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The expressions of the shear viscosity and the bulk viscosity components in the presence of an arbitrary
external magnetic field for a system of hot charged scalar bosons (spin 0) as well as for a system of hot
charged Dirac fermions (spin %) have been derived by employing the one-loop Kubo formalism. This is
done by explicitly evaluating the thermomagnetic spectral functions of the energy-momentum tensors
using the real time formalism of finite temperature field theory and the Schwinger proper time formalism.
In the present work, a rich quantum field theoretical structure in the expressions of the viscous coefficients
in nonzero magnetic field are found, which are different from their respective expressions obtained earlier
via kinetic-theory-based calculations; though, in the absence of a magnetic field, the one-loop Kubo and the
kinetic-theory-based expressions for the viscosities are known to be identical. We have identified that Kubo
and kinetic-theory-based results of viscosity components follow a similar kind of temperature and magnetic
field dependency. The relaxation time and the synchrotron frequency in the kinetic theory formalism are
realized to be connected, respectively, with the thermal width of propagator and the transitions among the
Landau levels of the charged particles in the Kubo formalism. We believe that the connection of the latter
quantities is quite new and probably the present work is the first time addressing this interpretation along

with the new expressions of viscosity components, not seen in existing works.

DOI: 10.1103/PhysRevD.103.096015

I. INTRODUCTION

The heavy ion collision experiment at relativistic energy
can produce a superhot quark gluon plasma, which may be
exposed under a strong magnetic field B if the nucleus-
nucleus collision is noncentral. This magnetic field could be
of the order of ~10'® G and comparable to the quantum
chromodynamics (QCD) scale (eB ~ m2 for RHIC-LHC
energies) [1], for which many interesting QCD-linked
phenomena [2-5] can be observed. Among a long list of
interesting quantities, transport coefficients like shear vis-
cosity and bulk viscosity are our aimed quantities in the
present work. Owing to this fact, a long list of Refs. [6—-34]
have focused on the microscopic calculation of the transport
coefficients, like the shear viscosity in Refs. [6—17], bulk
viscosity in Refs. [18-21] and electrical conductivity in
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Refs. [22-34] for the hot and/or dense QCD matter in the
presence of a magnetic field. If we analyze the frameworks
of those microscopic calculations, they are mostly in the
kinetic-theory-based approaches.

For the shear viscosity in the presence of an external
magnetic field, one can get five independent traceless tensors,
with which five shear viscosity components will be linked,
while a single traceless tensor with isotropic shear viscosity is
found in the B = 0 case. There are two possible sets of
these five independent traceless tensors as proposed in
Refs. [35,36], respectively. Using the former set, proposed
in Ref. [35], the authors of Refs. [6,8—12,17] have obtained
five shear viscosity components 77, (n = 0, 1, 2, 3, 4); while,
using the latter set proposed in Ref. [36], the authors of
Refs. [14,15] have obtained their five shear viscosity com-
ponents 7,,. However, the #,’s and #,’s are interconnected
and ultimately can be expressed in terms of the parallel,
perpendicular and Hall components [10]. The general expres-
sions of 7j,, are obtained in the relaxation time approximation
(RTA) of kinetic theory approach in Refs. [8,10-12,17] and
the same using the strong magnetic field approximation in
Refs. [6,9]. In Ref. [ 14], the authors have obtained 77, in RTA-
based moment methods but its RTA-based kinetic theory
calculation can be seen in Ref. [10].
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However, a quantum field theoretical treatment at finite
temperature and magnetic field via the Kubo relations has
never been attempted in details which could reveal rich
quantum structure in shear and bulk viscosity components.
Though, in Ref. [15], the Kubo-type correlation structure
has been considered but it is explored through a box
simulation, not through a field theoretical calculation. So as
far as our best knowledge, we are going to address for the
first time a one-loop Kubo expression of viscosity compo-
nents in the presence of a magnetic field by using a real
time formalism of finite temperature field theory and the
Schwinger proper time framework.

Let us revisit quickly the Kubo expression of shear
viscosity of any bosonic or fermionic medium in the
absence of a magnetic field [37-42]. Owing to the Kubo
relation, shear viscosity can be related to the static limit
(zero four-momentum limit) of the two-point correlation
functions of the local viscous stress tensor 7#*. The simplest
Feynman diagrams from the bosonic and fermion free
Lagrangian (densities) will be boson-boson or fermion-
fermion loops, whose propagators must carry finite thermal
width T". Without this I", one cannot get any nondivergent
values; so this imposition of finite I" brings a quasiparticle
picture, where the I' can be estimated from the interaction
Lagrangian of a particular system and the numerical value
of the shear viscosity of that system is mainly controlled by
the strength of I". Interestingly, this one-loop Kubo expres-
sion [38—42] of shear viscosity becomes exactly identical
to the RTA expression [43,44] with the relaxation time
7. = 1/T in the absence of a magnetic field.

Now, at finite magnetic field, one should not expect the
same expressions of viscosity components from the Kubo
framework and the RTA framework [6,8—12,14,17]. The
present work is going to reveal a difference between the
expressions of the viscosities between the two frameworks
at finite magnetic field picture. Here, we have found a rich
quantum structure in the expressions of viscous coeffi-
cients, which might (not) be obtained by appropriate
quantum extension of RTA frameworks. Reference [13]
for shear viscosity and Refs. [22-24,32,32,33] for electrical
conductivity calculations have followed the Landau quan-
tization version of RTA. However, our Kubo expressions
will have additional structures which are not the mere
Landau quantized version of the corresponding RTA
expressions of the viscosities. In the present work, we
have considered two different systems—(i) system of
charged scalar bosons (spin 0) and (ii) system of charged
Dirac fermions (spin %)—and have calculated the corre-
sponding thermomagnetic spectral functions of the energy-
momentum tensors (EMTs). The spectral function is the
imaginary part of the Fourier transform of the local EMT-
EMT two-point correlator which is obtained using the real
time formalism of finite temperature field theory and
the Schwinger proper time formalism to incorporate the
effects of finite temperature and external magnetic field,

respectively. Then viscous coefficients are estimated from
the thermomagnetic spectral functions using the Kubo
relations in the covariant tensor basis of Ref. [36].

The article is organized as follows. We first start with
the calculation of the in-medium spectral function of the
energy-momentum tensor at zero magnetic field in Sec. II
and at nonzero magnetic field in Sec. III. Next, Sec. IV has
demonstrated how to obtain the shear and bulk viscosity
from those spectral functions using the Kubo relations.
After getting the new expressions for viscosity compo-
nents, their numerical outcomes have been sketched and
been tried to interpret in Sec. V. This is followed by
Sec. VI where we have summarized the investigation. To
compensate the calculation gaps, we have provided detailed
Appendixes at the end.

II. THE SPECTRAL FUNCTION OF THE
ENERGY-MOMENTUM TENSOR

The key microscopic quantity that is required to calculate
the viscous coefficients of a thermal medium using the
Kubo formalism [37] is the in-medium spectral function

P (q), given by
b (q) = Imi / et (T (TP 0)) . (1)

where T#¥(x) is the local EMT and (- - -), represents the
ensemble average of the retarded two-point correlation
function. We will be using a metric tensor with signature
¢ = diag(1,—1,—1,—1). In order to use field theoretic
methods, it is more convenient to express the spectral
function in terms of time-ordered correlator as [45,46]

0
P (q) = tanh (;]—T) Imi/d4xeiq'x<TcT"”(x)T“ﬁ(0)>11,

(2)

where 7, is the time ordering with respect to the
symmetric Schwinger-Keldysh contour C in the complex
time plane shown in Fig. 1 as used in the real time
formalism (RTF) of finite temperature field theory. The
subscript 11 in the above equation implies that the two
points are on the real horizontal segment “(1)” of the
contour C.

The form of the local EMT T#*(x) appearing in Eq. (2)
depends on the particular system considered. In this work,
we will be mainly considering two systems: (i) system of
charged scalar bosons B* (spin 0) and (i) system of
charged Dirac fermions F* (spin ). They are, respectively,
described by the fields ¢(x) and w(x) which construct the
following free Lagrangian (densities) [47]:

‘cscalar = 8M¢Tay¢ - m2¢1—¢v (3)
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FIG. 1. The symmetric Schwinger-Keldysh contour C in the complex time plane used in the RTF with #; — oo and # = 1/T. The two

horizontal segments of the contour are referred as labels (1) and (2), respectively.

i _ _ 1
Tllgl;rac = Z (l//yﬂabw - abwyﬂl//) - EgﬂyﬁDirac

+ (o). (6)

EDiraC = E( y”aul// 0 l//]/” ) n’llill//, (4)

in which m is the mass of the particles. Symmetric EMTs

can be constructed out of the above Lagrangians as [47-49] Using Egs. (5) and (6), we now calculate the EMT

correlation function (7 ~T*(x)T*(0)),, appearing in

1 Eq. (2) for both the scalar and Dirac fields. The calculation

= PpTorg — Eguv Lcatar + (1 <> ), (5) have been provided in Appendix A and we get from
Egs. (A6) and (A15)

T

scalar —

d4k »

<TCTscalar( )Tscalar /] _w(p_k)Dll (p’ )Dll (k m)NI:calfr( ’ P), (7)
a p d4k —zx~ —k) 75 7 vay

<TCTD1rac( )TD/frac // 271_)4 (p HDU(P?’”)Dn(k;m)N/élrfc( ) (8)

where Dy, D;, and N**% SC‘M Dirac €aN be, respectively, read off from Eqgs. (AS), (A16), (A7) and (A17). We now substitute the

EMT correlators of Egs. (7) and (8) into Eq. (2) and perform the d*x integral which yields the Dirac delta function
5*(q — p + k). The Dirac delta function is in turn used to perform the d*p integral and the spectral function of EMT
becomes

0

va q
pgcalfr(q) =—tanh (_

4
ZT)Iml/(;Z ]; Dll(k m)Dll(p q+k m)Nscalar(k p= Q+k) (9)

0 d*k - -
D’;Z{i(q):—tanh(%)Imi/WDn(k;m)D“(p:q+k;m)/\/’]‘)’;gﬁc(k,p=q+k). (10)

Substituting Dy, and D;, from Eqs. (A5) and (A16) into the above two equations followed by performing the dk° integral,
we get after some simplifications

0 3
s (g) = tanh(q) / (‘”‘ L0 4 af (@) + afu(@y) + 2f (@) ful@,) HND RO = 0)5(° - o — o,)

2T 2n) 4wy,
+ NP (10 = —,)8(q° + wp + @,)} + {afo(@y) + af o(@,) + 2f o(@) fu(@,)}
x ANFP (K0 = —w,)6(q° = wi + @,,) + NP (K0 = 0)8(q° + wy — @,)}], (11)

where w;, = VIR + m?, w, \/k+p +m? and f,(x) = ——; with
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{ 1 for scalar,
a= 1

Above Eq. (11) carries four Dirac delta functions which
will give rise to the branch cuts of the spectral function in
the complex ¢° plane. The kinematic regions where
these Dirac delta functions are nonzero are, respectively,

(i) /G +4m* < gy < 0, (i) —o0 < gy < —\/G* + 4m?,

for Dirac.

(iii) and (iv) |¢°| < |g| as they appear in Eq. (11). Regions
(i) and (ii) are, respectively, called the unitary-I and
unitary-II cuts whereas regions (iii) and (iv) are called
the Landau-IT and Landau-I cuts, respectively [38,46]. For
the evaluation of the viscous coefficients, we need to take

the static limit g = 6 q° — 0 of the EMT spectral function
for which the unitary cuts do not contribute. Considering
the Landau cuts only, we are left with

. 0 3
PP (q",§ = 0) = tanh <q—>”/ k %5(qo)fa(a)k){a + fa(@ ) HNFP (K0 = =) + NP (10 = @)} (12)

2T (27)* 203
Ctimtann (L) [ LR LT o at falw) NGO = —w) + NP — )}, (13)
=0 21) | 27202 g2 +T27 ¢ Ak ¢ a

where a Breit-Wigner representation of the Dirac delta function has been used. According to the definition of Kubo relation,

af

the dissipation coefficients are related to the zero four-momentum limit of p*% /g, or S**% = agwo , owing to the
L’Hospital’s rule. Differentiating the spectral function with respect to ¢° and taking limit ¢° — 0, we finally obtain

uvof 9p el 1 _d3k _1 (2 uvop
S = aqo 40,400 = II_I_I%T (2”)3 4a)%rfa (a)k){a + fa (a)k)}[N (k’ k)|k0=wk + N <k7 k) |k0=—wk]’ (14)
where the simplified expressions of Ngcyzﬁfr,Dirac(k’ k) can be obtained from Eqs. (A8) and (A18) as
Nggﬁi(k, k) = 4kFkkOKP = 2(k* — m?) (¢ k*KP + gk kY) + (K2 — m?) g g (15)

Nlluaﬁ (k, k) — _8kﬂkykakﬂ + (kZ _ mZ){gyakuk[)’ + gyakﬂkﬂ + g/,t/ikuka + gu/;'kuk(z
4Gk 4 Ag PRk} — (K2 — m2)2g g, (16)

Dirac

To get a nondivergent contribution of EMT spectral
function in the zero momentum limit, further calculation
will have to be continued with a finite value of I'. This is the
place where the interaction picture is introduced, which
should be entered for a dissipative system. This I" can be
identified as the thermal width or collision rate of the
constituent particles, and it reciprocally measures the
dissipative coefficients, like the shear viscosity and the
bulk viscosity.

It may be noted that, in the present method, we have
introduced the interaction information I'" via the trans-
formation of Dirac delta functions to Breit-Wigner func-
tions, from which the noninteracting picture is realized as
I' > 0 limit. This similar kind of transformation from
noninteracting (I' = 0) to interacting (I" # 0) picture can
also be done by introducing iI'/2 in the propagators,
located in our one-loop diagrammatic representation of
the transport coefficients.

[
III. THE SPECTRAL FUNCTION OF THE EMT
IN THE PRESENCE OF AN EXTERNAL
MAGNETIC FIELD

In the presence of an external electromagnetic field
described by the four-potential A% (x), the Lagrangians

of Egs. (3) and (4) are modified to [50]

ﬁscalar = D*”¢+DM¢ - m2¢T¢9 (17)

i, _ oy m _
Loirae = 5 (7" Dy = DMpy) = mipy, - (18)
where DF = 9" + ieAL (x) and D* = O# — jeAL(x) are
the covariant derivatives incorporating the minimal cou-
pling between the charged particle with charge e (we
consider e > 0) and the electromagnetic field. The sym-

metric EMT in the presence of an electromagnetic field now
becomes [47,50]
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v N 1
Tl:calar D ”¢TDV¢ - Eg’w‘cscalar + (ﬂ < I/), (19)
, . 1

T}élrac = Z (l//}'ﬂDyl// D Ul//}’ﬂl//) - Eg’”’CDiraC + (M <> l/).
(20)

|

d*p d4k

<TC Tscalar (x) scalar - // o
&'y d4k -

<TC Tlll)l;rac ( ) T%[ijrac

i

where Dy;, D;; and N**¥

In;scalar,Dirac

[so]
>

Let us now consider a constant magnetic field

-

B = BZ along the positive Z direction. Using Egs. (19)
and (20), we now calculate the EMT correlation function
(T T (x)T*(0))5, in the presence of an external mag-
netic field for both the scalar and Dirac field as sketched in
Appendix B. We obtain from Egs. (B11) and (B18)

(P ZZDu ppim)Dyy (kysm)Net(kop). (21)
[=0 n=

Z Dy (py:m,) Dy (ky; ml)N/;rZO]gj;rac(k’ P, (22)
=0 n=0

can be, respectively, read off from Eqgs. (AS), (A16), (B12) and (B19) and m; =

\/ m* + (21 + 1 — 2s)eB with s being the spin of the particle (s = 0 for the scalar and s = 1/2 for the Dirac).

Similar to the zero magnetic field case, we now substitute the EMT correlators of Egs. (21) and (22) into Eq. (2) and
perform the d*x integral which yields the Dirac delta function 5*(¢ — p + k). The Dirac delta function is in turn used to
perform the d*p integral and the thermomagnetic spectral function of EMT becomes

B qo
el = - tanh (£ ) mi /

0
q .
h{——|I
tan <2T) mz/

=0 n=

»

[So]

d*k
(27)*

aff
pplt)l;rz{c (q) ==

n=

zﬁn (kj:m)Dyi(p) = q + ks m,) NGB (k. p = g+ k).

ZZD]I kjzm)Dyy(py = q + kpim )N (k.p=q+k). (23)

uvaff (24)

Substituting Dy, and D, from Egs. (A5) and (A16) into the above two equations followed by performing the dk° integral,

we get after some simplifications

PP (q) = tanh( ) 3)3 0/

X AN (k0 = w)5(q° — g —

&k
27'[ 3 4a)kla),m

®pn) + NP (k0 =

[{1 + afa(a)kl) + afa(a)pn) + 2fa(wkl)fa(wpn)}

—w1)8(q° + Wy + @p,)}

+H{af(on) + af (@p,) +2f o(@) fa (wpn)}{Nﬂmﬂ( = —w)5(q" — oy + )

Nﬂmﬁ(ko = wy)5(q" + oy

In

where @y =\/k2+m] and w,, =+/p}+mi=

(k. +q.)? +mn Similar to the zero field case, the
spectral function in the presence of an external magnetic
field contains four Dirac delta functions giving rise to
branch cuts of the spectral function in the complex energy
plane. The kinematic regions where these Dirac delta
functions are nonzero now depends on the Landau levels
of the charged particles as well. Thus, when summed
over an infinite number of Landau levels, the kinematic
regions for the unitary-I and unitary-Il cuts comes

out to be \/q? +4(m? + eB) < ¢° < 00 and —c0 < ¢° <
—\/q? + 4(m* + eB), respectively, whereas the kinematic

+

- wpn)}]’

(25)

|
domain for both the Landau cuts becomes |¢°| <

\/qZ (Vm? + eB — V'm? + 3eB)? for the scalar case.

On the other hand, for the Dirac case, the correspond
kinematic domains for unitary-I and unitary-II cuts are

\/q—{mj<q0<°°and_°°<qo<—\/mj,re—

spectively, whereas the same for both the Landau cuts is
4] < /2 + (m — Vim® T 2¢B)? [51-53].
As already discussed in Sec. II, for the evaluation of the

viscous coefficients, we only need the Landau cuts and the
spectral function becomes

096015-5



SNIGDHA GHOSH and SABYASACHI GHOSH

PHYS. REV. D 103, 096015 (2021)

00

0
pﬂvaﬂ(qo’ g = 0) = tanh (2q )
% {Nﬂmﬁ(ko —

dk
27‘[ 3 4a)k1a)

r

()55 [ 2%

=0 n=0

—wkl)5(q — Wy + wp,) + Nﬂmﬂ(ko = wy)8(¢" + oy — o)}

S | i afon) + o) + 2o )}

X {N?t:aﬂ(ko = —a)kl)

(q° — oy + op,)* +

(26)
{ fa(a)kl) + afa(wkn) + 2fa(a)kl)fa(wkn)}
+ N (K0 = o) d } (27)
r " S e )

where a Breit-Wigner representation of the Dirac delta function has again been used. Differentiating the above equation
with respect to ¢° and taking limit ¢° — 0, we finally obtain

&k r

s =im3 -3 o [

X [N?:aﬂ(k’ k)|k0:a)/d + Nlllrlz/aﬂ<k’ k) |k0:

3
2m) 460kla)kn (0 —

. . . uvap
where the simplified expressions of N, (o Dirac

N;wa/} ( )

In;scalar

and

N/wa/} ( )

[n;Dirac

—16B,, (K2 [FkP (2K k& — K2 g)

I (I 1+ )

= (ki = m*) gk K| + g" ¢ (kf — m?)?]
_ ga/)’kuk/i + g;wga/}kZ]

respectively, in which the functions A;,(k%), B, (k%), ..

A few comments on the Lorentz structure of the
EMT spectral functions are in order here. In the current
work, we have considered only the symmetric part
of the EMT spectral function which is proportional to
the imaginary part of the retarded correlator. On the other
hand, the real part of the correlator contributing to the
antisymmetric piece of the spectral function has been
discarded. Another way of saying this is that, in
Egs. (23) and (24), if the tensor N}/ contains terms like
ie"k"k?, then Eq. (25) will in turn have additional terms
related to the real part of the Fourier-transformed correlator
[54]. In the current work, we did not get such antisym-
metric terms contributing to the viscous coefficients at one-
loop order.

WDip )2

—(l)k/] ?

= 4, (R2){ARH KRR = 2(K2 = m2) (¢ kK + PR RY) + (K

_ g;wk/)’kz (ka ka)
= 20, (K7) [k* kP {2K] ket — (kt —
= 2D, (k7)) (kf — m?) [ K '
— 4, (3 [k kP (KK +
— 9Pk (k) = m* )R + KK} + 29" PR (K = m?)] + (n < v) + (a < B) + (n < v.a < f),

gln(

) {af (@) + af (o) + 2f o(@p) fa(@kn) }

(28)

(k, k) can be obtained from Eqgs. (B13) and (B28) as

- m?)* g g} (29)

a/}kukZ (kﬂ _ kﬂ)
m2)g“} — (& — m?) g Kk
— g KK

g”"k/’{(kﬁ —m*)kS + K3 k‘H’}

LK) -

(30)

2) are defined in Egs. (B14) and (B24)—(B27).

IV. VISCOUS COEFFICIENTS FROM THE
SPECTRAL FUNCTION IN KUBO FORMALISM

Owing to the Kubo relation [37], the viscous coefficients
(shear and bulk) can be calculated from the spectral
functions of the EMT which have already been obtained
in Secs. II and III. We will first revisit the B = 0 case
[38—42] before discussing the finite B calculations.

In the absence of an external magnetic field, the shear
viscosity () and bulk viscosity ({) are obtained from [38]

0 =P Ps v e {n.c). (31)

where
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(n) 1 o AP 1 o
Povap = 10 <A Ay 3A /’Aﬂb) <A,,aApﬁ 3A A, )
(32)
PO _ (Ly + Ou,u, LN (33)
pvaff 3 124 3 ap a’p |»
in which A" = (¢ — uu¥), 0 = (%), P is the pressure
and ¢ is the energy density of the system being considered.

Substituting Eq. (14) into Eq. (31), we obtain the viscous
coefficients at zero magnetic field as

3 >
0= | Gy ar oo e+ £V

ve{nd} (34)
where
- 1
NOR) =3Py N (k) gy, + NP () o, ).

(35)

Substituting Egs. (15), (16), (32) and (33) into Eq. (35)
and simplifying, we obtain

4 -
Nizzildr :Ek4’ Nigdldl' {m + (39_ l)a)k}2 (36)
8 o
Nl(;?rac = ]5k4 N]()gl)rac __{m + (39_ l)wk}2 (37)

It is now easy to check that substitution of Egs. (36) and
(37) into Eq. (34) yields the well-known expressions of the
shear and bulk viscosities for the system of scalar bosons
and system of Dirac fermions [38—42]:

Mscalar = 152T/ (dﬂ]): kr (a)k){l +f(a)k)} (38)

3
o = 127 | (dﬂ})‘gcfr Fooll-F@)).  (9)

2 &Pk 1
Cocalar = 9—T/Ww—il“{m2 + (30 - wi}?

X flo) {1+ flw)}, (40)
3
Come = 7. | Gy 17+ (30 = D’
X Flo {1 = Flo). (1)

The above expressions of shear and bulk viscosity for scalar
and Dirac system from the Kubo framework [38—42] are

exactly identical to the same obtained using the RTA in
kinetic theory formalism [43,44].

Letus now switch on the external magnetic field. The main
difference between B = 0 and B # 0 pictures of shear and
bulk viscosity will start from their macroscopic definition,
where the viscosity coefficients have basically appeared as
the proportionality constants between thermodynamical
force tensors and gradient tensors. Unlike single gradient
tensors for # and { at B = 0, one can get five (traceless) and
two (nonzero trace) independent gradient tensors, for which
five shear viscosity coefficients 7, (n = 0, 1, 2, 3, 4) and two
bulk viscosity coefficients ¢, | will be introduced in the
B # 0 picture. As shown in Ref. [35] by Landau, in the
presence of an external magnetic field, there will be seven
viscous coefficients (in Landau’s notation, they are 7, {, #;,
M, 13, 4 and {;). The viscosity coefficients appear as the
expansion coefficients of the tensorial decomposition (in a
particular basis) of the viscous stress tensor. However, the
choice of the tensor basis to decompose the viscous stress
tensor is not unique. Apart from Ref. [35], in Refs. [36,55],
Huang et al. have constructed a different tensor basis and thus
obtained the seven viscosity coefficients (denoted as 7, 7,
12,13, M4, ¢ and ¢ | in their notation). In a more recent work
[56], the authors have constructed a more general tensor basis
and thus obtained seven independent transport coefficients
namely the two electrical resistivities (p| and p, ) and five
viscosities (17, 7, ¢, ¢1 and ¢, = £'). From a physical
point of view, it is understood that the viscous coefficients
defined in Refs. [35,36,55,56] must be interconnected and
they can be expressed in terms of one another. In the RTA-
based kinetic theory or moment methods, Refs. [6,8—12,17]
have used the tensor basis of Ref. [35] whereas Refs. [10,14]
have used the tensor basis of Refs. [36,55]. In this work,
we have used the tensor decomposition of Refs. [36,55] and
thus obtained the seven viscosity coefficients namely 7, 7,
12,113, N4, ¢ and ¢ | using the Kubo formalism. Exploring the
same with the tensor basis of Ref. [35] as well as Ref. [56]
might be a very interesting future project.

Let us start with connecting relations between viscous
coefficients v and spectral function [36,55]:

v = —EWny + Pl S

v € 1o M1 M25 13- M4, $ 15 6 1 (42)
where
4/3 if v =1n,,
=01 ifo=n,.
0 otherwise

and P m/,, are given by
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) _ 1 gomr _Loos B e oio o ) _1 1
,Pyz(llﬂ - Z (‘_‘ll“’e _5_‘ p“‘/du) <h‘aah‘pﬁ _E'—'oph‘aﬁ s (43) ,P,wt,ﬁ = g (A,uu + (39 + 2¢)u/4 ”u) 5'—‘0:/3 + (9 + ¢)”auﬁ s
(48)

1_
P/(:I,]/gﬂ = 2(bﬂbl/ - euﬂul/) <§ :‘(1/)’ + (9 + ¢)u(lu[)’> s (44)

1
Phiy = =3 (B + 0+ 200,10, (buby = Ougty).  (49)

P;'Zl)ﬁ =-— 2 E0b,Egeby. (45) where b* = ﬁg"mﬂquﬂ, Frv = (0FAL, — 0AL,,) is the

electromagnetic field strength tensor, b** = e””“/jbauﬂ, and

| 1 B = A* 4 b*b¥ with the convention of the Levi-Civita
Pfﬁ)ﬂ =-3 <EZE’; EE"/’” >bi <:M:,,ﬁ - EEﬂpEaﬁ)’ tensor €12 = 1. In the local rest frame (LRF), e
(0,0,0,1). In Egs. (43)—(49), the thermodynamic quan-
(46)  tities 0 = (%), and ¢ = —B(%L), in which M is the
magnetization of the medium.
) 1 Substituting Eq. (28) into Eq. (42), we obtain the viscous
P,Mﬁ =3 bpa‘—‘ll b,Eqbg, (47) coefficients in the presence of a constant external magnetic
field as
|
SN | &k 1 r -
= £0) — 2 “) %), (50
v =&Y+ Z Z T/ (2ﬂ)3 Aoy 00y (03] — )2 + T2 {af (oy) + af J(0y,) + fa(wkl)fa(wkll)}Nln (k), (50)
=0 n=0
where

NP (&) =

2 ﬂv(I[)’{Nﬂyaﬁ(k k) ‘k“*a)k, + Nﬂyaﬁ(k’ k)|k°:—wk,}' (51)

Substltutlon of Egs. (29), (30), and (43)—(49) into Eq. (51) yields after bit simplifications the following final expressions
of N ) %) (k):

Nln %calar(k) - 2Aln( )kjg (52)

N e (B) = =84, () {(1 = 0)}, + (1 + )2 + (1 - )k% — (1 + O)m?}
3 {(1 =6 =), + 0+ P& = (1+ 6+ ) (k2 + m?)}, (53)
N () = =84, (3 )RR, (54)

NEZ?gcala(lz) = N(W)

In;scalar

(k) = 0. (55)

ML) = 5 A (R)1(1 = 0= B + 0+ )~ (1 40+ $)(R2 + m?))
x {(3=30=2¢)w?, + (1 + 30 +2¢)k% — (1 + 30 + 2¢)k? — (3 + 30 + 2¢)m>}, (56)

- 4
N petar(®) = 5 A (B){(1 = 0), + (1 + O + (1= 0)&2 = (1 + )}

x {(3=30=2¢)w? + (1 +30+2¢)k% — (1 +30 +2¢)k> — (3 + 30 + 2¢)m>}, (57)
N e () = 2D, (k)3 (=0, + &2 + m?). (58)
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N e (K) = 8[8B,, (KK {=20%, + (1 + 0)(1 + 20 + 2¢)K% +20(1 + 6 + $)k2 +2(1 + 0)(1 + 0 + p)m>}
+2C, (K ) {wy, +0(1 + 0+ @)kt + (1 +0)(1 + 0 + ¢)m* — (1 + 30 + 2¢ — O — 6?) w7 k2
+ (14+20)(1 + 60+ ¢)k2m? — (2420 + ¢ — 0 — %) w2, m*}
+ Dy (KK (1 +0)(1 + 20 + 2) (@} — k2 — m?)
+ 28, ()2 {(3 4+ 40 + 2¢) w2, — K2(2 + 50 4 2¢p + 40¢p + 46) — (1 + 0)(3 + 40 + 4¢)m?}],  (59)

N e (R) = 8By ()KL + Coy (R )2 (@ + k2 = m?) + 2Dy, (R )k (@0, — K2 = m?) + 4, (R)R2AZ, (60)

3) (1 (n4
NEZ?Dirac (k) = Nln ;Dirac

(k) =0, (61)

- 4
N e (0) = 5 (8B40 ()2 {60 = (142604 2) (2430 + 20)3 = 2(1+ 0+ ) (2 + 30 + 24))

=2(14+0+¢ +1)(3+30+2¢)m*} +2C;, (k7)) {30 — (1 + 0 +¢)(2+ 30 + 2k}
—(1+0+¢)(3+30+2¢)m* + (5470 + 6¢ — 36> = 50¢ — 29w}k — (1 + 0 + $) (5 + 60 + 4¢p) k2m?
+(6+60 + 5¢ — 30> = 50¢ = 2¢*)aym* } + D, (k1)KL (1 + 20 +2¢) (2 + 30 +2¢) (~ w0y + k2 + m?)
+2&,(K3)k3 {—7,(7T + 120 + 10¢) + (2 + 30 +2¢) (3 + 40 + 4¢) k2

+ (7 + 190+ 16¢) + 126 + 2000 + 8¢*)m>}], (62)

Ngjy,;mu:) = 2 (88, (k3 ) k3 {33, — (14 60)(2 + 30 + 2p)k% — 0(2 + 30 + 2¢)k2 — (1 + 6)(3 + 30 + 2)m>}
= Cp(K2) {30}, + 02+ 30+ 2¢)k? + (1 + 0)(3 + 30 + 2¢)m* — @?,k2(1 + 100 + 4¢p — 30° — 20¢)
+ (1 + 80 + 2¢p + 60* + 40¢)k>m> — (6 + 60 + 2¢p — 36* — 20¢)w?,m*}
+ D (KK (1 +0)(2 430 + 2¢) (—wi, + k2 + m?)
+2&1, (k) {—07,(5 + 60 + 2¢) + (1 +20)(2 + 30 + 2¢)k? + (1 + 0)(5 + 60 + 4¢p)m?}]. (63)

During our entire calculation, I is introduced as a parameter, although it can be calculated microscopically from the
interaction Lagrangian of a particular system and one can get it as temperature (7)), magnetic field (B) and momentum

l;-dependent function. By taking the appropriate momentum average one can get momentum-independent I" and take
outside the d°k | integral of Eq. (50). So, considering I" as constant or independent of k |, the @’k | integral of Eq. (50) can
be analytically performed and we get the following simplified expressions of the viscous coefficients in the presence of a
constant external magnetic field:

®© &1 1 r (o)
=+ D g | o oo alon) + () + 20 oI ). (69
where
~ (v d*k v)
k) = [ SN (65)

Substituting Eqgs. (52)—(63) into Eq. (65), we obtain

N () =24, (66)

In;scalar
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N e (6) = S[AR{(1 = 0) (@], + K2) = (1 + O)m>} {=(1 = 0 = p)a, + (1 + 0 + ) (K2 + m?)}
+ AP (1 + 60— 20% = 20) w2 (1 + 0 + 26° + 200)k* + (1 + 0 + 1)(1 + 20 + 2¢p)m?}
— A1 +60)(6+ ), (67)
NEZ?s)caldr( ) - _SAln (68)
N e (K) = NEZ?Qcalar@d =0, (69)

AL B) = 5 AL (1= 0= B = (1404 (K2 + )} (3 =30~ 28)0 — (1430 4 2)82 = (3-+ 30+ 2)m?)
+ AP{4(1 4100 + 4¢p — 66* — 100 — 4?2, — 4(1+20 4 26) (1 + 30 + 20k
—4(1 470+ 6¢) + 66> + 100 + 4¢*)m>} +4AL (6 + ) (1+ 30+ 24)], (70)

N a®) = [Am {(1=0)(wF, + K2) = (1 +01)m>}{ (3 — 30 — 2¢))wF; — (1 + 30 + 2)k% — (3 + 30 + 2¢0)m?}
F2APL(2+ 6 - 362 - 20p) w2, — 6(1 + 360 + 2)k2 — (1 + 6)(2 + 30+ 2¢)m?}
+ AY(1+0)(1 430+ 20)]. (71)

Nln D1rdc<l_€) _ZD( )(wkl kz - mz)’ (72)

NI e (k) = 8[16B) { a2, + 0(1 + 6+ p)K2 + (1 +6)(1+ 6+ p)m?} + 8B4 (1 +6)(1 +26 + 2¢)
+ 20wt + 01 + 0+ Pk + (1 +0)(1+ 0+ ¢p)m* — (1430 +2¢p — 6% — 0p)w? K
+ (1420)(1 4+ 6 + ¢)2m? — (2420 + ¢ — 0> — 0g)wm?} + D2 (14 0)(1 + 260 + 2¢) (w, — k2 — m?)

+2E8P{(3 440 + 202, — (2 + 50+ 2 + 40> + 40)K2 — (1 + 0)(3 + 40 + 4d)m>}], (73)
(12 s 4 2 0 2

N e (B) = 8BLY +C2) (0 + K2 — m?) + 2D K2 (@}, — k2 — m?) + 4E K2, (74)

N e (R) = Nt (k) = 0, (75)

NED e(B) = [1685,2,){3@%, — (2450 +4¢ + 36 + 500 + 20*)k2 — (3 + 60 + 5 + 36> + 50 + 2 )m?}
— 8B (2470 + 6¢ + 60> + 100 + 4¢*) — 20\ {30, + (2 + 50 + 4¢p + 36% + 50 + 20k
+ (3 + 60 + 5¢ + 360 + 509 + 2¢*)m* — (5 + 70 + 6¢p — 36> — 50¢ — 2¢*)w? k>
+ (54 110 +9¢ + 60* + 100¢ + 4¢*)k2m? — (6 + 60 + 5¢ — 30> — 50¢ — 2¢*)w?,m*}
—DP(2+70 4 6¢ + 60> + 100 + 4¢*) (w2, — k2 — m?) — 267 { w2 (7 + 120 + 104)
— (6 + 170 + 14¢ + 126% + 200¢ + 8¢*)k2 — m>(7 + 190 + 16¢) + 126> + 2004 + 8¢*)}], (76)

-

N ()= [865?{%%, —0(2+36+2¢)12 — (1+0)(3+30+2¢)m?} 8B (14 6)(2+30+2¢)

—cﬁﬁ){3w2,+a(2+3e+2¢)k§ + (14+6)(3430+2¢)m* — (14 100+ 4¢p — 36* — 20¢h) w2 k2
+ (1480426 + 6607+ 40¢p)k2m> — (6 + 60+ 2¢p — 36% — 20¢p)?,m>} — D2 (1+ 6)(2+ 30+ 2)
x (w7, — k2 — )—28§§>{(5+66+2¢)w§1—(1+29)(2+36+2¢)k§—(1+0)(5+69+4¢)m2}}, (77)

where
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A = [ S anmmyn.
B = [ GBI (19)
el = [ Gescut)yE (s0)
pf - [Sepuwmyn sy
e - [ ey s

Exploiting the orthogonality of the Laguerre polynomials
present in the functions A;, (k% ), By, (k%) ..., £, (K3), the
d’k | integrals of Egs. (78)—(82) are now performed and the
analytic expressions of the quantities A%), Bgf;), L€ 5,’1)
listed in Appendix C.

are

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we will try to explore the numerical
outcomes of shear and bulk viscosity components; mainly,
their temperature and magnetic-field-dependent curves will
be our matter of interest. To show numerical results of the
viscosities, we have chosen systems consisting of massless
particles for simplicity, although the final expressions for
the viscous coefficients in Eqs. (64)—(77) are valid for
massive particles as well. We have also performed a proper
numerical consistency check for ensuring the correctness of
the analytical expressions as well as the numerical codes as
follows: we have taken the numerical limit B — 0 of the
viscous coefficients in the presence of a magnetic field
[Eq. (64)] and found that, for sufficiently small values of B,
o —nn — 0,1, =0, - fand ) — {, wherenand {
are, respectively, the shear and bulk viscosities in the
absence of the external magnetic field obtained from
Egs. (38)—(41). This consistency implies that, for suffi-
ciently small values of B, a large number of Landau levels
contribute to v in Eq. (64) (the Landau levels become
infinitesimally close to each other reaching the continuum),
which in turn numerically reproduce the exact continuum
results of Egs. (38)—(41), though it is nontrivial to take an
analytic B — 0 limit of Eq. (64). For all the numerical
results shown in this section, we have considered up to
10 000 Landau levels.

Figure 2 shows the temperature and magnetic field
dependence of 7, for the two different systems consisting
of spin-0 scalar bosons and spin-; Dirac fermions.
Figures 2(a) and 2(c) depict the variation of the dimension-
less quantity 5,/T> as a function of temperature for
different values of magnetic field whereas Figs. 2(b)

and 2(d) show the variation of 5,/7> as a function of
magnetic field for different values of temperature. To
understand the change in the values of viscosity compo-
nents due to the magnetic field, we have first estimated
viscosities at B = 0. Using Eqgs. (38) and (39), the shear
viscosity # of scalar and Dirac fluids at B = 0 are estimated
and they are plotted in Fig. 2 with solid red lines. With
respect to the B =0 curves, we can get a comparative
measurement on the values of the 7, component. For the
scalar fluid, , decreases with B and increases with 7. One
can identify the opposite roles of 7 and B on transport
coefficients, which is also noticed in RTA of kinetic theory
approaches [10,14]. Physically, we can also comprehend
that temperature is the measurement of randomness, while
the magnetic field aligns the system. So their thermody-
namical roles on the system are expected to be quite
opposite in nature.

A detail quantitative understanding for 7 and B depend-
ence of 7, seems to be a very cumbersome task (as the
analytical expressions are very complicated), but we can try
to relate it with its RTA expression [10,14]

1

Wlth AO = PR RC R
1+ 4(5)

1Mo = 1A (83)

where the expression of 7 will be same as given in Egs. (38)
and (39), t, = 1/I" is basically the relaxation time or
inverse of the thermal width, and 75 = ‘;’—B is the inverse
of synchrotron frequency. Now in the quantum mechanical
picture, the energy difference between the two Landau
levels Aw = (wy; — wy,) might be associated to the syn-
chrotron frequency; i.e., we can grossly write Aw =~ 1/75.
Using this connection in Eq. (64), one can identify the term
of effective relaxation time:

r 1
~T,
(g — wpy)* + T2 1+ (3)?

B

rt Ay (84)

In the massless limit, 73 ~3L [10], so the dominant
B-dependent anisotropic factor
27.eB)\ 2] -1
Ay(T.B) ~ {1 + ( 73; ) ] (85)

will mainly control the 7 and B dependence of 7,. One can
find that A, decreases with B and increases with 7', which is
mostly reflected on 7y(7T, B). Apart from the anisotropic
factor A, ny contains the additional B dependence via the
quantized energy relation in the other part of the integrand
of Eq. (64). The other part of the integrand mainly contains
Ny, () as well as the thermal distribution function f(w),
which is not much influential for scalar fluid. Therefore, B
and T dependence of 7, almost follows the same trend as
observed in Ay(T, B).
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time 7, = 1/I" = 1 fm. The variation of #,/7" as a function of (¢) T and (d) eB for system of massless charged Dirac fermions (spin %)

with relaxation time 7, = 1/T" =1 fm.

For the Dirac fluid, a similar trend for 7, is observed at
the lower values of magnetic field and high-temperature
regions. However, we notice nonmonotonic behavior of 7,
at higher values of the external magnetic field. This is
probably due to the nontrivial spin structure contained in
N, (@) for the Dirac case and is mainly responsible for this
nonmonotonic behavior.

Since the N,,’s corresponding to the other viscous
coefficients also carry the magnetothermodynamical
quantities 0 = (%) . and ¢ = —B(2Y),, their temperature
and magnetic field dependence are separately plotted in
Figs. 3 and 4. Their detail calculations are provided in
Appendix D. Figures 3(a) and 2(c) depict the variation of the
0 as a function of temperature whereas Figs. 3(b) and 3(d)
show the variation of @ as a function of magnetic field.

We first note that, at B = 0, € is nothing but the squared
speed of sound (c?) of the medium, which is % in the
massless case as clearly shown in Figs. 3(a) and 3(c) by
solid red horizontal lines. However, at B # 0, the quantity
6 = (9),, is not equal to the speed of sound of the medium
since the speed of sound is most generally defined as
2= (%)S # 0, where s is the entropy of the medium [57].
At nonzero magnetic field, we find @ to increase (decrease)
monotonically with the increase in temperature for the

scalar (Dirac) fluid, whereas for the scalar (Dirac) fluid, 0
decreases (increases) with the increases in magnetic field.
Thus, we observe completely opposite behaviors for the
scalar and Dirac fluid in the 7 and B dependence of 6,
though, in all the cases, at high temperature, € asymptoti-
cally approach the corresponding B = 0 curves.

In Figs. 4(a) and 4(c), we have shown the variation of
the ¢ as a function of temperature whereas in Figs. 4(b) and
4(d), the variation of ¢ as a function of magnetic field has
been shown. We first note that, at vanishing magnetic field,
¢ becomes zero as it is related to the magnetization of the
system. We also notice that ¢ decreases (increases) mono-
tonically with the increase in temperature for the scalar
(Dirac) fluid, whereas it increases (decreases) with the
increases in magnetic field. Thus, similar to 6, here also we
observe completely opposite roles of temperature and
magnetic field. Interestingly, we get ¢ > 0 for scalar and
¢ < 0 for Dirac systems. Like 6, in all the cases, at high
temperature, ¢ also asymptotically approach the corre-
sponding B = 0 curves.

Next, let us come to the corresponding temperature and
magnetic field profiles for the other shear viscosity com-
ponents #; and #,. They are shown, respectively, in Figs. 5
and 6. Unlike 7, these components are purely magnetically
induced components as they are completely disappeared at
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B = 0, while n at B = 0 becomes exactly equal to the 7. In
RTA of kinetic theory framework [10,14], one can find a
proportional relation 77 5 o (z./75)?, which is missing for
1o. Therefore, at B — 0 or 7z — oo, one gets 77, — 0 in
RTA, whereas, in the Kubo expressions, this imposition is
taken care of by the rich structure contained in N,,’s of
Eq. (64) when the continuum limits (B — 0) are considered.

Figures 5(a) and 5(c) depict the variation of the dimen-
sionless quantity #,/T> as a function of temperature for
different values of magnetic field whereas Figs. 5(b) and 5(d)
show the variation of 77, /T° as a function of magnetic field for
different values of temperature. For the scalar (Dirac) case,
m/T? increases (decrease) monotonically with the increase
in temperature and it decreases (increases) with the increase
in magnetic field, though at high magnetic field region slight
nonmonotonicity is observed. We also notice that #; is
negative for the scalar fluid and it might not be correct to
consider the absolute values of the viscosity component;
rather the positive or negative sign should be considered as
the direction of magnetically induced shear flow. The
completely opposite behavior of the temperature and mag-
netic field dependence of 57, /T of the scalar and Dirac fluid
can be attributed to several factors; for example the different
spin structures contained in N;,(w)’s as well as the opposite
thermomagnetic behavior of € and ¢. In all the cases, at high

temperature, #; is seen to approach zero which is due to the
increase in random thermal motions in the system trying to
destroy the magnetic orientations.

Next, Figs. 6(a) and 6(c) show the variation of the
dimensionless quantity #, /7> as a function of temperature
whereas Figs. 6(b) and 6(d) show the variation of 7, /T> as a
function of magnetic field. We observe that 7, /T increases
monotonically with the increase in temperature, whereas a
nonmonotonic behavior is noticed in its magnetic field
dependence. Like 7, 7, is also varying from positive to
negative values at different 7 and B ranges, which should
again be considered as the direction of the magnetically
induced shear flows.

Since the other shear viscosity components 73 and 7, are
coming zero in quantum field theory calculations because
of the antisymmetric structure, we have not plotted them.
The same vanishing values are realized in the ADS/CFT
direction [58,59]. However, in the RTA of kinetic-theory-
based calculations [10,14], one might expect their nonzero
values at nonzero chemical potential of the fluid, where
particle and antiparticle density becomes different. These
two coefficients in kinetic theory framework are realized as
the Hall viscosities, which of course are vanished at zero
chemical potential, i.e., when particle and antiparticle
densities are the same; but they should be finite at nonzero
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with relaxation time 7, = 1/T" =1 fm.

values of the chemical potential. For the Kubo or the field
theoretical expressions, it seems that there is no possibility
of getting nonzero Hall viscosity even at finite chemical
potential as their vanishing contributions are coming from
the antisymmetric nature of vertex factors N, (). We have
not found any discussion on it in any earlier references (of
course based on our searching) and we are unable to resolve
this discrepancy, which should get kind attention from the
community.

Now, let us turn our attention to the bulk viscosity
coefficients ¢, and ¢ whose temperature and magnetic
field dependence are shown in Figs. 7 and 8, respectively.
Before going to finite B cases, let us recapitulate our earlier
knowledge of bulk viscosity at B = 0. The expressions of
at B =0 for the scalar and Dirac system are given in
Eqgs. (40) and (41), respectively, from which we see that
{x (30 —1) in the massless limit (m = 0). As already
discussed, in the massless limit, 6 = % for B=0 and
therefore one gets zero bulk viscosity although the shear
viscosity is not necessary to be zero. At the high temper-
ature, QCD behaves like a massless and conformal-type
theory, where we can get { = 0. However, in the low and
intermediate values of temperature, QCD will exhibit its
nonconformal nature, which can be measured through the
nonvanishing profile of {(7'). If we take guidance from the

lattice QCD calculations [60] (see references therein), then
a clear deviation of € from % will be noticed and a nonzero
interaction measure 7, = (¢ — 3P) of QCD thermodynam-
ics will also be observed in the low and intermediate
temperature domains. We can understand that the trace of
the ideal part of the EMT is interaction measure of QCD
thermodynamics; similarly the dissipation part of the EMT
is basically linked with the bulk viscosity. Nonzero values
of both expose the nonconformal nature of the QCD
system [61,62].

Here, we will not go through any particular system like
QCD but rather will consider general relativistic scalar and
Dirac fluids. And in the numerical point of view, we have
focused on massless limits, from where we can get an idea
of extreme relativistic boundaries of the different quantities.
The bulk viscosity, which is zero in the massless limit of
B = 0 case, might not remain the same at finite B case; one
immediate reason is that @ deviates from 1/3 when we
switch on the magnetic field; therefore, a nonzero bulk
viscosity is expected even in the massless limit. Even if one
puts 0 = % in Eq. (64) by hand for the massless system, the
bulk viscosity components will still not be vanished due to
the presence of other terms in N;,(®). So, it means that an
additional nonconformal picture is growing at the finite
magnetic field case, which is entering not only through the

096015-15



SNIGDHA GHOSH and SABYASACHI GHOSH

PHYS. REV. D 103, 096015 (2021)

B=0 — (a)
004 Fep =002 - 1
eB =0.05 - (eB are inGeVz)
003 eB=0.10 ———- Charged Scalar]
. eB=0.15 — -
& eB=020 ---==- e
1002 | I
O N —
001 F—— "~ T T T T T T T T T
0 e e e
0.1 0.12 0.14 0.16 0.18 02
Charged Dirac]

B=0 — |
eB =002 GeV? -------
eB =0.05 GeV> ]
eB=0.10 GeV? ———~
B =0.15GeV? ——- |

(©) eB =020 GeV? ------
0.16 0.18 02 022 024

Temperature (GeV)

FIG. 7.

0.03 ; .
T=100 MeV ——
0025 F T=150 MeV -------
T =200 MeV
0.02
=
~ 0.015 Charged Scalar] .~
e ,.’v'f'!vv
0.01
0.005
0 , , , , (b)]
0 0.05 0.1 0.15 0.2 0.25
eB (GeV?)
et
05
- T=150 MeV ——
o I r=200Mev o
N T =250 MeV
15t
2t Charged Dirac]
d
25 @ . . . .
0 0.05 0.1 0.15 0.2 0.25
eB (GeV?)

The variation of {; /T as a function of (a) T and (b) B for system of massless charged scalar bosons (spin 0) with relaxation

time 7, = 1/T" = 1 fm. The variation of 57, /T> as a function of (¢) T and (d) eB for system of massless charged Dirac fermions (spin %)

with relaxation time 7, = 1/T" =1 fm.

6(T, B) but also some other B-dependent terms in N,,(w).
Hence, we can say that massless relativistic matter in the
presence of a magnetic field can have nonzero bulk
viscosity, which corresponds to its nonconformal nature
(irrespective of the system like QED or QCD plasma). The
phenomenon might be a little mild at high 7 and low B
domain but quite prominent at low 7 and high B zone,
which is known to be the quantum zone. This might be
considered as a pure quantum field theoretical phenomenon
due to the field quantization picture.

In Figs. 7(a) and 7(c), we depict the variation of the
dimensionless quantity ¢, /77 as a function of temperature
for different values of magnetic field whereas in Figs. 7(b)
and 7(d), we show the variation of ¢, /T? as a function of
magnetic field for different values of temperature. For the
scalar fluid, ¢, /T? weakly depends on the temperature and
the dependence is quite nonmonotonic. On the other hand,
for the Dirac fluid, £ | /T increases monotonically with the
increase in temperature, whereas with the increase in
magnetic field, ¢, /77 increases (decreases) for the scalar
(Dirac) cases; though a slight nonmonotonic behaviour is
seen at the high temperature region. Like #; and #,, we can
see positive and negative directional shifts of the values of
¢ from zero corresponding to the direction of magnetically
induced bulk flows.

Finally, Figs. 8(a) and 8(c) depict the corresponding
variation of the dimensionless quantity ¢/ T3 as a function
of temperature whereas Figs. 8(b) and 8(d) show the
variation of ¢/ T3 as a function of magnetic field. Like
£, for the scalar fluid, CH /T3 depends weakly on the
temperature and the dependence is nonmonotonic in nature.
For the Dirac fluid, ¢,/ T3 increases monotonically with
the increase in temperature. With the increase in magnetic
field, ¢ /T3 is seen to increase (decrease) for the scalar
(Dirac) cases. The positive and negative directional shifts of
the values of ¢ from zero again correspond to the direction
of magnetically induced bulk flows.

Comparing Figs. 7 and 8, one can see the difference
between parallel and perpendicular components of bulk
viscosity, i.e., {| #¢, and the difference completely
disappeared at B =0, where we can get the relation
{| =¢L=¢=0. This fact reflects the transition from
isotropic dissipation at B = 0 to anisotropic dissipation at
B # 0. Though a detailed analysis of differences between
scalar and Dirac system for £ /7% and { /T* is not quite an
easy task as their analytic expressions are quite compli-
cated, main resources are hidden in N, (@) and the thermal
distribution functions. Also, the opposite thermomagnetic
behaviors of  and ¢ might have a role for getting different
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temperature and magnetic field dependence of ¢ | and £ of
the scalar and Dirac fluids.

VI. SUMMARY AND CONCLUSION

In summary, we have performed a detailed calculation of
the one-loop Kubo expressions of the five shear viscosity
components and the two bulk viscosity components in the
presence of an arbitrary background magnetic field B,
where a general form of the thermomagnetic propagators
are used based on the real time formalism of finite
temperature field theory and the Schwinger proper time
formalism. For this, we have taken two different systems—
(1) system of charged scalar bosons (spin 0) and (ii) system
of charged Dirac fermions (spin %)—and have calculated
the corresponding thermomagnetic spectral functions of the
EMTs which is the imaginary part of the Fourier transform
of the local EMT-EMT two-point correlator. Then viscous
coefficients are estimated from these thermomagnetic
spectral functions using the Kubo relations in the covariant
tensor basis of Ref. [36].

In the absence of a magnetic field, it is quite standard that
the one-loop Kubo expressions [38—42] of shear and bulk
viscosity are exactly identical to the expression from the
RTA of kinetic theory approach [43,44], when we identify

the inverse relation (I' = 1/7,.) between thermal width "
introduced in the propagators of Kubo method and the
relaxation time 7, in RTA method. However, in the
presence of a magnetic field, this exact equality between
the Kubo and RTA expressions has not been found as
explored in present work. Recently, Refs. [6,8—12,14,17]
have provided the RTA-based kinetic theory expression of
the relativistic matter at finite magnetic field; of which
Refs. [8,10-12,14,17] consider a general value of B and
Refs. [6,9] make a strong magnetic field approximation. In
these calculations, five shear viscosity components and two
bulk viscosity components become different in magnitude
due to their B-dependent anisotropic factor, made by the
two timescales: relaxation time 7. and the inverse of
synchrotron frequency 7z « 1/B, where B actually enters.
If we compare those RTA expressions of viscosity compo-
nents with the corresponding Kubo expressions, obtained
in the present work, then one can find a rich magnetic-field-
dependent structure, which probably reflects quantum field
theoretical effects on viscosity expressions. One may think
that a straightforward extension of Landau quantization of
the RTA-based kinetic theory expression might be equal to
our Kubo expressions, but this is not the case as the present
work reveals; we have identified a rich vertex structure and
an alternative entry of 7z as an inverse of the difference

096015-17



SNIGDHA GHOSH and SABYASACHI GHOSH

PHYS. REV. D 103, 096015 (2021)

between Landau quantized energies. Just like we realize the
time period (z) of radiation as the transition between
the two energy levels in the hydrogen atom problem
(z7! = v = AE), here we can think of 75 as the character-
istic timescale for the transition between the two Landau
levels and thus 73 may be considered as the inverse of the
energy difference of two Landau levels dw,,.

Although the qualitative magnetic-field-dependent
trends of RTA and Kubo expressions of viscosity compo-
nents are quite similar, which can also be checked by
recovering their isotropic picture, when one imposes the
B — 0 limit. Among the five components of shear viscosity
n, m=0,1,2,3,4), 1,34 components are completely
originated due to the magnetic field and, therefore, they are
disappeared in the B — 0 limit, whereas 7, only survives
and merges with the isotropic value 7, present at the B = 0
picture. For the bulk viscosity components, isotropic value
¢ at B = 0 is split into two components along the parallel
(¢)) and the perpendicular (¢ ) direction with respect to the
direction of the magnetic field, whose merging to the
isotropic value is verified by imposing the numerical B — 0

1
2

(T P00y = (T (09 (000 = 57 Lua(s) ) (09 0)090) = 5 P Lecial0)) )

limit. The qualitative magnetic-field-dependent structure of
the RTA and Kubo expressions is more or less same but we
believe that the Kubo expressions proposed here are
carrying a rich quantum field theoretical structure, which
is probably missing in existing RTA expressions.
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APPENDIX A: CALCULATION
OF THE EMT CORRELATORS

In this appendix, we will sketch the calculation of the
two-point correlation functions (7 T (x)T%(y)),, for
both the complex scalar and charged Dirac fields. Using
Eq. (5), we have

11

+uov)+@aepf)+pueov.aop). (A1)
Substituting L., from Eq. (3) into Eq. (A1) and applying Wick’s theorem [48], we arrive at
o (TP b a5t ()54 ! n oo (119P
(T2 (TS, 0)) = (Teots (x)av ()99 (3)9 ¢(y)>11 - 58" <frca“¢ ()00 $(x)0" " (1)0 ¢<y>>11
1 uv o2 @ Ve 1 Vi v o 4T
+58"m <’rc¢ (X)) () as(y)}11 - 58" (7co 5 (070007 (y)c?afb(y))ll
+58"Pm? (76061 (00" 08 ()0, + ng”g“ﬁ{ (76078 (90,0008 00y, (A2)

[ [ | [ — |
—m* (Tc0” ¢ (0)0sp(x)d" (1)()),, — m* (Tcd (X)p(x)07 ¢" (1)drd(3))
1 .,
+m* (Ted" ()0 (1d()) } +t(eo v +@o p)+ue va o p).

Simplification of the above equation yields

<TCTde1dI('x) deldr(y)> 1_8 o Dll(x y)a’laﬂDll(y x>__gﬂy{axaaDll(x y)a 8ﬂD11(y x)
1 ,
—3 B{O405D 1 (x,y)0KO5Dy; (y.x)

1
+19"y9{lﬁ{a§a§D1 1 (x,y)agaﬁD”(y,x) —m28§D11 (x,y)0Dy (y.x) =

+m*Dyy (x,y)Dy (3, %)} + (u o v) + (a< )+

28;’D11 (x,y)ﬁvan (y’x)}

—m234Dy, (x,y)05 Dy (y,x)}

m*9yDy (Xsy)ang (3, %)

(Hov.aep), (A3)
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— 0 —_ 9 N ; :
where Oy =2, ) = 3y ClC.s and Dy (x,y) = <7‘C¢(x)¢’r(y)>“ is the 11-component of the real time free thermal scalar

9
Xu

d
propagator in coordinate space. Since Dy;(x,y) = D;(x — y) is translationally invariant, it can be Fourier transformed as

4
Dy (x,y) =Dy(x—y) = / (;Zﬂl;‘ e—ip-(x—y)(—iDU(p; m)), (A4)

where Dy, (p; m) is the 11-component of the momentum space real time free thermal scalar propagator whose explicit form
reads [45,46]

Dyy(p;m) = [ o+ &(p - u)2zis(p* — m?) (A5)

p* —m? +ie

in which u* is the four-velocity of the medium, &(x) = ©(x)f(x) + ©(—x)f(—x) and f(x) = [¢*/T —1]7! is the Bose-
Einstein distribution function at temperature 7. In the LRF of the medium, ufzp = (1. 6)
Substitution of Eq. (A4) into Eq. (A3) yields after some simplifications

v Q d4p d4k —i(x=v)-(p— vq,
T == [ [ s 0Dy Dy (s m N (k). (A6)

where

scalar

. 1 1
N (k, p) = K p* pkP — 5 (k=) (g p K + PR + 4 (p k= m P

tuovtl@ep)+porv.asp) (A7)

In the calculation of viscous coefficients, we actually need the quantity N ’S’C”ggr(k, k), which is easily followed from
Eq. (A7) as

N (k k) = ARKKKP = 2(K2 = m2) (¢ kK + gPRARY) + (kP — m2)2g . (A8)

scalar

The calculation of EMT correlator for the Dirac field is done in similar ways. Using Eq. (6), we have

(T T8I 0s = (T (P00 0) = 4w = S 7 Lol

x (i W )row(y) — wy)rw(y)) - %Wﬁmrac (Y)) >”

+uov)+@aep)+uov.aop). (A9)

Substituting Lp;,. from Eq. (4) into Eq. (A9) and applying Wick’s theorem [48], we arrive at
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1 I il \ I 2l \
_E{ (T )Py ()Y dPu(»),, = (Tew (@ 8"y ()P (y)y v (),
i o \ T Dauyal \
(T W YW )y P (), + (Tcd" W (x)y* v (x)Pu ()Y (), }
1 I al | T 1 \
+ng{ (T )y 0a () (y)y 0P u(),, = (Te ()Y 8o ()Y ()y ¥ (),
I Bl \ I Saupl \
—(TC0Y (X)y Y (W (»)y* 0Py (), +(Tcoatb ()Y (x)PU(y)y ¥ (»),, }
i il ol | I il \
+§g’”’m{ (T (W ()y*oPu(y),, — (Tew @)y (x)Pu(y)y v (»),, }
1 I il | T ﬁ_ \
+18” { (Tew "y (Y7 ot (3)),, = (T W)y w (W (y)y7 0ot (1)),

v af —
<7ETDirac(x)TDirac(y) > 11 -

L ] v A10
—(TEH PP YY), + (T TP YT ()Y, } (A10)

i il — il ﬁ
+§g“ﬁ m{ (Tew P "YW W (), = (Ted" W)Y e (e (Y (), }

1 I il | I i \
—Eg’”g“ﬁ { (Tew(x)y7 0aw (WY O (), = (TcOat (x)y Ty (W (Y)Y O (V)),,
[

I 2 \ I 2 \
— (T (x)y 7 Bo¥ () (VYU (1)), + (TcOob(x)y Ty ()b (Y)Y ¥ (y)),, }

i i e i 2
—gg’”g"ﬁ m{ (Tew (x)y 7 0w (MW (), = (TeOet (xX)y Y (W (W),

A et \ AN et \
—(Tew (X)W ()Y U (), + (Tew (W)Y du(y)),, }

1 — _
+Zg’”'g“ﬁm2 (T W)y, + (1o V) +(@ e B)+(u e v,a e p).
Simplification of the above equation yields

(T Thiae () Tirac )11 = %Tr{Y”aiSll(x,y)V“%Sn Vo x) = PO 11 (x, ¥)7 Sy (3, %)
— 7811 (6, )7 RS 1 (3. %) + RSy (. )y D41 (v, %)}
— e T OS5 )P HS11 (3. ) = 0SS (5 ) S (0.
— 7711 (%, Y)r 05N S11 (v, %) + 7011 (3, ¥)7 0511 (v, %) }
- ég"”mTr{Sn(x, y)y“@fSn(y,x) - 86511(% Y8y, x)}
- 1—169“ﬁTr{y”8§S“(x, Y)770S11(y, x) = r*S11(x, ¥)r° 0506511 (v, x)
— 140506811 (x, )7 S11 (v, x) + 705811 (x, )7 %811 (v, X)}

i
- gg”/’mTr{y"a’;S”(x, Y)S1 (v, x) = r*S11(x,¥)0%S11 (v, x) }
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1 ,
+ ﬁgﬂygaﬂTr{Yﬂaﬁsn (6, )r? 05811 (v, x) — 70505811 (x, y)r’S11 (v, x)
- y"S”(x,y)yf’ag(?f,S”(y,x) + 708%511(X,y)?p3§511(y,x)}

I ,
+ gg’wgaﬂmTf{Y"aﬁSn(%)’)511(%x) — 77811 (%, ¥) 05811 (. X) = 95811 (x, y)r"S11 (v, x)

' 1
+ 811 (%, ¥)r"0pS11 (v, %)} = Zgﬂygaﬂszr{Sn(x’ ¥)Si(y.x)}

tuovtl@ep)+porvasp), (A1)

where Si(x,y) = <76 w( X)E()’»“ is the 11-component of the real time free thermal Dirac propagator in coordinate space. It

may be noted that the above expression is valid even if the field y is a multiplet, in which case the traces in the above
equation have to be taken over all the spaces belonging to the multiplet in addition to the Dirac space. Similar to the scalar
propagator, S;(x,y) = S;;(x —y) is translationally invariant and it can be Fourier transformed as

d*p
(2m)*

where S, (p) is the 11-component of the momentum space real time free thermal Dirac propagator whose explicit form
reads [45,46]

e"'f"(x‘Y)(—iS“(p)), (A12)

Si(y)=8Su(x—-y) = /

$1a(p) = ()| = Ep w2010 ) (a13)

in which &(x) = ©(x)f(x) + ©(—x)f(=x) and f(x) = [¢/T 4+ 1]7! is the Fermi-Dirac distribution function at temper-
ature 7.
Substitution of Eq. (A12) into Eq. (A11) yields after some simplifications

p d4k —I1(Xx—=V) — 1 v v v v a
<TCTD1raC( Dlrac / e=y)-(p k>{1_6(P kﬁ"'k Pﬂ-l-P Pﬁ+k kﬂ)Tr(V”S“(p)}’ Sll(k))
1
—EQ’"J(Pakﬂ+kaPﬁ+PaPﬁ+kakﬁ)Tr(765u(P)Vasll(k))+§9””m(Pﬁ+kﬂ)Tr(Su(P)Vasll(k))
1 1
—Rg"/’ (P'ks+K' Dot D" Do+ Kks)Tr(r"S11(p)r7S11(k)) +§g“ﬂm(p” +E)Tr(r"S11(p) S (k))
1
+1_69m/g(lﬂ(po’k/}+ko’p/1+pn'p/)+k6k/))Tr(yo—Sl1(p)ypsll(k))
1
—gg”vgaﬂm(Pa-f'ka){Tf(Sn(P)}"’Sn(k))+Tr(70511(l?)511(k))}
1
LTS (P () | 000+ () (e ). (A4

Substituting S;;(p) from Eq. (A13) into Eq. (A14) followed by evaluating the traces over the Dirac matrices and
simplifying, we arrive at

(T Tty Ty = = [ S 2 e D (DN p). (A19
where
Dus(pim) = | 3= Ep 2ai0(p2 - ) (A16)
and
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N5l k. p) =

1
e (k. p) = 3 (=KD" + pAe) (0 + pP) (R + )

+ g (kP + pP){(p* — m*)k* +

+g (K + pP) (k" + p*) (k- p—m?)
(k2 = m?)p*} + g (k + p*){(p* = m*) K" + (k> — m?)p"}

= g g2k = m?)(p* —=m?) + (k- p = m?) (k> —m? + p* = m?)}]

tuov)+@op)+

In the calculation of viscous coefficients, we actually need the quantity N

Eq. (A17) as

NS (k, k) = —8k"k kK +

Dirac

(< v,a<sp).

(A17)

uvaf
Dirac

(k, k), which is easily followed from

(k2 _ mZ){gyakykﬁ + gyakﬂkﬂ + gu/}kbka + gu/ikuka
+ AR 4 APk} — (K2

—m2P g, (A18)

APPENDIX B: CALCULATION OF THE EMT CORRELATORS IN THE PRESENCE
OF AN EXTERNAL MAGNETIC FIELD

In this appendix, we will sketch the calculation of the two-point correlation functions (7 ~T*(x)T*(y))%, in the
presence of a constant external magnetic field for both the complex scalar and charged Dirac fields. Proceeding along
similar lines as done in Appendix A, Eq. (A3) for the scalar field now modifies in the presence of a magnetic field as

1
(1 * * 7 * 0
<TCTlslé/alar( ) scﬂala:()’)>11 = DD aD}lgl (x,y)D¥ ”D/Dfl (v, x )—EQ’W{DZCDyaDﬁ (x,y)D; DéD?l (v, x)

—m’Dy*Df, (x,y)DyDf; (v, x)}

1 %
= 5 ¢"{DLD DY, (x, y) D" DDF (v, %) =

1 *p *O
+ P {DIDY DY, (x.y) DY DDA (3.)

sz)DfDllgl (x, y)D;”Dllgl (v, x)}

= m*DDf, (x.y) Dy DY (y. x)

m?0s DY, (x.y) D37 DY (y.x) + m*Df, (x.y) D, (v. )}

+ueov)ta@aepf)+pov,asp),

where Dk = 0% + ieAl(x),
Dy =0y +ieAi(y). Dy =04

foli, \\B
Df(x.y) = (Teep(0)e (M),
real time free thermomagnetic scalar propagator in coor-
dinate space. In contrast to the zero magnetic field case, the
thermomagnetic propagator is no longer translationally
invariant D% (x,y) = ®(x,y)D% (x—y) and it contains
the gauge-dependent phase factor ®(x, y) which explicitly
breaks the translational invariance. However, the transla-
tionally invariant piece D? (x —y) can be Fourier trans-
formed and the thermomagnetic propagator can be
written as

V=0 — ieAly(x),
—ieAb,(y), etc., and

is the 11-component of the

Dh(x=y) = [ G =infi(p). (B2

where D¥, (p) is the 11-component of the momentum space
real time free thermomagnetic scalar propagator whose
explicit form reads [63]

(B1)
|
D} (p 22 e L;(2a,)Dy (p),m;)  (B3)
=0
. . . . p2
in which [ is the Landau level index, a, = —j >0,m; =

Vm? + 21+ 1-2s)eB=+/m>+ (2l +1)eB is the
“Landau-level-dependent effective mass,” s is the spin of
the particle (for scalar field s = 0) and D;; is defined in
Eq. (AS). Due to the external magnetic field in the Z
direction, the decomposition of any four vector k* is done
as k= (kj+k), where k| =gk, and K| =gk,
the corresponding decomposition of the metric tensor
reads ¢ = (¢ + ¢') with ¢}" = diag(1.0,0,~1) and
¢, = diag(0,—1,—1,0). Note that, in our convention, k’,
is a spacelike vector with k3 = —(k% + k2) < 0.

Due to the presence of the phase factor ®(x,y)
in the propagator, it may seem that the quantity

(T ()T ()5 in Eq. (B1) is not translationally

scalar scalar
invariant. Fortunately this is not the case. To see this, we
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first note that the gauge-dependent phase factor is given
by [63]

®(x,y) = exp {ie / ’ dx;,A’;xt(x’)] . (B4)

Differentiating the above equations separately with respect
to x and y using the Leibniz rule yields

D(x, y){—ieAeu(x)}.
D(x, y){ieAcx (x)}-

The above two equations can be rewritten as

OhD(x,y) = (BS)

AHd(x,y) = (B6)

(T T 4 (OTL L () E = ®(x.y)D(y,
1
2

1 :
— S FPLLOTDY (= Y)RDLDI, v = )

1 >
+ Zgﬂygaﬁ{aﬁafvl)?l (x = y)a;a,%pﬁ (y=x)

- —g’w{a}(aﬂ)ﬁ (x— Y)aga_eDﬁ (y—x)

Di®(x,y) = DY'®(x,y) = 0. (B7)
Using Eq. (B7), it is easy to see that
DiDfy(x.y) = Dk[®(x, y)Df; (x = y)]
= ®(x,y) kDY (x - ). (B8)
Dy DY, (x,y) = Dy'[®(x,y) Df; (x = y)]
= ®(x,y)4Df; (x - y). (B9)

We now use Egs. (B8) and (B9) to simplify Eq. (B1)
and get

x)[(?ﬁ(?‘y’Dﬁ (x— Y)a”xgngiql (y=x)

- mzaﬁDﬁ (x - Y)a_/v}’Dﬁ (y=2x)}
- mzalelgl (x - Y)al;Dllgl (y—x)}

- m*0; D (x = y)O7D% (v = x)

= m*0sDf, (x = y)95DY (y — x) + m* DY, (x — y) DY (y — x) }]

+uov)+(a@aepf)+pueov.aop).

Since the phase factor given in Eq. (B4) satisfies the
relation ®(x, y)®@(y, x) = 1, we notice that the phase factor
in Eq. (B10) is completely canceled out and the quantity
(T ()T ()%, is indeed translationally invariant
and gauge independent. This type of cancellation of the
phase factor for the loops containing particles with equal

charges is well known [51,53,63]. If we now compare

ne-

N7:g€alar<k’ p)

<TC Tl:é/alar ( ) Tgcﬁalar

where

in which N** (k. p) is defined in Eq. (A7).

scalar

In the calculation of viscous coefficients, we actually need the quantity A\’

d4p d4k i) (p—k) o s
e ZZD“ psm Dll(k”’ml)'/\/ln;scalar(k* p)’

= 4(=D)Hremaa L (2a, ) L, (2a, )N (k. p)

(B10)

|
Eq. (B10) with Eq. (A3), we notice that the expression of
EMT correlator at nonzero magnetic field is identical to the
same at zero magnetic field, except the thermal propagator
has to be replaced by the translationally invariant piece of
the thermomagnetic propagator.

Let us now substitute Eq. (B2) into Eq. (B10) and we get
after some simplifications

(B11)
=0 n=0

(B12)

scalar

uvaf (k, k), which is easily followed from

Eq. (B12) as In;scalar
Nt (ks ) = 4 A () {4 KKK = 2(k2 = m?) (¢ Kk + g k) + (K2 = m?) g g} (B13)

in which
A (k) = (=1)"*"e% L, (20 )L, (20). (B14)
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The calculation of the EMT correlator (7 ¢T%  (x)T (y))%, for the Dirac field in the presence of an external magnetic

field can be done in a similar fashion as done for the scalar field. In this case, the zero magnetic field expression of Eq. (A14)
modifies to

(T T e () T e )1 = // d4p d4k "("‘”'(”"‘){%(p”k%rk”pf’+p”p/’+kvkﬂ)Tr(7”S?1(p)y“S‘fl(k))
—1—69””(pgkﬂ +kapﬂ +po P’ +kKP)Te(r7 ST (p)r*ST, (k) +%9"”m(p’3 +K)Te(SF (p)r* ST, (k)
—%g"ﬁ (P*kg+k potp* ot Kk Tr(r* ST (p)r° ST, (k) +%9“” m(p* +k)Te(y* S, (p) ST, (k)
+%9"”9"” (Poky+kapp+Popy+kok,)Tr(y? ST, (p)r’ ST (k)
g o, kTS (S 40)+ T 5 ()5 00
A PRI (P)ST ()} () @ )+ (0 > via s ), (B1S)

where S%, (p) is the 11-component of the momentum space real time free thermomagnetic Dirac propagator whose explicit
form is given by [64,65]

S?l (p) =

[]s

(—1)13_(1”7)1(17)1311(17\\7ml) (B16)
]

Il
o

in which m; = \/m? + (21 + 1 = 2s)eB = V/m? + 2leB (for Dirac field, s = 1/2), Dy, is defined in Eq. (A16) and D,(p)
is

Dy(p) = (p) + m)[(1 + iy'y*)L,(2a,) = (1 = iy'y*) Ly Ra,)] = 4p L (2a,,) (B17)

with the convention L_;(z) = L!,(z) = 0.
We now substitute Eq. (B16) into Eq. (B15) and get after some simplifications

a d4p d4 - va
(T T T = = [ G 070 D2 S Durlpyim) Dol m) N ko). (BIS)

=0 n=0

where

vy n,—o—a 1 v v v v a
N ac ke p) = =(=1)!1em P{1—6(p K+ kpl + prpP + R )Te(r D, (p)r* Di(l))

In;Dirac
Vo 1 s ] BTy (0 a Vo (5 a
A (Pok? + kop? + pop” + kK )Te(y" D, (p)r*Di(1)) +gd m(p” + k°)Tr(D,(p)r*Dy(1))
1 1
- 1—69"‘ﬂ (P ks + K py+ PPy + K k,)Tr (D, (p)r°Dy(1)) + gg"”m(p” + k) Tr(y* D, (p)Di(1))
1
+ 1—69””g“ﬂ (Pok, + kopy + Popp + kok,)Tr(r° D, (p)y"Dy(1))

- G pe + KNI, (PP + Ter Dy (D)

3P PMETHD, (PPN} + (1 o> 0) + (@ <> )+ (4 <> v <> f). (B19)

In the calculation of viscous coefficients, we actually need the quantity N\ ’;; %ﬂ,m(k, k), which is easily followed from
Eq. (B19) as
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[n;Dirac

N (k) = = 3 (TSR = g TRk K — mT (R} = o (T (K)kgk = mT % (K)K)
TRk, =2 TG, (O, + 2T (K] 4+ (e > 0) + (@ o f) + (> v o> ), (B20)

where
T (k) = (=1)7e2 Ty D, (K)yDy (k)]
= B8R — K2 g™)B,, (k) + (KK — g (1 — m?)}C(3)
(R = m)g D (k) + 2(KR -+ R E, ()], (B21)
T, (k) =(=1)+7e2Te[D, () Dy (k)] = 16mIK-Cu(K2) + K Dy (2], (B22)
T (k) =(=1)"7e 2 Te[D, (k)Dy (k)] = 88K B, (k) + (K2 + m?)Cy, (D) (B23)
in which
B, (k1) = (1) e L} (2a;)LL_, 2a). (B24)
C(R2) =(=1)" e~ (L, (2a) Loy ) + Ly(2) Ly (201}, (B25)
D (k) =(=1)"7e (L (2a) Loy (2ap) + Liy (20) L, (201}, (B26)

En(kL) =(=1)"*"e %Ly (2ax) L,y Q) = Li(2ap) L,y (2a) + Li_y (203 )L,y (205) = Ly (204) L, (2e) }. (B27)
Substituting Eqgs. (B21)-(B23) into Eq. (B20) and simplifying, we finally obtain

N e (ks k) = =168, (k) [k (2K K5 — 13 ') — ¢ PG (K — k) — fPRAAE (K — K]
+g g7k (kT — kﬁ +m?)] = 2C;, (K7 ) [k kP {2k} Kt I (k2 - m2>9‘m} - (k2 )gﬂykﬂka
= (kj = m?)gk' Ky + g g (ki — m?)?] = 2Dy, (k1) (kf — m?) [k K ¢ — 9" KO kS,
— PR + g””g"/’kz] —4E, (k) (KK (KK + KLk) — ¢ KP{ (kf = m® )k + KL kif}
— gPRA (K = m? )KL+ KLk} + 29" gk (K —m )] tuov)+(aep)+uovasp). (B8

APPENDIX C: EXPLICIT ANALYTIC EXPRESSIONS OF A" BY)

In>~In-°*

)
gln

Let us first note that, using the orthogonality of the Laguerre polynomials, the following integral identities can be derived:

d’k, u (eB)? e . .
[ e b Qa L ait = o -3, - 3), (c1)
dzkl _oa (eB)z i

/(2”)26 ? kLll—1<2ak) n— 1(2ak)k2¢ = 167 ”51—11v (€2)

Pk, (eB)?, o _ s
[ el CaL,a)k = -5k - o), (c3)

d*k B)3
/ (2”; e 2L (2a) L, (20K = (22}[ {20+ 1287 = 21+ )18} = (20 + D)ns;™ = 2+ 1)né),,

+ (L+ 125+ (1+ Dnsizl = 2n+ DISE, + (n+ )57 + Psl}, (C4)

096015-25



SNIGDHA GHOSH and SABYASACHI GHOSH

PHYS. REV. D 103, 096015 (2021)

d’ky 20, 2 (eB)? 7 N1 n—1
We Li(20;)L,(200)k7 = — 161 {@2n+1)5] = (n+ 1)6]"" —n&] 7'}, (Cs)
dzkl 2, eB
=L, (2ay)L,2ay) = — 7. C6
/(2”)26 12y )L, (201 gzl (Co)
Now, using Egs. (C1)—(C6), we perform the d?k | integrals of Egs. (78)—(82) and obtain
B
A =5, 7
In 8 1 ( )
eB)?
AR =B o 1)gp + (ot 15 4 ), (C8)
4) (68)3 2sn n+1 n—1 7
A, = 390 {14 1)%6) + 21+ 1)I6]" + (21 + 1)né}~" 4 (2n + 1)néd},
+ (T4 1250 + (1+ Dnsic + 2n+ DISE, + (n+ )15 + P&l (C9)
|
o (eB)? | Let us first consider the zero magnetic field case. The
B, =- 167 né~y, (C10) canonical partition function reads [66]
3
4 (63)3 n— ) n— = — 7d k — —oi/T
BY = o @3S 8L, + 8. (Cl) InZ = Vg/ 5k aln(l —ae~/T), (DI)
O _ eB 51+ gl cl2 where g is the degeneracy factor. For the system of charged
In = 877( I+ 05, (C12) scalar bosons g = 2, whereas for the system of charged
Dirac fermions g = 4. All the thermodynamic quantities of
ng) _ (eB)? (20 + D& + (n+ )& + na=! interest can be derived from the partition function. The
" 167 pressure is
+ (2n = 1)&7 +ndy 4+ (n—1)81=2}, (C13) -
T &k k
P=—InZ= ———falwyp), (D2)
B 9/ 7 a\ Wk
DY == (@3 +apy), (C14) v (22)" 30
T
5 where f,(x) = [¢*/T —a]™" is the equilibrium thermal
D;z) (eB) {@n =18~ + ! + (n—1)82 distribution (Bose-Einstein or Fermi-Dirac). Similarly,
" lox the energy density is given by
+@2n+ D&+ (n+ D)8 +ns7ly, (C1S)
oP &k
2 e=T|~)-P=g | Szoifalw). (D3)
) (eB) -1 1 aT (27)3
& =- = (I+n)o) +6,+67"+0}). (Cl6)

It is important to note that the Kronecker delta function
with a negative index is always zero (i.e., 5:} = 0), which
follows from the convention of the Laguerre polynomials
L_(z) =LY (z) =0 used in Eq. (B17).

APPENDIX D: THERMODYNAMIC QUANTITIES

In this appendix, we will derive the thermodynamic
quantities 6 = (%), and ¢ = —-B(%{), both at zero
and nonzero external magnetic field, where P is the
longitudinal pressure, ¢ is the energy density and M is
the magnetization.

It is straightforward to obtain

(-6

@t -

(3—;) :%g/%w%fa(wk){l Vaf.(w)).  (D6)

where
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Let us now switch on the external magnetic field. The
canonical partition function for the charged particles now
modifies to

InZ = aln(l —ae~ /Ty (D7)

Zgl/

where the degeneracy g; can now depend on the Landau
level index [ as well. For the charged scalars g; = 2 whereas
for the charged Dirac particles g, = 2(2 — &Y) implying that
the lowest Landau level is spin nondegenerate. The
longitudinal pressure and the energy density are given by

:—IZ T

% Zgla/ dk In{1 + af (o)}

(D8)
P B
e=1(%F) _p_© 7
oT ) g 2z
respectively, whereas the magnetization becomes
_ (0P
- \0B),

:l[p_(eB)zggl(szzs)A dk. fa(wkz)]

B 472

) A ® dk.wuf.(wg). (DY)

(D10)

The calculations of the quantities @ and ¢ at nonzero
magnetic field are obtained from

(-6, o
oo,/ e
where

1 eB
T 2712

(57),-

o A " k.t f () {1+ af olan)}.

(D14)

oM oP 1 (eB)*> &
(6T)B <6T>B T2 4n° ;g’( +1-2s)

x / ® dkofolow) {1 + afulon)}.  (DIS)
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