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In this paper, we solve the new evolution equation for high energy scattering amplitude that stems from
the Gribov-Zwanziger approach to the confinement of quarks and gluons. We found that (1) the energy
dependence of the scattering amplitude turns out to be the same as for QCD Balitsky, Fadin, Kuraev and
Lipatov (BFKL) evolution, (2) the spectrum of the new equation does not depend on the details of the
Gribov-Zwanzinger approach, and (3) all eigenfunctions coincide with the eigenfunctions of the QCD
BFKL equation at large transverse momenta κ ≥ 1. The numerical calculations show that there exist no new
eigenvalues with the eigenfunctions which decrease faster than solutions of the QCD BFKL equation at
large transverse momenta. The structure of the gluon propagator in the Gribov-Zwanziger approach, that
stems from the lattice QCD and from the theoretical evaluation, results in the exponential suppression of the
eigenfunctions at long distances and in the resolution of the difficulties, which the color glass condensate
and some other approaches, based on perturbative QCD, face at large impact parameters. We can conclude
that the confinement of quark and gluons, at least in the form of the Gribov-Zwanziger approach, does not
influence on the scattering amplitude except for solving the long-standing theoretical problem of its
behavior at large impact parameters.
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I. INTRODUCTION

It is well known that perturbative QCD suffers a
fundamental problem: the scattering amplitude decreases
at large impact parameters (b) as a power of b. Such
behavior contradicts the Froissart theorem [1], and, hence,
perturbative QCD cannot lead to an effective theory at high
energy. In particular, the color glass condensate/saturation
approach (see Ref. [2] for a review), which is based on
perturbative QCD, is confronted by this problem [3,4]. At
large b, the scattering amplitude is small, and therefore only
the linear Balitsky, Fadin, Kuraev, and Lipatov (BFKL)
equation [5] describes the scattering amplitude in pertur-
bative QCD. It is known that the eigenfunction of this

equation (the scattering amplitude of two dipoles with sizes
r and R) has the following form [6]:

ϕγðr;R; bÞ

¼
�

r2R2

ðbþ 1
2
ðr − RÞÞ2ðb − 1

2
ðr − RÞÞ2

�
γ

⟶
b≫r;R

�
r2R2

b4

�
γ

:

ð1Þ

One can see that ϕγðr;R; bÞ at large impact parameter b
decreases as a power of b. In particular, such a decrease
leads to the growth of the radius of interaction as a power of
the energy [3,4], resulting in the violation of Froissart
theorem. Since it was proven in Ref. [6] that the eigen-
function of any kernel with conformal symmetry has the
form of Eq. (1), we can only change the large-b behavior by
introducing a new dimensional scale in the kernel of the
equation. A variety of ideas to overcome this problem have
been suggested in Refs. [4,7–26]. In our previous paper
[27], we used the Gribov-Zwanziger approach [28–38] for
the confinement of quarks and gluons to fix this non-
perturbative scale. We derived the generalized BFKL
evolution equation, which incorporates this new dimen-
sional scale, and demonstrated that this equation leads to
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the exponential decrease of the scattering amplitude at large
b. We will discuss both the equation and large-b behavior
of the solution in the next section, which has a review
character.
In this paper, we find the solution to this new equation. In

Sec. III, we consider the general properties of the spectrum
and eigenfunctions, which follow from an analytical
approach. In particular, we prove that the eigenfunctions
of Eq. (1) describe the eigenfunctions of the new equation
at short distances r ≪ R. In Sec. IV, we concentrate our
efforts on the numerical solution of the equation. We show
that all eigenvalues of the new equation, that generate the
power energy increase of the scattering amplitude, coincide
with the massless BFKL eigenvalues. However, the eigen-
functions have quite a different behavior in comparison
with the eigenfunction of the massless BFKL equation, and
they crucially depend on the input from Gribov-Zwanziger
confinement approach. Finally, in Sec. V, we discuss our
results and future prospects.

II. BFKL EVOLUTION EQUATION FOR GRIBOV-
ZWANZIGER CONFINEMENT: A RECAP

A. Gribov-Zwanziger confinement: Gluon propagator

As we have alluded, it was proved [6] that eigenfunc-
tions of Eq. (1) have the same form for all kernels with
conformal symmetries. Hence, we have to modify the
kernel of the BFKL equation introducing a new dimen-
sional scale of the nonperturbative origin. In other words,
we need an approach which models the confinement of
quarks and gluons. Among numerous approaches to con-
finement, the one proposed by Gribov, [28–38] has special
advantages, which makes it most suitable for discussion of
the BFKL equation in the framework of this hypotheses.
First, it is based on the existence of Gribov copies [28]—
multiple solutions of the gauge-fixing conditions, which are
the principle properties of nonperturbative QCD. Second,
the main ingredient is the modified gluon propagator,
which can be easily included in the BFKL type of
equations. Third, in Ref. [24] (see also Ref. [39]), it is
demonstrated that the Gribov gluon propagator originates
naturally from the topological structure of nonperturbative
QCD in the form

GðqÞ ¼ 1

q2 þ χtop
q2

¼ q2

q4 þ μ4
; ð2Þ

where χtop ¼ μ4 is the topological susceptibility of QCD,
which is related to the η0 mass by the Witten-Veneziano
relation [40,41]. This allows us to obtain the principal
nonperturbative dimensional scale, directly from the exper-
imental data.
However, it is shown in Ref. [27] that the propagator of

Eq. (2), which vanishes at q ¼ 0, does not lead to the
exponential suppression of the scattering amplitude at large

impact parameters (b). Fortunately, the lattice calculation of
the gluon propagator generates the gluon propagator with
Gðq ¼ 0Þ ≠ 0 (see Refs. [42–44] and references therein), in
explicit contradiction with Eq. (2).
In Refs. [43–59],1 it is shown that Gðq ¼ 0Þ ≠ 0 is a

general feature of nonperturbative approaches and that
Gribov’s copies lead to the gluon propagator which is
final at q → 0. In this paper, we parametrize the gluon
propagator in the following form:

GðqÞ ¼ q2 þM2
0

ðq2 þM2Þ2 þ μ4
; ð3Þ

We view this form as parametrization of the sum of
Gribov’s propagators of Eq. (2) with different values
of μ, as has been discussed in Ref. [27]. We are aware
that Eq. (3), which describes the lattice QCD data, is a
simplified version of the refined Gribov-Zwanziger (RGZ)
theoretical approaches that have been discussed in
Refs. [43–59]. However, we believe that it is a good
first approximation, which allows us to introduce two-
dimensional parameters from confinement physics. In this
paper, we call the gluon propagator of Eq. (3) the lattice
QCD propagator or the RGZ propagator.
As we have mentioned, at high energies, q is a two-

dimensional vector, which corresponds to transverse
momentum carried by the gluon. Introducing

G�ðqÞ ¼ 1

ðq2 þM2Þ � iμ2
; ð4Þ

we can rewrite Eq. (3) in the form

GðqÞ ¼ 1

2
ðGþðqÞ þG−ðqÞÞ þM2

0 −M2

2iμ2
ðGþðqÞ − G−ðqÞÞ

¼ 1

μ2
ðReGþðκÞ þ ðM2

0 −M2ÞImGþðκÞÞ

¼ 1

2

��
1þ i

M2
0 −M2

μ2

�
GþðqÞ

þ
�
1 − i

M2
0 −M2

μ2

�
G−ðqÞ

�

¼ 1

2μ2
fð1þ im0ÞGþðκÞ þ ð1 − im0ÞG−ðκÞg; ð5Þ

where we use notations

κ ¼ q2

μ2
; κ0 ¼ q02

μ2
; E ¼ −

ω

ᾱS
; ᾱS ¼

αSNc

π
;

m ¼ M2

μ2
; m0 ¼

M2
0 −M2

μ2
: ð6Þ

1This list of references is not complete. More details can be
found in the reviews [37,45].
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It is worth it to mention that Eq. (6) introduces the
dimensionless variables for our problem and sets the
physical scale for the dimensionful quantities: μ2.

B. BFKL equation in momentum representation

The BFKL equation for Gribov-Zwanziger gluon propa-
gator has been derived in our previous paper [27], using the
procedure that has been described in Ref. [22].
It has two parts: the gluon Reggeization and the emission

of gluons. The first one has a general form [5],

ωGðqÞ ¼ G−1ðqÞΣðqÞ

with ΣðqÞ ¼
Z

d2q0

4π
Gðq0ÞGðq − q0Þ; ð7Þ

where GðqÞ is given by Eq. (3). We will discuss the
analytical expression for Eq. (7) below (see also
Appendix A of Ref. [27]).
The emission kernel has been calculated in Ref. [27]

using the decomposition of Eq. (2). Indeed, using this
decomposition, we can treat the production of the gluon as
the sum of two sets of the diagrams (see Fig. 1) with M̃2 ¼
iμ2 and with M̃2 ¼ −iμ2.
We sum the first diagrams of the gluon emission shown

in Fig. 1 to find the vertex Γμðq; q0Þ for the kernel of the
BFKL equation. It is easy to see that the sum shown in
Fig. 1 leads to the Lipatov vertex that has the form [22]

Γμðq; q0Þ ¼ −q⊥μ − q0⊥μ þ p1;μ

�
−G−1ðqÞ 1

p1 · k
þ p2 · k
p1 · p2

�

− p2;μ

�
−G−1ðq0Þ 1

p2 · k
þ p1 · k
p1 · p2

�
; ð8Þ

where p1;μ and p2;μ are the momenta of incoming particles
(see Fig. 1 for all notations).
Using Eqs. (7) and (8), the BFKL equation for Gribov-

Zwanziger confinement takes the form (for QT ¼ 0
2):

ωϕðω; qÞ ¼ −2ωGðqÞϕðω; qÞ

þ ᾱS

Z
d2q0

π
Gðq − q0Þϕðω; q0Þ: ð9Þ

This equation looks similar to the BFKL equation for a
massive gluon [22] in the non-Abelian Yang-Mills theories
with a Higgs particle, which is responsible for mass
generation. However, we do not have a contact term in
Eq. (9). As we have discussed in Ref. [27], the absence of a
contact term in our equation is a direct indication that
Gribov-Zwanziger confinement does not lead to a massive
gluon.
Assuming that ϕðqÞ depends only on jqj, we can

integrate the emission kernel over the angle, and in terms
of the variable of Eq. (6), Eq. (9) takes the form

EϕðκÞ ¼ TðκÞϕðκÞ|fflfflfflfflffl{zfflfflfflfflffl}
kinetic energy

−
Z

dκ0Kðκ; κ0Þϕðκ0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
emission kernel

ð10aÞ

¼ −TðκÞϕðκÞ

−
Z

dκ0Kðκ; κ0Þ
�
ϕðκ0Þ −Gðκ0Þ

GðκÞ ϕðκÞ
�
; ð10bÞ

where

TðκÞ ¼ 1

4
G−1ðκÞfReðm̃2

0I1ðm̃; κÞÞ þ ð1þm2
0ÞI2ðm; κÞg;

ð11aÞ

I1ðm̃; κÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κðκ þ 4m̃Þp ln

� ffiffiffi
κ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ 4m̃

p

−
ffiffiffi
κ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ 4m̃

p
�
; ð11bÞ

I2ðm; κÞ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4mκ þ κ2 − 4
p

× ln

�
κ þ 2m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mκ þ κ2 − 4

p

κ þ 2mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mκ þ κ2 − 4

p
�
; ð11cÞ
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FIG. 1. The first Feynman diagrams with gluon emission, whose sum leads to Γνðq; q0Þ (Lipatov vertex is denoted by the gray blob).

2QT is the momentum transferred by the BFKL Pomeron, a
conjugate variable to the impact parameter.
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Kðκ; κ0Þ ¼ Re

�
m̃0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m̃ðκ þ κ0Þ þ m̃2 þ ðκ − κ0Þ2
p

�
; ð11dÞ

GðκÞ ¼ κ þmþm0

ðκ þmÞ2 þ 1
; ð11eÞ

m̃ ¼ mþ i; m̃0 ¼ 1þ im0: ð11fÞ

In Eq. (10a)–Eq. (11e), we use the variables which are
given in Eq. (6). As has been mentioned, Eq. (6) sets the
scale for the dimensionful observables: the Gribov mass μ2

[see Eqs. (2) and (3)]. In Eq. (11f), we introduce new
variables only to rewrite Eq. (10b) in the most com-
pact form.

III. BASICS OF THE SPECTRUM FOR THE
MASTER EQUATION

A. Equation for the eigenfunctions of the massless
BFKL equation

As has been mentioned, the eigenfunctions of the
massless BFKL equation

ϕBFKLðκ; γÞ ¼ κγ−1 with γ ¼ 1

2
þ iν ð12Þ

form the complete and orthogonal set of functions. Hence,
we can expect that the solution to the master equation can
be written as the sum over these functions. For this reason,
we find it instructive to consider how the emission kernel of
our master equation [see Eq. (10a)] acts on the eigenfunc-
tions of Eq. (12),

Z
dκ0Kðκ; κ0Þκ0γ−1 − χðγÞκγ−1 ¼

Z
∞

0

dκ0Re
�

m̃0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m̃ðκ þ κ0Þ þ m̃2 þ ðκ − κ0Þ2

p
�
κ0γ−1 − χðγÞκγ−1 ð13aÞ

→ κγ−1
�Z

1

0

dtðtγ−1 − 1ÞRe
�
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − tÞ2

p þ m̃0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm̃=κÞ2 þ 2ðtþ 1Þm̃=κ þ ð1 − tÞ2

p
�

þ
Z

1

0

dtðt−γ − 1ÞRe
�
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − tÞ2

p þ m̃0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtm̃=κÞ2 þ 2ðtþ 1Þtm̃=κ þ ð1 − tÞ2

p
��

ð13bÞ

≡κγ−1Pðκ; γÞ; ð13cÞ
where the kernel of massless BFKL χðγÞ has the form [5]

χðγÞ ¼ ψð1 − γÞ þ ψðγÞ − 2ψð1Þ ¼ ψ

�
1

2
þ iν

�
þ ψ

�
1

2
− iν

�
− 2ψð1Þ; ð14Þ

where ψðzÞ is the Euler ψ-function (formula (8.36) of
Ref. [60]).
In Eq. (13b), the region of integration over κ0 is divided

in two: κ0 ≤ κ and κ0 ≥ κ. In the first region, the new
variable is introduced t ¼ κ0=κ, while in the second, the
new variable is t ¼ κ=κ0. In this way, we have both t’s in the

region (0,1). In addition, we subtracted in Eq. (13b) (terms
with 1 in the numerators of the equation) the contribution
from the Regge trajectory [see Eq. (7)].
Using formula (3.211) of Ref. [60], we can express these

integral over t through the Appel F1 function [see Ref. [60],
formulas (9.180)–(9.184)]:

Pðκ; γÞ þ χðγÞ ¼ Re

�
m̃0

�
κ

γðκ þ m̃ÞF1

�
γ;
1

2
;
1

2
; γ þ 1;

κ

κ − m̃ − 2
ffiffiffiffiffiffiffiffiffiffi
−κm̃

p ;
κ

κ − m̃þ 2
ffiffiffiffiffiffiffiffiffiffi
−κm̃

p
�

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ3 þ m̃ð3κ þ m̃Þ2

p
ðγ − 1Þðκ þ m̃Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4κ þ m̃
p F1

�
1 − γ;

1

2
;
1

2
; 2 − γ;

ðκ þ m̃Þ2
κ − m̃ − 2

ffiffiffiffiffiffiffiffiffiffi
−κm̃

p ;
ðκ þ m̃Þ2

κ − m̃þ 2
ffiffiffiffiffiffiffiffiffiffi
−κm̃

p
�

þ ln

�
2

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4κ=m̃

p
�
−

κ

κ þ m̃
ln

�
1

2κ

�
κ þ m̃
m̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̃ð4κ þ m̃Þ

p
þ 3κ þ m̃

	�	�
: ð15Þ

From Eqs. (13b) and (15) [see also Fig. 2(a)], we can see that Pðκ; γÞ is rather small and decreases at large
positive l ¼ ln κ.
Since in Eq. (13b) we subtract the Reggeization term, we have redefined the kinetic term in Eq. (10a), subtracting from

TðκÞ of Eq. (11a) function LðκÞ, which is
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LðκÞ ¼
Z

1

0

dtt
m̃0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðtm̃0=κÞ2 þ 2ðtþ 1Þtm̃0=κ þ ð1 − tÞ2
p þ

Z
1

0

dt
m̃0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm̃0=κÞ2 þ 2ðtþ 1Þm̃0=κ þ ð1 − tÞ2
p

¼ m̃0 ln

�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4κ=m̃
p

2

�
þ κm̃0

κ þ m̃
ln

�
1

2κ

�
κ þ m̃
m̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̃ð4κ þ m̃Þ

p
þ 3κ þ m̃

	�
: ð16Þ

We denote

T̃ðlÞ ¼ TðelÞ − ReLðelÞ: ð17Þ
T̃ðlÞ is plotted in Fig. 2(b).
Using function Pðl; γÞ and T̃ðlÞ, we see that our equation

for the function eðγ−1Þl has the form

ðEþ χðγÞÞeðγ−1Þl ¼ eðγ−1ÞlðPðl; γÞ − T̃ðlÞÞ ¼ eðγ−1ÞlP̃ðl; γÞ:
ð18Þ

In Fig. 3, we plot

EðνÞ ¼ −χðνÞ þ P̃ðl; νÞ; ð19Þ

fixing γ ¼ 1
2
þ iν. Figure 3(a) gives Eq. (19) for

m ¼ m0 ¼ 0, which corresponds to the Gribov gluon
propagator, while in Fig. 3(b), the energy is plotted for
the lattice QCD gluon propagator withm ¼ 1.27 andm0 ¼
3.76 [42].
One can see that the wave functions of the massless

BFKL show up as the eigenfunctions of the master equation
in the kinematic region of large l ¼ ln κ ≫ 1. Generally
speaking, it means that the eigenvalues of Eq. (10a) could
be (1) the same as the massless one or (2) selected out due
to behavior at small κ, leading to the set of the eigenvalues,
which is more restricted than the massless BFKL one.
In addition, of course, could be some discrete states, whose
wave functions decrease more steeply than κγ−1 at large
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values of κ. From the numerical solution (see below), we
see that there is no selection and all energies of the massless
BFKL equations occur as the eigenvalues of the master
equation. We can understand this, since all BFKL eigen-
values are doubly degenerate. Indeed, the eigenvalues of
the massless BFKL equation do not depend on the sign of ν
[see Eq. (14)]. At l < 0, we expect the eigenfunction
of the massive BFKL equation to be constant. Replacing
this behavior by the boundary condition ϕðl ¼ 0; νÞ ¼
Const, we see that we can satisfy this boundary condi-
tion choosing ϕðlÞ ¼ C1ϕBFKLðl; νÞ þ C2ϕBFKLðl;−νÞ ¼
sin ðlνþ φÞ, where φ is the phase. Hence, we do not bring
any selection with this procedure.
However, the eigenfunctions of the massless BFKL

equation appear the eigenfunctions of Eq. (18) also for
κ ≪ 1 (l ¼ ln κ ≪ −1) [see Fig. 3(b)], but only for the
case of m ≠ 0 and m0 ≠ 0 with the eigenvalue E0 ¼
Tðκ ¼ 0Þ ¼ 0.866 for any value of ν [brown line in
Fig. 3(b)]. The independence of ν means that the eigen-
value ω0 is infinitely degenerate. Figure 2(c) shows that in
Eq. (19) EðνÞ ¼ f−χðνÞ þ Pðl; γÞg − T̃ðlÞ the term in f…g
vanishes at l < 0 [see Fig. 2(c)], while T̃ðlÞ approaches a
constant [see Fig. 2(b)].
In principle, such solutions could be rejected for the

master equation if the behavior at small κ cannot be
matched with the behavior at large κ. However, it looks
very unlikely. Indeed, any function of the type ϕðκÞ ¼
Pnð2κ − 1ÞΘð1 − κÞ, where PnðzÞ is the Legendre poly-
nomial [see Ref. [60], formulas (8.91)], is orthogonal to
ϕðκÞ ¼ Const at l < 0 (for n > 1) and satisfies Eq. (18).
The numerical calculations, which we will discuss below,
confirm that E ¼ E0 appears as the eigenvalue of the
generalization of the BFKL equation [see Eq. (10a)].

B. General features of the spectrum

Following the general pattern of Ref. [22], we can
rewrite Eq. (10a) in the coordinate space, introducing

ΨðrÞ ¼
Z

d2qT
ð2πÞ2 e

ir·qTϕðqTÞ: ð20Þ

The equation takes the form

EΨðrÞ ¼ HΨðrÞ ð21Þ

with

H ¼ Tðκ̂Þ|ffl{zffl}
kinetic energy

− UðrÞ|ffl{zffl}
potential energy

¼ Tðκ̂Þ −GðrÞ; ð22Þ

where κ̂ ¼ −∇2
r is the momentum operator and GðrÞ is

equal to

GðrÞ ¼
Z

d2qT
ð2πÞ2 e

ir·qTGðqTÞ ¼ m̃0K0ð
ffiffiffiffi
m̃

p
rÞ

þ m̃0
�K0ð

ffiffiffiffiffiffi
m̃�p

rÞ⟶r≫m
Re

�
m̃0

m̃1=4

ffiffiffiffiffi
π

2r

r
e−

ffiffiffĩ
m

p
r

�
: ð23Þ

For large r, GðrÞ exponentially decreases as one can see
from Eq. (23). Hence, at large r, Eq. (21) takes the form

EΨðrÞ ¼ Tðκ̂ÞΨðrÞ ð24Þ

with the eigenfunctions that have the following form:

ϕðrÞ ∼ ei
ffiffiffiffi
κ2

p
r; κ2 > 0; ϕðrÞ ∼ e−

ffiffiffiffiffiffi
−κ2

p
r; κ2 < 0:

ð25Þ

Denoting the large asymptotic behavior of the eigen-

function as ΨðrÞ !r≫1=μ
exp ð− ffiffiffi

a
p

rÞ, we see that the energy
is equal to

E ¼ Tð−aÞ: ð26Þ

On the other hand, in the region of small r, Eq. (22) reduces
to the massless QCD BFKL equation (see the previous
section and Refs. [5,6])

EΨðrÞΨðrÞ ¼ H0ΨðrÞ; ð27Þ

where [6]

H0 ¼ lnp2 þ ln jrj2 − 2ψð1Þ: ð28Þ

The eigenfunctions of Eq. (27) are ΨðrÞ ¼ r2ð1−γÞ, and the
eigenvalues of Eq. (27) can be parametrized as a function of
γ [see Eq. (14)]. Therefore, for r → 0 we have the
eigenvalue which is equal to

E ¼ χðγÞ: ð29Þ

From Eqs. (26) and (29), we can conclude that the values of
a and γ are correlated, since

E ¼ χðγÞ ¼ Tð−aÞ: ð30Þ

Based on Eq. (29) (see also the previous section), we expect
that the minimum eigenvalue is equal to χð1

2
Þ ¼ −4 ln 2.

From Fig. 4, we can see that Eq. (30) is violated. For
Gribov’s propagator of Eq. (2), TðκÞ is positive for all
values of −∞ < κ < þ∞. For the gluon propagator that
describes the lattice QCD estimates (m ¼ 1.27 and
m0 ¼ 3.76), we can see from Fig. 4(b) that TðκÞ is negative
at κ < 0, and therefore, Eq. (30) can be satisfied.
On the other hand, the estimates of Eq. (26) contradict

the result of Ref. [27] that the eigenfunction of the master
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equation with the Gribov gluon propagator exhibits the
powerlike decrease at long distances. We believe that a
resolution of this inconsistency is intimately related to the
definition of ΨðrÞ. In particular, instead of Eq. (20), we
suggest introducing the following transform to the coor-
dinate space. First, we introduce a new ϕ̃ðκÞ ¼ G−1ðκÞϕðκÞ.
For this function, Eq. (9) takes the form

ωϕ̃ðω; qÞ ¼ −2ωGðqÞϕ̃ðω; qÞ

þ ᾱS

Z
d2q0

π
fG−1ðqÞGðq− q0ÞGðq0Þgϕ̃ðω; q0Þ;

ð31Þ

The eigenfunction in the coordinate space has the form

ΨðrÞ ¼
Z

d2qT
ð2πÞ2 e

ir·qT ϕ̃ðqTÞ; ð32Þ

and the master equation has the form of Eq. (21) with the
potential energy, which has the different form

HΨðrÞ ¼ Tðκ̂Þ|ffl{zffl}
kineticenergy

ΨðrÞ −
Z

d2r0 Uðr; r0Þ|fflfflffl{zfflfflffl}
potentialenergy

Ψðr0Þ ð33Þ

with

Uðr; r0Þ ¼
Z

d2qT
ð2πÞ2 e

ir·qT

×
Z

d2q0T
ð2πÞ2 e

ir0·q0TfG−1ðqÞGðq − q0ÞGðq0Þg

¼
Z

d2r00K0ððmþm0Þjr − r00jÞ

× ðð−∇2
r00 þmÞ2 þ 1ÞGðr00ÞGðr00 − r0Þ: ð34Þ

One can see that for m ¼ m0 ¼ 0 the potential energy
Uðr; r0Þ ∝ lnðrÞ and Eq. (24) turns out to be incorrect.
For m ≠ 0 and m0 ≠ 0, the potential energy decreases
exponentially at long distances. Hence, in this case,
Eq. (24) holds.

C. Eigenfunctions in the vicinity of E0 =Tðκ = 0Þ
As we have discussed above, there is a possibility that

the master equation has the eigenvalues in addition to the
eigenvalues of the QCD BFKL equation. These states
should have the wave functions that decrease much more
steeply than the eigenfunction of Eq. (12). From Fig. 3, one
can expect that the vicinity of E ¼ E0 ¼ Tðκ ¼ 0Þ can
provide such states. Indeed, in the vicinity, E → E0 TðκÞ
takes the form

TðκÞ ¼ Re

�
m̃0m̃m̃�

4ðmþm0Þ
�
m̃0

m̃
þ i
2
m̃0

� ln
�
m̃�

m̃

�	
þ κm̃0

4

��
1 −

m̃0m̃0
�

ðmþm0Þ2
��

m̃0

m̃
þ i
2
m̃0

� ln
�
m̃�

m̃

��

þ m̃m̃�

mþm0

�
−

m̃0

6m̃2
þ m̃0

�
�
−
1

2
þ i
4
m ln

�
m̃�

m̃

���	�
: ð35Þ

≡E0 þ E0
0κ ð36Þ

Equation (10a) takes the following form in vicinity of κ → 0:

ðE − E0 − E0
0κÞϕðκÞ ¼ −

Z
dκ0Kðκ ¼ 0; κ0Þϕðκ0Þ − κ

Z
dκ0

∂Kðκ; κ0Þ
∂κ






κ¼0

ϕðκ0Þ þOðκ2Þ: ð37Þ
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FIG. 4. TðκÞ vs κ for Gribov’s propagator of Eq. (2) (m ¼ m0 ¼ 0) and for the gluon propagator that describes the lattice QCD
estimates (m ¼ 1.27 and m0 ¼ 3.76). The red line shows E ¼ −4 ln 2, which is the ground state for the massless BFKL equation.
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Introducing

ϵ ¼ E − E0

E0
0 −

R
dκ0 ∂Kðκ;κ

0Þ
∂κ jκ¼0

, one can see from Eq. (37) that ϕðκÞ has a singularity,

ϕðκÞjκ→ϵ ¼
Const
ϵ − κ

; ð38Þ

or, in other words, the wave function has the form

ϕðκÞ ¼ Const
ϵ − κ

þ ϕbgðκÞ; ð39Þ

where ϕbg is the function which has no singularities. Since
the eigenvalue E ¼ E0 is multiple degenerate the sum of
functions of Eq. (39) is also an eigenfunction.
It is instructive to note that the eigenfunctions of Eq. (39)

does not appear for the QCD BFKL equation. As we have
seen, the origin of such eigenfunctions is in the fact that
typical κ0 in Eq. (37) are about the values of mass and not
equal to zero.

D. Summary

Concluding this section, we wish to emphasize two
results that we have proved. First, the eigenvalues of the
massless BFKL equation, generally speaking, are expected
to be the eigenvalues of the master equation. In principle, it
is possible that the behavior of the wave functions at small
values of κ could select out some of the eigenvalues of the
BFKL equation in QCD. However, because of double
degeneracy of each of the massless BFKL eigenvalues [see
that Eq. (14) has symmetry ν → −ν], the boundary con-
ditions at κ → 0 do not lead to a loss of the eigenvalues of
the master equation in comparison with the massless BFKL
equation.
Second, it is possible that the eigenvalues of the master

equation have a richer structure than the eigenvalues of the
BFKL equation in QCD. Indeed, there could exist states
with the wave functions that are suppressed at large κ:
ϕðκÞ ≪ κ−

1
2
þiν. An example of such a function could be

Eq. (38). As we see from Fig. 3, the eigenfunctions with
E ¼ E0 have infinite degeneracy, and all of them are
eigenfunctions that have not been present in the massless
BFKL equation.
The separate problem is the state with the wave function

that decreases more steeply than the eigenfunction of the
massless BFKL equation but with the eigenvalue which is
smaller than Emin ¼ −4 ln 2.
At the moment, we cannot answer this question without

finding the numerical solution to the master equation.

IV. NUMERICAL SOLUTION

A. General approach

Generally speaking, we need to solve the equation which
has the structure

EϕðκÞ ¼
Z

dκ0Kðκ; κ0Þϕðκ0Þ; ð40Þ

where K is defined in Eq. (10b). The advantage of using
Eq. (10b) in comparison with Eq. (10a) is discussed in
Appendix B of Ref. [27].
For the numerical solution, we discretize the continuous

variables κ and κ0 using the logarithmic grid fκng with
N þ 1 nodes,

κn ¼ κmin expðnΔκÞ; Δκ ¼
1

N
lnðκmax=κminÞ; n¼ 0;…;N;

ð41Þ

where the values of κmin and κmax are fixed. In the most
details, we consider the case with κmin ¼ 10−10, κmax ¼
1065 and N ¼ 2000, but we investigated the dependence of
the solution on the values of κmin, κmax, and N. In the
discrete variables, Eq. (40) can be approximated in the form

EϕðκnÞ ¼
XN
m¼0

κmΔκKðκn; κmÞϕðκmÞ: ð42Þ

Introducing the notationsϕðκnÞ≡ϕn and κmΔκKðκn;κmÞ≡
Knm, we can rewrite Eq. (42) in the matrix form

Eϕn ¼
XN
m¼0

Knmϕm or Eϕ ¼ Kϕ; ð43Þ

where vector ϕ has N þ 1 components ϕn and K is the
ðN þ 1Þ × ðN þ 1Þ matrix. We need to find the roots of the
characteristic polynomialpðEÞ of thematrixK − EIwhereI
is the identity matrix. Hence, we need to solve the secular
equation

pðEÞ ¼ det ðK − EIÞ ¼ 0: ð44Þ

We solve Eq. (44) for several equations. First, we found
the solution to our new Eq. (10b) in two cases: for the
Gribov propagator of Eq. (2) and for the propagator of
Eq. (11e). In the first case, we need to put m ¼ 0 and
m0 ¼ 0 in Eqs. (11a)–(11e), while in the second, we need
to choose m ¼ 1.27 and m0 ¼ 3.76 in these equations. It
should be recalled that we use the dimensionless variables
of Eq. (6) and the scale for dimensionful observables is
μ2 ¼ 0.48 GeV2 [44]. Second, we solve the original BFKL
equation for QCD, which has the form
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EϕBFKLðκÞ ¼ −
Z

dκ0

jκ − κ0j
�
ϕBFKLðκ0Þ −

κ

κ0
ϕBFKLðκÞ

�

−
Z

κdκ0

κ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 4κ02

p ϕBFKLðκÞ: ð45Þ

We believe that we need to compare our numerical
procedure with the equation which has the analytical
solution, both to check the accuracy of our numerical
estimates and to evaluate our transition to the continuous
limit. Recall that the numerical solution gives the discrete
spectrum of the eigenvalues instead of the continuous one.

In addition, we solve the equation, which was derived in
Ref. [22] for non-Abelian gauge theory with the Higgs
mechanism for mass generation. This theory is not QCD,
since it has no confinement of quarks and gluons. However,
it has the same color structure as QCD and introduces the
dimensional scale: the mass of Higgs boson. Solving the
BFKL equation for this theory, we could find out what is
more essential: the new dimensional scale or specifics
related to the confinement. Below, we will call this
approach “the model,” and the main BFKL equation for
this model takes the form

EϕðκÞ ¼ κ þ 1ffiffiffi
κ

p ffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p ln

ffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p þ ffiffiffi
κ

p
ffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p
−

ffiffiffi
κ

p ϕðκÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

kinetic energy term

−
Z

∞

0

dκ0ϕðκ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ − κ0Þ2 þ 2ðκ þ κ0Þ þ 1

p
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

potential energy term

þ N2
c þ 1

2N2
c

1

κ þ 1

Z
∞

0

ϕðκ0Þdκ0
κ0 þ 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

contact term

: ð46Þ

This equation has been investigated in detail. In Ref. [22], it
is proven that the solution of this equation coincides with
the solution to the massless BFKL equation, which is
known analytically and can be used as a control of the
accuracy of our numerical calculations.

B. Eigenvalues: The general characteristics

The eigenvalues of these four equations are shown in
Fig. 5. One can see that (1) numerical estimates do not
show the discrete eigenvalues with energy E < Emin ¼
−4 ln 2, where Emin is the minimal energy of the massless
BFKL equation, and (2) none of the eigenvalues of the
massless BFKL equation has been selected out in accord
with our expectations in Sec. III A.

From Fig. 5, we see that all eigenvalues can be divided in
three regions: the eigenvalues En ≤ E0 ¼ Tðκ ¼ 0Þ, the
multiply degenerate eigenvalue E0, and En ≥ E0.
For Emin ≤ En ≤ E0, there are no other eigenvalues

except the massless BFKL ones. Indeed, we can describe
these eigenvalues using the following formulas:

EðnÞ ¼ −2ψð1Þ þ ψ

�
1

2
þ iβðnÞ

�
− ψ

�
1

2
− iβðnÞ

�

βðnÞ ¼ aβðnþ 1Þ; aβ ¼ cβ= ln ðκmax=m2
βÞ: ð47Þ

For the QCD BFKL equation, cβ ¼ 3.015 and
m2

β ¼ κmin, while for all other three equations, we can
put cβ ¼ 3.140 and m2

β ¼ 0.0042 [see Fig. 9(a)]. Hence,

(a) (b)

FIG. 5. The eigenvalues En of four equations: the BFKL equation in QCD [BFKL; see Eq. (45)], the BFKL equation for the modle
[Higgs; see Eq. (46)], for Eq. (10b) in the case of the Gribov propagator (G-Z, m ¼ 0), and in the case of thelattice QCD propagator of
Eq. (3) (G-Z,m ≠ 0). The solid lines in Fig. 5(b) show the eigenvalues calculated using Eq. (47) with βn, that were taken from the pattern
of zeros of the eigenfunctions given by Eqs. (49), (50), and (52). All results correspond to solutions with κmin ¼ 10−10, κmax ¼ 1065, and
grid size N ¼ 2000 [see Eq. (41)].
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Fig. 5(b) and Table I demonstrate a new phenomenon: the
eigenvalues of all three equations, which introduce a
dimensional scale in the BFKL approach, turn out to be
the same. Actually, they are the eigenvalues of the QCD
BFKL equation, as shown in Eq. (47) and Fig. 5(b). In
Fig. 5, the eigenvalues from Eq. (47) are shown by the
solid lines, and one can see that all these values for
En ≤ E0 can be perfectly described by this equation.
Equation (47) can be interpreted as an indication that the
transition to the continuous limit reduces to replacement

1
2
þ iβðnÞ → 1

2
þ iν≡ γ. In these new variables, the eigen-

values of the QCD BFKL looks familiar [2]:

EðγÞ ¼ −2ψð1Þ þ ψðγÞ − ψð1 − γÞ: ð48Þ

Table I, in which we put the first 20 roots of the secular
equation, illustrates these points. First, we see that the
solution to the QCD BFKL equation gives the eigenvalues,
which are quite close to the analytical estimates [see
Eq. (47)]. This indicates that our method of numerical

(a)

FIG. 6. The first several eigenvalues of Eq. (10a) vs lnðκmaxÞ. Figure 6(a) for the Gribov propagator of Eq. (2) and Fig. 6(b) for the
lattice propagator of Eq. (3).

TABLE I. The first 20 eigenvalues En for the BFKL equation in QCD [QCD; see Eq. (45)]; for the model,
developed in Ref. [22] [Higgs; see Eq. (46)]; for Eq. (10b) in the case of the Gribov propagator (G-Zm ¼ 0); and in
the case of lattice QCD propagator of Eq. (3) (G-Z, m ≠ 0). The last column contains values defined by Eq. (47).

n En (QCD) En (Higgs) En (G-Z, m ¼ 0) En (G-Z, m ≠ 0) En [Eq. (47)]

0 −2.7675 −2.7657 −2.7660 −2.7666 −2.7657
1 −2.7519 −2.7448 −2.7457 −2.7483 −2.7452
2 −2.7261 −2.7103 −2.7123 −2.7178 −2.7114
3 −2.6905 −2.6630 −2.6665 −2.6753 −2.6650
4 −2.6456 −2.6036 −2.6088 −2.6211 −2.6067
5 −2.5919 −2.5332 −2.5403 −2.5561 −2.5377
6 −2.5301 −2.4529 −2.4620 −2.4810 −2.4588
7 −2.4610 −2.3640 −2.3751 −2.3968 −2.3715
8 −2.3854 −2.2677 −2.2808 −2.3048 −2.2768
9 −2.3040 −2.1653 −2.1802 −2.2060 −2.1760
10 −2.2177 −2.0581 −2.0746 −2.1018 −2.0705
11 −2.1273 −1.9472 −1.9651 −1.9932 −1.9612
12 −2.0336 −1.8337 −1.8528 −1.8815 −1.8492
13 −1.9373 −1.7186 −1.7387 −1.7675 −1.7356
14 −1.8391 −1.6029 −1.6236 −1.6523 −1.6212
15 −1.7397 −1.4872 −1.5083 −1.5368 −1.5068
16 −1.6396 −1.3724 −1.3936 −1.4215 −1.3930
17 −1.5394 −1.2588 −1.2800 −1.3072 −1.2804
18 −1.4395 −1.1470 −1.1680 −1.1944 −1.1695
19 −1.3403 −1.0374 −1.0579 −1.0835 −1.0605
20 −1.2421 −0.9303 −0.9501 −0.9748 −0.9539
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solving provides a good accuracy. As we can see, in both
cases, the lowest eigenvalue becomes quite close to
Emin ¼ −4 ln 2 and the difference is negligibly small (of
the order of 5 × 10−3 for κmin ¼ 10−10 and κmax ¼ 1065).
Figure 6 shows the dependence of the first seven roots
versus the value of κmax. One can see that when κmax grows
(κmax → ∞) the distance between neighboring roots
decreases rapidly, inferring the smooth transition to the
continuous limit.
As we can see from Fig. 5 at En ¼ E0 ¼ Tðκ ¼ 0Þ for

three equations, that introduce a new dimensional scale, we
have multiple degenerate eigenvalues. For the Gribov
propagator, this degeneration is not very large, but in other
cases, it is so large that we can expect something like Bose-
Einstein condensation at this energy. We have discussed the
general structure of the eigenfunction at this value of
energy in Sec. III C and will consider it below. For the
scattering amplitude, all these eigenfunctions correspond to
the cross sections that decrease as a power of energy and,
because of this, do not show up in the high energy
scattering processes.

C. Eigenfunctions for E ≤ E0 =Tðκ= 0Þ
For the QCD BFKL equation [see Eq. (45)], the

eigenfunctions are given by Eq. (12), and for the numerical
solutions, they take the form

ϕBFKL
n ðκÞ ¼ αnffiffiffi

κ
p sin ðβn ln κ þ φnÞ: ð49Þ

The eigenfunctions for Eq. (46) are discussed in Ref. [22]
and can be described as follows:

ϕnðκÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p sin ðβnLnðκÞ þ φnÞ; ð50Þ

where

LnðκÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p þ ffiffiffi
κ

p
ffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p
−

ffiffiffi
κ

p ⟶
κ≫1

lnðκÞ ð51Þ

Several examples of the eigenfunctions for Eq. (10b)
are shown in Fig. 7. One can see that the number of
zeros follows the usual pattern of a quantum mechanical
approach: the minimum energy state has no zeros. The
next has one, and so on. At large κ, ϕnðκÞ ∝ sin ðαβn ln κÞ,
or in other words, ϕnðκÞ ¼ C1ϕBFKLðκ; 12 þ iβnÞ þ
C2ϕBFKLðκ; 12 − iβnÞ, where ϕBFKLðκ; γÞ are given by
Eq. (12).
For κ ≥ 1, all eigenfunctions can be parametrized in the

following way:

ϕnðκÞ ¼
αnðκ þmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ þ anÞ3

p sin ðβnLnðκÞ þ φnÞ; ð52Þ

where

LnðκÞ ¼ κ

4
fReðm̃0

2I1Þ þ m̃0m̃0
�I2g⟶κ≫1

ln κ: ð53Þ

Parameter βn has the simple form defined by Eq. (47):

βn ¼ aβðnþ 1Þ; aβ ¼
3.140

lnðκmax=m2
βÞ
: ð54Þ

It was found that for the Gribov propagator (m ¼ 0,
m0 ¼ 0) and for the propagator with m ≠ 0, m0 ≠ 0 the
same m2

β ¼ 0.0042 can be used [see Fig. 9(a)]. While φn

needs a bit more complicated parametrization:

(a) (b)

FIG. 7. The examples of the eigenfunctions of Eq. (10b). Figure 7(a) for the Gribov propagator of Eq. (2), i.e., m ¼ 0; m0 ¼ 0 in
Eq. (11e). Figure 7(b) for the lattice QCD propagator of Eq. (11e) with m ¼ 1.27; m0 ¼ 3.76. Functions ϕnðκÞ for n ¼ 0, 1, 2 and 10.
One can see that every ϕnðκÞ has n zeros.
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φn ¼ aφ;0 þ aφ;1nþ aφ;2ðn − nφÞ3: ð55Þ

For κmax ¼ 1065, we obtain the following values for
parameters aφ;i:

aφ;0 ¼ 0.486ð1.520Þ; aφ;1 ¼ 0.0350ð−0.0223Þ;
aφ;2 ¼ 0.425 × 10−4ð1.211 × 10−4Þ; nφ ¼ 21.71ð21.76Þ:

ð56Þ

In Eq. (56), the values of aφ;i for the casem ≠ 0; m0 ≠ 0 are
given in parentheses. Figure 8 shows the n dependence of
βn and ϕn for n ≤ 40. One can see that the linear
dependence of Eq. (54) holds for βn, but φn shows a more

complicated pattern: φn ∝ n with variations described by
Eq. (55). Figure 9(a) shows the dependence of aβ on the
value of κmax for Gribov’s (m ¼ 0) and lattice QCD (m ≠ 0)
gluon propagators. One can see that Eq. (54) describes this
dependence quite well.
As far as dependence on κmax of βn, φn, and an is

concerned, we found that they have quite a simple scaling
property, which allows us to relate their values obtained
with different κmax: values of some parameter Pn ¼
Pðn; κmax1Þ corresponding to κmax1 fit well to results
Pðn; κmax2Þ after simple change of the scale of n,

Pðn; κmax1Þ ≈ PðnS; κmax2Þ; S ¼ lnðκmax2Þ
lnðκmax1Þ

ð57Þ

(a) (b)

FIG. 8. Parameters βn [Fig. 8(a)] and φn [Fig. 8(b)] of Eq. (52) for the eigenfunctions ϕnðκÞ vs n. Presented data correspond to the
eigenfunctions obtained with κmin ¼ 10−10 and κmax ¼ 1065. One can see that βn has simple linear dependence while φn has a more
complicated form given by Eq. (55). Solid lines correspond to the proper parametrizations [i.e., Eq. (54) for βn and Eq. (55) for φn].

(a) (b)

FIG. 9. Figure 9(a): aβ vs κmax for Gribov’s and lattice QCD gluon propagators. The solid line corresponds to Eq. (54) with
m2

β ¼ 0.0042 for both cases. Figure 9(b): βn of Eq. (52) for the eigenfunctions ϕnðκÞ obtained with κmin ¼ 10−10 and κmax ¼ 1065 at
κ > 1 vs n.
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Such scaling behavior for βn follows from Eq. (54),
while Fig. 10 illustrates such κmax scaling for parameter φn.
The figure shows parameters obtained at different κmax in
the range from 1020 to 1065. Sets of φwere scaled on nwith
the proper coefficient [see Eq. (57)] to κmax ¼ 1065. One
can see that “scaled” points are in good agreement with
original values for κmax ¼ 1065.
For the Gribov propagator, the eigenfunction ϕnðκÞ ∝ κ

in the region of small κ. In other words, the eigenfunctions
in the coordinate space exhibit the powerlike decrease at
long distances. It turns out that for small κ we can use
Eq. (52), which introduces the dependence of parameter an
on n. Figure 11(a) shows the scaling behavior of Eq. (57)
for an in the case of Gribov’s propagator. It should be

stressed that the same scaling behavior holds for the case
of m ≠ 0.
Figure 11(b) shows the dependence of an on n. From this

figure, we see that an ∝ n2 for the Gribov’s propagator with
an ¼ 0.3 at n ¼ 0. In other words, the typical κ turns out to
be in the region of κ ¼ 0.27 ÷ 0.75. It should be stressed
that Eq. (52) describes quite well the behavior of the
eigenfunctions both at large κ ≥ 1 and at small κ ≤ an, but
at κ ∼ an, Eq. (52) does not lead to a good fit of the
eigenfunctions. For the case of the lattice QCD propagator
[Eq. (11e) with m ¼ 1.27 and m0 ¼ 3.76], Fig. 11(b)
shows that an decreases with n approaching an ≈ 0.4 at
n → 40. One can see that for small n the typical values of
κ ∼ 1. and the range of typical κ is 0.4 ÷ 1. We would like to

(a) (b)

FIG. 10. Scaling on κmax for parameter φn. Values on Fig. 10(a) correspond to the Gribov’s gluon propagator and on Fig. 10(b) to the
lattice QCD propagator. Open symbols denote parameter obtained at different κmax ¼ 1020; 1030; 1045; 1065. Sets of φ scaled on n to
κmax ¼ 1065 are denoted by appropriate solid symbols.

(a) (b)

FIG. 11. Values of parameter an from the Eq. (52) vs n. Figure 11(a) demonstrates scaling property of this parameter for the case with
Gribos’s propagator. Figure 11(b) shows an for both variants (i.e., Gribov’s and QCD propagators) corresponding to eigenfunctions with
κmin ¼ 10−10 and κmax ¼ 1065.
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stress that the value of an cannot be viewed as a typical
scale for the κ dependence of the eigenfunctions. Indeed,
one can see directly from Fig. 7 that the typical κ is about
κ ∼ 1 for both cases.

D. Eigenfunctions for En =E0 =Tðκ= 0Þ
As we have discussed above, the solution leads to the

multiple degenerate state at En ¼ E0 ¼ Tðκ ¼ 0Þ. Using
Eq. (47), we can estimate the value of β0, viz., E0¼
−2ψð1Þþψð1

2
þiβ0Þþψð1

2
−iβ0Þ. The corresponding eigen-

function index n, where the first degenerate eigenvalue
appears, can be estimated using Eq. (54): the degenerate
eigenfunction sequence starts when βn reaches value β0.
For the Gribov propagator, β0 ≈ 0.85 [see Fig. 8(a)] leads
to the value n ¼ 41 in the case with κmax ¼ 1065, while for
the RGZ gluon propagator, β0 ≈ 0.92 gives n ¼ 45 [see
Fig. 8(a)]. At such values of n, the κ behavior of the
eigenfunctions shows a discontinuity in κ: of course,
numerical values of eigenfunctions at ln ðκ=κminÞ ¼ nΔ
[see Eq. (41)] are still finite, but the values in the
neighboring nodes have a different sign and derivative,
indicating that eigenfunctions have pole in κ located
somewhere between nodes.
The structure of the eigenfunctions with this eigenvalue

is rather simple for the lattice (RGZ) QCD gluon propa-
gator [see Eq. (11e) with m ¼ 1.27 and m0 ¼ 3.76], and it
is close to 1, which is discussed in Ref. [22] for Eq. (46).
The eigenfunctions for En ¼ E0 have poles in κ ¼ κp;n as
has been shown in Sec. III C. Actually, the minimal value of
κp;n is equal to κmin [strictly speaking, the first pole is
located somewhere between the first node κ0 ¼ κmin and
the next node κ1 ¼ κmin expðΔκÞ ≈ κminð1þ ΔκÞ]. With

each increase of the n, the pole moves exactly to the next
interval on κ (i.e., the second pole is located between κ1 and
κ2 and so on). This sequence terminates when the pole
reaches the maximal value of κ ¼ κ0 ≈ 3, where κ0 is the
location of the first zero of the eigenfunction of Eq. (52).
All eigenfunctions with En ¼ E0 have the same number of
zeros. All these features can be seen from Fig. 12.
Generally, for m ≠ 0 and m0 ≠ 0, the eigenfunction can

be approximated by the following expression:

ϕð approxÞ
n ðκÞ ¼ ap;n

κp;n − κ
þ ϕnðκ;Eq: ð52ÞÞ

¼ ap;n
κp;n − κ

þ αnðκ þmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ þ anÞ3

p sinðβ0LnðκÞ þ φnÞ:

ð58Þ

Eq. (58), having β0 [see Fig. 9(b)], which does not depend
on n, reflects the fact that for all these states the behavior
of the eigenfunctions at large κ ≥ 1 can be described by
one function with the same number of zeros. Figure 13

shows the n dependence of other parameters of ϕð approxÞ
n ðκÞ

[see Eq. (58)]. One can see that the position of the
pole κp;n and its residue ap;n are proportional to n
(lnðκp;nÞ ∝ n; lnðap;nÞ ∝ n), while the parameters of
ϕnðκ;Eq: ð52ÞÞ: an and φn do not depend on n in the
range n ¼ 50–250 which corresponds to En ¼ E0. The
value of an ¼ 1 gives us the typical transverse momentum
q ¼ μ [see Eq. (6)].
For Gribov’s gluon propagator, the structure of the

eigenfunction with En ¼ E0 is much more complex.
First, one can notice from Fig. 14 that the number of zeros

(a) (b)

FIG. 12. The examples of the eigenfunctions with the eigenvalue En ¼ E0 ¼ Tðκ ¼ 0Þ for the lattice QCD gluon propagator
[Eq. (11e) with m ¼ 1.27 and m0 ¼ 3.76]. Figure 12(a) shows ϕnðκÞ vs κ with n ¼ 50, 150, 250 for which En ¼ E0 and ϕ400ðκÞ with
E400 > E0. One can see that all eigenfunctions with En ¼ E0 have the same number of zeros. The same eigenfunctions are shown in
Fig. 12(b) but in the region of small κ ≤ 100. It is clearly seen that ϕnðκÞ have the pole whose position moves from κmin to κ ≈ 1.
Function ϕ400ðκÞ has a different number of zeroes, which corresponds to increase of the value of β in Eq. (58).
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is not the same for these eigenfunction but β0 in Eq. (59)
changes with n rather slowly [see Fig. 8(a) for n in the
region n ¼ 41 ÷ 70].
Second, we see that ϕnðκÞ with En ¼ E0 have two poles.

The first pair of poles κp;1 < κp;2 appears near κ ≈ 1. With
the increase of n, the smaller one (κp;1) decreases, while
κp;2 increases. On each increment of n, only one of κp;i
moves to the neighboring κ interval between nodes. So, the
distance between these poles (in terms of the index of κ
nodes) each time increases exactly on 1. The contribution
of each of these poles vanishes at κ → 0, and residues of
these poles can have the same or opposite sign.
Third, the positions of the poles are in the region

κ ¼ 0.1 ÷ 10, and they exist also in the eigenfunctions
with En > E0. Fourth, two poles in the eigenfunctions have
close positions. Equation (59) reflects the main features that
we have discussed, but the actual structure of the eigen-
function turns out to be much more complex. However, for
the Gribov propagator (m ¼ 0; m0 ¼ 0), the eigenfunction
vanishes at κ ¼ 0 and can be approximated as follows:

ϕð approxÞ
n ðκÞ ¼ κap;1ðnÞ

κ2 − κ2p;1ðnÞ
� κap;2ðnÞ
κ2 − κ2p;2ðnÞ

þ αnκffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ þ anÞ3

p sin ðβ0Lnκ þ φnÞ: ð59Þ

The appearance of two poles in Eq. (59) looks natural
(see Sec. III C) due to multiple degeneracy of this eigen-
value. Indeed, due to this, the sum of two functions with
one pole in each is also the eigenfunction. Figure 15
demonstrates that the region of n for the degenerate states
with En ¼ E0 is very narrow but the structure of the
eigenfunction with two poles lasts for En > E0.

E. Eigenfunctions for En > E0 =Tðκ= 0Þ
For En > E0, the eigenfunctions take the form for κ > 1

ϕnðκÞ ¼
αnffiffiffi
κ

p sin ðβnLnðκÞ þ φnÞ ð60Þ

(a) (b)

(c) (d)

FIG. 13. Parameters of the wave functions with En ¼ E0 vs n. Figure 13(a) shows the position of the pole kp;n in Eq. (52) as a function
of n, while Fig. 13(b) presents the n dependence of the residue ap;n. Figure 13(c) and Fig. 13(d) describe the dependence of parameters
an and φn on n.
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with βn ∝ n for both Gribov’s and lattice QCD gluon
propagators, as seen from Fig. 9(b). One can see from
Fig. 5(a), that, for κ ≫ 1, En tends to the same asymp-
totic values for all four equations that we have studied in
this paper. For κ < 1, the eigenfunctions have the similar
structure as for En ¼ E0; i.e., they have one pole
[see Fig. 13(a)] for the lattice gluon propagator and two
poles for the Gribov one [see Fig. 15(b)]. Since
these eigenvalues correspond to the Pomeron intercept

ωIP ¼ −ᾱSEn < ω0 ¼ −ᾱSE0 < 0, they do not contribute
to the high energy behavior of the scattering amplitude.

V. SCATTERING AMPLITUDE

A. Green’s function of the BFKL Pomeron for the
Gribov-Zwanziger confinement

The Green’s function of the BFKL equation on Y ¼
lnð1=xÞ representation takes the general form

(a) (b)

FIG. 15. The eigenvalues for the Gribov gluon propagator [see Eq. (11e) with m ¼ 0 and m0 ¼ 0] vs n [Fig. 15(a)]. The value of n at
which energy En reaches E0 can be found from the equation βn ¼ β0 ¼ 0.85. Figure 15(b) shows the dependence of two poles in
Eq. (59) on n at different values of κmax. Note that the minimal value of n when two poles κp;i appear is determined by the same
condition βn ¼ β0 ¼ 0.85.

(a) (b)

FIG. 14. The examples of the eigenfunctions with the eigenvalue En ¼ E0 ¼ Tðκ ¼ 0Þ for Gribov’s gluon propagator [Eq. (11e) with
m ¼ 0 and m0 ¼ 0]. Figure 14(a) shows ϕnðκÞ vs κ with n ¼ 50, 63, 73 for which En ≈ E0 and ϕ103ðκÞ with E103 > E0. (For better
clarity, some functions were scaled: values for n ¼ 63 are multiplied by 103, n ¼ 73 are multiplied by 106, and n ¼ 103 are multiplied
by 109.) One can see that all eigenfunctions with En ¼ E0 have approximately the same number of zeros, but β in Eq. (59) is not a
constant but slowly grows as n increase. In Fig. 14(b), the same functions are shown in the region of small κ ≤ 100. It is clearly seen that
ϕnðκÞ have two poles whose positions move in opposite directions from κ ¼ 1. The open circles in Fig. 14(b) show the region where the
function is negative.
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GðY;κfinj0;κinÞ ¼
X∞
n¼0

Z
ϵþi∞

ϵ−i∞

dω
2πi

1

ω−ωn
eωYϕnðκinÞϕnðκfinÞ

¼
X∞
n¼0

e−ᾱSEnYϕnðκinÞϕnðκfinÞ: ð61Þ

At high energies, the main contribution stems from the
minimal energy. However, we cannot restrict ourselves by
calculating only one term in Eq. (61). To demonstrate this,
we use Eq. (52) for the approximate eigenfunctions, which
can be written in the form

ϕapprox
n ¼ ΦnðκÞ sin ðaβðnþ 1ÞLnðκÞ þ φnÞ; ð62Þ

where

ΦnðκÞ ¼
αnðκ þmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ þ anÞ3

p : ð63Þ

The eigenvalues of Eq. (47) we calculate in diffusion
approximation in which

ωðnÞ ¼−ᾱSEn ¼ωBFKL−Da2βn
2þOðn3Þ ¼ωBFKL −Dβ2;

ð64Þ

where ωBFKL ¼ 4 ln 2ᾱS; D ¼ 14ζð3ÞᾱS. Therefore, in this
approximation, the Green’s function takes the form

GðY; κfinj0; κinÞ ¼ eωBFKLY
X∞
n¼0

ϕnðκfinÞϕnðκinÞe−DYa2βn
2

→ eωBFKLY

Z
∞

0

dβϕðκfin; βÞϕðκin; βÞe−DYβ2 :

ð65Þ

Taking the integral over β in Eq. (65), we obtain the
following Green’s function at large values of Y:

GðY; κfinj0; κinÞ ¼ Φ0ðκfinÞΦ0ðκinÞ
1

2
eωBFKLY

ffiffiffiffiffiffiffi
π

DY

r

×

�
e
−ðLnðκfinÞ−LnðκinÞÞ2

4Da2
β
Y − e

−
ðLnðκfinÞþLnðκinÞþ2aϕÞ2

4Da2
β
Y

�
:

ð66Þ

One can see that, at large Y, GðY; κfinj0; κinÞ ∝
ðDYÞ−3=2eωBFKLY , which should be compared with the
massless BFKL case for which GðY; κfinj0; κinÞ ∝
ðDYÞ−1=2eωBFKLY .
These estimates show that we need to sum the contri-

butions of the eigenvalues in the vicinity of n ¼ 0. The
source of such a contribution can be seen from the first two
components of the sum over n in Eq. (61), which can be
rewritten as

GðY; κfinj0; κinÞ ∝ Φ0ðκfinÞΦ0ðκinÞeωBFKLY

×

�
1þΦ1ðκfinÞΦ1ðκinÞ

Φ0ðκfinÞΦ0ðκinÞ
eΔω1Y

�
; ð67Þ

where Δω1 ¼ −ᾱSðE0 − E1Þ.
For κmax → ∞Δω1 → 0, however, the product Δω1Y at

large κmax and Y is undefined. Hence, we have to perform
numerical estimates for the sum of Eq. (61) to determine the
answer. We will discuss such a kind of estimate below. At
the moment, we wish to emphasize that, since in the
vicinity of n ¼ 0 the spectrum of the master equation
coincides with the QCD BFKL equation, one can see that
the influence on the asymptotic behavior of the scattering
amplitude due to Gribov-Zwanziger confinement is rather
small. Indeed, as we have seen from the above estimates,
we obtain extra suppression of the scattering of the order of
1=ðDYÞ for our case.

B. Transverse momentum distribution in the BFKL
Pomeron for the Gribov-Zwanziger confinement

Using Eq. (61), we can find the scattering amplitude,
which will be equal to

NðY; κÞ ¼
X∞
n¼0

cne−ᾱSEnYϕnðκÞ;

with cn ¼
Z

dκinϕnðκinÞNðY ¼ 0; kinÞ; ð68Þ

FIG. 16. The contour with constant κNðY; κÞ (see dashed line)
for the QCD BFKL equation and for the BFKL equation for
Gribov-Zwanziger confinement: the blue curve is for m ¼ 0, and
the red one is for m > 0.
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where NðY ¼ 0; κinÞ is the initial condition for the scatter-
ing amplitude at Y ¼ 0. In Fig. 16,NðY ¼ 0; κinÞ is taken to
be equal to 1=ðκ þ 1Þ2. We plot in Fig. 16 the contours on
which function κNðY; κÞ [see Eq. (68)] is constant. In QCD,
we have transverse momentum distribution, which depends
on j ln κj. The QCD evolution results in the increase of
j ln κj with Y. Such an increase leads to two possible
branches (depending on different sign of ln κ) with increas-
ing and decreasing average transverse momentum. Such
behavior is seen in Fig. 16.
For our master equation, one can see that the confine-

ment cuts the small transverse momenta and the average
κT are larger than the values of κT in initial conditions,
which we consider κin ¼ 1, and they grow with Y.
Therefore, introducing the Gribov-Zwanziger confinement
in the framework of the BFKL equation, we obtain the
transverse momentum distribution, which is determined by
the behavior of the scattering amplitude at large transverse
momenta (at short distances), where we can trust the
perturbative QCD approach.

VI. CONCLUSIONS

In this paper, we solved the new evolution equation for
high energy scattering amplitude that stems from the
Gribov-Zwanziger approach to the confinement of quarks
and gluons [see Eq. (10a)]. We find the results of this
solution quite surprising and instructive for future develop-
ment of high energy physics.
First, the energy dependence of the scattering amplitude

turns out to be the same as for QCD BFKL evolution. In
particular, the eigenvalues of the new equation, which
exceed ω0 ¼ −ᾱSE0 ¼ −ᾱSTðκ ¼ 0Þ, coincide with the
QCD BFKL equation. Second, the spectrum of the new
equation does not depend on the details of the Gribov-
Zwanzinger approach and coincides with the set of the
eigenvalues of the model: non-Abelian gauge theories with
the Higgs mechanism for mass generation, developed in
Ref. [22]. This model has no relation to a QCD approach
except having the same color structure. These features
support the ideas that come out of the analytical analysis of
the equation: the main influence of the confinement is in
taking off the double degeneration of the QCD BFKL
equation, which shows up in independence of the spectrum
of the QCD BFKL equation on the sign of ν [see Eq. (14)].
Third, all eigenfunctions coincide with the eigenfunc-
tions of the QCD BFKL equation at large transverse
momenta κ ≥ 1.
The numerical estimates show that there exist no new

eigenvalues with the eigenfunctions that decreases faster
than the eigenfunction of the QCD BFKL equation at large
transverse momenta. The eigenfunctions of the master

equation with the Gribov gluon propagator tends to zero
at small transverse momenta. In the coordinate repre-
sentation, it means that the eigenfunctions exhibit the
powerlike decrease at long distances, leading to the power-
like decrease in the impact parameters and therefore to the
severe problem with Froissart theorem and s-channel
unitarity (see Refs. [3,4,27]). In other words, the gluon
propagator, which tends to zero as the Gribov’s propagator
does, cannot solve the problem with large-b dependence of
the scattering amplitude in the color glass condensate
approach. However, the structure of the gluon propagator
in the Gribov-Zwanziger approach that stems from the
lattice QCD estimates and from the theoretical evaluation
(see Refs. [43–59]) leads to the gluon propagator which
tends to a finite value at zero transverse momentum
[Gðq → 0Þ ≠ 0]. This results in the exponential suppres-
sion of the eigenfunction at long distances and in the
resolution of the difficulties that the CGC approach and
other approaches, based on perturbative QCD, face at large
impact parameters.
For the intercept ω ¼ −ᾱSTðκ ¼ 0Þ, we have the multi-

ple degeneration of this eigenvalue, which is strongly
correlated with the new dimensional parameter that we
introduced to the theory from the confinement. This
degeneration looks like Bose-Einstein condensation, but
it does not contribute to the scattering amplitude at high
energy.
We calculated the momentum distributions of the scat-

tering amplitude and found that the typical transverse
momentum increases with energy and becomes indepen-
dent of the typical confinement scales that we have
introduced in our equation. Therefore, to our surprise,
we have to conclude that the confinement of quark and
gluons, at least in the form of the Gribov-Zwanziger
approach, does not influence the scattering amplitude
except for solving the long-standing theoretical problem
of the large impact parameter behavior of the scattering
amplitude. This is a very optimistic message for the color
glass condensate approach, but before coming to the strong
conclusions, we have to check the solution to the nonlinear
equation with the new kernel. This will be our next
problem.
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