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In this article we use an electromagnetic Lagrangian constructed so as to include dispersive effects in the
description of an electromagnetic wave propagating in the quantum electrodynamic vacuum. This
Lagrangian is Lorentz invariant, includes contributions up to six powers in the electromagnetic fields,
and involves both fields and their first derivatives. Conceptual limitations inherent to the use of this higher
derivative Lagrangian approach are discussed. We consider the one-dimensional spatial limit and obtain an
exact solution of the nonlinear wave equation recovering the Korteveg-de Vries type periodic waves and
solitons given in S. V. Bulanov et al. [Phys. Rev. D 101, 016016 (2020)].
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I. INTRODUCTION: WAVE EQUATIONS IN
NONLINEAR QUANTUM ELECTRODYNAMICS

Field induced polarization and birefringence of the
vacuum, see e.g., Refs. [1,2], are fundamental effects
predicted by quantum electrodynamics (QED). These
effects arise from the process of scattering of light by
light: while in classical electrodynamics electromagnetic
waves do not interact in vacuum, in QED photon-photon
scattering can take place in vacuum via the generation of
virtual electron-positron pairs that gives rise to polarization
and magnetization currents that make the vacuum respond
as a material medium. The study of the nonlinear QED
vacuum properties has been conducted for about a century
[3–11].
Recently, interest in these effects has been rekindled by

the availability of high power lasers (see review articles
[12,13]) leading to the formulation of the plans aimed at
reaching experimentally the parameters that can enable the
study the nonlinear QED vacuum [14–16]. This, in turn,
has motivated an intensive theoretical research program
aimed at the study of the scattering of a laser pulse by a
laser pulse [17–28].
The field induced vacuum polarization and birefringence

can be accounted for within the framework of a local

approximation using the well-known Heisenberg-Euler
Lagrangian in the electromagnetic action functional
[3,5]. This approximation leads to nonlinear wave equa-
tions for the fields amplitude in vacuum that are not
dispersive, i.e., that are homogeneous in the second order
derivatives of the field four-vector potentials. In other
words the Lagrangian does not include second order
derivatives (or higher order derivatives) of the electromag-
netic fields. This local approximation is valid in the long
wavelength, low frequency limit, essentially requiring that
the electromagnetic fields are slowly varying on the
Compton scattering wavelength ƛC ¼ ℏ=mec, where ℏ is
the reduced Planck constant, e and me are the electron
electric charge and mass, and c is the speed of light in
vacuum.
Nonlocal effects on the Compton scattering have been

studied e.g., in Ref. [29] and, for vacuum birefringence,
in Ref. [30].
For shorter wavelengths the vacuum acquires dispersion

properties. In the small field amplitude limit and in the so-
called cross-field approximation, these dispersive proper-
ties have been included in the “invariant photon mass”
introduced in Ref. [31] (see also Refs. [32–36]). The cross-
field approximation consists in approximating the inter-
action between a higher frequency pulse and a lower
frequency pulse by taking the latter to be described by
uniform and stationary electric and magnetic fields of the
same amplitude and orthogonal to each other. Discussions
of the QED processes beyond the constant field approx-
imations can be found in Refs. [37–40]. The invariant
photon mass refers to the higher frequency pulse; it
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depends on the relative polarization between the fields of
the two pulses and can be expressed [31] in terms of the so-
called quantum nonlinearity parameter χγ. This Lorentz
invariant parameter can be written for a photon impinging
on an slowly varying external field as [21,31]

χγ ¼
e
m3

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνkνÞ2

q
; ð1Þ

where kν is the four-wave vector on the impinging photon
and Fμν is the electromagnetic external field tensor. Natural
units are adopted with c ¼ ℏ ¼ 1, and the fields in the
electromagnetic field tensor are normalized on the critical
QED field ES (which is given in dimensional units by ES ¼
m2

ec3=eℏ [41]). In the limit of small χγ , for parallel
polarizations the square of the photon invariant mass m
can be written as

m2 ¼ −αm2
e

�
4

45π

�
χ2γ þ

1

3
χ4γ

�

þ i
1

4

ffiffiffi
3

4

r
χγ exp

�
−

2

3χγ

�
þOðχ6γÞ

�
; ð2Þ

where α ¼ e2=ℏc is the fine structure constant. The
imaginary part is exponentially small. The term propor-
tional to χ4γ describes the dispersion effects, i.e., the effects
corresponding to the wave propagation velocity depend-
ence on the wave vector. This result was used (to leading
order in χ4γ ) in Ref. [36] to derive a nonlinear wave equation
for finite amplitude dispersive waves counterpropagating
with respect to a cross-field configuration. This wave
equation is of the form of the Korteveg–de Vries (KdV)
equation [42] in the one-dimensional spatial case and
includes third order derivatives of the impinging wave
vector potential while it has the form of the Kadomtsev-
Petviashivili equation [43,44] in the two-dimensional case.
In the one-dimensional case, in light-cone coordinates
xþ; x− and for normalized variables (for explicit definitions
see Sec. III), the KdV equation obtained in Ref. [36]
describing the electromagnetic wave in the QED vacuum
reads

∂þa − ðκ1 þ κ2aÞ∂−a − 2κ3∂−−−a ¼ 0; ð3Þ

where the coefficients κ1 ¼ 4αW2
0=ð45πÞ, κ2 ¼ 32

ffiffiffi
2
p

αW3
0=

ð105πÞ, and κ3 ¼ 4αW4
0=ð135πÞ are proportional respec-

tively to the second, third, and fourth power of the cross-
field amplitude Wo. The nonlinear term in Eq. (3) arises
from the Heisenberg-Euler Lagrangian [3], truncated at the
six photon contribution, and allows for propagating
Korteveg–de Vries soliton solutions.
In the present article we use a Lagrangian in the

electromagnetic vacuum action that involves higher
order derivatives of the wave vector potential and that is

constructed so as to include the quantum nonlinearity
parameter dependency of the invariant photon mass. In
this formulation higher order derivatives enter in combi-
nation with nonlinear terms. We derive the corresponding
field equations by a variation of the action integral and
obtain scattering solutions for counterstreaming finite
length pulses that include the effect of dispersion. In
addition we derive the general solution for finite amplitude
waves propagating in a cross-field configuration. These
solutions describe a class of soliton solutions of the type
described in Ref. [36].
Effective electromagnetic Lagrangians depending on

higher derivatives have been introduced in the context of
modified linear electrodynamics, or limited to leading order
in the field amplitude and field derivatives separately, by
Podolsky [45–47], Barut and Mullen [48], Lee and Wick
[49], and also see Refs. [50–52]. Essentially these
Lagrangians are of the form exemplified by the Lee-
Wick Lagrangian

L ¼ L0 þ LLW; with L0 ¼ −
1

4π
FμνFμν and

LLW ¼
1

4M2
Fμνð∂α∂αFμνÞ; ð4Þ

with the inclusion, see e.g., Ref. [52], of the first nonlinear
contributions from the Heisenberg-Euler Lagrangian. In
Eq. (4) L0 is the classical electromagnetic Lagrangian in
vacuum and M is a mass parameter. We note that a
Lagrangian depending on higher order derivatives of the
form

LMME ¼
α

m2
e
½−ð∂κFκ

λÞð∂μFμνÞ þ Fμν∂λ∂λFμν� ð5Þ

was obtained in Refs. [8,9]. A derivative expansion of the
effective action for nonlinear quantum electrodynamics has
been obtained in Refs. [53,54] in terms of a Lagrangian that
is written in the form

L ¼ LHE þ ∂λFαβ∂γFσδL
λαβγσδ
1 ðFμνÞ

þ higher field derivative terms; ð6Þ

where LHE is the Heisenberg-Euler Lagrangian and
Lλαβγσδ
1 ðFμνÞ is a local function of the electromagnetic field

tensor.

A. Well posedness of higher order Lagrangians

The physical interpretation of higher order derivative
Lagrangians presents some difficulties as these
Lagrangians lead to “ghost” degrees of freedom and to
instabilities. In 1850 Ostrogradski [55] proved in the
context of classical mechanics that a Lagrangian of the
form Lðq; _q; q̈Þ, which requires four initial conditions
and thus involves four canonical variables, leads to a
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Hamiltonian that is not bounded from below with respect to
a “ghost” degree of freedom; see Ref. [56] where it was
shown that in a non-degenerate higher derivative theory,
that is in a theory where the higher order derivative does not
simply amount to a total time derivative, the Ostrogradski
instability can only be removed by the addition of con-
straints that reduce the phase space of the original theory.
For systems with infinite degrees of freedom, higher

order derivative Lagrangians can lead to additional wave
branches corresponding, e.g., for the Lee-Wick Lagrangian,
to two independent (on-shell) spin-1 fields: the original
massless photon field and an additional massive one.
In the case of the Podolsky electrodynamics [45–47], as

well as in the case considered by Mamaev, Mostepanenko,
and Eidis [8], which was introduced in order to regularize
the electromagnetic field behavior at short distances and to
take into account the field inhomogeneity effects, the
Lagrangian can be written as

L ¼ L0 þ LPod; with

LPod ¼
1

M2
½−ð∂κFκ

λÞð∂μFμνÞ þ Fμν∂λ∂λFμν�; ð7Þ

where the inverse mass 1=M is the parameter that corre-
sponds to the length, and the current source term is not
included. From this Lagrangian we obtain in the Lorentz
gauge ∂μAμ ¼ 0 the wave equation�

1 −
1

M2
∂μ∂μ

�
∂ν∂νAκ ¼ 0: ð8Þ

It corresponds to a photon branch with dispersion equation
kνkν ¼ 0 and a ghost branch with dispersion equation
kμkμ ¼ −M2. The addition of nonlinear terms in the
Lagrangian will in general couple the two different
branches (see Appendix C). An analogous result can be
derived from the Lagrangians introduced in [48,49].
For the sake of consistency, see also Ref. [57], in what

follows wewill treat the terms with the higher derivatives as
corrections to the classical electromagnetic Lagrangian
density L0 and in particular we will require that any
effective mass arising from the balance between the non-
linear and the dispersive terms remains finite in the limit in
which the value of the fine structure constant α is set equal
to zero.

B. Outline of the article

In Sec. II, after specifying for the sake of clarity some
normalization conditions, the structure of the dispersive
Lagrangian term is formalized for an electromagnetic
vacuum configuration in four-dimensional Minkowski
space. Its reduced expression in a spatially one-dimensional
configuration is then expressed in terms of light-cone
variables. In Sec. III the electromagnetic field equations
are derived from the full one-dimensional Lagrangian in

vacuum including the Heisenberg-Euler and the dispersion
terms up to the sixth power of the fields. Then explicit
solutions are obtained for the scattering of two counter-
propagating finite length pulses in Sec. IV, and for finite
amplitude waves in a constant cross-field configuration in
Sec. V. These sections are supplemented by four appen-
dixes at the end of the article. The first two appendixes
serve the purpose of providing algebraic developments
separately so as not to interrupt the flow of the presentation.
In the final two appendixes, ghost solutions are described in
the case of a nonlinear wave equation with linear dispersion
terms derived from the Lagrangian given by Eq. (5),
Appendix C, and of the wave equation derived from the
Lagrangian given by Eq. (23) for a spacial class of self-
similar solutions, Appendix D. Finally in Sec. VI con-
clusions are drawn and a possible inclusion of higher
powers of the field amplitudes in the Lagrangian is
indicated as a possible path towards the identification of
higher order solitonic structures in the process of light-light
interaction.

II. DISPERSIVE CONTRIBUTION TO THE
LAGRANGIAN DENSITY

We specify the normalizations adopted in this article by
writing the classical electrodynamics Lagrangian in the
form

L0 ¼ −
m4

e

16πα
FμνFμν ¼ −

m4
e

4πα
F; ð9Þ

while the Heisenberg-Euler Lagrangian density (truncated
at the 6-photon interaction term) is written as

LHE ¼ −
m4

ee4

90π2

��
F2 þ 7

4
G2

�
þ 8

7
F

�
F2 þ 13

16
G2

��
:

ð10Þ

The Lorentz invariants F and G are defined by

F ¼ 1

4
FμνFμν; G ¼ −

1

8
εμνκλFκλFμν; ð11Þ

with εμνκλFκλ the dual electromagnetic field tensor. Here
εμνκλ is the fully antisymetric four-dimensional Levi-Civita
tensor.
Referring to the quantum nonlinearity parameter χγ that

is used in the definition of the invariant photon mass and in
view of Eq. (6), we define the following dispersive
contribution to the vacuum Lagrangian density:

LDisp ¼
μm4

e

4πα
½∂αhðF;GÞ�Fα

βF
βγ½∂γhðF;GÞ�: ð12Þ

Here μ is a coefficient that will be identified as
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μ ¼ 4

135π
α ð13Þ

by comparing Eq. (3) derived in terms of the invariant
photon mass with the corresponding result given by
Eq. (33) in Sec. V, and h is a function of the two
Lorentz invariants F, G. In the following we expand h
in a Taylor series and keep only linear terms in F and G.

A. One-dimensional, single polarization case

In the case of an electromagnetic configuration that
depends on a single spatial coordinate, say x, and where the
fields correspond to a single polarization state, G vanishes
and Eq. (12) becomes

LDispjj ¼ −
μm4

e

4πα
fB2½∂xðE2 − B2Þ�2 þ E2½∂tðE2 − B2Þ�2

− 2EB½∂xðE2 − B2Þ∂tðE2 − B2Þ�g; ð14Þ

while

L0 þ LHE ¼ −
m4

e

4πα

�
B2 − E2

2
− ϵ2
ðB2 − E2Þ2

4

þ ϵ3
ðB2 − E2Þ3

8

�
; ð15Þ

where

ϵ2 ¼
2α

45π
and ϵ3 ¼

32α

315π
: ð16Þ

III. ACTION FUNCTIONAL IN LIGHT-CONE
VARIABLES

Here as in previous articles, see e.g., Refs. [36,58–60],
for a spatially one-dimensional configuration it is conven-
ient to introduce light-cone variables defined as

xþ ¼ ðxþ tÞ=
ffiffiffi
2
p

; x− ¼ ðx − tÞ=
ffiffiffi
2
p

; ð17Þ

with corresponding derivatives

∂x ¼ ð∂þ þ ∂−Þ=
ffiffiffi
2
p

; ∂t ¼ ð∂þ − ∂−Þ=
ffiffiffi
2
p

; ð18Þ

where ∂� ¼ ∂=∂x�. For a configuration corresponding to a
single transverse polarization state we choose the four-
vector potential to have only a component in the z direction
which we denote in normalized form by aðxþ; x−Þ. Then
the electric field E is in the z direction while the magnetic
field B is along y.
We define the field variables

wðxþ; x−Þ ¼ ∂þaðxþ; x−Þ; uðxþ; x−Þ ¼ ∂−aðxþ; x−Þ;
ð19Þ

i.e., the electric and magnetic fields are

E ¼ ðu − wÞ=
ffiffiffi
2
p

; B ¼ −ðuþ wÞ=
ffiffiffi
2
p

: ð20Þ

Note that by construction we recover Faraday’s law in the
form

∂−w ¼ ∂−þa ¼ ∂þu: ð21Þ

By including both L0 þ LHE and LDispjj, the electro-
magnetic action A expressed in the xþ; x−; w; u variables
takes the form

AðaÞ ¼ m4

4πα

Z Z
D
dxþdx−LTða; a0; a00Þ; ð22Þ

where a0 stands symbolically for w ¼ ∂þa and u ¼ ∂−a,
while a00 stands for ∂þw ¼ ∂þþa, ∂−w ¼ ∂þu ¼ ∂þ−a,
and ∂−u ¼ ∂−−a. After eliminating the common multipli-
cative factor in Eqs. (14) and (15) the Lagrangian LT reads

LTða; a0; a00Þ ¼ −uwþ ϵ2ðuwÞ2 − ϵ3ðuwÞ3
− μfw2½∂−ðuwÞ�2 þ u2½∂þðuwÞ�2
þ 2uw½∂þðuwÞ�½∂−ðuwÞ�g: ð23Þ

The dependence of Lagrangian LT on the first and
second order derivatives of the vector potential aðxþ; x−Þ
can be made explicit by rewriting (see Appendix A)
LTða; a0; a00Þ as

LTða;a0;a00Þ ¼−ð∂þaÞð∂−aÞþ ϵ2½ð∂þaÞð∂−aÞ�2
− ϵ3½ð∂þaÞð∂−aÞ�3−μ½ð∂þaÞ2ð∂−−aÞ
þ 2ð∂−aÞð∂þaÞð∂þ−aÞþ ð∂−aÞ2ð∂þþaÞ�2:

ð24Þ

Varying the action AðaÞ with respect to the vector
potential a and imposing that at the boundaries δD of
the domain D under consideration both δa and ∂þδa; ∂−δa
vanish, we obtain the wave equation for the vector potential

− ∂þ ∂LT

∂ð∂þaÞ − ∂−
∂LT

∂ð∂−aÞ
þ ∂þþ ∂LT

∂ð∂þþaÞ
þ ∂−−

∂LT

∂ð∂−−aÞ
þ ∂þ− ∂LT

∂ð∂þ−aÞ ¼ 0; ð25Þ

where ∂þa ¼ w; ∂−a ¼ u and ∂þþa ¼ ∂þw; ∂þ− ¼∂þu ¼ ∂−w; ∂−−a ¼ ∂−u are treated as independent var-
iables in the differentiation. The explicit form of the
derivatives of LT in Eq. (25) are given in Appendix B.
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A. Field equations in the u, w variables

The Lagrangian LTðw; uÞ in Eq. (23) can be rewritten as

LTðu; wÞ ¼ −½uw − ϵ2ðuwÞ2 þ ϵ3ðuwÞ3 þ μðw2∂−uþ uw∂þuþ uw∂−wþ u2∂þwÞ2�; ð26Þ

and the wave equation for the vector potential (25) can be written in terms of the field variables u and w as

∂þfu½1 − 2ϵ2uwþ 3ϵ3ðuwÞ2�g þ ∂−fw½1 − 2ϵ2uwþ 3ϵ3ðuwÞ2�g
þ 4μf∂þ½wð∂−ðuwÞÞ2 þ u∂þðuwÞ∂−ðuwÞ� þ ∂−½uð∂þðuwÞÞ2 þ w∂þðuwÞ∂−ðuwÞ�g
− 2μf∂þþ½u3∂þðuwÞ þ u2w∂−ðuwÞ� þ ∂−−½w3∂−ðuwÞ þ uw2∂þðuwÞ� þ 2∂þ−½uw2∂−ðuwÞ þ u2w∂þðuwÞ�g; ð27Þ

which can be derived by rearranging Eq. (B3) in Appendix B.

IV. SCATTERING SOLUTIONS FOR COUNTERSTREAMING FINITE LENGTH PULSES

The asymptotic effect of the interaction between two counterpropagating electromagnetic pulses with a finite length can
be derived directly from Eq. (25) assuming that for large jx�j there is no superposition between the pulses so that the vector
potential aðxþ; x−Þ can be written as aðxþ; x−Þ ¼ aþðxþÞ þ a−ðx−Þ. Integrating Eq. (25) over xþ we obtain

∂LT

∂ð∂þaÞ
				þ∞
−∞
¼ −∂−

Z þ∞

−∞
dxþ

∂LT

∂ð∂−aÞ
þ ∂−−

Z þ∞

−∞
dxþ

∂LT

∂ð∂−−aÞ
: ð28Þ

Then, considering a perturbative expansion around a0ðxþ; x−Þ ¼ a0þðxþÞ þ a0−ðx−Þ, and using Eq. (B1), we find

∂−ajþ∞−∞ ¼ ∂−

Z þ∞

−∞
dxþ

�
ϵ2ð∂þa0Þ2ð∂−a0Þ − 3

2
ϵ3ð∂þa0Þ3ð∂−a0Þ2 − μð∂−a0Þ3ð∂þþa0Þ2

�

þ 2μ∂−−

Z þ∞

−∞
dxþð∂þa0Þ4ð∂−−a0Þ: ð29Þ

The terms on the right-hand side arise from the Heisenberg-Euler Lagrangian (the ϵ2, ϵ3 terms) and from the dispersive
additional contribution (the μ terms) given in Eq. (14). In deriving Eq. (29) we used the fact that ∂þ−a0 ¼ 0 and that two
terms proportional to ð∂þa0Þ2ð∂þþa0Þ are total derivatives with respect to xþ and thus do not contribute to the xþ integral
when asymptotically there is no superposition between the pulses. The term on the left-hand side represents the lowest order
change of the vector potential pulse propagating along the positive x direction due to the scattering with the
counterpropagating pulse, and the factor 2 in front of it arises from the contribution of the classical electromagnetic
Lagrangian. Expressed in terms of the electromagnetic field variables Eq. (29) reads

ujþ∞−∞ ¼ ϵ2ð∂−u0Þ
Z þ∞

−∞
dxþw2

0 − 3

2
ϵ3ð∂−u20Þ

Z þ∞

−∞
dxþw3

0 − μð∂−u30Þ
Z þ∞

−∞
dxþð∂þw0Þ2

þ μð∂−−−u0Þ
Z þ∞

−∞
dxþw4

0: ð30Þ

where w0 ¼ w0ðxþÞ ¼ ∂þa0ðxþÞ and u0 ¼ u0ðx−Þ ¼∂−a0ðx−Þ. A corresponding equation can be derived for
wjþ∞−∞ . The first term on the right-hand side of Eq. (30)
corresponds to the standard phase shift due to reduced pro-
pagation velocity during the interaction phase [59,61,62]
while the second, if the integral of w3

0 does not vanish, to the
six-photon interaction contribution to the harmonic gener-
ation mechanism discussed e.g., in Ref. [63]. The third terms
corresponds to a new harmonic generation process that
depends on the square of the derivative of the field amplitude
of the counterpropagating pulse, while the fourth term

provides a dispersion correction to the phase shift given
by the first term and corresponds to a widening of the pulse.

V. SOLUTIONS IN CONSTANT CROSS FIELDS

The system of Eqs. (21) and (27) admits solutions in the
form of the progressive nonlinear waves that propagate
with constant “velocity” S > 0, i.e., with functions u and w
that depend on the variable

ψ ¼ x− þ Sxþ ¼ 1ffiffiffi
2
p ½xð1þ SÞ − tð1 − SÞ�: ð31Þ
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In the x − t variables the wave propagates with the velocity
equal to ð1 − SÞ=ð1þ SÞ.
Using Eq. (21) we obtain a relationship between uðψÞ

and wðψÞ

w ¼ SuþW0; ð32Þ

where W0 is constant which corresponds to a constant
cross-field configuration with equal amplitude electric and
magnetic fields, E0 ¼ B0 ¼

ffiffiffi
2
p

W0. The Poynting vector
cE ×B=4π of the cross-field configuration that is taken to
model a low frequency wave is directed in the negative
direction along the x axis so that E ¼ ezE0, B ¼ eyB0,
where ey and ez are unit vectors in the y and z directions.
The high frequency electromagnetic wave described by the
variables w and u in Eq. (32) propagates in the positive
direction along the x axis.
Assuming for the sake of simplicity that the amplitude of

the high frequency wave amplitude is much smaller than
the cross-field amplitude (juj; jwj≪ W0) we obtain from
Eqs. (27) and (32)

2μW4
0∂−−−u ¼ ∂þðu − 2ϵ2W0u2Þ

þ ∂−ðSu − 2ϵ2W2
0uþ 3ϵ3W3

0u
2Þ: ð33Þ

Using the ansatz (31) we obtain

μW4
0u
000 ¼ ½S − ϵ2W2

0 − ð2Sϵ2W0 − 3ϵ3W3
0Þu�u0; ð34Þ

where a prime stands for differentiation with respect to ψ .
This is the well-known Korteveg-de Vries equation for the
stationary nonlinear wave propagating with constant veloc-
ity S (see Refs. [42,64,65] and Ref. [36] for the case of the
KdV solitons in the QED vacuum). Integration of Eq. (34)
over ψ yields

μW4
0u
00 ¼ ðS − ϵ2W2

0Þu − ðSϵ2W0 − 3ϵ3W3
0=2Þu2 þ C1:

ð35Þ
Multiplying this equation on u0 and integrating over ψ
yields

μW4
0ðu0Þ2 ¼ ðS − ϵ2W2

0Þu2 − ð2Sϵ2W0=3 − ϵ3W3
0Þu3

þ 2C1uþ C2; ð36Þ

where C1 and C2 are constants.
Choosing C1 ¼ C2 ¼ 0 we find the solution of Eq. (36)

in the form of a KdV soliton. It reads

uðxþ þ Sx−Þ ¼ 3ðS − ϵ2W2
0Þ

ð2ϵ2W0 − 3ϵ3W3
0Þ
cosh−2

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S − ϵ2W2

0

p ðxþ þ Sx−Þ
2

ffiffiffiffiffiffiffiffiffi
μW4

0

p �
: ð37Þ

The soliton amplitude u0 and width l0 are given by

u0 ¼
3ðS − ϵ2W2

0Þ
ð2ϵ2W0 − 3ϵ3W3

0Þ
and l0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μW4

0

S − ϵ2W2
0

s
: ð38Þ

We see that the parameter S determining the soliton
propagation velocity depends on the soliton amplitude
u0 as

S ¼ ϵ2W2
0 þ

�
2

3
ϵ2W0 − ϵ3W3

0

�
u0: ð39Þ

The soliton propagation velocity depends on W0 and u0 as

V ¼ 1 − S
1þ S

¼ 1 − ϵ2W2
0 − ð2ϵ2=3 − ϵ3W2

0ÞW0u0
1þ ϵ2W2

0 þ ð2ϵ2=3 − ϵ3W2
0ÞW0u0

≈ 1 − 2ϵ2W2
0 −

4

3
ϵ2W0u0: ð40Þ

Substituting S from Eq. (39) to the expression for l0 given
by Eq. (38) we find the soliton width. It reads

l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4μW3
0

ð2ϵ2 − 3ϵ3W2
0Þu0

s
; ð41Þ

W0 < ð2ϵ2=3ϵ3Þ, i.e., l0 ≈ ƛCðW3
0=u0Þ1=2. In other words a

typical energy of the photons constituting the soliton is
approximately equal to ℏωγ ≈mec2ðW3

0=u0Þ1=2.

VI. CONCLUSIONS

We use a Lagrangian that involves higher order deriv-
atives of the wave vector potential and that is constructed so
as to include the quantum nonlinearity parameter depend-
ency of the invariant photon mass. This Lagrangian allows
us to describe dispersive effects in the interaction of two
counterpropagating light pulses by a nonlocal extension of
the nonlinear wave equation that is derived from the
Heisenberg-Euler Lagrangian. In addition, in the case of
a finite amplitude wave impinging on large cross fields, we
show that Korteveg-de Vries soliton solutions can be
consistently derived from these field equations by consid-
ering a proper ordering of the amplitude of the impinging
wave and of its space-time coordinate dependence in terms
of the amplitude of the cross fields.
An extension of this procedure so as to include higher

order derivatives and higher powers of the fields amplitude
than those considered in this article could be of interest
when searching for novel light soliton solutions, such
as e.g., “compactons,” i.e., solitons with finite wave-
length [66]. Such an extension could be written in the
formal way
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LHE=D ¼
m4

4πα
ϵ2hðFμνFμν; ϵμνκλFμνFκλÞ

× ½1þ fð ∂α
 


Fα
βF

βγ∂γ
!Þ�hðFμνFμν; ϵμνκλFμνFκλÞ;

ð42Þ

where the function h is related to the usual Heisenberg-
Euler asymptotic expansion while f is a “function” of the

differential operator ∂α
 


Fα
βF

βγ∂γ
!

(related to the relativistic
χ invariant) where the arrows indicate left or right action.
The function f should be related to the expansion of the
invariant photon mass in Eq. (2), see Ref. [31]. The
Lagrangian LHE=D is gauge invariant and is Lorentz
invariant. In addition, its contribution to the wave equation

vanishes in the case of a plane wave in which
case FμνFμν ¼ εμνκλFμνFκλ ¼ 0.
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APPENDIX A: EXPLICIT FORM OF THE
LAGRANGIAN LTS

We rewrite the Lagrangian LT in Eq. (23) explicitly as a
function of ∂þa; ∂−a; ∂þþa; ∂þ−a; ∂−−a,

LTða; a0; a00Þ ¼ −fð∂þaÞð∂−aÞ − ϵ2½ð∂þaÞð∂−aÞ�2 þ ϵ3½ð∂þaÞð∂−aÞ�3
þ μ½ð∂þaÞ2ðð∂−−aÞð∂þaÞ þ ð∂−aÞð∂þ−aÞÞ2 þ ð∂−aÞ2ðð∂−þaÞð∂þaÞ þ ð∂−aÞð∂þþaÞÞ2
þ2ð∂−aÞð∂þaÞðð∂−−aÞð∂þaÞ þ ð∂−aÞð∂þ−aÞÞðð∂−þaÞð∂þaÞ þ ð∂−aÞð∂þþaÞÞ�g; ðA1Þ

which can be rewritten as

LTða; a0; a00Þ ¼ −fð∂þaÞð∂−aÞ − ϵ2ðð∂þaÞð∂−aÞÞ2 þ ϵ3ðð∂þaÞð∂−aÞÞ3
þμ½ðð∂þaÞ2ð∂−−aÞ þ 2ð∂−aÞð∂þaÞð∂þ−aÞ þ ð∂−aÞ2ð∂þþaÞÞ2�g; ðA2Þ

and can be reexpressed in terms of the electromagnetic fields as

LTðw; uÞ ¼ −fuw − ϵ2ðuwÞ2 þ ϵ3ðuwÞ3 þ μ½w2∂−uþ uw∂þuþ uw∂−wþ u2∂þw�2g: ðA3Þ

APPENDIX B: DERIVATION OF THE FIELD EQUATION

From Eq. (24) we find

∂LT

∂ð∂þaÞ ¼ −ð∂−aÞ½1 − 2ϵ2ð∂þaÞð∂−aÞ þ 3ϵ3ð∂þaÞ2ð∂−aÞ2�

− 4μf½ð∂þaÞð∂−−aÞ þ ð∂−aÞð∂þ−aÞ�½ð∂þaÞ2ð∂−−aÞ þ 2ð∂−aÞð∂þaÞð∂þ−aÞ þ ð∂−aÞ2ð∂þþaÞ�g;
∂LT

∂ð∂−aÞ
¼ −½∂þaÞð1 − 2ϵ2ð∂þaÞð∂−aÞ þ 3ϵ3ð∂þaÞ2ð∂−aÞ2�

− 4μf½ð∂þaÞð∂þ−aÞ þ ð∂−aÞð∂þþaÞ�½ð∂þaÞ2ð∂−−aÞ þ 2ð∂−aÞð∂þaÞð∂þ−aÞ þ ð∂−aÞ2ð∂þþaÞ�g;
∂LT

∂ð∂þþaÞ ¼ −2μfð∂−aÞ2½ð∂þaÞ2ð∂−−aÞ þ 2ð∂−aÞð∂þaÞð∂þ−aÞ þ ð∂−aÞ2ð∂þþaÞ�g;
∂LT

∂ð∂−−aÞ
¼ −2μfð∂þaÞ2½ð∂þaÞ2ð∂−−aÞ þ 2ð∂−aÞð∂þaÞð∂þ−aÞ þ ð∂−aÞ2ð∂þþaÞ�g;

∂LT

∂ð∂þ−aÞ ¼ −4μfð∂þaÞð∂−aÞ½ð∂þaÞ2ð∂−−aÞ þ 2ð∂−aÞð∂þaÞð∂þ−aÞ þ ð∂−aÞ2ð∂þþaÞ�g: ðB1Þ

Using Eq. (B1), reintroducing the field variables u, w, and defining for the sake of notational compactness

Mðu; wÞ ¼ w2∂−uþ uw∂−wþ uw∂þuþ u2∂þw ¼ w∂−ðuwÞ þ u∂þðuwÞ; ðB2Þ

NONLINEAR WAVES IN A DISPERSIVE VACUUM DESCRIBED … PHYS. REV. D 103, 096012 (2021)

096012-7



from Eq. (25) we find

∂þfu½1 − 2ϵ2wuþ 3ϵ3ðwuÞ2�g þ ∂−fw½1 − 2ϵ2wu − 3ϵ3ðwuÞ2�g
þ 2μf2∂þ½ðw∂−uþ u∂−wÞMðu; wÞ� þ 2∂−½ðw∂þuþ u∂þwÞMðu; wÞ�
− ∂þ∂þ½u2Mðu; wÞ� − ∂−∂−½w2Mðu; wÞ� − 2∂þ∂−½uwMðu; wÞ�g: ðB3Þ

APPENDIX C: GHOSTS BRANCHES

Here we discuss ghost branches of the higher order Lagrangians considered in this article. Implementing the high
derivative term (5) of the Lagrangian (10) in the Heisenberg-Euler Lagrangian leads to

Lðu; wÞ ¼ −uwþ ϵ2ðuwÞ2 − ϵ3ðuwÞ3 − μ̃½ð∂þuÞð∂−wÞ þ u∂þ−wþ w∂þ−u�; ðC1Þ

where μ̃ ¼ M−2 is proportional to the fine structure constant α., leading to the system of wave equations

∂−w ¼ ∂þu; ðC2Þ

∂þfu½1 − 2ϵ2uwþ 3ϵ3ðuwÞ2�g þ ∂−fw½1 − 2ϵ2uwþ 3ϵ3ðuwÞ2�g þ 4μ̃∂þþ−u: ðC3Þ

We consider an electromagnetic wave counterpropagat-
ing with respect to a large amplitude cross-field low
frequency electromagnetic wave, i.e., we assume that

aðxþ; x−Þ ¼ W0xþ þ ãðxþ; x−Þ: ðC4Þ

Within the linear wave approximation, which requires
fj∂−ãj; j∂þãjg≪ W0, Eqs. (C2) and (C4) can be reduced
to the equation

∂þã − ϵ2W2
0∂−ãþ 4μ̃∂þþ−ã ¼ 0; ðC5Þ

which can be rewritten in x, t variables as

ð1þ ϵ2W2
0Þ∂tãþ ð1 − ϵ2W2

0Þ∂xãþ 2μ̃ð∂t þ ∂xÞ
× ð∂tt − ∂xxÞã ¼ 0: ðC6Þ

The corresponding dispersion equation giving a relation-
ship between the wave frequency ω and wave number k,
i.e., ãðx; tÞ ∝ expð−iðωt − kxÞÞ, has a form

ð1þ ϵ2W2
0Þω − ð1 − ϵ2W2

0Þk − 2μ̃ðω − kÞðω2 − k2Þ ¼ 0:

ðC7Þ

It is convenient to rewrite this equation in terms of Ω ¼
ðωþ kÞ= ffiffiffi

2
p

and Q ¼ ðω − kÞ= ffiffiffi
2
p

. In this case, we have
ãðxþ; x−Þ ∝ expð−iðΩxþ þQx−ÞÞ. The dispersion equa-
tion can be written as

Ω − ϵ2W2
0Qþ 4μ̃Ω2Q;¼ 0; ðC8Þ

whose solution gives for two branches

Ω� ¼
−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16ϵ2W2

0

p
8μ̃Q

: ðC9Þ

In the long-wavelength limit Q → 0 and/or in the limit of
week dispersion μ̃ → 0 the frequency Ωþ equals

Ωþ ¼ ϵ2W2
0Q − 4μ̃ϵ2W4

0Q
3 þ � � � ; ðC10Þ

while the frequency Ω− corresponds to the ghost branch,

Ω− ¼
1

4μ̃Q
þ ϵ2W2

0Q…: ðC11Þ

In terms of ω− and k− this results in the dispersion equation

ω− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2− þ

1

4μ̃

s
; ðC12Þ

i.e., it describes the photons with the “mass” which tends to
infinity when μ̃ → 0. Using Eq. (13) we find that the
electromagnetic field with the photon energy correspond-
ing to the mass, ℏω− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
135π=4α

p
mec2 which cannot be

described within the Heisenberg-Euler Lagrangian para-
digm in contrast to the the wave corresponding to the
branch given by Eq. (C10).

APPENDIX D: LORENTZ INVARIANT
SOLUTIONS

Following a procedure adopted in Ref. [59] we may
look for self-similar solutions where the vector potential
aðxþ; x−Þ depends only on the combination xþx− ¼ ρ
which is invariant under Lorentz boosts along x.
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Using the following formulas for Lorentz invariant solutions with aðxþ; x−Þ ¼ âðρÞ and â0 ¼ dâ=dρ

∂þa ¼ x−â0; ∂−a ¼ xþâ0; ρðâ0Þ2 ¼ uw; ∂þþa ¼ ðx−Þ2â00; ∂−−a ¼ ðxþÞ2â00; ∂þ−a ¼ â0 þ ρâ00

ð∂þaÞ2ð∂−−aÞ þ 2ð∂−aÞð∂þaÞð∂þ−aÞ þ ð∂−aÞ2ð∂þþaÞ ¼ 4ρ2ðâ0Þ2â00 þ 2ρðâ0Þ3; ðD1Þ

we obtain

∂LT

∂ð∂þaÞ ¼ −xþ½â0 − 2ϵ2ρðâ0Þ3 þ 3ϵ3ρ
2ðâ0Þ5 þ 4μððâ0Þ2 þ 2ρâ0â00Þð4ρ2ðâ0Þ2â00 þ 2ρðâ0Þ3Þ�

¼ −xþ½â0 − 2ϵ2ρðâ0Þ3 þ 3ϵ3ρ
2ðâ0Þ5� − 8μxþρâ0½ðρða0Þ2Þ0�2

∂LT

∂ð∂−aÞ
¼ −x−½â0 − 2ϵ2ρðâ0Þ3 þ 3ϵ3ρ

2ðâ0Þ5� − 8μx−ρâ0½ðρða0Þ2Þ0�2

∂LT

∂ð∂þþaÞ ¼ −2μðxþÞ2ðâ0Þ2ð4ρ2ðâ0Þ2â00 þ 2ρðâ0Þ3Þ ¼ −4μρðxþÞ2ðâ0Þ3ðρða0Þ2Þ0;
∂LT

∂ð∂−∂−aÞ
¼ −4μρðx−Þ2ðâ0Þ3ðρða0Þ2Þ0;

∂LT

∂ð∂þ∂−aÞ
¼ −8μρ2ðâ0Þ3ðρða0Þ2Þ0: ðD2Þ

Then from Eqs. (25) and (D2) we have

½ρâ0�0 ¼ ½ρHðρ; â0Þ�0 − 2μ½Kðρ; â0; â00Þ�0 ðD3Þ

where

Hðρ; â0Þ ¼ 2ϵ2ρðâ0Þ3 − 3ϵ3ρ
2ðâ0Þ5 − 8μρâ0½ðâ0Þ2 þ 2ρâ0â00�2;

Kðρ; â0; â00Þ ¼ 4ρâ0½ðρðâ0Þ2Þ0�2 þ ½ρ2â0½ρ2ðâ0Þ4�0�0 þ ρ½ρâ0½ρ2ðâ0Þ4�0�0: ðD4Þ

A logarithmic-type solution is obtained in a perturbative approach (see Ref. [59]) where, to zero order we have

½ρâ0�0 ¼ 0; which leads to âðρÞ ¼ C1 þ C2 lnðjρjÞ ðD5Þ

while the higher order contributions on the right-hand side of Eq. (D3) are properly included by a renormalization procedure
that leads to a modification of the argument of the logarithm of the form â ¼ ln jρþ gðρÞj.
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