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Light-front wave functions motivated by holographic constructions are used to study Bloom-Gilman
duality, a feature of deep inelastic scattering. Separate expressions for structure functions in terms of quark
and hadronic degrees of freedom (involving transition form factors) are presented, with an ultimate goal of
obtaining a relationship between the two expressions. A specific two-parton model is defined and
resonance transition form factors are computed using previously derived light-front wave functions. A new
form of global duality (integral over all values of x between 0 and 1) is derived from the valence quark-
number sum rule. Using a complete set of hadronic states is necessary for this new global duality to be
achieved, and the previous original work does not provide such a set. This feature is remedied by amending
the model to include a longitudinal confining potential, and the resulting complete set is sufficient to carry
out the study of Bloom-Gilman duality. Specific expressions for transition form factors are obtained and all
are shown to fall as 1=Q2, at asymptotically large values. This is because the Feynman mechanism
dominates the asymptotic behavior of the model. These transition form factors are used to assess the
validity of the global and local duality sum rules, with the result that both are not satisfied within the given
model. Evaluations of the hadronic expression for qðx;Q2Þ provide more details about this lack. This result
is not a failure of the current model because it shows that the observed validity of both global and local
forms of duality for deep inelastic scattering must be related to a feature of QCD that is deeper than
completeness. Our simple present model suggests a prediction that Bloom-Gilman duality would not be
observed if deep inelastic scattering experiments were to be made on the pion. The underlying origin of the
duality phenomenon in deep inelastic scattering is deeply buried within the confinement aspects of QCD,
and its origin remains a mystery.
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I. INTRODUCTION

Two distinct facets of QCD are known. At asymptoti-
cally high energies and momentum transfers Q2 many
hadronic observables can be computed using quarks and
gluons as degrees of freedom and applying perturbation
theory. At low-momentum scales the theory is strongly
coupled so that hadronic degrees of freedom and non-
perturbative methods must be used. It has therefore been
very surprising that examples in which the behavior of low-
Q2 cross sections can be related through suitable averaging
procedures to those at high Q2 actually exist. This
phenomenon became known as quark-hadron duality.
See the review [1].

Here we focus on deep-inelastic scattering from hadrons.
Bloom and Gilman [2,3] studied data from the early deep
inelastic (DIS) structure experiments at SLAC. They found
that the inclusive structure function measured at low values
of the hadronic final state mass, W, generally follows a
curve that describes data at large values ofW. In particular,
average values of the lowW cross sections were found to be
approximately equal to that of the high W cross section,
which approximately obeys Bjorken scaling. Moreover,
averages of low Q2 data over specific kinematic regions
were found to be equal to the high W cross section.
Bloom-Gilman duality was later examined in terms of an

operator product expansion of moments of structure func-
tions [4,5]. This work found a systematic classification of
terms responsible for duality, but did not describe how the
physics of resonances transforms into the physics of
scaling. The subject of Bloom-Gilman duality was largely
ignored for about 20 years.
The availability of high-luminosity beams of electrons at

Jefferson Laboratory allowed the subject to be studied in
great detail. A striking finding was that Bloom-Gilman
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duality appears to work at values of Q2 as low as about
1 GeV2 or less [6–8].
Finding an elementary understanding of the origins of

Bloom-Gilman duality has been elusive because it involves
trying to build up structure function that is independent of
Q2 (except for the logarithmic corrections of QCD) entirely
out of resonances, each of which is described by a form
factor that falls rapidly with Q2.
The description of Bjorken scaling in DIS structure

functions is most simply formulated in terms of the quark-
parton model, which is well understood in terms of a twist
expansion, but the physical final state is composed of
hadrons. The validity of both approaches indicates that
describing DIS in terms of hadronic degrees of freedom
should be possible. One of the central mysteries of strong-
interaction physics is how scattering from confined bound
states of quarks and gluons can be consistent with Bjorken
scaling, a property associated with free quarks.
Previous approaches to understanding the origins of

Bloom-Gilman duality, reviewed in [1], include QCD in
1þ 1 dimensions [9], phenomenological approaches
[10,11], harmonic oscillator models [12–15], and other
models [16–18]. Nonrelativistic potential models can
describe or represent confining systems with an infinite
number of bound states, thereby indicating how it is that
Bloom-Gilman scaling may arise, but are not properly
relativistic. This means that none obtain Lorentz invariant
quark distributions that have the correct support properties
of being nonzero only in the region where Bjorken x varies
between 0 and 1. Understanding Bloom-Gilman duality
requires models that are both confining and relativistic.
We aim to understand Bloom-Gilman duality by using

relativistic light-front wave functions obtained from light-
front holographic QCD, an approach defined in the review
[19] that provides a relativistic treatment of confined
systems. We briefly summarize following Ref. [19].
Light-front quantization is a relativistic, frame independent
approach to describing the constituent structure of hadrons.
The simple structure of the light-front (LF) vacuum allows
an unambiguous definition of the partonic content of a
hadron in QCD and of hadronic light-front wave functions,
the underlying link between large distance hadronic states
and the constituent degrees of freedom at short distances.
The QCD light-front Hamiltonian HLF is constructed from
the QCD Lagrangian using the standard methods of
quantum field theory [20]. The spectrum and light-front
wave functions of relativistic bound states are obtained
from the eigenvalue equationHLFjψi ¼ M2jψi. It becomes
an infinite set of coupled integral equations for the LF
components in a complete basis of noninteracting n-particle
states, with an infinite number of components. This
provides a quantum-mechanical probabilistic interpretation
of the structure of hadronic states in terms of their
constituents at the same light-front time xþ ¼ x0 þ x3,
the time marked by the front of a light wave [21]. The

Hamiltonian eigenvalue equation in the light front is frame
independent. The matrix diagonalization [20] of the LF
Hamiltonian eigenvalue equation in four-dimensional
spacetime has not yet been achieved because of various
technical difficulties and because of a lack of understanding
of the fundamental mechanism of confinement. Therefore
other methods and approximations are needed to truly
understand the nature of relativistic bound states in the
strong-coupling regime of QCD.
To a first semiclassical approximation, where quantum

loops and quark masses are not included, the relativistic
bound-state equation for light hadrons can be reduced to an
effective LF Schrödinger equation. The technique is to
identify the invariant mass of the constituents as a key
dynamical variable. The invariant mass measures the off-
shellness in the LF kinetic energy, so that it is the natural
variable to characterize the hadronic wave function. In
conjugate position space, the relevant dynamical variable
is an invariant impact kinematical variable ζ, whichmeasures
the separation of the partons within the hadron at equal light-
front time [22]. Thus, the multiparton problem in QCD is
reduced, in a first semiclassical approximation, to an effec-
tive one-dimensional quantum field theory by properly
identifying the key dynamical variable. As a result, complex-
ities of the strong interaction dynamics are hidden in an
effective potential UðζÞ, but the central question—how to
derive the confining potential from QCD—remains open.
It is remarkable that in the semiclassical approximation

described above, the light-front Hamiltonian has a structure
which matches exactly the eigenvalue equations in anti–de
Sitter (AdS) space [19]. This offers the possibility to
explicitly connect the AdS wave function ΦðzÞ to the
internal constituent structure of hadrons. In fact, one can
obtain the AdS wave equations by starting from the
semiclassical approximation to light-front QCD in physical
spacetime. This connection yields a relation between the
coordinate z of AdS space with the impact LF variable ζ
[22], thus giving the holographic variable z a precise
definition and intuitive meaning in light-front QCD.
Light-front holographic methods were originally intro-

duced [23,24] by matching the electromagnetic current
matrix elements in AdS space [25] with the corresponding
expression derived from light-front quantization in physical
spacetime [26,27]. It was also shown that one obtains
identical holographic mapping using the matrix elements of
the energy-momentum tensor [28] by perturbing the AdS
metric around its static solution [29], thus establishing a
precise relation between wave functions in AdS space and
the light-front wave functions describing the internal
structure of hadrons.
The light-front wave functions that arise out of this light-

front holographic approach provide a new way to study old
problems that require the use of relativistic-confining quark
models. The study of Bloom-Gilman duality is an excellent
example of such a problem.
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The present treatment is outlined next. Section II is
concerned with general definitions related to DIS for spin-
less targets. Separate expressions for structure functions
using both quark and hadronic degrees of freedom are
presented, with the fundamental aim of the paper to relate
the two. The global and local forms of Bloom-Gilman
duality are reviewed briefly in Sec. III. Section IV is
concerned with presenting the main features of light-front
wave functions for two-parton systems that are obtained
from the z − ζ connection. The valence quark number sum
rule is discussed as a new global duality in Sec. V. This
relation is satisfied in models that provide a complete set of
wave functions. The existing light-front wave functions,
summarized in Ref. [19], are found to be incomplete in
Sec. VI. This is because excitations in the longitudinal
degree of freedom are not incorporated. Completeness is
implemented by including a longitudinal confining poten-
tial in Sec. VII. Evaluations of transition form factors are
presented in Sec. VIII. The two-parton model is shown to
violate both the global and the local forms of Bloom-
Gilman duality in Secs. IX and X. The model’s quark
distributions are evaluated in Sec. XI. The results are
summarized and discussed in Sec. XII.

II. DEEP INELASTIC SCATTERING FROM SPIN
ZERO TARGET-GENERAL PRELIMINARIES

The hadronic tensor for a spin-less or spin-averaged
target is given by

Wμν ¼
�
pμ −

p · qqμ

q2

��
pν −

p · qqν

q2

�
W2

M2

þ
�
gμν −

qμqν

q2

�
W1; ð1Þ

with p as the target four-momentum (p2 ¼ M2) and q that
of the virtual photon. The quantity Wμν is the matrix
element of a current-current correlation function:

Wμν ¼ 1

4π

Z
d4ξeiq·ξhpjjμðξÞjνð0Þjpi; ð2Þ

with normalization hp0jpi ¼ 2pþδðpþ − p0þÞð2πÞ3 ×
δðp − p0Þ. At large values of Q2, the correlation is along
the light cone. For spacelike four momenta qμ one may
choose the z axis such that qþ ¼ 0, for spacelike values of
qμ. This enables the use of the Drell-Yan formula [30]
for form factors. With this notation q3 ¼ −ν, jqj ¼ Q,
q2 ¼ Q2, q⃗2 ¼ ν2 þQ2. Here boldface indicates transverse
vectors and q⃗ is the three-dimensional vector.

A. Quark degrees of freedom

The expression Eq. (2) can be handled by turning the
product of currents into a commutator and then making
the operator product expansion. The resulting leading-twist

contribution to the quark distribution for a quark, qðxÞ is
given by

qðxÞ ¼
Z

dx−

4π
eixP

þx−hpjψ̄ð−x−=2Þγþψðx−=2Þjpi; ð3Þ

where ψ is a quark-field operator, the notation x−=2 refers
to xμ ¼ ð0;−x−=2; 0Þ, and x ¼ Q2=2p · q. Scale depend-
ence due to QCD evolution is omitted in this paper.
Equation (3) is understood as involving wave functions
evaluated at a given momentum scale. Thus the structure
functions discussed reflect the intrinsic bound-state struc-
ture of the hadrons, and thus apply only at low resolution
scales. Bloom and Gilman did not consider QCD evolution
in their work. Accordingly such an effect is not a part of the
present initial modern analysis.
One extracts W2 from Wμν by using

W2 ¼ Wþþ: ð4Þ

At leading twist

W2 ¼ 2M2
x

p · q
W1; ð5Þ

where M is the ground state mass.

B. Hadronic degrees of freedom

An expression for Wþþ can be obtained using
hadrons by inserting a complete set of hadronic states
jXi between the current operators in Eq. (2). The use of
hpjjμðξÞjXi ¼ eiðp−pXÞ·ξhpjjμð0ÞjXi, taking μ ¼ þ; ν ¼ þ
and integrating over ξþ, yields

Wþþ ¼
X
X

1

2EX
δðp− þ q− − p−

XÞjhX; xjjþð0Þjpij2; ð6Þ

in which it is understood that p⃗X ¼ p⃗þ q⃗ ¼ q⃗ in the lab
frame. The notation X, x is meant to include all degenerate
states of the same angular momentum. The factor of 2EX in
the denominator comes from the relativistic normalization
of states. The matrix elements of jþð0Þ are proportional to
form factors,

jFX;0j2 ≡
X
x

jhX; xj j
þð0Þ
2pþ jpij2; ð7Þ

with pþ
X ¼ pþ þ qþ ¼ pþ. The matrix element involves

only internal coordinates of the wave functions, and 0
denotes the ground state in the lab frame with p⃗ ¼ 0.
The argument of the delta function appearing in Eq. (6)

can be expressed in more detail as
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p− þ q− − p−
X ¼ M þ ν − EXðq⃗Þ
¼ E0 þ ν −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

X þQ2 þ ν2
q

; ð8Þ

where M is the ground state energy. Then using
Wþþ ¼ W2, we find

W2 ¼ 4M2
X
X

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

X þQ2 þ ν2
p

× δ
�
M þ ν −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

X þQ2 þ ν2
q �

jFXj2 ð9Þ

¼ 4M2
X
X

δ

�
M2 −M2

X þQ2

�
1

x
− 1

��
jFXj2: ð10Þ

The study of Bloom-Gilman duality involves relating the
quark Eq. (3) and hadronic expressions Eq. (10).

III. BLOOM-GILMAN DUALITY

Bloom and Gilman found that the structure function in
the resonance region, W < 2 GeV, was roughly equivalent
on average to the scaling one, with averages obtained over
the same region of the scaling variable:

ω0 ¼ 2MνþM2

Q2
¼ 1þW2

Q2
¼ 1

x
þM2

Q2
; ð11Þ

where the invariant energy, W, is given by W2 ¼
ðpþ qÞ2 ¼ M2 þ 2Mν −Q2, which is the square of the
mass of a resonance that is excited. Application of Eq. (11)
requires that ω0 > 0 and x > 0, so that Q2 > M2. Bloom
and Gilman noted that their sum rule is not valid if Q2 is
much less than 1 GeV2.
Bloom and Gilman found that the data from the

resonance region at low Q2 oscillate around the scaling
curve, with averages that are equal to the scaling curve.
Furthermore the resonances move to lower values of ω0

(higher values of x) with increasingQ2. These observations
were repeated at Jefferson Lab.
Bloom and Gilman quantified their studies by observing

the validity of a sum rule:

2M
Q2

Z
νm

0

dννW2ðν; Q2Þ ¼
Z

1þW2
m=Q2

1

dω0νW2ðω0Þ; ð12Þ

where W2ðω0Þ is the scaling function obtained at large
values of Q2. The upper limit on the integration over ν,
νm ¼ ðW2

m −M2 þQ2Þ=2M corresponds to the maximum
value of ω0 ¼ 1þW2

m=Q2, where Wm ≈ 2 GeV. The
validity of this equation is known as global duality.
Local duality is said to exist if the equality of the

averaged resonance and scaling functions holds over
restricted regions ofW. BG obtained an explicit expression
by taking the difference between two versions of Eq. (12)

with different upper limits of integration,

2M
Q2

Z
νb

νa

dν νW2ðν; Q2Þ ¼
Z

1þW2
a=Q2

1þW2
b=Q

2

dω0νW2ðω0Þ: ð13Þ

IV. SOFT-WALL LIGHT-FRONT WAVE
FUNCTIONS IN LIGHT-FRONT

HOLOGRAPHIC QCD

Consider a hadronic bound state of two constituents,
each of vanishing mass. We follow the argument of [19].
The eigenmasses are given by

M2 ¼
Z

1

0

Z
ψ�ðx;kÞ

�
−∇2

k

xð1 − xÞ
�
ψðx;kÞdx d2k

16π3

þ interactions;

¼
Z

1

0

Z
ψ�ðx;bÞ

�
−∇2

b

xð1 − xÞ
�
ψðx;bÞdx d

2b
4π

þ interactions; ð14Þ

where the relative coordinates are the transverse separation
b and the momentum fraction x. The invariant mass
M2

qq̄ ¼ k2

xð1−xÞ. The canonically conjugate impact space

variable is ζ2 ¼ xð1 − xÞb2. To a first approximation LF
dynamics depend only on M2

qq̄ or ζ, and the dynamical
properties are encoded in the hadronic wave function ϕðζÞ.
Following standard procedure solutions in the product
form,

ψðx; ζ;ϕÞ ¼ eiLzφXðxÞ ϕðζÞffiffiffiffiffiffiffiffi
2πζ

p ; ð15Þ

are sought. The quantity Lz is the longitudinal component
of the orbital angular momentum, an integer that can be
positive or negative or 0.
One proceeds by writing the Laplacian operator in

Eq. (14) in the polar coordinates ðζ;ϕÞ:

∇2
ζ ¼

1

ζ

d
dζ

�
ζ
d
dζ

�
þ 1

ζ2
∂2

∂φ2
: ð16Þ

Then with the normalization

hXjXi ¼
Z

1

0

dx
xð1 − xÞX

2ðxÞ ¼ 1 ð17Þ

one finds that Eq. (14) becomes

M2 ¼
Z

dζϕ�ðζÞ
�
−

d2

dζ2
−
1 − 4L2

4ζ2

�
ϕðζÞ

þ
Z

dζϕ�ðζÞUðζÞϕðζÞ ð18Þ
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in which an effective potential UðζÞ has been introduced to
enforce confinement at some infrared scale, and L is the
absolute value of Lz.
The resulting wave equation is

�
−

d2

dζ2
−
1 − 4L2

4ζ2
þ UðζÞ

�
ϕðζÞ ¼ M2ϕðζÞ: ð19Þ

The soft-wall model [31]

UðζÞ ¼ κ4ζ2; ð20Þ

where κ is the strength of the confinement, is used here.
This form was used in [32]. Later work [33,34] introduced
a constant term that depends on L, and relations between
the baryon and meson spectrum were obtained. These
results were derived from superconformal algebra. In line
with our goal of examining Bloom-Gilman duality, the
earlier form is used here to avoid a zero in the ground
state mass.
The function XðxÞ is to be determined. A popular

choice has been to simply use XðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

.
This is followed here. We’ll show below that this choice
does not yield a complete set of wave functions in three-
dimensional space.
The associated eigenvalues are

M2
nL ¼ κ2ð4nþ 2Lþ 2Þ: ð21Þ

The light-front wave function [Eq. (15)] is obtained by
solving Eq. (19) with the soft-wall potential of Eq. (20), and
using ζ2 ¼ xð1 − xÞb2 with the result

ψnLz
ðb; xÞ ¼ AnL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p eiLzφffiffiffiffiffiffi
2π

p e−κ
2b2xð1−xÞ=2

× ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
bÞLLL

n ðκ2b2xð1 − xÞÞ; ð22Þ

where b is the transverse radius, φ is the transverse angle,
and x is the plus-momentum ratio of one of the quarks.
The factor normalizing the wave function to unity is

AnL ¼ ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
n!

ðnþLÞ!
q

. The spin dependence is taken to be a

simple delta function, setting the helicity of the antiquark to
the negative of the quark [24,35]. The action of the γþ

operator in jþ conserves the spin of the struck quark so that
all of the states, X entering in Eq. (10), have the same spin
wave function.
The next step is to evaluate the transition form factors.

For a quark-antiquark system, of unit charge, with the given
space and spin dependence, in the Drell-Yan frame, these
are given by the expression

FX0ðqÞ≡ FnLz
ðqÞ ¼

Z
1

0

dx
Z

d2b eiq·bð1−xÞ

× ψ�
nLz

ðx;bÞψ00ðx;bÞ; ð23Þ

with the notation ðq · q ¼ Q2Þ. This form factor is the same
as would be obtained if only a single quark of unit charge
interacts electromagnetically.

V. VALENCE QUARK NUMBER SUM RULE—A
NEW GLOBAL DUALITY

In this two-parton model the quark and antiquark have
the same relative wave function and therefore the same
quark distribution. The form factor can be obtained as if
only a single quark of unit charge interacts electromag-
netically. In this case the form factors of Eq. (7) contribute
to the single flavor qðx;Q2Þ. This means that the sum over
X in Eq. (10) contributes only to qðxÞ, and we may take the
quark distribution qðxÞ as given by

qðxÞ ¼ W1 ¼
p · q
2M2x

W2 ¼
ν

2Mx
W2: ð24Þ

An interesting sum rule may be derived from the valence
quark number sum rule:Z

1

0

qðxÞdx ¼ 1: ð25Þ

The integral over x can be evaluated from the hadronic
degrees of freedom, and using Eqs. (24) and (10) we
examine the quark number sum rule to find

qðx;Q2Þ ¼ Q2

x2
X
X

δ

�
M2 −M2

X þQ2

�
1

x
− 1

��
jFXj2:

ð26Þ

Noting that FX depends on Q2, not on x, the integral over
all values of x yieldsZ

1

0

qðxÞdx ¼
X
X

jFXj2: ð27Þ

Thus the quark number sum rule is satisfied if and only if
the completeness relationX

X

jFXj2 ¼ 1 ð28Þ

is satisfied.
This result Eq. (27) amounts to a new form of global

duality: At any given value of Q2 the sum of the squares of
all of the form factors, computed using hadron degrees of
freedom, satisfies the quark number sum rule. The deriva-
tion presented here uses a single quark flavor and unit quark
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charge. The same global duality may be obtained in terms
of the usual more general parton model conditions. It is a
consequence of baryon number conservation.

VI. LACK OF COMPLETENESS

In the current model the sum appearing in Eq. (28) is
given by

SðQÞ ¼
X∞
n¼0

X∞
Lz¼−∞

jFnLz
ðQÞj2: ð29Þ

Satisfying the sum rule requires SðQÞ ¼ 1.
Let us evaluate this quantity. To see this more explicitly

consider

SðQÞ≡X∞
n¼0

X∞
Lz¼−∞

jFnLz
ðQÞj2 ð30Þ

¼
Z

dx
Z

d2beiq·bð1−xÞψ�
n;Lz

ðx;bÞψ00ðx;bÞ

×
Z

dx0
Z

d2r0e−iq·b0ð1−x0Þψn;Lz
ðx0;b0Þψ00ðx0;b0Þ:

ð31Þ

Change variables to ζ ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

. Then use d2bxð1 −
xÞ ¼ d2ζ and define

ϕnLz
ðζÞ≡ ψnLz

ðx; ζÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp : ð32Þ

The ϕnLz
ðζÞ are standard two-dimensional (2D) harmonic

oscillator wave functions. Then

SðQÞ ¼
X∞
n¼0

X∞
Lz¼−∞

Z
dx

Z
d2ζeiq·ζ

ffiffiffiffi
1−x
x

p
ϕ�
n;Lz

ðζÞϕ00ðx; ζÞ

×
Z

dx0
Z

d2b0e−iq·ζ
0

ffiffiffiffiffi
1−x0
x0

p
ϕn;Lz

ðζ0Þϕ00ðζ0Þ:

ð33Þ

But standard 2D harmonic oscillator wave functions obey

X∞
n¼0

X∞
Lz¼−∞

ϕ�
n;Lz

ðζÞϕn;Lz
ðζ0Þ ¼ δðζ − ζ0Þ; ð34Þ

so that

SðQÞ ¼
Z

dx
Z

dx0
Z

d2ζe
iq·ζ

� ffiffiffiffi
1−x
x

p
−

ffiffiffiffiffi
1−x0
x0

p �
jϕ00ðζÞj2:

ð35Þ

The integral over ζ can be done so that

SðQÞ ¼
Z

dx
Z

dx0e
−1=4Q2

� ffiffiffiffi
1−x
x

p
−

ffiffiffiffiffi
1−x0
x0

p �
2

: ð36Þ

The validity of the sum rule requires that SðQÞ ¼ 1 for all
values of Q. This is true only for Q ¼ 0. For all other
values, it is manifest that SðQ > 0Þ < 1. Completeness is
not satisfied. Numerical work shows that limQ→∞ SðQÞ∼ 1

Q,

and one can analytically show limQ→∞SðQÞ ≈ π3=2

8Q by using
the method of steepest descent. The net result is that instead
of unity one gets 0 for large enough values of Q.
This study of SðQÞ shows that Eq. (29) is NOT satisfied

in the current model. This is because the wave functions
given above in Eq. (22) are complete only in the two-
dimensional ζ space, not in the x space.

VII. IMPLEMENTING COMPLETENESS

The functions of Eq. (22) do not form a complete set over
the three-dimensional space x, r because XðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

is not a complete set of wave functions in x
space. The need to include excitations of longitudinal
modes was noted in Ref. [36].
Here we construct a set of wave functions in x space in

which the given XðxÞ corresponds to a ground state. This is
done by generalizing the interaction to include a longi-
tudinal potential

ULðxÞ ¼ −λκ2
d
dx

xð1 − xÞ d
dx

: ð37Þ

This interaction is approximately harmonic oscillator
potential in the longitudinal variable z̃ of [37], with
z̃2 ¼ − ∂2

∂x2. The factor xð1 − xÞ appears here and in the
transverse soft-wall potential of Eq. (20) when it is
expressed in terms of light-front variables.
This added potential gives a contribution to the square of

the mass, M2
L given by

M2
L ¼ −λκ2

Z
1

0

dx
XðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp d

dx
xð1 − xÞ d

dx
XðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp ;

ð38Þ

where λ is a dimensionless number. The normalized
solutions to the related differential equation are the
functions

XðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Lþ 1
p

PLð2x − 1Þ; ð39Þ

where PL is a Legendre polynomial (with L an
integer) with eigenvalues M2

L ¼ λκ2LðLþ 1Þ. For

AIDEN B. SHECKLER and GERALD A. MILLER PHYS. REV. D 103, 096018 (2021)

096018-6



L¼0;XðxÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1−xÞp

so previous results for the spec-
trum are preserved and correspond to modes with L ¼ 0.
The value of λ should be determined by an appropriate

symmetry. We hope that the need to satisfy completeness
will lead to future work on this topic and leave finding
such a symmetry for future work and future workers. Our
only purpose here is to study Bloom-Gilman duality. A
complete set of states is needed to do that, as shown in
Sec. V. Here we note that setting λ ¼ 2 means the low-
energy part of the spectrum obtained in Refs. [33,34] is
not changed.
The net result is that light-front wave functions that

provide the necessary complete set are given by

ΨnLzLðx;φ; rÞ ¼ ψnLz
ðr; xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
PLð2x − 1Þ: ð40Þ

Using Ψn;LzL satisfies the completeness relation in the
ðx;bÞ space because the Legendre polynomials form a
complete set of orthogonal polynomials.
The spectrum is now given by

M2
nLLðλÞ ¼ κ2ð4nþ 2Lþ 2LðLþ 1Þ þ 2Þ: ð41Þ

VIII. TRANSITION FORM FACTORS

The transition form factors must be evaluated in prepa-
ration for calculating W2 as given by the hadronic expres-
sion of Eq. (10). Specific expressions for these form factors
have not been presented previously.
Let us start with the L ¼ 0 sector. The angular integral

appearing in d2b can be done in closed form with the result

FnLz
ðqÞ ¼ ð−iÞLz2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!

ðnþ LÞ!

s Z
1

0

dx
Z

∞

0

dz zLþ1e−z
2

LL
n ðz2ÞJL

�
Qz

ffiffiffiffiffiffiffiffiffiffiffi
1 − x
x

r �
: ð42Þ

Evaluation leads to

FnLz
ðQÞ ¼ ð−iÞLz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n!ðnþ LÞ!

s Z
1

0

dx

�
Q
2κ

ffiffiffiffiffiffiffiffiffiffiffi
1 − x
x

r �
N
e−

Q2

4κ2
1−x
x ; ð43Þ

in which jqj ¼ Q is used and N ≡ 2nþ L.
This integral is found analytically in terms of an incomplete Gamma function as

FnLz
ðQÞ ¼ ð−iÞLz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n!ðnþ LÞ!

s
2−ðNþ1Þ

N
Γ
�
N þ 2

2

��
−2N

Q2

κ2
þ eQ

2=4κ2
�
Q
κ

�
N
�
q2

κ2
þ 2N

�
Γ
�
2 − N
2

;
Q2

4κ2

��
: ð44Þ

An alternate evaluation of the integral that allows the
asymptotic limit of the transition form factors to be
obtained is given next.
Define

IN ≡
Z

1

0

dx

�
Q
2κ

ffiffiffiffiffiffiffiffiffiffiffi
1 − x
x

r �
N
e−

Q2

4κ2
1−x
x ð45Þ

with

FnLz
ðQÞ ¼ ð−iÞLz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n!ðnþ LÞ!

s
INðQÞ: ð46Þ

Let K ≡ N=2, z≡ Q2

4κ2
, and u≡ 1−x

x . Then

IKðzÞ ¼ zK
Z

∞

0

du
ð1þ uÞ2 u

K e−zu

¼ zΓðKÞðezðK þ zÞEKðzÞ − 1Þ; K > 0; ð47Þ

with

EKðzÞ ¼
Z

∞

1

e−zt

tK
dt ð48Þ

and

I0ðzÞ ¼
Z

∞

0

du
ð1þ uÞ2 e

−zu ¼ 1 − zez
Z

∞

z

e−t

t
dt: ð49Þ

It is useful to consider the asymptotic values of the
transition form factors for fixed values of K and z ≫ K.
This is because Bloom and Gilman found that one of the
requirements for local duality is that all of the transition
form factors have the same dependence on Q2. First, note
that for integer values of K one may write

IKðzÞ ¼ zK
�
−

∂
∂z

�
K
I0ðzÞ: ð50Þ
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The asymptotic limit of z → ∞ is obtained by integration
by parts of the first of the expressions for I0ðzÞ:

I0ðzÞ ¼
−1
z

Z
∞

0

du
ð1þ uÞ2

d
du

e−zu ¼ 1

z
þO

�
1

z2
þ � � �

�
:

ð51Þ

Keeping the leading term and carrying out the derivatives of
Eq. (50) gives

IKðzÞ ∼
K!

z
¼ KΓðKÞ

z
; ð52Þ

which leads to the same result as taking the limit of
Eq. (44). The latter expression works for half-integer
values of L.
The net result is that as Q2 approaches ∞ for

z ¼ Q2=4κ2 ≫ K,

lim
Q2→∞

FnLz
ðQ2Þ ¼ 4ðnþ L

2
Þ!

Q2
iLz

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðnþ LÞ!p : ð53Þ

This limit is not to be used in evaluating the form factors
necessary to compute qðxÞ because the assumption that
z ≫ K is violated in doing the sum over states which goes
in principle to infinite values of K.
The universal 1=Q2 behavior shown in Eq. (53) occurs

because the integral of Eq. (49) is dominated by small
values of u which corresponds to large values of x. This
model presents an example of the Feynman model [38] of
form factors in which the dominant contributions to the
form factors occur when one quark, carrying nearly all of
the momentum of the hadron, is turned around by the
virtual photon.

A. L > 0

We now need

IK;LðzÞ≡ zL
Z

∞

0

du
ð1þ uÞ2 u

Ke−zuPL

�
1 − u
1þ u

�
: ð54Þ

Using the same arguments as before, we can show that

lim
z→∞

IK;LðzÞ ¼
KΓðKÞ

z
: ð55Þ

This is because the Legendre polynomial in Eq. (54) is
unity at u ¼ 0.
We have not been able to obtain a closed form expression

for a general value of L. Instead, we evaluate term by term

IK;1ðzÞ ¼ −zΓðKÞðezððK þ zÞ2 þ zÞEKðzÞ
− K − z − 1Þ; K > 0Þ; ð56Þ

I0;1ðzÞ ¼ z

�
ezðzþ 1Þ

Z
∞

z
dt

e−t

t
− 1

�
; ð57Þ

IK;2ðzÞ ¼ zΓðKÞðezððK þ zÞððK þ zÞ2 þ 3zÞ þ zÞEKðzÞ
− K2 − Kð2zþ 1Þ − zðzþ 3Þ − 1Þ; K > 0;

ð58Þ

I0;2ðzÞ ¼ z

�
2þ z − ezð1þ zð3þ zÞÞ

Z
∞

z
dt

e−t

t

�
: ð59Þ

Similar expressions can be obtained for any value of L.
The net result is that

FnLz;LðQÞ ¼ ð−iÞLz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n!ðnþ LÞ!

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

p
IK;LðQÞ; ð60Þ

with K ¼ nþ L=2.

IX. BLOOM-GILMAN GLOBAL DUALITY IS NOT
SATISFIED BY THIS MODEL

Prior to evaluating qðxÞ it is useful and possible to see if
the sum rule of Eq. (12) is satisfied. The right-hand side of
that equation is to be obtained by the high Q2 expression
for qðxÞ. This quantity is obtained from Eq. (3) by using the
field expansion, in the standard expressions of the two-
parton Fock-space component wave function. The result
using the model of Sec. IV is that

qðxÞ ¼
Z

d2bjψ00ðb; xÞj2 ¼ 1: ð61Þ

This expression involves an integral over all values of b and
therefore is equivalent to an integral over all values of k.
This latter integral corresponds to an infinite momentum
transfer scale [35]. Thus QCD evolution of the distributions
is not discussed further. The Q2 dependence of qðx;Q2Þ of
Eq. (26) arises from the Q2 dependence of the resonance
form factors.
The result qðxÞ ¼ 1 requires further comment because it

displays the unrealistic nature of the present model.
According to quark counting rules (see, e.g., [39]), the
structure function of a two-parton state should fall as 1 − x
for large values of x, with QCD-DGLAP evolution provid-
ing a faster falloff. Bloom and Gilman [2,3] use quark
counting rules in the form of the Drell-Yan-West [26,27]
relations to understand their duality. As shown by Drell and
Yan [26], a quark structure function varies at large x as
ð1 − xÞ2n−1 if the corresponding form factor FðQ2Þ ∼
ð1=Q2Þn at large values of Q2. The present model violates
this relation because, as shown above, all of the form
factors have the same asymptotic 1=Q2 behavior, but the
structure function is constant. In the present model, the
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asymptotic nature of the form factor is determined by the
Feynman mechanism. The quark counting rules are based
on vector meson exchange between the quarks, so that the
important region occurs when all of the partons are on top
of each other. Feynman [38] argued that is not realistic.
The validity of the Feynman vs quark-counting picture is

one of the important issues related to color transparency
[40], the interesting quantum invisibility predicted to occur
as the result of vanishing of initial- or final-state inter-
actions. Color transparency cannot occur if the Feynman
mechanism is dominant [41].
The purpose of the present paper is to investigate the

stated model. Although simple, it has the correct com-
pleteness and support properties that enable study of
Bloom-Gilman duality. Therefore we investigate the sum
rule Eq. (12) by using qðxÞ ¼ 1. This allows the right-hand
side ≡RðQ2Þ of Eq. (12) to be evaluated immediately:

RðQ2Þ≡
Z

1þW2
m=Q2

1

dω0νW2ðω0Þ ¼ 2M
Z

1þW2
m=Q2

1

dω0x;

ð62Þ

with x ¼ 1=ðω0 −M2=Q2Þ. Evaluation yields

RðQ2Þ ¼ 2M ln
Q2 þW2

m −M2

Q2 −M2
ð63Þ

and

lim
Q2→∞

RðQ2Þ ¼ 2M
W2

m

Q2
: ð64Þ

This result of using the stated model is already in
violation of the Bloom-Gilman condition that it be inde-
pendent of Q2. The independence could be obtained by
taking Q2 to infinity, so that R → 0, and the violation of
global duality is assured.
Next examine the left-hand side of Eq. (12) [≡LðQ2Þ].

First, the lower limit on the integral over ν is determined by
the largest value of xð¼ 1Þ for which νW2 is nonzero. This
is given by Q2=ð2MÞ. Converting the integral over ν to one
over x gives

LðQ2Þ ¼ 2M
Z

1

Q2

ðQ2þW2
m−M2Þ

dx
x
qðx;Q2Þ ð65Þ

in which qðx;Q2Þ is to be obtained from the hadronic
expression, Eq. (10). Simplifying the argument of the delta
function leads to

qðx;Q2Þ ¼
X
X

jFXðQÞj2δðx − xXÞ; ð66Þ

where X ≡ ðn; Lz;LÞ and xX ¼ Q2

Q2þ2κ2ð2nþLþLðLþ1ÞÞ.

Thus

LðQ2Þ ¼ 2M
X
n;Lz;L

Q2 þ 2κ2ð2nþ Lþ LðLþ 1ÞÞ
Q2

× F2
nLzL

ðQ2ÞΘðW2
m − 2κ2ð2nþ Lþ LðLþ 1ÞÞ:

ð67Þ

If R were equal to L, the sum appearing in Eq. (67) would
need to vary as 1=Q2. This seems unlikely because for
finite values of M2

X, each form factor varies as 1=Q2,
leading to an overall dependence varying approximately as
1=Q4. The asymptotic limit is not precisely accurate, but
nevertheless LðQ2Þ falls much faster than 1=Q2.
This dependence is shown in Fig. 1. To obtain this figure

we take M2 ¼ 2κ2, with M the nucleon mass and
Wm ¼ 2 GeV, so that 2nþ Lþ 2LðLþ 1Þ ≤ 4. The result
is shown in Fig. 1. Global duality would hold if
Q2RðQ2Þ=2M ¼ Q2LðQ2Þ=2M, i.e., if the blue and red
curves were equal.

X. BLOOM-GILMAN LOCAL DUALITY IS NOT
SATISFIED BY THE MODEL

Local duality is studied through Eq. (13). If the upper
and lower limits are taken to encompass one resonance, X,
this equation leads to the relation

1

xX
F2
X ¼ ln

W2þ þQ2 −M2

W2
− þQ2 −M2

; ð68Þ

with W� ¼ MX � γ=2. Here the value of γ can be any
energy less than the minimum spacing between levels, 2κ2.
A first glance indicates that the relation Eq. (68) is not
generally satisfied because the right-hand side depends on
γ, but the left-hand side does not. Moreover, the right-hand
side falls as 1=Q2 for large values of Q2, but the left-hand
side falls as 1=Q4.

FIG. 1. Q2LðQ2Þ=2M vsW2
m.
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An explicit calculation is made by choosing the lowest
energy resonance with n ¼ 0; L ¼ 1.L ¼ 0 is an example.
The results, shown in Fig. 2, are that indeed the local
duality relation is not satisfied.

XI. EVALUATE qðx;Q2Þ
The quantity to evaluate is qðx;Q2Þ of Eq. (26). The need

to include a nonzero width of the excited states in studying
duality has been noted in [12,13]. Moreover, excited states
do have nonzero widths. This is addressed next using a
Breit-Wigner form.
The starting point is the function δðM2 −M2

X þ
Q2ð1=x − 1Þ ¼ δðM2

X −W2Þ, where W2 ¼ ðpþ qÞ2. The
value of x that yields a vanishing argument is defined to be
xX with

xXðQ2Þ ¼ Q2

M2
X −M2 þQ2

; ð69Þ

showing that the contribution of a given resonance moves
to larger values of x as the value of Q2 increases.
It is useful to relate δðW2 −M2

XÞ to a delta function
δðx − xXÞ, allowing a direct study of the new global
duality of Sec. V. This may be done by first using
δðM2

X − W2Þ ¼ 1
2W δðMX − WÞ ¼ 1

2W limΓ→0
1
π

Γ=2
W−MXþiΓ=2.

Then apply a small-width approximation, W −MX ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ð1x− 1Þ þM2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ð 1

xX
− 1Þ þM2

q
≈−ðx− xXÞ Q2

2MXx2X
so that

δðM2
X −W2Þ → ΓX

π

MXx4X
Q4ðx − xXÞ2 þ Γ2

Xx
4
XM

2
XÞ

≡ δ̂ðW2 −M2
XÞ: ð70Þ

The final step is to make the appearance of δðx − xXÞ
explicit,

δ̂ðW2 −M2
XÞ ¼

1

π

εX
ðx − xXÞ2 þ ε2X

x2X
Q2

¼ δ̂ðx − xXÞ
x2X
Q2

ð71Þ

with εX ≡ ΓXMXx2X
Q2 . Then

qðx;Q2Þ ¼
X
X

x2X
x2

jFXðQ2Þjfδ̂ðx − xXÞ≡
X3
L¼0

qLðx;Q2Þ:

ð72Þ

The factor f ensures that
R
1
0 dxδ̂ðx − xXÞ ¼ 1, and f

approaches unity as εX approaches 0. The second form
shows the sum of states with different values of L. Each
qLðx;Q2Þ includes a sum over values of n and Lz. A
maximum value of L ¼ 3 is used. Although not com-
plete, this is sufficient to display the main points and is
necessary because an infinite number of values is needed
for completeness.
The next step is to evaluate Eq. (72). Note that the sum

over X involves summing over n; Lz ¼ �L and L, includ-
ing all states The results of evaluating Eq. (72) are shown
for z ¼ Q2=ð4κÞ ¼ 2, 4, 8 in Fig. 3. This corresponds to
Q2 ¼ 8; 16; 32κ2 ¼ 4; 8; 16 M2. The width is taken as
Γ=κ ¼ 0.05 ¼ 0.2M=

ffiffiffi
2

p
. This is a constant width of space

66 MeV, with M as the nucleon mass. In the spirit of the

FIG. 3. qðx; zÞ for z ¼ Q2=4κ2 ¼ 2, 4, 8. The four curves in
each figure are qL¼0ðxÞ;qL¼0ðxÞþqL¼1ðxÞ;qL¼0ðxÞþqL¼1ðxÞþ
qL¼2ðxÞ;qL¼0ðxÞþqL¼1ðxÞþqL¼2ðxÞþqL¼3ðxÞ.

FIG. 2. Left- (blue, dashed, resonance curve) and right- (red,
solid, scaling curve) hand sides of Eq. (68) times Q2=4κ2,
with γ ¼ 0.125κ.
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model, the width is taken to be small [12,13]. The
maximum number of states in the sum Eq. (72) is increased
until convergence is reached. In each figure the lowest
curve is obtained using L ¼ 0, and then the effects of
L ¼ 1 are added leading to the next lowest curve. Then the
effects of adding states with L ¼ 2 and L ¼ 3 are included
and result in two more curves.
Focusing first on z ¼ 2 and examining the lowest curve,

one sees a spiky structure due to the resonance curves.
Decreasing the value of the width leads to similar results,
with narrower widths and higher peaks. The same pattern is
obtained when adding the effects of states with L > 0, with
different values of MX, Eq. (41), leading to different peaks
that increase the distribution function at low values of x, as
expected from Eq. (69). The contributions of states with
L > 0 do not contribute at higher values of x due to the
delta function appearing in Eq. (72). The solid line in each
panel shows the scaling result qðxÞ ¼ 1. The resonance
curves oscillate about the scaling curve for the larger values
of x, but not for the lower ones.
The patterns for different values of L are also seen as the

value of z increases. A detailed difference is the effect at
high values of x is larger. Another is that the curves fall
further below the scaling result, and the general tendency of
the magnitude of qðx;Q2Þ to decrease as Q2 increases is

seen. This is another example of the model’s failure to
achieve local duality.
The Bloom and Gilman work found duality in νW2

which is proportional to xqðxÞ. Plots of that quantity are
shown in Fig. 4. The lines show xqðxÞ ¼ x. This figure
shows that xqðx;Q2Þ does approximately oscillate about a
line. This is true, in part, because including the factor x
suppresses the region for which the result of using the sum
of resonances, and Eq. (72) falls below qðxÞ ¼ 1. We
denote this approximate oscillation as accidental duality,
because the detailed evaluations of both global and local
duality expressions (12) and (13) show a failure to achieve
the necessary equality.
These presented results do not demonstrate that the use

of hadronic degrees of freedom leads to the equality of the
sum, Eq. (72) with the correct model quark distribution
qðxÞ ¼ 1. This is expected because it is only possible to
include a finite number of excitations X and because of the
necessity of including a nonzero width to obtain finite
values of qðx;Q2Þ. However, but they do show that adding
intermediate states of higher and higher masses tends
toward that direction. This is because adding states of
higher mass tends to fill in gaps left by including only lower
mass states.

XII. SUMMARY AND DISCUSSION

Light-front wave functions motivated by holographic
constructions are used to study Bloom-Gilman duality in
this paper. Expressions for the structure functions in
terms of quark Eq. (3) and hadronic Eq. (10) degrees of
freedom (involving transition form factors) are presented,
with an ultimate goal of obtaining a relationship between
the two expressions. The specific two-parton model is
defined in Sec. IV, with masses, Eq. (21), and light-front
wave functions, Eq. (22), that had been obtained in the
original work. Transition form factors are expressed, using
the Drell-Yan frame, in terms of these wave functions
in Eq. (23).
The valence quark-number sum rule is presented as a

new form of global duality (integral over all values of x
between 0 and 1) in Sec. V, specifically in Eqs. (27) and
(28). Using a complete set of hadronic states is necessary
for this new global duality to be achieved, Eq. (28). That the
original work does not provide a complete set is shown in
Eq. (36). The lack of completeness arises from the choice in
the original work to examine the presumably dominant
configuration of the modes of lowest energy in which the
longitudinal wave function of Eq. (15) is given by
XðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp
. This single form is not sufficient to

provide a complete set in x-space. The lack of completeness
is remedied by including a longitudinal potential, ULðxÞ,
Eq. (37), where L is an integer quantum number, for which
the stated XðxÞ is the lowest energy mode with L ¼ 0.
The overall strength, λ, of UL is arbitrarily chosen here.

FIG. 4. xðqL¼0ðx; zÞ þ qL¼1ðxÞ þ qL¼2ðxÞ þ qL¼3ðxÞÞ for
z ¼ Q2=4κ2 ¼ 2, 4, 8. The lines are drawn to guide the eye.
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In principle, this parameter, along with the longitudinal
potential, should be chosen by some symmetry principle
that is unknown to us. The final result should achieve
rotational invariance in the model, in the sense of having
states with the proper degeneracy. This achievement is left
as a goal of future research. Nevertheless, the present
complete set is sufficient to carry out the specific purpose of
this manuscript which is to examine Bloom-Gilman duality.
Given the complete set of wave functions, specific

expressions for the transition form factors are obtained
in Eq. (44), Eq. (46), and Eq. (60). All of the form factors
fall as 1=Q2, Eq. (52), at asymptotically large values. This
behavior originates in the dominance of the Feynman
mechanism for this model. That the dominant transition
form factors have the same asymptotic dependence is one
of the requirements to achieve Bloom-Gilman duality.
However, the Drell-Yan connection between form factors
and structure functions is also needed, and this feature is
absent in the current model.
The model transition form factors are used to assess the

validity of the global, Eq. (11), and local, Eq. (12), duality
sum rules. The simplicity of the scaling quark distribution
in the given model, qðxÞ ¼ 1, readily enables studies of
these sum rules, with the result that both are not satisfied
within the given model. See Figs. 1 and 2.
Evaluations of the hadronic expression for qðx;Q2Þ,

Eq. (72), are presented in the previous section; see Figs. 3
and 4. The need to obtain noninfinite values to make plots
of finite size mandates that the resonant states have at least a
small width, as implemented in Eq. (71). The value of the
width is chosen to be a small number 66 MeV. Detailed
results depend upon the precise value, but the qualitative
conclusions do not. The figures show that including the
states with L > 0 are needed to approach Bloom-Gilman
duality, but that this duality is not obtainable with the
present model.
The failure to achieve Bloom-Gilman duality shows that

the present version of the model is not advanced enough to

handle this subtle question. Indeed, the lack of Bloom-
Gilman duality teaches us an important lesson. One
might use either hadronic or quark degrees of freedom
according to which leads to the simpler description
of the specific problem at hand. Since both sets of
states are complete, it is natural to expect that Bloom-
Gilman duality should result. The present work shows that
such a supposition is not correct. Instead, the observed
validity of both global and local forms of duality for deep
inelastic scattering must be related to a deeper feature
of QCD.
Although the present model is very simple, it suggests a

prediction that if deep inelastic scattering experiments were
to be made on the pion, Bloom-Gilman duality would not
be observed. This is because of the quark-antiquark
structure of the valence wave function that generally leads
to a 1=Q2 behavior of form factors at high momentum
transfer.
Bloom and Gilman understood their duality in terms of

the asymptotic fall of resonance transition form factors,
quark counting rules and a simple scaling function to
represent the high Q2 data. The finer details of this analysis
have not withstood the test of time, but measurements have
shown that their duality still is viable. The underlying
origin of this phenomenon is deeply buried within the
confinement aspects of QCD. Its ultimate understanding
remains a mystery.
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