Landau and Molière distributions can
in fact serve as building blocks even in the two-variable
case. Below we shall remind their definitions and basic
properties.

A. Landau distribution

Integration of Eq. (30) over the full Θ plane can be
performed with the aid of identity (36), and gives

2π

Z
∞

0

dΘΘFðZ; y0;Θ; λÞ

¼ 1

2πi

Z
i∞

−i∞
dueλuþΩinð0;uÞ ¼ φLðλÞ: ð42Þ

Here
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FIG. 4. Correlated angle-energy loss distribution of electrons
multiple scattered in lithium (Z ¼ 3) target with thickness
parameter y0 ¼ 104. (a) Contour plot of logF, with F given
by Eq. (30). Dashed parabola, the midline of the spur [Eq. (41)].
(b) Angular distributions at fixed values of the straggling variable
λ. Solid curves, calculation by exact formula (30), at λ ¼ 0 (red),
λ ¼ 7 (yellow), λ ¼ 20 (green), λ ¼ 50 (blue). Dashed, approxi-
mation (72). (c) Ionization energy loss distribution at fixed values
of the scattering angle. Solid curves, Θ ¼ 0 (red), Θ ¼ 3
(yellow), Θ ¼ 6 (green), Θ ¼ 15 (blue). In the moderate λ
domain, the latter is the closest to Landau distribution. All the
straggling curves intersect at λ ¼ 1 (dotted vertical line).
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0.030

F Z, y0, ,

L

FIG. 5. Angular distributions of electrons multiple scattered in
carbon (Z ¼ 6) target with thickness parameter y0 ¼ 104, at fixed
values of the ionization energy loss straggling variable λ: λ ¼ 0
(red), λ ¼ 7 (yellow), λ ¼ 20 (green), λ ¼ 50 (blue). Solid curves
are calculated by exact formula (30). Dashed curves, approxi-
mation (72) for same values of λ.
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FIG. 6. The same as Fig. 5, for silicon (Z ¼ 14) target with
thickness parameter y0 ¼ 104.
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Ωinð0; uÞ ¼ u ln u; ð43Þ

whereby φL is recognized to be Landau distribution [2,36].
It is normalized by

Z
∞

−∞
dλφLðλÞ ¼ eΩinð0;0Þ ¼ 1; ð44Þ

has the group property

Z
∞

−∞
dλ1φLðλ1ÞφLðλ − λ1Þ ¼

1

2
φL

�
λ

2
− ln 2

�
; ð45Þ

and in the large energy loss region has the single-scattering,
Rutherford symptotics7

φLðλÞ ≃
λ→∞

1

2πi

Z
i∞

−i∞
dueλuu ln u ¼ 1

λ2
: ð47Þ

At λ → −∞, function φLðλÞ drops off faster than
exponentially, as can be demonstrated by integration in

the saddle-point approximation [2]. The entire shape of
φLðλÞ is markedly asymmetric (see Fig. 7). Its maximum is
achieved at

λ ¼ λm ≈ −0.22 ð48Þ

(the most probable energy loss). In this point,

φLðλmÞ≈0.18; φ0
LðλmÞ¼0; φ00

LðλmÞ≈−0.079: ð49Þ

B. Molière distribution

Similarly, integration over λ in Eq. (30) proceeds with the
use of identity (35), yielding

Z
∞

−∞
dλFðZ; y0;Θ; λÞ ¼

1

4π

Z
ymax

0

dyJ0ð
ffiffiffi
y

p
ΘÞ

× eΩelðy0;yÞþΩinðy=4Z;0Þ: ð50Þ

SinceΩinðy=4Z; 0Þ ¼ y
4Z ðln y

4Z þ γEÞ has the same structure
as Ωelðy0; yÞ given by Eq. (33), all those terms in the
exponent can be amalgamated by collecting ln yþ const
factors of − y

4
as

ln
y0
y
−
1

Z

�
ln

y
4Z

þ γE

�
¼ Z þ 1

Z
ln
4Z2χ̄2c
χ02aty

; ð51Þ

where definition (31) of y0 was used. Then, it is expedient
to change the integration variable from y to

Z þ 1

Z
y ¼ η; ð52Þ

whereafter the pure angular distribution expresses as

2 4 6 8 10 12 14

10 4

0.001

0.01

M

FIG. 8. Log plot of Molière distribution (57) for η0 ¼ 103 (solid
curve). Dashed curve, its leading logarithmic approximation (61).
Dot-dashed, Molière distribution for η0 ¼ 106. Dotted curve,
Rutherford asymptotics (60), valid for any η0.
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0.005

0.010

0.020

0.050

0.100

L

m

FIG. 7. Log plot of Landau distribution (42) (solid curve).
Dashed curve, Rutherford asymptotics (47) (approaching the
solid curve at very large λ). Dot-dashed, Rutherford asymptotics
with power correction (46), approaching the solid curve more
rapidly. The most probable energy loss [Eq. (48)], corresponding
to the maximum of φL, is marked by the dotted vertical line.

7Asymptotics (47) becomes sufficiently accurate only rather
remotely (see Fig. 7, dashed curve). Higher accuracy may be
achieved by taking into account a correction term:

φLðλÞ ≃
λ→∞

1

2πi

Z
i∞

−i∞
dueλu

�
u ln uþ 1

2
u2ln2u

�

¼ 1

λ2
þ 2 ln λþ 2γE − 3

λ3
ð46Þ

(displayed in Fig. 7 by the dot-dashed curve). In the present
paper, for simplicity, we will restrict our analysis to the leading-
order asymptote (47) and its counterparts for the joint distribution
function (see Sec. V B). It should be minded that at moderately
large λ, their accuracy is limited.
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Z
∞

−∞
dλFðZ; y0;Θ; λÞ ¼

Z
Z þ 1

φMðη0;ΨÞ; ð53Þ

where

Ψ ¼ θ

χc
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Z

Z þ 1

r
Θ ð54Þ

is another version of the reduced scattering angle, and

η0 ¼
4χ2c
χ02at

ð55Þ

is the reduced thickness. In definitions (54), (55)

χ2cðZ; l; na; pÞ ¼ ZðZ þ 1Þχ̄2cðl; na; pÞ

≡ 4πZðZ þ 1Þe4nal
p2v2

ð56Þ

is the conventional parameter of Molière theory [3],
differing from χ̄2c by a ZðZ þ 1Þ factor. Function

φMðη0;ΨÞ ¼
1

4π

Z
ηmax

0

dηJ0ð
ffiffiffi
η

p
ΨÞe− η

4
ln

η0
η ð57Þ

(with ηmax ∼ ymax, the sensitivity to which is weak) is
Molière distribution normalized by

2π

Z
∞

0

dΨΨφMðη0;ΨÞ ¼ 1: ð58Þ

It appears that variables y0 and Θ are the best suited for
the two-variable case, whereas η0 and Ψ are natural for the
λ-integrated or large-λ distributions (see below).
For understanding the behavior of φM, it is rewarding to

note that it obeys an ordinary diffusion equation, with ln η0
playing the role of “time”:

∂φM

∂ ln η0 ¼
1

4
ΔΨφM; ΔΨ ¼ ∂2

∂Ψ2
þ 1

Ψ
∂
∂Ψ : ð59Þ

This equation only describes a hard part of the angular
diffusion, whereas soft, normal diffusion enters via the
explicit square root dependence of Ψ on l [see Eqs. (54)
and (56)]. In spite of having only a logarithmic thickness
dependence, hard diffusion in a thick target is as significant
as the soft one. Yet despite being governed by a normal
diffusion equation, φM is non-Gaussian in Ψ, insofar as it
does not correspond to a δðΨÞ initial condition. In
particular, for all η0 it exhibits the same large-Ψ
Rutherford “tail”

φMðη0;ΨÞ ≃
Ψ→∞

1

16π

Z
∞

0

dηη ln ηJ0ð
ffiffiffi
η

p
ΨÞ ¼ 1

πΨ4
ð60Þ

(see Fig. 8, dotted curve). It is illegitimate to evolve φM
back to small ln η0, anyway, because η0 needs to be large to
ensure negligible dependence of φM on the upper integra-
tion limit in definition (57). Therewith, hard diffusion does
not reduce to a rescaling of deflection angle with time.
For very thick targets, η0 → ∞, the simplest approxi-

mation for φM is leading logarithmic (dating back to
Williams [6,37]), when in the exponential entering
Eq. (57) ln η is neglected compared to ln η0:

φMðη0;ΨÞ ≃
η0→∞

1

4π

Z
∞

0

dηJ0ð
ffiffiffi
η

p
ΨÞe− ln η0

4
η

¼ 1

π ln η0
e−Ψ

2= ln η0 : ð61Þ

The accuracy of this Gaussian approximation is illustrated
in Fig. 8 by the dashed curve. It can be satisfactory for
description of low-statistics experiments, when only the
central angular region is visible, but as we shall see below,
is generally too crude for treatment of angle-energy loss
correlation effects.
More accurate approximations can be obtained by

expanding in Eq. (57) the exponential e
η
4
ln η in powers of

η
4
ln η and integrating termwise (an equivalent of Molière

expansion [1,3,5]). In what follows, we will need to know
the value of πφM at Ψ ¼ 0:

πφMðη0; 0Þ ≃
ln η0≫1

1

4

Z
∞

0

dηe−
η
4
ln η0

�
1þ η

4
ln η

�

¼ 1

ln η0
þ 1

ln2η0

�
ln

4

ln η0
þ 1 − γE

�
; ð62Þ

or its inverse

1

πφMðη0; 0Þ
≃

ln η0≫1
ln η0 þ ln

ln η0
4

− 1þ γE: ð63Þ

Approximation (63) works well already at η0 ≳ 102 cor-
responding to condition (40), whereas the leading loga-
rithmic approximation [the first term of (63)] can become
insufficiently accurate at η0 ≳ 104, due to the lack of the
growing term ln ln η0.

C. Normalized correlation function

Single-variable distributions φL, φM quoted above can
be used to formally define the angle-energy loss correla-
tion. According to (42) and (53), the correlation between
those variables would be absent if the distribution function
factorized into a product of the corresponding single-
variable distributions:

FðZ; y0;Θ; λÞ ≈
Z

Z þ 1
φLðλÞφMðη0;ΨÞ; ð64Þ
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with

Ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Z

Z þ 1

r
Θ; η0 ¼

Z þ 1

Z
ð4Ze−γEÞ 1

Zþ1y
Z

Zþ1

0 ∼ y0:

The relative deviation from this structure, i.e., deviation of
the normalized correlation function

gðZ; y0;Θ; λÞ ¼
Z þ 1

Z
FðZ; y0;Θ; λÞ
φLðλÞφMðη0;ΨÞ

ð65Þ

from unity thus provides a measure of the correlation.
Inspection of Fig. 9, where difference g − 1 is plotted vs

Θ, shows that in general, it is nowhere negligible, unless Z
is very large. At highΘ, it tends to a negative constant value

g − 1 →
Θ→∞

−
1

Z þ 1
; ð66Þ

as will be proven in Sec. VA. At low Θ, difference g − 1
appears to be of the same order, but its sign depends on the
value of λ [see Figs. 9(a) and 9(b)]. The physical reason for
the correlation to be of the order of 1

Zþ1
is that it is caused

only by scattering on atomic electrons, whose aggregate
contribution is ∼Z times smaller than that from scattering
on atomic nuclei. It appears that product ðZ þ 1Þðg − 1Þ for
Z ≥ 6 is nearly Z-independent for all Θ, λ [see Fig. 9(b)].

It may thus be concluded that the correlation between
λ and Θ is significant enough for light materials, including
practical cases such as carbon (Z ¼ 6) and silicon
(Z ¼ 14). At the same time, the results of this section
indicate that there are two regions (the central one and the
spur), in which the distribution function behaves quite
differently. Those regions deserve an independent inves-
tigation, which will be provided in the next two sections.

IV. MODERATE ENERGY TRANSFERS.
LARGE-THICKNESS AND LARGE-Z

APPROXIMATIONS

Turning to investigation of the distribution function by
regions, let us begin with the simpler case of the central
region, where the bulk of the probability resides.
This region [see Figs. 3(a) and 4(a)] is populated

primarily by events consisting of a sequence of many
sufficiently probable soft scatterings in a thick target. At
derivation of generic Eq. (30), it was already taken into
account that under conditions of multiple scattering, typical
contributing values of b and s tend to zero with the increase
of the target thickness. That has brought Ωel to a small-y
limiting form, although typical values of the reduced
variable y decrease only logarithmically. As for Ωin, it
involves Ein and an exponential function depending on the
ratio y=4Zu. Being inversely proportional to u, which
varies from 0 to ∞, this ratio can be arbitrarily large or
small. But in the presently considered central kinematic
region, λ is supposed to be limited (not too far from
typical). Then, typical values of u must be nonvanishing,
and at typical y →y0→∞0, contributing values of arguments
y=4Zu of functions entering Ωin tend to zero. In order to
retain the correlation, we develop Ωin in this ratio to the
next-to-leading, 1st order. Utilizing (43) and the value of
the derivative

∂Ωin

∂Y
				
Y¼0

¼ 2þ ln u; ð67Þ

we expand

Ωinðy=4Z; uÞ ≃
y=4Zu≪1

u ln uþ y
4Z

ð2þ ln uÞ: ð68Þ

Grouping (68) with the rest of the terms in the exponent,

Ωel þ λuþΩin ≃
�
−
y
4
ln
y0
y
þ y
2Z

�
þ λuþ

�
uþ y

4Z

�
lnu;

we observe that the exponent involves only one mixing
term of a gratifyingly simple form y ln u.

A. λ-dependence of the Θ-distribution

By virtue also of the fact that the found mixing term
enters with a small factor 1=4Z, it can be eliminated

5 10 15
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g 1

(a)

(b)
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Z 1 g 1

FIG. 9. (a). Deviation of the normalized correlation function
(65) from unity, for Z ¼ 1 and y0 ¼ 104. Curves: λ ¼ −3
(dashed), λ ¼ 0 (solid), λ ¼ 7 (dot-dashed), λ ¼ 20 (dotted).
(b). ðZ þ 1Þðg − 1Þ for Z ¼ 14 and the same values of y0 and λ.
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approximately by applying a relatively small shift of one of
the integration variables:

u ¼ ũ −
y
4Z

: ð69Þ

After the corresponding linearization of the term
ũ ln u ≃ ũ ln ũ − y=4Z, variables y and ũ approximately
separate:

Ωel þ λuþ Ωin ≃ −
y
4
ln
y0K
y

þ λũþ ũ ln ũ; ð70Þ

where we have introduced a notation

KðZ; λÞ ¼ e
λ−1
Z : ð71Þ

Substitution of (70) to double integral (30) brings it to a
quasifactorized form

FðZ; y0;Θ; λÞ ≈ φLðλÞφM½y0KðZ; λÞ;Θ�; ð72Þ

where λ-dependence, besides φL, enters to the parameter
of φM. The argument of φM here is Θ, in contrast to Ψ
entering to the right-hand side of Eq. (53) for the λ-
integrated case.
The validity condition for approximation (72) is

λ ∼ u−1 ≪ 4Z=y ∼ Z ln y0, i.e.,

λ ≪ Z ln y0: ð73Þ
It is important that here in the right-hand side ln y0 ≫ 1,
thus, the exponent of (71) needs not be small. Insofar as the
right-hand side in (73) involves a factor of Z, it may as well
be regarded as the large-Z limit. At Z ¼ 1, condition (73) is
fulfilled marginally, so, the accuracy of (72) for Z ¼ 1 is
poorer.
From comparison of solid and dashed curves in

Figs. 3(b), 3(c), and 4(b) (for ln y0 ¼ ln 104 ≈ 9), it is
evident that approximation (72) can remain tenable even for
λ ∼ Z ln y0, but inevitably breaks down at λ ≫ Z ln y0,
when the maximum of the distribution function is no
longer at Θ ¼ 0. The scaling dependence on λ−1

Z , though,
can hold under more general conditions, as will be
demonstrated in Secs. IV B and VI A.
Structure (72) permits a simple physical interpretation.

In the central region, an increase of λ leads to a broadening
of the angular distribution, which is equivalent to an
effective increase of the electron path length (multiplication
of the length parameter y0 by a λ-dependent factor K).8

That is reminiscent of the “detour” mechanism mentioned
in the Introduction, with the proviso that the trajectory of a
high-energy particle remains nearly straight (there is no
appreciable “detour”). The effect, instead, owes to the
increase of relative contribution of events with large energy
transfers (and correspondingly, large momentum transfers)
with an increase of observed λ. The mathematical stability
of the shape of the Molière distribution ensures that this
shape is unaffected by an admixture of harder scattering,
which is why φM appears in Eq. (72). Finally, the fact that
in (72) K depends solely on ratio λ−1

Z is explained by
recalling that λ and Θ are defined so that for the hard
contribution λ=Z ∼ Θ2 [see Eq. (41)], whereas the expo-
nential form of K owes to ln y0 serving as a “time” variable
for Θ-diffusion [cf. Eq. (59)].

B. Θ-dependence of the λ-distribution

Formula (72) may be used, conversely, to determine the
influence of a prescribed value of Θ on the λ-distribution.
In the point λ ¼ 1, as Eqs. (72) and (71) indicate, ratio
FðZ; y0;Θ; 1Þ=φMðy0;ΘÞ ≈ φLð1Þ does not depend on Θ,
Z, or y0 at all. Another virtually fixed point is λ ≈ −3,
being effectively the leftmost edge of the distribution
[see Fig. 4(c)]. In other points, FðZ; y0;Θ; λÞ=φMðy0;ΘÞ
depends, besides λ, on other variables.
As Figs. 3(c) and 4(c), and more clearly Fig. 10

demonstrate, the increase of Θ leads to a nonmonotonic
variation of location of the point λmðΘÞ, in which FðΘ; λÞ
as a function of λ reaches its maximum (Θ-dependent most
probable energy loss), i.e., obeys condition

∂
∂λFðZ; y0;Θ; λÞ

				
λ¼λmðΘÞ

¼ 0:

In the large-Z limit, this equation can be solved by
expanding φL around its maximum [see Eq. (49)]:

2 4 6 8 10 12 14

0.2

0.2

0.4

Z m m

FIG. 10. Θ-dependence of the most probable energy loss [value
of λ at which FðZ; y0;Θ; λÞ reaches its maximum with respect
to λ]. To reduce Z-dependence, the difference λmðΘÞ − λm is
multiplied by Z. Solid curve, for Z ¼ 1; dashed, Z ¼ 3; dotted,
high-Z approximation (75). All the curves are built for y0 ¼ 104.

8E.g., (72) can be represented in terms of the action of a length
dilation operator

φMðy0K;ΘÞ ¼ K
∂∂ ln y0φMðy0;ΘÞ ¼ eΨ

2
λ−1

∂∂ ln lφMðy0;ΘÞ;
with Ψ2

λ−1 ¼ λ−1
Zþ1

.
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φLðλÞ ≃ φLðλmÞ
�
1þ φ00

LðλmÞ
φLðλmÞ

ðλ − λmÞ2
2

�
;

linearizing φM in λ:

φMðy0K;ΘÞ ≃ φMðy0;ΘÞ
�
1þ λ − 1

Z
∂ lnφM

∂ ln y0
�
;

and substituting this to Eq. (72):

FðZ; y0;Θ; λÞ≈ φLðλmÞφMðy0;ΘÞ

×

�
1þ φ00

LðλmÞ
φLðλmÞ

ðλ− λmÞ2
2

þ λ− 1

Z
∂ lnφM

∂ ln y0
�
:

ð74Þ

Differentiating the right-hand side of (74) by λ and equating
to zero, we find

λmðΘÞ ≈ λm þ 1

Z
φLðλmÞ
jφ00

LðλmÞj
∂ lnφMðy0;ΘÞ

∂ ln y0 ; ð75Þ

where φLðλmÞ=jφ00
LðλmÞj ≈ 2.3.

In physical terms, the nonmonotonic behavior of λmðΘÞ
may be interpreted as follows. At low Θ, the contributing
particle trajectories are straighter, wherewith typical partial
momentum and energy transfer values are lower, implying
that so must be the cumulative λmðΘÞ. At moderately large
Θ, in the semihard region [26], there are several relatively
large-angle scatterings, so, the particle trajectory is the
most crooked, wherewith the energy loss is the highest.
Finally, at Θ → ∞, when the trajectory is single-angle-
shaped, λmðΘÞ → λm, because even though the energy loss
in this single wide-angle scattering event is large, in the
straggling distribution it contributes beyond the region of
typical losses.

V. HARD SCATTERING REGION. LARGE Θ, λ

Compared with the mild angle-energy loss correlation in
the central region, described in the previous section, in the
large-Θ and ‐λ region the correlation must become more
pronounced, due to the greater relative contribution of
single hard scattering events, each being intrinsically highly
correlated. But even there, multiple scattering effects do not
disappear completely, because observation of a large-λ
event ascertains only that a single hard scattering on an
atomic electron has occurred, while the number of soft
elastic and inelastic scatterings may be arbitrary, and
generally is large. Hence, even in the hard scattering
region, effects of multiple scattering on the Θ-λ distribution
can be substantial, and need be taken into account.
To be self-consistent, again, we start with the double

integral (30), and formally evaluate it in the corresponding
limit. It should be pointed out that two possible ways of
going to infinity in the Θ-λ plane, increasing one of the

coordinates while holding the other fixed, do not commute.
Indeed, limit Θ → ∞ implies typical y → 0 in the inte-
grand, whereas limit λ → ∞, typical u → 0. But since Ωin
defined by Eq. (34) involves functions depending on the
ratio y=u, the result must depend on the order, in which
limits y → 0 and λ → 0 are taken. The noncommutability
of limits Θ → ∞ and λ → ∞ is also evident from Fig. 3(a),
where at large λ the spur separates two asymptotic voids.
Let us thus consider both limiting sequences by turn.

A. Fixed energy loss, large Θ
A simpler case to start with is Θ → ∞ at λ held fixed.

The corresponding limiting form for F can be read off from
Eqs. (72) and (60):

FðZ; y0;Θ; λÞ ≃
Θ→∞

1

πΘ4
φLðλÞ; ð76aÞ

or

f ≃
θ≫χc

2mZ
πp2θ4

φL½λðZ; l; ϵÞ�: ð76bÞ

One corollary is that with the increase of Θ, the maximum
of F with respect to λ approaches λm for the pure Landau
distribution [λmðΘÞ →Θ→∞ λm, see Fig. 10]. But insofar as
Eq. (72) was derived under condition (73), i.e., at limited λ,
there remains an open question whether asymptotics (76) is
sustained at large λ.
In fact, it proves to hold for any fixed λ. The proof begins

with noting that in integral (30), limit Θ → ∞ at fixed λ
effectively corresponds to y ∼ Θ−2 → 0 at fixed u. The
exponential eΩelþΩin may then be linearized in Ωel ¼
− y

4
ln y0

y and Ωinðy=4Z; uÞ −Ωinð0; uÞ ≃
y=4Zu≪1

y
4Z ð2þ ln uÞ

[cf. Eq. (68)], but not in Ωinð0; uÞ ¼ u ln u:

FðZ; y0;Θ; λÞ ¼
1

2πi

Z
i∞

−i∞
dueλuþu ln u

×
1

4π

Z
ymax

0

dyJ0ð
ffiffiffi
y

p
ΘÞ

×
�
−
y
4
ln
y0
y
þ y
4Z

ð2þ ln uÞ
�
: ð77Þ

Employing here identity

Z
∞

0

dyyJ0ð
ffiffiffi
y

p
ΘÞ ¼ 0 ðΘ > 0Þ ð78Þ

along with relation (60), we are led to asymptotic law (76a)
for any fixed λ. Its actual condition of validity is Θ2 ≫ 1,
and simultaneously Θ−2 ∼ y ≪ Zu ∼ Z=λ, i.e.,
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Θ2 ≫ λ=Z; 1: ð79Þ

Evidently, the present factorization of the distribution
function into Rutherford asymptotics θ−4 times Landau
distribution depending on λ corresponds to the dominance
of events involving one hard scattering on an atomic
nucleus (hard scattering on an atomic electron is excluded
by requiring the energy transfer to be limited), preceded
and followed by statistically independent soft scatterings,
whose energy straggling is described by the Landau
distribution.
Less trivial, however, is that factorization (76) is inequi-

valent to an absence of correlation as expressed by Eq. (65).
The latter would imply

F ≈
Z

Z þ 1
φLðλÞ

χ4c
πθ4

¼ Z þ 1

Z
1

πΘ4
φLðλÞ; ð80Þ

with an extra factor Zþ1
Z including hard scattering on atomic

electrons, already mentioned in Sec. III C. Hence, the
correlation in this region does not vanish, solely because
hard scattering on electrons is excluded by demanding λ to
be limited.

B. Large energy loss

In the limit λ → ∞, typical u in the Fourier integral
(30) tend to zero. That does not allow expanding the
exponential eΩin in powers of u yet, because of essential
nonanalyticity of Ωin at u ¼ 0. But since the difference
Ωinðy=4Z; uÞ − Ωinðy=4Z; 0Þ in this limit is “almost uni-
formly” small (see Fig. 1), the exponential may be
expanded in the latter difference. The nontrivial u-integral
then greatly simplifies by double partial integration over u
with the aid of identity (38):

FðZ; y0;Θ; λÞ

≃
λ→∞

1

4πλ2

Z
ymax

0

dyJ0ð
ffiffiffi
y

p
ΘÞeΩelðy0;yÞþΩinðy=4Z;0Þ

×
1

2πi

Z
i∞

−i∞
dueλu

∂2

∂u2
�
Ωin

�
y
4Z

; u

�
−Ωin

�
y
4Z

; 0

��

¼ 1

4πλ2

Z
ymax

0

dyJ0ð
ffiffiffi
y

p
ΘÞeΩelðy0;yÞþΩinðy=4Z;0Þ

×
1

2πi

Z
i∞

−i∞

du
u
eλu−y=4Zu: ð81Þ

The integral in the last line is recognized to be a zero-order
Bessel function [38]:

1

2πi

Z
i∞

−i∞

du
u
eλu−

y
4Zu ¼ J0ð

ffiffiffiffiffiffiffiffiffiffi
yλ=Z

p
Þ;

Combining logarithms in the exponent Ωelðy0; yÞ þ
Ωinðy=4Z; 0Þ as in Eq. (51), and similarly changing the

integration variable from y to η, we are led to the asymptotic
expression

FðZ; y0;Ψ; λÞ ≃
λ→∞

Z
ðZ þ 1Þλ2 βM

�
4χ2c
χ02at

;Ψ;Ψλ

�
; ð82Þ

with

Ψλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
λ

Z þ 1

r
ð83Þ

and

βMðη0;Ψ;ΨλÞ

¼ 1

4π

Z
ηmax

0

dηJ0ð
ffiffiffi
η

p
ΨÞJ0ð

ffiffiffi
η

p
ΨλÞe−

η
4
ln

η0
η ð84aÞ

¼ 1

2π

Z
dϕcΨΨλ

φMðη0; jΨ −ΨλjÞ ð84bÞ

¼2

π

Z
ΨþΨλ

jΨ−Ψλj

dΨ0Ψ0φMðη0;Ψ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðΨþΨλÞ2−Ψ02�½Ψ02−ðΨ−ΨλÞ2�

p : ð84cÞ

Function (84), symmetrically depending on its arguments
Ψ and Ψλ, is normalized by

2π

Z
∞

0

dΨΨβMðη0;Ψ;ΨλÞ

¼ 2π

Z
∞

0

dΨλΨλβMðη0;Ψ;ΨλÞ ¼ 1: ð85Þ

It is also encountered in other multiple Coulomb scattering
problems [18,39].
Distribution (82), (84b) describes the probability of a

two-stage process: a single hard scattering on an atomic
electron through an angle Ψλ, whose modulus corresponds
to the energy loss λ, and an accompanying multiple elastic
and inelastic scattering from Ψλ to any angle Ψ with the
prescribed modulus Ψ. Factor λ−2 in (82) is nothing but the
high-λ asymptotics ofφLðλÞ [cf. Eq. (47)]. Compared to (72),
however, the dependence on λ in the factorized structure (82)
at large λ enters not to the thickness parameter y0, but to the
angular variable Ψλ on a par with Ψ. The accuracy of this
approximation is illustrated in Figs. 3(b) and 3(c), by dot-
dashed curves, showing that it works well for λ≳ 20.
We are primarily interested in the behavior of βM at large

Ψλ. There, it admits further simplifications. In particular, if
jΨ −Ψλj is substantially smaller than Ψλ (not too far from
the midline of the spur), one can neglect in the denominator
of (84c) Ψ02 compared with ðΨþ ΨλÞ2, but not compared
with ðΨ −ΨλÞ2. That leads to an approximation

βMðη0;Ψ;ΨλÞ ≃
1

πðΨþ ΨλÞ
φMxðη0;Ψ −ΨλÞ; ð86Þ
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where

φMxðη0;ΨxÞ ¼
1

π

Z ffiffiffiffiffiffi
ηmax

p

0

dx cos ðΨxxÞe−
x2
4
ln

η0
x2 ð87Þ

is the projection of the Molière distribution onto one of
the two Cartesian components of transverse vector Ψ [26]
[the averaging over a circle jΨj ¼ Ψ in Eq. (84b) is replaced
by integration over the line tangential to it in a point Ψ ¼
ΨλðΨ ·ΨλÞ=Ψ2

λ nearest to Ψλ]. This approximation is
confronted with the more accurate result (82), (84a) in
Fig. 11. Its accuracy is good near the top of the distribution,
but degrades away from it, where ðΨ −ΨλÞ2 is no longer
small compared with ðΨþ ΨλÞ2.
If Ψλ and Ψ are about equally large but not close, the

argument of φM in the integrand of (84b) or (84c) is
everywhere large, as well. Then, pure Rutherford asymp-
totics (60) applies on the entire integration interval, and the
integral is simple to evaluate:

βMðy0;Ψ;ΨλÞ ≃
Ψ;Ψλ;jΨ−Ψλj≫1

Ψ2 þ Ψ2
λ

πjΨ2 − Ψ2
λ j3

: ð88Þ

One infers from here that if Ψ is held fixed andΨλ is sent to
infinity, function βM decreases as βM ∼

Ψλ→∞
Ψ−4

λ ∼ λ−2,

which, according to Eq. (82), corresponds to the large-λ
asymptotic behavior for F:

F ∼
λ→∞

λ−4: ð89Þ

Besides that, Eq. (88) predicts a Rutherford-like asymp-
totics at Ψ → ∞. But insertion of (88) to Eq. (82) specifi-
cally yields

F ≃
Ψ→∞

Z
ðZ þ 1Þπλ2Ψ4

¼ Z þ 1

Zπλ2Θ4
; ð90Þ

which due to the Zþ1
Z factor matches with (80), correspond-

ing to the absence of correlation, and somewhat differing
from the correct asymptotics (76). Hence, at sufficiently
large Ψ approximation (82) breaks down. That is also
confirmed by Fig. 3(b).

VI. CONDITIONAL MEAN VALUES

In the previous section, studying the correlation in the
2-variable distribution function, we had seen that the
correlation between Θ and λ strengthens at large values
of those variables. But the quadratic falloff of the proba-
bility density with λ can hamper experimental observation
of correlation effects in this region. In view of that,
advantageous may be experimental setups directly meas-
uring net characteristics of the distribution, such as
conditional mean values and widths. The corresponding
momentum or energy weighting factors enhance the
relative contribution of the hard component. In what
follows, we will investigate manifestations of the correla-
tion directly for such net quantities.

A. Energy loss dependence of angular dispersion

The shape of the angular distribution at fixed λ, at least
when λ is moderate, is symmetric and bell-like, so, the
measure of its width could be the mean square deflection
angle. But Rutherford asymptotics of the distribution at
large Θ leads to a logarithmic divergence of hΘ2i for any λ.
As a finite counterpart of hΘ2i, one can merely take the
inverse of the distribution function in the origin. According
to Eq. (61),

φLðλÞ
πFðZ; y0; 0; λÞ

≈
1

πφMðy0K; 0Þ ; ð91Þ

i.e., all the λ, Z and y0 dependencies reduce to a dependence
on a single variable y0KðZ; λÞ. This scaling holds only if
ln y0 is large enough, so that condition (73) can be met in
spite that λ=Z ≳ 1. From Fig. 12 it is evident that at
y0 ¼ 103 (ln y0 ≈ 7) and low Z the scaling is somewhat
violated. When the scaling does hold, one can furthermore
employ in (91) the leading logarithmic approximation (61)
to get

φLðλÞ
πFðZ; y0; 0; λÞ

≈ ln y0K ¼ ln y0 þ
λ − 1

Z
: ð92Þ

Approximation (92), slowly improving with the increase of
y0, rises linearly with λ, provided the λ-dependent con-
tribution is relatively small, satisfying condition (73). This
linear law may be thought of as a sum of soft (ln y0) and
hard (λ−1Z ) contributions. Curiously, as Fig. 12 indicates, the
linearity is sustained even when the scaling is violated
(dashed and dot-dashed curves), but the slope of the λ
dependence then becomes dependent on y0. It is also clear
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FIG. 11. Multiple Coulomb rescattering probability distribution
(84a) in the spur region, for η0 ¼ 104, Ψλ ¼ 10 [λ ¼
100ðZ þ 1Þ]. Dashed curve, large-Ψλ approximation (86), (87).
Dotted, double hard scattering approximation (88).
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that at sufficiently large λ the distribution shape becomes
non-Gaussian, and (91) can no longer serve as a measure of
the mean squared deflection angle.

B. Angular dependence of the mean energy loss

In what concerns the energy straggling distribution,
which is highly asymmetric, its simplest characteristic is
the mean energy loss. Historically, magnetospectrometric
measurements of this quantity at fixed angles for non-
relativistic incident ions were the first to give experimental
evidence for an angle-energy loss correlation. Magnetic
spectrometry is applicable for relativistic electrons, too
[40]. Alternatively, one may consider using a sufficiently
large solid-state detector, registering events up to very high
λ, summation over which can give the mean ionization
energy loss at a fixed deflection angle.
Since energy loss is linearly related to the reduced

variable λ [see Eq. (28)], their mean values are related
linearly, as well:

ϵ̄ðθÞ ¼
R
∞
0 dϵϵfðθ; ϵÞR∞
0 dϵfðθ; ϵÞ ¼ p2Zχ̄2c

2m
½λ0 þ λ̄ðΘÞ�; ð93Þ

where λ0 is defined by Eq. (29), and

λ̄ðΘÞ ¼
R
∞
−∞ dλλFðZ; y0;Θ; λÞR
∞
−∞ dλFðZ; y0;Θ; λÞ

: ð94Þ

As in previous sections, the lower limit of both λ integrals
was extended from −λ0 to −∞ by virtue of the rapid
convergence. At the upper limit, the convergence of the
integrals is ensured by asymptotics (89). This is in contrast
with

R
∞ dλλφLðλÞ, which diverges logarithmically because

φL has a slower asymptotics (47) (at extremely large λ,
Landau distribution itself is invalid, and the physical,

Bethe-Bloch mean energy loss, of course, is finite).
Although λ-dependence of F is similar to that of φLðλÞ
at moderate λ, beyond location of the spur that similarity is
violated, and the decrease steepens.
Our task now is to evaluate ratio (94) by substituting

there the integral representation (30) for F. With the use of
identity (35) and its derivative

Z
∞

−∞
dλλ

1

2πi

Z
i∞

−i∞
dueλuþΩinðY;uÞ ¼ −

∂
∂u e

ΩinðY;uÞ
				
u¼0

;

we recast (94) as

λ̄ðΘÞ ¼ −
�Z

ymax

0

dyJ0ð
ffiffiffi
y

p
ΘÞe− y

4
ln

y0
y

�
−1

×
Z

ymax

0

dyJ0ð
ffiffiffi
y

p
ΘÞeΩelðy0;yÞþΩinðy=4Z;0Þ

×
∂
∂uΩinðy=4Z; uÞ

				
u¼0

: ð95Þ

Substituting ∂
∂uΩinðY; uÞju¼0 ¼ lnY þ 1þ γE, and passing

to integration variable η [Eq. (52)], we transform (95) to

λ̄ðZ; η0;ΨÞ ¼
R ηmax
0 dηJ0ð ffiffiffi

η
p ΨÞe− η

4
ln

η0
η ln 1

ηR ηmax
0 dηJ0ð ffiffiffi

η
p ΨÞe− η

4
ln

η0
η

þ ln 4ðZ þ 1Þ − 1 − γE; ð96aÞ

where Ψ and η0 are given by Eqs. (54) and (55). The
integral in the denominator is recognized to equal
4πφMðη0;ΨÞ. Representation (93), (96a) can as well be
derived directly from the generic solution (5), (6) of the
transport equation (see Appendix B).
In fact, the numerator of (96a), too, can be

expressed through φM. To this end, it is expedient first
to integrate in the numerator by parts and isolate there all
the terms proportional to φM, which cancels with φM in the
denominator:

λ̄ðZ; η0;ΨÞ ¼ −

R ηmax
0 dηJ0ð ffiffiffi

η
p ΨÞ ∂

∂η e
− η

4
ln

η0
η

πφMðη0;ΨÞ
− ln

η0
4ðZ þ 1Þ − γE; ð96bÞ

where

ln
η0

4ðZ þ 1Þ þ γE ¼ Z þ 1

Z

�
ln
Zχ̄2c
χ02at

þ γE

�
:

That eliminates in the integrand the factor ln 1
η, which is

absent in integral (57) defining φM. Now, once again
integrating in (96b) by parts, employing identity

2 4 6 8 10 12
ln y0

1

Z

2
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L

F Z, y0, 0,

FIG. 12. Inverse of the angular distribution function at zero
deflection angle, serving as a counterpart of the mean square
deflection angle. Dot-dashed curve, y0 ¼ 103, Z ¼ 1. Dashed
curve, y0 ¼ 103, Z ¼ 3. Solid, y0 ¼ 106, Z ¼ 1. This curve also
merges with the generic y0K-scaling approximation. Dotted line,
leading logarithmic approximation (92).
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∂
∂η J0ð

ffiffiffi
η

p
ΨÞ ¼ −

1

2

Z
Ψ

0

dΨ0Ψ0J0ð
ffiffiffi
η

p
Ψ0Þ

[an integral form of the Bessel equation d
dξ ξ

d
dξ J0ðξÞ ¼

−ξJ0ðξÞ, J00ð0Þ ¼ 0], and interchanging the order of η- and
Ψ-integrations, one expresses the angular dependence of
the mean energy loss through the Molière function φM
alone:

λ̄ðZ; η0;ΨÞ ¼
2
R∞
Ψ dΨ0Ψ0φMðη0;Ψ0Þ

φMðη0;ΨÞ
− ln

η0
4ðZ þ 1Þ − γE:

ð96cÞ

In contrast to representation (B1), it is explicitly indepen-
dent of the underlying single-scattering differential cross
section, except the dependence on χ0at entering η0. It
appears also that for a given η0, the Ψ-dependent part of
λ̄ is independent of Z. That property may obviate the need
to use in experiments only lowest-Z target materials.
To explicate the Ψ dependence of λ̄ðZ; η0;ΨÞ, it is

appealing to employ approximations for φM obtained in
Sec. III B. However, the leading logarithmic approximation
(61) is not suitable for that purpose, insofar as the ratio
represented by the first term in Eq. (96c) then equals ln η0,
being Ψ-independent and exactly canceling the similar η0-
dependence in the second term. Therewith

λ̄ðZ; η0;ΨÞ ≈ ln 4ðZ þ 1Þ − γE:

depends only on Z due to the existence of the effective
Z-dependent cutoff at the spur. One thus needs more
accurate approximations for φM. It is clear also that at
small and at large Ψ the approximations should differ. Let
us begin with the small Ψ region.

1. Small Ψ
The minimal value of the monotonously rising function

λ̄ðZ; η0;ΨÞ, achieved at Ψ ¼ 0, is

λ̄ðZ; η0; 0Þ ¼
1

πφMðη0; 0Þ
− ln

η0
4ðZ þ 1Þ − γE: ð97Þ

This value is positive (see Fig. 14), and thus exceeds the
most probable energy loss [cf. Eq. (48)]. That is natural in
view of the high skewness of the λ-distribution. Employing
in (97) approximation (63), we get

λ̄ðZ; η0; 0Þ ≃
ln η0≫1

ln ½ðZ þ 1Þ ln η0� − 1; ð98Þ

implying a very slow thickness dependence.
The OðΨ2Þ correction to (97) has the form

λ̄ðZ; η0;ΨÞ ≃
Ψ→0

λ̄ðZ; η0; 0Þ þ Λ2ðη0ÞΨ2; ð99Þ

with the coefficient at the quadratic term

Λ2ðη0Þ ¼
∂λ̄
∂Ψ2

				
Ψ¼0

¼ ∂
∂ ln η0 λ̄ðZ; η0; 0Þ

¼ ∂
∂ ln η0

1

πφMðη0; 0Þ
− 1; ð100Þ

where in derivation of the second equality we used
Eq. (96a), with ∂J0ð ffiffiffi

η
p ΨÞ=∂Ψ2jΨ¼0 ¼ −η=4, while in

the third equality, Eq. (96c). In the leading logarithmic
approximation for φM [see Eq. (61)], the difference in the
right-hand side of (100) would equal zero, similarly to the
conclusion reached in [41] for ions. But employing a more
accurate Eq. (63), we find

Λ2 ≃
ln η0≫1

1

ln η0
: ð101Þ
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FIG. 14. Target thickness dependence of the mean energy loss
in the forward direction. Solid curve, exact result [Eq. (97)].
Dashed, approximation (98).
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FIG. 13. Solid curve, dependence of the mean energy loss
defined by Eq. (96a) on the scattering angle, at η0 ¼ 104.
Dot-dashed curve, approximation (99). Dashed curve,
approximation (103).
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Given its slow decrease rate, it remains sizable even at very
large target thicknesses. The accuracy of approximation
(101) is illustrated by Fig. 15.

2. Large Ψ
An approximate quadratic Ψ-dependence of λ̄ðZ; η0;ΨÞ

is also found in the hard region, but with a larger
coefficient. Employing the known expansion [26]

πφMðη0;ΨÞ ≃
Ψ→∞

1

Ψ4
þ 4

Ψ6

�
ln
η0Ψ2

4
þ 2γE − 3

�
ð102Þ

(including a correction to the Rutherford asymptotics of φM

at high Ψ, with η0Ψ2=4 ¼ θ2=χ02at), integrating it as

2π

Z
∞

Ψ
dΨ0Ψ0φMðη0;Ψ0Þ

≃
Ψ→∞

1

Ψ2
þ 4

Ψ4

�
1

2
ln
η0Ψ2

4
þ γE −

5

4

�
;

and inserting to representation (96c), we get

λ̄ðZ; η0;ΨÞ ≃
Ψ→∞

Ψ2
1þ 4

Ψ2 ð12 ln η0Ψ2

4
þ γE − 5

4
Þ

1þ 4
Ψ2 ðln η0Ψ2

4
þ 2γE − 3Þ

− ln
η0

4ðZ þ 1Þ − γE

≃
Ψ→∞

Ψ2 − 4 ln
Ψ
2
− ln

η30
4ðZ þ 1Þ − 5γE þ 7 :

ð103Þ

This asymptote is plotted in Fig. 13 by the dashed curve.
The coefficient at the quadratic term in (103) is about an

order of magnitude greater than in (99). Also, it does not
depend on η0 (target thickness). That is natural, since

physically it corresponds to a single hard scattering on an
atomic electron. But compared with relationship (83)
between energy transfer and deflection angle in a hard
scattering event, in (103) there is no factor Z þ 1. That is
explained by noting that in contrast to λ in Eq. (83), λ̄ in
Eq. (103) is the mean energy loss. Scattering on an electron
through a large angle Ψ does give a contribution to λ equal
ðZ þ 1ÞΨ2, but the probability of scattering through a large
angle on an electron, and not on a nucleus (which does not
change λ), is ðZ þ 1Þ−1. As a result, those Z-dependent
factors cancel.
More intricate is the correction term in (103), logarithmi-

cally depending on Ψ. Structurally, it corresponds to a
double hard scattering [26]—on an electron and on an
atomic nucleus, but enters with a negative coefficient. That
can be explained as follows. In an event containing one hard
inelastic scattering act, there is a contribution to the
aggregate deflection angle from elastic scattering, which
adds incoherently to the deflection angle squared.
Correspondingly, the scattering angle squared acquired only
in the hard collision with an atomic electron is smaller than
that observed, implying a negative correction to Ψ2 in (103).

VII. SUMMARY

The unification of Molière and Landau theories pre-
sented herein reveals a pronounced correlation between the
deflection angle and ionization energy loss for fast elec-
trons or positrons traversing amorphous matter. The corre-
lation arises at the single-scattering level, and is not quickly
ruined by multiple Coulomb scattering, due to the anoma-
lous character of the latter. The target thickness dependence
of the correlation effect is mild. As for its Z-dependence,
the angular distribution in the central region (moderate Θ
and λ) predominantly depends on the ratio of the straggling
variable λ to Z (see Fig. 12). Therefore, even for high-Z
target materials, in principle, there are manifestations of the
correlation at proportionally high λ, but they are obscured
by a falloff of the event rate with the increase of λ. At high
Z, an observable sensitive to the correlation is the mean
energy loss as a function of the deflection angle, whose
variable part, representing the correlation effect, is inde-
pendent of Z at all (see Sec. VI B). The range of
applicability of the present theory is basically an inter-
section of ranges of applicability of Molière and Landau
theories, being rather broad.
It may be worth recapitulating that the hard incoherent

scattering mechanism responsible for the angle-energy loss
correlation for fast electrons differs from those at work for
slow ions, quoted in the Introduction. Whereas interaction
of a nonrelativistic ion with an atom is intrinsically semi-
classical, when each impact parameter corresponds to a
well-defined scattering angle, as well as energy loss, for
relativistic electrons the angle and the energy loss are
distributed statistically. Nonetheless, their mutual correla-
tion is not small, because it is dominated by hard electron-

100 1000 104 105 106
0

0.1

0.2

0.3

0.4

0.5
2

FIG. 15. Target thickness dependence of the coefficient at the
quadratic term in the λ̄ dependence on Ψ at small Ψ. Solid curve,
exact result [Eqs. (99), (100)]. Dashed, approximation (101).
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electron scattering, in which the deflection angle and
energy transfer are interrelated kinematically, irrespective
of the impact parameter relative to the atomic nucleus.
Precisely this contribution survives under multiple scatter-
ing conditions.
At the same time, the hard incoherent scattering corre-

lation shares some properties with other correlation mech-
anisms. Viz., in the central (moderate scattering angle and
energy loss) region, the angular distribution broadens with
the increase of the energy loss, as if the effective path length
of the electron in the target depended on the energy loss
(see Sec. IV). That should be distinguished from the
genuine extension of the particle path length due to the
trajectory curvature (“detour”), which is negligible at
high energy. There is also a similarity with the impact-
parameter-mediated correlation, with the proviso that the
role of the impact parameter is played by the Fourier-
reciprocal of the scattering angle on the probability level
(see Sec. II).
The mentioned similarities pertain to the central domain,

but the most prominent feature in the correlated distribution
function is a spur extending in the large deflection angle
and energy loss region. It corresponds to a quasifree ee
scattering. In contrast to the pure kinematical delta function
(10), however, it is significantly smeared by multiple
scattering effects (see Sec. V).
Experimental verification of the predicted correlation

should be feasible with silicon (lowest-Z semiconductor)
targets, by observing ∼Z−1 ≈ 10% differences between
angular distributions measured at different values of the
ionization energy loss [see Figs. 6 and 9(b)]. Stronger
correlation effects [∼Z−1 ≈ 20%, see Figs. 5 and 9(b)] may
become measurable in future with the advent of organic
semiconductors [42].
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APPENDIX A: EVALUATION OF INTEGRAL (22)

Integral (22) can be evaluated with the demanded NLLA
accuracy, e.g., by decomposing the Bessel function into
power series, J0ðbχÞ ¼

P∞
n¼0ðn!Þ−2ð−b2χ2=4Þn, and inte-

grating termwise:Z
∞

χ1

dχ
χ3

½1 − J0ðbχÞe−sχ2 �

¼ 1

2χ21
−
X∞
n¼0

1

ðn!Þ2
�
−
b2

4

�
n Z ∞

χ1

dχχ−3þ2ne−sχ
2

: ðA1Þ

In the obtained series, terms with n ≥ 2 have integrands
nonsingular at χ → 0, and allow to substitute there χ1 ¼ 0

within the present accuracy. Terms with n ¼ 0 and n ¼ 1
have singular integrands, but they can be evaluated exactly:Z

∞

χ1

dχ
χ3

½1 − J0ðbχÞe−sχ2 �

¼ 1

2χ21
−
Z

∞

χ1

dχ
χ3

e−sχ
2 þ b2

4

Z
∞

χ1

dχ
χ
e−sχ

2

−
X∞
n¼2

1

ðn!Þ2
�
−
b2

4

�
n Z ∞

0

dχχ−3þ2ne−sχ
2

≡ 1

2χ21
ð1 − e−sχ

2
1Þ þ 1

2

�
sþ b2

4

�
E1ðsχ21Þ

−
s
2

X∞
n¼2

1

ðn − 1Þnn!
�
−
b2

4s

�
n

; ðA2Þ

where E1ðzÞ ¼
R
∞
z

dξ
ξ e

−ξ is the exponential integral func-

tion [38]. At small sχ21, the terms in the first line may be
approximated by

1

2χ21
ð1 − e−sχ

2
1Þ ≃

sχ2
1
≪1

s
2
; ðA3Þ

E1ðsχ21Þ ≃
sχ2

1
≪1

ln
1

sχ21
− γE: ðA4Þ

The series in the last line of (A2), after decomposing the
entering fraction into simpler ones as

1

ðn − 1Þnn! ¼
1

ðn − 1Þðn − 1Þ! −
1

nn!
−

1

n!
;

evaluates in a closed form:

X∞
n¼2

ð−zÞn
ðn−1Þnn!¼1−e−z−2zþð1þzÞEinðzÞ≥0; ðA5Þ

with the complementary exponential integral function [38]

EinðzÞ ¼ −
X∞
n¼1

ð−zÞn
nn!

¼
Z

z

0

1 − e−ξ

ξ
dξ

¼ γE þ ln zþ E1ðzÞ: ðA6Þ

Inserting (A3)–(A5) in Eq. (A2), we are led to Eq. (24).
In limit s → 0, (24) correctly goes over to (23), whereas

in limit b → 0, to the readily checkable expression

Z
∞

χ1

dχ
χ3

ð1 − e−sχ
2Þ ¼ s lim

b→0

�
ln

2

bχ1
−
1

2
E1

�
b2

4s

�
þ 1

2
− γE

�

¼ s
2

�
ln

1

sχ21
þ 1 − γE

�
: ðA7Þ
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APPENDIX B: CORRESPONDENCE
OF EQ. (96) WITH [18]

In application to angular dependence of the mean energy
loss, it is instructive to compare our expressions (93), (96)
for this quantity with representation

ϵ̄ðl; θÞ ¼ nal
fðl; θÞ

ZZ
dσinðχ;ΔϵÞΔϵfðl; jθ − χ jÞ ðB1Þ

derived in [18]. Equation (B1) explicitly involves the
inelastic single-scattering differential cross section, but
under the conditions of multiple scattering, usually, little
depends on its detail.
To prove that this is the case here, as well, we return to

the generic solution (5), (6) of the transport equation in
terms of single-scattering cross sections, and insert it to the
definition (93) of the mean energy loss at a fixed θ:

ϵ̄ðl; θÞ ¼
R∞
0 dϵϵfðl; θ; ϵÞ

fðl; θÞ

¼ p2

2m
l

2πfðl; θÞ
Z

∞

0

dbbJ0ðbθÞe−lκðb;0Þ
∂κ
∂s

				
s¼0

¼ nal
2πfðl; θÞ

Z
∞

0

dbbJ0ðbθÞe−lκðb;0Þ

×
ZZ

dσinðχ;ΔϵÞΔϵJ0ðbχÞ: ðB2Þ

In the second equality we used identity ϵe2mp−2sϵ ¼
p2

2m
∂
∂s e2mp−2sϵ, integrated over s by parts, and then per-

formed ϵ and s integrations.
If we interchange in (B2) the order of integrations,

ϵ̄ðl; θÞ ¼ nal
fðl; θÞ

ZZ
dσinðχ;ΔϵÞΔϵ

×
Z

d2b
ð2πÞ2 e

ib·ðθ−χ Þ−lκðb;0Þ; ðB3Þ

it is brought to form (B1).
If instead we adopt the multiple scattering approxima-

tion, similar to that of Sec. II, integral (B2) breaks in two:

nal
ZZ

dσinðχ;ΔϵÞΔϵJ0ðbχÞ

¼ nal
Z Z

χ<χ1

dσinðχ;ΔϵÞΔϵþ
p2

2m
2Zχ̄2c

Z
∞

χ1

dχ
χ
J0ðbχÞ;

ðB4Þ

where in the first term in the right-hand side we have let
J0ðbχÞ → J0ð0Þ ¼ 1, while in the second one, employed
Rutherford asymptotics (10). Utilizing now Eq. (17) along
with identity

Z
∞

χ1

dχ
χ
J0ðbχÞ ≃

bχ1→∞
ln

2

bχ1
− γE;

the delimiting parameter χ1 cancels out, and we are left
with

nal
ZZ

dσinðχ;ΔϵÞΔϵJ0ðbχÞ

¼ Z
m
p2χ̄2c

�
ln
2pγ
bIδ

−
v2

2c2
− γE

�
: ðB5Þ

Insertion thereof to Eq. (B2),

ϵ̄ðl; θÞ ¼ p2Zχ̄2c
2mfðl; θÞ

1

2π

Z
∞

0

dbbJ0ðbθÞe−lκðb;0Þ

×

�
2 ln

2pγ
bIδ

−
v2

c2
− 2γE

�
; ðB6Þ

leads back to Eqs. (93) and (96a). According to (96c), this
is expressible completely through φM, without the need to
know the differential inelastic cross section dσin.
Therefore, in the multiple scattering regime the only

parameter of (B6) sensitive to the inelastic single-scattering
cross section is Iδ. Furthermore, in the ultrarelativistic limit,
due to the density effect, it expresses through the mean
electron density, which is determined by Z. Correlation
effects for ϵ̄ðl; θÞ discussed herein do not involve Iδ at all,
and thus are insensitive to detail of dσin, except Z.
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