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We reconsider the issue of the search for a nonzero electric dipole form factor (EDM) dτðsÞ using
optimal observables in τþτ− production by eþe− collisions in the center-of-mass energy range from the
τ-pair threshold to about

ffiffiffi
s

p
∼ 15 GeV. We discuss the general formalism of optimal observables and

apply it to two CP-odd observables that are sensitive to the real and imaginary part of dτðsÞ, respectively.
We compute the expectation values and covariances of these optimal CP observables for τ-pair production
at

ffiffiffi
s

p ¼ 10.58 GeV with subsequent decays of τ� into major leptonic or semihadronic modes. For the τ
decays to two pions and three charged pions we take the full kinematic information of the hadronic system
into account. Assuming that the Belle II experiment at the KEKB accelerator will eventually analyze data
corresponding to an integrated luminosity of 50 ab−1 and applying acceptance cuts on the final-state pions,
we find that 1 s.d. sensitivities δRedτ ¼ 6.8 × 10−20 e cm and δImdτ ¼ 4.0 × 10−20 e cm can be obtained
with events where both τ’s decay semihadronically. We consider also the ideal case that no cuts on the final-
state particles are applied. With 50 ab−1 at

ffiffiffi
s

p ¼ 10.58 GeV corresponding to 4.5 × 1010 τþτ− events we
find the 1 s.d. sensitivities δRedτ ¼ 5.8 × 10−20 e cm and δImdτ ¼ 3.2 × 10−20 e cm, again for events
where both τ leptons decay semihadronically. Furthermore, we analyze the potential magnitude of the τ
EDM form factor in the type-II two-Higgs doublet extension and in two scalar leptoquark extensions of the
Standard Model, taking into account phenomenological constraints.

DOI: 10.1103/PhysRevD.103.096011

I. INTRODUCTION

The search for electric dipole moments (EDMs) of
fundamental fermions is an important aspect of experi-
mental investigations hunting for physics beyond the
Standard Model (SM) of particle physics, in particular
for CP violation beyond the Kobayashi-Maskawa mecha-
nism. So far only upper bounds for these EDMs exist [1].
For the electron an impressive upper limit was obtained
rather recently by the ACME Collaboration [2]. The best
muon EDM limit to date was set by the Muon (g − 2)
Collaboration [3]. These limits are

jdej < 1.1 × 10−29 e cm at 90%C:L:; ð1Þ

jdμj < 1.8 × 10−19 e cm at 95%C:L: ð2Þ

The lifetime of the τ lepton is too short to allow for the
measurement of its static moments. Instead, information on
the nonstatic τ EDM form factor1 can be retrieved, for
instance, from the measurement of CP-violating correla-
tions in τ-pair production by eþe− collisions. The τ EDM
form factor can be a complex quantity for timelike
momentum transfer. The best limits to date on its real
and imaginary parts were obtained by the Belle I
Collaboration [4] at q2 ¼ ð10.58 GeVÞ2:

−2.2 × 10−17 e cm < Redτðq2Þ
< 4.5 × 10−17 e cm at 95%C:L:;

−2.5 × 10−17 e cm < Imdτðq2Þ
< 0.8 × 10−17 e cm at 95%C:L: ð3Þ

In a series of articles where two of the authors of this
paper were involved, ways of searching for CP-violating
effects in eþe− collisions, in particular for a nonzero τ
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1In this paper we use the acronym EDM for both the static
moment and the form factor at q2 ≠ 0.
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EDM, were proposed [5–9]. The observables and results of
[6,9] were used in the experimental searches for an EDM
form factor of the τ lepton by [4] and earlier by the ARGUS
Collaboration [10] that obtained the results

jRedτðq2Þj < 4.6 × 10−16 e cm at 95%C:L:;

jImdτðq2Þj < 1.8 × 10−16 e cm at 95%C:L: ð4Þ

at a c.m. energy
ffiffiffi
s

p ¼
ffiffiffiffiffi
q2

p
¼ 10 GeV of the reaction

eþe− → τþτ−. For reviews of the search results for the τ
EDM and its weak dipole form factor (the analogue of the
EDM for the coupling of the Z boson to fermions); see, for
instance, [11,12]. Further discussions of possible measure-
ments of the anomalous magnetic moment and the EDM of
the τ lepton can be found in [13–17] and references therein.
The experimentation at Belle II [18] which started

recently at the KEKB accelerator offers new possibilities
for measuring the τ EDM form factor, in particular, because
a huge number of recorded τ-pair events are expected at the
end of data taking [19]. Also the BES III experiment, where
eþe− collisions at a center-of-mass (c.m.) energy

ffiffiffi
s

p
∼

4 GeV are studied, expects to collect and analyze a large
number of τþτ− pairs [20]. Therefore, we reconsider the
issue with particular emphasis on using optimal observ-
ables [21–23] for tracing the τ EDM form factor in τ-pair
production at c.m. energies from threshold up to about
15 GeV where the contribution from Z-boson exchange is
negligible. In our numerical analysis we consider τ-pair
production at

ffiffiffi
s

p ¼ 10.58 GeV. Moreover, we analyze this
form factor in a few SM extensions that can induce a
potentially sizable τ EDM [24].
Our paper is organized as follows. In Sec. II we recall the

form factor decomposition of the γττ vertex and in
particular the definition of the τ EDM form factor. In
Sec. III we discuss the production and decay matrices for
the process eþe− → τþτ− with the τ’s decaying into one,
two, or three particles that are measured in an experiment.
Section IV deals with simple and optimal observables
[21–23] for tracing the EDM of the τ lepton. Section V
contains our numerical results, in particular our estimates of
the sensitivities with which the real and the imaginary parts
of the τ EDM form factor can be measured in various τ
decay channels. In Sec. VI we consider the τ EDM form
factor in a type-II two-Higgs doublet extension and in two
leptoquark extensions of the SM and analyze the potential
magnitude of the τ EDM taking into account experimental
constraints. Moreover, we show that within these models
CP-violating box contributions to the S-matrix element of
eþe− → τþτ− are negligible as compared to that of the τ
EDM form factor. We conclude in Sec. VII. In the
Appendix A we list the density matrices for several major
decays of polarized τ� leptons. In particular, we present the
explicit form of the differential decay density matrices for
τ → 2πντ and τ → 3πντ. Appendix B contains a detailed

analysis of the expectation values and covariances of the
CP-odd optimal observables used in Sec. V in various τþτ−
decay channels.

II. FORM FACTORS

We consider τþτ− production in eþe− collisions at c.m.
energies

ffiffiffi
s

p
from threshold up to about 15 GeV, with τ−

and τþ decaying into a final state A and B̄, respectively,

eþðpþÞþe−ðp−Þ→ τþðkþ;αÞþτ−ðk−;βÞ→ B̄þA: ð5Þ

The four-momenta and the corresponding three-momenta
are denoted in the eþe− c.m. frame by p� ¼ ðp0

�;p�ÞT,
k� ¼ ðk0�;k�ÞT . We consider unpolarized electrons and
positrons and neglect their masses; the labels α; β ∈
f�1=2g denote the spin indices of the tau leptons. In
the c.m. frame we have pþ þ p− ¼ kþ þ k− ¼ 0.
For unpolarized eþ and e− the initial state is described by

a CP-invariant density matrix. Thus, any nonzero CP-odd
correlation observed in the final state indicates a genuine
CP-violating effect that can be located in the production
and/or in the decays of the τ’s. We consider tau-pair
production by one-photon-exchange only. At the energies
considered here Z-boson exchange is negligible. This will
be justified at the end of this section. The diagram shown in
Fig. 1 exhibits this approximation with the full photon
propagator

iΔðγÞ
μν ðqÞ ¼ −igμν

q2½1þ e2Πcðq2Þ�
; ð6Þ

where Πcðq2Þ is the vacuum-polarization function; see,
e.g., Eq. (19.45) of [25]. For instance, at the mass of the
ϒð4SÞ resonance, at

ffiffiffiffiffi
q2

p
¼ 10.58 GeV, this vacuum

polarization effect produces an enhancement of the cross
section. For a detailed discussion of the τ-pair cross section
at this energy, including radiative corrections, we refer to
[26]. Below we consider only normalized expectation
values of CP observables where such resonance enhance-
ments enter only through the number of events which we
take as input from experiment.
In the following we assume that the only source of CP

violation in the diagram of Fig. 1 is due to a nonzero EDM
form factor in the γττ vertex. This vertex is given by the
following one-particle irreducible (1PI) matrix element of
the electromagnetic current Jemλ between the vacuum and
the τþτ− final state:

hτ−ðk−;βÞ;τþðkþ;αÞoutjJemλ ð0Þj0i

¼−ūβðk−Þ
�
eF1ðq2Þγλþ

i
2mτ

σλμqμeF2ðq2Þþdτðq2Þσλμqμγ5

þ 1

8π
Aðq2Þðq2γλ−2mτqλÞγ5

�
vαðkþÞ; ð7Þ
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where q ¼ kþ þ k−. The right-hand side of (7) represents
the most general decomposition of this matrix element
taking into account the conservation of the electromagnetic
current. Moreover, e ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

4παem
p

> 0 denotes the τþ
charge, and we use the γ-matrix conventions of [25].
Note that the order of τ− and τþ in the matrix element
(7) matters because we are dealing with fermions. The form
factors F1;2ðq2Þ, dτðq2Þ, and Aðq2Þ are analytic functions of
q2 in the complex q2 plane with a cut on the positive real
axis satisfying

Fiðq2�Þ� ¼ Fiðq2Þ; i ¼ 1; 2;

dτðq2�Þ� ¼ dτðq2Þ;
Aðq2�Þ� ¼ Aðq2Þ: ð8Þ

That is, on the real q2 axis, the form factors are real
functions for q2 < 0 and can have imaginary parts for
q2 > 0. At higher order in αem these cuts start at q2 ¼ 0 due
to cut diagrams of the type shown in Fig. 2 with three
photons in the intermediate state. In the decomposition (7)
we have q2 ≥ 4m2

τ , and we have to set q2 þ iε, that is, to
take q2 above the cut.
Next we recall the transformation properties of the γττ

coupling terms associated with the four form factors in (7)
under charge conjugation (C), parity (P), and CP.

Assuming that the interaction is invariant under these
transformations and using the transformation of Jemλ ðxÞ
under C, P, and CP, one gets the transformation properties
listed in Table I.
The eþe− → τþτ− amplitude can receive also CP-odd

1PI box contributions, for instance, contributions with
Lorentz structure ðēeÞðτ̄iγ5τÞ. We do not take such con-
tributions into account in the following. We discuss a few
SM extensions in Sec. VI that can induce sizable τ EDM
form factors. For these models we show in Sec. VI C that
the CP-violating box contributions can be neglected as
compared to that of the induced τ EDM form factor.
For the matrix elements of the current between τ− and τþ

states, respectively, we get, using the standard crossing
relations:

FIG. 1. The reaction (5) in the one-photon-exchange approximation.

FIG. 2. A cut diagram leading to an imaginary part of the form factors in (7) for q2 > 0.

TABLE I. Transformation properties of the γττ coupling terms
corresponding to the four form factors in the decomposition of the
matrix element (7) of the electromagnetic current.

C P CP

F1ðq2Þ þ þ þ
F2ðq2Þ þ þ þ
dτðq2Þ þ − −
Aðq2Þ − − þ
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hτ−ðk0; β0ÞjJemλ ð0Þjτ−ðk; βÞi ¼ −ūβ0 ðk0ÞΓλðqÞuβðkÞ; ð9Þ

hτþðk0; α0ÞjJemλ ð0Þjτþðk; αÞi ¼ v̄αðkÞΓλðqÞvα0 ðk0Þ; ð10Þ

where the vertex function ΓλðqÞ is given by the expression
in the square brackets of Eq. (7) with q ¼ k0 − k and
q2 ≤ 0.
The form factor F1ðq2Þ is the electric or Dirac form

factor with the normalization

F1ð0Þ ¼ 1: ð11Þ

The magnetic or Pauli form factor F2ðq2Þ at q2 ¼ 0 yields
the τ anomalous magnetic moment:

F2ð0Þ ¼ aτ ¼
1

2
ðgτ − 2Þ: ð12Þ

The τ− and τþ electric dipole moments, respectively, are
obtained from the EDM form factor dτðq2Þ at q2 ¼ 0:

dτ− ¼ −dτþ ¼ dτð0Þ: ð13Þ

The form factor Aðq2Þ at q2 ¼ 0 defines the anapole
moment [27–30] of the τ−:

Aτ− ¼ Að0Þ: ð14Þ

For a τ− at rest, k ¼ kR ¼ ðmτ; 0ÞT , one has

hτ−ðkR;β0Þjð−πÞ
Z

d3xjxj2Jemðx;0Þjτ−ðkR;βÞi¼
1

2
σβ0βAτ− :

ð15Þ
A comment on the gauge invariance of the form-factor

decomposition of the vertex function (7) is in order.
Electromagnetic gauge invariance is obvious, because con-
servation of the electromagnetic current was used in the
decomposition of (7). As to the invariancewith respect to the
electroweak gaugegroupSUð2Þ × Uð1Þ: The staticmoments
at q2 ¼ 0, in particular the anomalous magnetic and electric
dipolemoment and the anapolemoment, are gauge invariant,
as they correspond to terms in the τ → τ S-matrix element in
the soft-photon limit. Yet, for obtaining a gauge-invariant
amplitude for eþe− → τþτ− one cannot, of course, use (7) in
isolation, but must take into account all contributions
(including box contributions at one-loop order and beyond)
to the S-matrix element order by order in the electroweak
couplings. However, in the following we use only the tree-
level γττ vertex supplemented by the τ EDMform factor. The
τ EDM is extremely small in the SM, as will be briefly
reviewed at thebeginning of Sec.VI. Thus, a sizablevalue for
dτ must come from “beyond the Standard Model” (BSM)
physics. In Sec.VIwe discuss a fewBSMextensions that can
induce a sizable τ EDM form factor and compute it at one-
loop order. The form factors dτðq2Þ given in that section are
invariant with respect to the electroweak gauge group.
As is well-known one may introduce a τ EDM, together

with an analogous CP-violating weak dipole moment
(WDM) dZτ in the Zττ vertex, by using a SUð3Þ × SUð2Þ ×
Uð1Þ invariant effective Lagrangian approach for BSM
couplings. Imposing baryon and lepton number conserva-
tion the leading gauge-invariant operators have mass
dimension 6 [31] and the relevant effective Lagrangian
takes the form (see, for instance, [32])

LeffðxÞ ¼ −i
c1
Λ2

τ̄RðxÞσμνϕ†ðxÞ
�
g0
τa

2
Wa

μνðxÞ −
g
2
BμνðxÞ

�
LLðxÞ

− i
c2
Λ2

τ̄RðxÞσμνϕ†ðxÞ
�
g
τa

2
Wa

μνðxÞ þ
g0

2
BμνðxÞ

�
LLðxÞ þ H:c: ð16Þ

Here c1 and c2 are dimensionless real coupling constants,
Λ ≫ v denotes the energy scale of new physics that is
assumed to be considerably larger than the electroweak
symmetry breaking scale v ¼ 246 GeV, g and g0 are the
SU(2) and U(1) gauge couplings, respectively, Wμν and
Bμν are the gauge field strength tensors corresponding
to these groups, ϕ is the Higgs doublet field, and τR
and LT

L ¼ ðντ; τÞTL are the right-handed singlet and left-
handed lepton doublet fields of the third generation. (Our
notation follows [33].) After spontaneous symmetry
breaking the effective Lagrangian (16) contains the
EDM interactions

LeffðxÞ ⊃ −
i
2
dττ̄ðxÞσμνγ5τðxÞFμνðxÞ

−
i
2
dZτ τ̄ðxÞσμνγ5τðxÞZμνðxÞ; ð17Þ

where Fμν ¼ ∂μAν − ∂νAμ and Zμν ¼ ∂μZν − ∂νZμ are,
respectively, the Abelian field strength tensors of the
photon and Z boson and dτ and dZτ the electric and weak
dipole moments of the τ lepton:

dτ ¼
v0
Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
ffiffiffi
2

p c1; dZτ ¼ v0
Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
ffiffiffi
2

p c2: ð18Þ
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This approach constitutes a possibility to introduce the τ
EDM and WDM in a way that respects electroweak gauge
invariance. Using the Hermitian Lagrangian (17) to
leading order corresponds to setting

Redτðq2Þ ¼ dτ; Imdτðq2Þ ¼ 0; ð19Þ

and likewise for dZτ . In this framework imaginary parts of
dτ and dZτ will be generated by diagrams involving both
Leff of Eq. (17) and SM couplings at higher order. We
shall take into account in the following that Imdτ can be
nonzero for q2 > 0 but we neglect, as already mentioned
above, the contribution from Z-boson exchange, in par-
ticular the contribution from dZτ . This can be justified as
follows. Equation (18) shows that dτ and dZτ will be of the
same order of magnitude if the coupling constants c1 and
c2 are of comparable size. This is the case, for instance, in
the BSM models considered in Sec. VI, as was shown in
[24]. At energies

ffiffiffi
s

p
≪ mZ that we consider in this paper,

the effects of dZτ resulting from Z-boson exchange are then
negligible compared to those of dτ, as is the contribution
resulting from the interference of the SM Z-boson
exchange amplitude with the amplitude involving dτ.
One can see this explicitly from the formulas given in
[9] where both γ and Z-boson exchange were taken into
account. From Eq. (3.10) of [9] we find that for c.m.
energies

ffiffiffi
s

p
≈ 10 GeV that we are considering Z-boson

exchange contributions are suppressed by a factor of order

s=m2
Z ≈ 10−2: ð20Þ

This holds for
ffiffiffi
s

p
in the continuum and at the ϒð4SÞ

resonance where the suppression factor (20) is a few
percent smaller because there the photon contribution is
enhanced as compared to the continuum value; see [26].

III. MATRIX ELEMENTS, PRODUCTION, AND
DECAY MATRICES

We are interested in analyzing CP-violating effects in
τ-pair production generated by a nonzero τ EDM form
factor. Therefore we shall analyze the reactions (5) by
considering on-shell τ-pair production by one-photon
exchange, including the τ EDM form factor in the γττ
vertex, followed by the decays of τ− and τþ into the final
states A and B̄, respectively. The τ spin correlations and
polarizations will be taken into account. [The reactions (5)
were investigated in [9] for arbitrary c.m. energies for
photon and Z-boson exchange including besides the EDM
also the weak dipole form factor of the τ lepton.]
As to the decay channels A and B̄, we consider

two cases:
(i) Only one charged particle of A and one of B̄ are

measured:

τ− → aðq−Þ þ X; τþ → b̄ðqþÞ þ X0: ð21Þ

Examples from the main decay modes of τ− are

τ− → e−ðq−Þν̄eντ; μ−ðq−Þν̄μντ; π−ðq−Þντ; π−ðq−Þπ0ντ; π−ðq−Þπ0π0ντ; π−ðq−Þπþπ−ντ; ð22Þ

and the respective charge-conjugate τþ decays. The decay modes (22) include, in particular, τ decays to one
charged prong.

(ii) We shall also treat the case where more than one particle from τ decay is observed, specifically the decay to two pions
via a ρ and ρ0 meson and the decay to the a1 meson, respectively, to three charged pions:

τ− → π−ðq1Þπ0ðq2Þντ; τþ → πþðq̄1Þπ0ðq̄2Þν̄τ; ð23Þ

τ− → π−ðq1Þπ−ðq2Þπþðq3Þντ; τþ → πþðq̄1Þπþðq̄2Þπ−ðq̄3Þν̄τ: ð24Þ

For on-shell τ-pair production and decay the cross section of (5) can be written as a product of the production density
matrix R for eþe− → τþτ− times the density matrices DB̄

α0α and DA
β0β that describe the decays of polarized τþ → B̄ and

τ− → A, respectively. The production density matrix R is defined as follows:

Rαα0ββ0 ¼
1

4

X
γ;δ

hτþðkþ; αÞ; τ−ðk−; βÞjT jeþðpþ; γÞ; e−ðp−; δÞi

× hτþðkþ; α0Þ; τ−ðk−; β0ÞjT jeþðpþ; γÞ; e−ðp−; δÞi�; ð25Þ

where γ, δ are the spin indices of eþ and e−, respectively. For a decay of τ− according to case (i) above the corresponding
decay density matrix is given by
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Da
β0βðτ−ðk−Þ → aðq−Þ þ XÞ ¼ Γ−1ðτ− → AÞ 1

2mτ

Z
dΓXð2πÞ4δð4Þðk− − q− − qXÞ

× haðq−Þ; XjT jτ−ðk−; βÞihaðq−Þ; XjT jτ−ðk−; β0Þi�: ð26Þ

Here the normalization is chosen such that

Z
d3q−

ð2πÞ32q0−
Da

β0βðτ−ðk−Þ → aðq−Þ þ XÞ ¼ δβ0βhnaiA; ð27Þ

where hnaiA is the mean multiplicity of particle a in channel A. Formulas analogous to (26) and (27) apply if decays
τþ → b̄þ X0 according to case (i) are considered.
Thus the cross section for the two-particle inclusive reactions

eþe− → τþτ− → B̄þ A; ð28Þ

where

A ¼ aðq−Þ þ X; B̄ ¼ b̄ðqþÞ þ X0; ð29Þ

is given in the narrow-width approximation of the intermediate τ leptons by

dσab̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

τ=s
p

16πs

dΩkþ

4π
Brðτ− → AÞBrðτþ → B̄Þ

× Rαα0ββ0
d3q−

ð2πÞ32q0−
Da

β0β½τ− → aðq−Þ þ X� d3qþ
ð2πÞ32q0þ

Db̄
α0α½τþ → b̄ðqþÞ þ X0�; ð30Þ

where s ¼ ðpþ þ p−Þ2, the solid angle element dΩkþ corresponds to the momentum vector kþ in the eþe− c.m. frame, and
Brðτ− → AÞ and Brðτþ → B̄Þ denote the branching fractions for the decays τ− → A and τþ → B̄, respectively.2

For τ decay to three charged pions whose four-momenta are all measured in an experiment, we define the corresponding
decay density matrix by

DA
β0βðτ−ðk−Þ → π−ðq1Þπ−ðq2Þπþðq3ÞντÞ

¼ Γ−1ðτ− → π−π−πþντÞ
1

2mτ

Z
d3q4

ð2πÞ32q04
ð2πÞ4δð4Þðk− − q1 − q2 − q3 − q4Þ

× hπ−ðq1Þπ−ðq2Þπþðq3ÞντjT jτ−ðk−; βÞihπ−ðq1Þπ−ðq2Þπþðq3ÞντjT jτ−ðk−; β0Þi�; ð31Þ

where q4 is the four-momentum of ντ, and analogously for the decay τþ → πþπþπ−ν̄τ. The normalization is

Z Y3
i¼1

d3qi
ð2πÞ32q0i

DA
β0βðτ−ðk−Þ → π−ðq1Þπ−ðq2Þπþðq3ÞντÞ ¼ 2δβ0β; ð32Þ

corresponding to the π− multiplicity 2 in this channel. If the analysis is restricted to three pions in a suitably defined
invariant mass region around the nominal a1 mass one has to take into account the corresponding phase-space cuts in
Γðτ− → π−π−πþντÞ and in (32).
For the τ decay (23) to two pions, where both the charged and the neutral pion are measured, the respective decay density

matrix is defined accordingly by integrating the corresponding squared matrix element over the four-momentum of the
neutrino.

2Formula (4.3) of Ref. [9] contains a typo. These branching fraction factors are missing. However, they were taken into account in the
numerical results given in that paper. Moreover, the variable q�0 on the l.h.s. of Eq. (4.4) of that reference should be replaced by
jq�j=hnAi.
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In order to get the inclusive cross section for case (ii),
considering, for instance, the decay of the τ− into three
observed pions, we have to make in (30) the replacement

d3q−
ð2πÞ32q0−

Da
β0β½τ− → aþ X�

→
Y3
i¼1

d3qi
ð2πÞ32q0i

DA
β0β½τ− → π−π−πþντ�: ð33Þ

Analogous replacements apply if the decay of τþ to three
observed pions or the decay of τ∓ to two observed pions are
analyzed.
The production density matrix R in (30) is computed in

the eþe− c.m. system; see below. Instead of calculating the
decay density matrices also in this frame we can determine
them in the τ− and τþ rest systems, respectively, if we use
the following:

(i) We consider rotation-free Lorentz transformations
(boosts) from the c.m. frame to the τ− and τþ rest
systems, respectively.

(ii) We use standard spinors uβðkÞ, vαðkÞ for the τ’s with
β, α denoting the spin components in a given z
direction (see, e.g., [33]).

As is well known, these spin components are not changed
by boost transformations. Let Λk be the boost transforming
the τ− momentum k− from the eþe− c.m. system to rest,

Λkk− ¼ k�−, where k�− ¼ ðmτ; 0ÞT . We have then with
Λkq− ¼ q�−; see (B2) and (B3),

haðq−Þ; XjT jτ−ðk−; βÞi ¼ haðq�−Þ; XjT jτ−ðk�−; βÞi: ð34Þ

Insertion into the decay matrix (26) proves our statements
above. The analogous argumentation applies to the τþ
decay density matrices.
In Appendix Awe give the explicit forms of the τ∓ decay

density matrices in the respective rest frames for the decay
modes listed in (22)–(24).
Finally, using the one-photon-exchange approximation

and setting

F1ðq2Þ ¼ 1; F2ðq2Þ ¼ 0; Aðq2Þ ¼ 0; ð35Þ

the production density matrix R is given in the eþe− c.m.
frame by

R ¼ χ

j1þ e2ΠcðsÞj2
; ð36Þ

where [9]

χ ¼ χSM þ Red̂τχRCP þ Imd̂τχICP þ χd̂2 ; ð37Þ

and

χSM ¼ e4

s
f½k20 þm2

τ þ jkj2ðk̂ · p̂Þ2�1 − ðσþ · σ−Þjkj2½1 − ðk̂ · p̂Þ2�
þ2ðk̂ · σþÞðk̂ · σ−Þ½jkj2 þ ðk0 −mτÞ2ðk̂ · p̂Þ2� þ 2k20ðp̂ · σþÞðp̂ · σ−Þ
−2k0ðk0 −mτÞðk̂ · p̂Þ½ðk̂ · σþÞðp̂ · σ−Þ þ ðk̂ · σ−Þðp̂ · σþÞ�g; ð38Þ

χRCP ¼ −2e4
jkj
s
f−½mτ þ ðk0 −mτÞðk̂ · p̂Þ2�ðσþ × σ−Þ · k̂

þk0ðk̂ · p̂Þðσþ × σ−Þ · p̂g; ð39Þ

χICP ¼ 2e4
jkj
s
f−½mτ þ ðk0 −mτÞðk̂ · p̂Þ2�ðσþ − σ−Þ · k̂

þk0ðk̂ · p̂Þðσþ − σ−Þ · p̂g; ð40Þ

χd̂2 ¼ e4½ðRed̂τÞ2þðImd̂τÞ2�
jkj2
s

½1− ðk̂ · p̂Þ2�ð1−σþ ·σ−Þ:
ð41Þ

Compared to Eqs. (3.8)–(3.10) of [9] we neglect here the
contributions from Z-boson exchange because we restrict
ourselves to the kinematic range s ≪ m2

Z, but we have
included the photon vacuum polarization effects. In (38)–
(41) we put p ¼ pþ, k ¼ kþ, and p̂ and k̂ denote the

respective unit vectors; we have introduced in (37) and (41)
dimensionless EDM form factors defined by

Red̂τðsÞ ¼
ffiffiffi
s

p
e

RedτðsÞ; Imd̂τðsÞ ¼
ffiffiffi
s

p
e

ImdτðsÞ: ð42Þ

Moreover, we use in the equations above the notation [9]

1≡ ð1 ⊗ 1Þαα0ββ0 ¼ δαα0δββ0 ;

σþ ≡ ðσ ⊗ 1Þαα0ββ0 ¼ σαα0δββ0 ;

σ− ≡ ð1 ⊗ σÞαα0ββ0 ¼ δαα0σββ0 ; ð43Þ

where the first and second factors in these tensor products
refer to the spin spaces of τþ and τ−, respectively. The
density matrices χSM and χd̂2 are CP-even, whereas χ

R
CP is

CP- and TN-odd while χICP is CP-odd and TN-even. Here
and below TN-even/odd refers to the behavior with respect
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to the naive “time reversal” transformation, that is, reflec-
tions of three-momenta and spins.
Equation (39) shows that a nonzero Redτ generates CP-

odd τþτ− spin correlations in the p, k scattering plane
while a nonzero imaginary part of dτ leads to a CP-odd
asymmetry of the τþ and τ− polarizations with projections
along p and k; cf. (40). The τ leptons autoanalyze their spin
directions via their parity-violating weak decays. In this
way these τ spin correlations and polarization asymmetries
induce CP-odd angular correlations among the τ� decay
products, to which we now turn.

IV. SIMPLE AND OPTIMAL CP OBSERVABLES

In this chapter we discuss simple and optimal observ-
ables for studying CP violation in the reactions (5). Let us
first consider the case (i) above where only one charged
particle is measured from τ− and τþ decay, respectively,
i.e., τ− → aðq−Þ þ X and τþ → b̄ðqþÞ þ X0. Simple CP
observables for this case were given in Ref. [9].
Observables sensitive to RedτðsÞ are, for instance, the
tensors

T̂ij ¼ ðq̂þ − q̂−Þi
ðq̂þ × q̂−Þj
jq̂þ × q̂−j

þ ði ↔ jÞ; ð44Þ

Tij ¼ ðqþ − q−Þiðqþ × q−Þj þ ði ↔ jÞ: ð45Þ

Observables sensitive to ImdτðsÞ are, for instance,

Q̂ij ¼ ðq̂þ þ q̂−Þiðq̂þ − q̂−Þj þ ði ↔ jÞ; ð46Þ

Qij ¼ ðqþ þ q−Þiðqþ − q−Þj −
1

3
δijðq2þ − q2

−Þ þ ði ↔ jÞ:
ð47Þ

The momenta q∓ in (44)–(47) are defined in the eþe− c.m.
frame, and q̂� ¼ q�=jq�j and i; j ∈ f1; 2; 3g are the
Cartesian vector indices. These observables, denoted
generically by Oðqþ;q−Þ, have the property to be odd
under CP:

Oðqþ;q−Þ ¼ −Oð−q−;−qþÞ: ð48Þ

Moreover, Eqs. (44) and (45) are TN-odd while (46) and
(47) are TN-even. A nonzero expectation value of any such
observable of the form

hOiab ≡ 1

2
fhOiab̄ þ hOibāg

¼ 1

2

�R
dσab̄OR
dσab̄

þ
R
dσbāOR
dσbā

�
ð49Þ

is a genuine signature of CP violation. Here dσab̄ is the
cross section (30) of the reaction (28) and dσbā the

corresponding one for the charge-conjugate channel. We
assume that any phase-space cuts that may be applied are
made in a CP-symmetric way.
Observables of the type (44)–(47) were studied exten-

sively in [9]. In Chapter 5 we give an update of the
sensitivities achievable with these observables at the KEKB
accelerator with Belle II. A discussion of the sensitivities
achievable with the BES III experiment at the Beijing
Electron-Positron Collider II is deferred to a future
publication.
We shall now turn to optimal observables [21–23], and

we follow here Ref. [23]. We denote the measured phase-
space variables generically by ϕ and the CP-transformed
ones by ϕ̄:

CP∶ ϕ → ϕ̄: ð50Þ

Phase-space cuts are assumed to be CP-symmetric. In the
following we denote the dimensionless CP-violating EDM
form factors [cf. Eq. (42)] that are to be measured by

g1 ¼ Red̂τ; g2 ¼ Imd̂τ: ð51Þ

From experiment we know that these couplings are
small, jg1;2j ≪ 1. From (3) we get jg1;2j ≤ 2.4 × 10−2 forffiffiffi
s

p ¼ 10.58 GeV. Therefore, we shall work to leading
order in these couplings. The cross section (30) can be
expanded in the gi as follows, neglecting terms of second
order in these couplings:

Sab̄ðϕÞ ¼ dσab̄ðϕÞ
dϕ

¼ Sab̄0 ðϕÞ þ giSab̄1;iðϕÞ: ð52Þ

Here and in the following we use the summation con-
vention. Moreover, in order not to overload the notation,
the labels a and b̄ denote in (52) and in what follows decays
of τ− and τþ to one, two, or three measured particles,
respectively. The CP properties of S0 and S1 in (52) are

Sab̄0 ðϕÞ ¼ Sbā0 ðϕ̄Þ; Sab̄1;iðϕÞ ¼ −Sbā1;iðϕ̄Þ: ð53Þ

We define now the observables

Oab̄
i ðϕÞ ¼ Sab̄1;iðϕÞ=Sab̄0 ðϕÞ: ð54Þ

Their expectation value E0 for gi ¼ 0 is

E0ðOab̄
i Þ ¼

Z
dϕSab̄0 ðϕÞOab̄

i ðϕÞ
�Z

dϕ0Sab̄0 ðϕ0Þ: ð55Þ

We set

O0ab̄
i ðϕÞ ¼ Oab̄

i ðϕÞ − E0ðOab̄
i Þ ð56Þ

and get for the expectation value of O0
i
ab̄:
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EðO0ab̄
i Þ ¼

Z
dϕSab̄ðϕÞO0ab̄

i ðϕÞ
�Z

dϕ0Sab̄ðϕ0Þ

¼ VijðO0ab̄Þgj: ð57Þ

The expression on the right-hand side is obtained by
expanding the ratio to first order in the gj. Here VðO0ab̄Þ ¼
ðVijðO0ab̄ÞÞ is the covariance matrix of the quantities O0

for gj ¼ 0.

VijðO0ab̄Þ ¼ E0ðO0ab̄
i O0ab̄

j Þ ¼ E0

�
Sab̄1;i
Sab̄0

Sab̄1;j
Sab̄0

	

− E0

�
Sab̄1;i
Sab̄0

	
E0

�
Sab̄1;j
Sab̄0

	
: ð58Þ

The covariance matrix VðO0ab̄Þ is positive definite. From
(57) we obtain

gi ¼ V−1
ij ðO0ab̄ÞEðO0ab̄

j Þ: ð59Þ

In the remainder of this section we recall from [23] some
general relations for optimal observables in order to make
our article self-contained. Also, we shall discuss that in the
nondiagonal case a ≠ b the theoretically optimal estimators
may not always be “optimal” from a practical point of view
[see the discussion after Eq. (78) below].
We consider first the diagonal case, a ¼ b, and assume

that n events of this type are analyzed. The density function
is then

Fðϕ1;…;ϕnÞ ¼
Yn
k¼1

fðϕkÞ;

fðϕÞ ¼ SaāðϕÞ
�Z

dϕ0Saāðϕ0Þ: ð60Þ

The information matrix I ¼ ðIijÞ is defined by

Iij ¼ E

�� ∂
∂gi lnF

	� ∂
∂gj lnF

	�
: ð61Þ

The optimal estimators for the couplings gi are in this case

γiðϕÞ ¼ V−1
ij ðO0aāÞO0aā

j ðϕÞ; ð62Þ

where O0
j denotes the mean value of O0

j. From Eqs. (59)
and (60) we obtain the expectation values

EðγiÞ ¼ gi; ð63Þ

and the covariance matrix of the γi, evaluated for gi ¼ 0, is

VijðγÞ ¼ E0ðγiγjÞ ¼
1

n
V−1
ij ðO0aāÞ: ð64Þ

We get for the information matrix (61)

Ijg¼0 ¼ nVðO0aāÞ: ð65Þ

Therefore, we have here

V−1ðγÞ ¼ Ijg¼0; ð66Þ

and the estimators (62) are optimal for small gj. That is, the
error ellipse obtained with the estimators γi in (62) is given
by the one obtained from I which is the smallest one
possible. We note that due to the CP properties (53) of S0
and S1;i we have in the diagonal case a ¼ b, assuming
possible cuts in phase space to be CP-symmetric:

E0ðOaā
i Þ¼ 0; O0aā

i ðϕÞ¼Oaā
i ðϕÞ; VðO0aāÞ¼VðOaāÞ;

ð67Þ

and the optimal estimators are

γiðϕÞ ¼ V−1
ij ðOaāÞŌaā

j ðϕÞ; ð68Þ

see (55), (56), and (62).
Finally, we treat the nondiagonal case, a ≠ b. We assume

that any phase-space cuts made for the channel ab̄ are
applied to bā in a CP-conjugate way. We get then from the
CP relations (53)

Z
dϕSab̄0 ðϕÞ ¼

Z
dϕ̄Sbā0 ðϕ̄Þ; ð69Þ

E0

�
Sab̄1;i
Sab̄0

	
¼ −E0

�
Sbā1;i
Sbā0

	
; ð70Þ

VðO0ab̄Þ ¼ VðO0bāÞ: ð71Þ

We assume that n1 events of the type ab̄ and n2 events bā
are analyzed. The density function is then

Fðϕ1;…;ϕn1 ; ϕ̄1;…; ϕ̄n2Þ¼
Yn1
k¼1

fab̄ðϕkÞ
Yn2
l¼1

fbāðϕ̄lÞ ð72Þ

with

fab̄ðϕÞ ¼ Sab̄ðϕÞ=
Z

dϕ0Sab̄ðϕ0Þ;

fbāðϕ̄Þ ¼ Sbāðϕ̄Þ=
Z

dϕ̄0Sbāðϕ̄0Þ: ð73Þ

Here the information matrix I ¼ ðIijÞ is given for gi ¼ 0 by
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Iijjg¼0 ¼ E

�� ∂
∂gi lnF

	� ∂
∂gj lnF

	�




g¼0

¼ nVijðO0ab̄Þ;

ð74Þ

where n ¼ n1 þ n2. Here it is convenient to use as
estimators for the couplings gi, with Oj from (54):

γiðϕ; ϕ̄Þ ¼
1

4
½V−1

ij ðO0ab̄Þ þ V−1
ij ðO0bāÞ�½Ōab̄

j ðϕÞ þ Ōbā
j ðϕ̄Þ�:

ð75Þ

We have

E

�
1

2
Ōab̄

i þ 1

2
Ōbā

i

	
¼ E

�
1

2
Oab̄

i þ 1

2
Obā

i

	
¼ VijðO0ab̄Þgj;

EðγiÞ ¼ V−1
ik ðO0ab̄ÞVkjðO0ab̄Þgj ¼ gi: ð76Þ

The covariance matrix of these estimators is obtained as

VðγÞ ¼ n1 þ n2
4n1n2

V−1ðO0ab̄Þ; ð77Þ

which implies

V−1ðγÞ ¼ n

�
1 −

ðn1 − n2Þ2
n2

	
VðO0ab̄Þ

¼
�
1 −

ðn1 − n2Þ2
n2

	
Ijg¼0: ð78Þ

The γi in Eq. (75) are the optimal estimators for
n1 ¼ n2 ¼ n=2. For n1 ≠ n2 they are not quite optimal,
but for the theoretically optimal estimators one would need
in this case the precise knowledge of E0ðSab̄1;i=Sab̄0 Þ. This
would introduce an unnecessary source of uncertainty in
the measurements.
To conclude this section we remark on the following. A

more elaborate description of τ-pair production and decay
would take higher-order radiative corrections into account.
Let us denote the resulting differential cross section by S̃ab̄,

dσab̄
dϕ

ðϕÞ ¼ S̃ab̄ðϕÞ: ð79Þ

If it is CP-invariant, we have

S̃ab̄ðϕÞ ¼ S̃bāðϕ̄Þ: ð80Þ

Then the corresponding expectation values Ẽ of the
estimators γi defined in (68) and (75) and constructed with
the expressions S0, S1;i from (52) will, of course, be zero
due to (53):

ẼðγiÞ ¼ 0: ð81Þ

That is, the observables γi given in (68) and (75) are in all
cases genuine CP observables. They cannot get nonzero
expectation values, neither from CP-conserving radiative
SM corrections nor from CP-conserving interactions
beyond the SM.

V. NUMERICAL RESULTS AT
ffiffi
s

p
= 10.58 GeV

Weconsider now τ-pair production anddecay at theϒð4SÞ
resonance at

ffiffiffi
s

p ¼ 10.58 GeV and compute the expectation
values of the simple and optimalCP observables discussed in
the previous section and estimate the resulting 1 s.d. (stan-
dard deviation) statistical sensitivities to the EDM form
factors Redτ and Imdτ at this c.m. energy. The expectation
values of the CP observables are computed to leading order
in the real and imaginary parts of the τ EDM form factor
using the expression (30) for the differential cross section
with (35)–(40) and several of the decay density matrices
given in Appendix A. First, no phase-space cuts are applied.
At the end of this section we analyze also the effects of cuts.
The expectation values of the observables (44)–(47) at

the ϒð4SÞ resonance in the decay channels where only one
charged particle from τ− and one from τþ decay is
measured [case (i) above] are of the form

hTijiab ¼ cabðsÞRed̂τðsÞsij; hT̂ijiab ¼ c̃abðsÞRed̂τðsÞsij;
ð82Þ

hQijiab ¼ κabðsÞImd̂τðsÞsij;
hQ̂ijiab ¼ κ̃abðsÞImd̂τðsÞsij: ð83Þ

In the case of nondiagonal decay channels a ≠ b the
expectation values are calculated as averages defined in
(49). The expectation values of the symmetric traceless
tensors (44)–(47) must be proportional to a tensor sij with
the same property. Using the eþ beam direction p̂ in the
eþe− c.m. frame we have

ðsijÞ ¼ 1

2

�
p̂ip̂j −

1

3
δij

	
¼ diag

�
−
1

6
;−

1

6
;
1

3

	
: ð84Þ

The right-hand side of (84) follows from identifying p with
the z axis which we do in the following. Equation (84) is
identical to the tensor polarization of the intermediate
photon state. Because the diagonal elements of the above
tensor observables are not independent, we consider only
their 3,3 components that have the largest expectation
values. Naive “time reversal” invariance TN implies that the
expectation values (82) and (83) do not depend on Imd̂τ and
Red̂τ, respectively. That is, the covariance matrix of the T
and Q tensors is diagonal; see Appendix B.
In order to estimate the statistical error in the measure-

ment of the expectation values of the observables O we
compute also the respective standard deviation ΔO ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hO2i − hOi2

p
of the distribution of O in the SM for
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the various decay channels. As discussed in Appendix B
the SM expectation values of the tensors Tij, T̂ij vanish
for the differential cross section as used by us. (Cf. Sec. III.)
For the tensorsQij, Q̂ij this is also true in the diagonal case
a ¼ b. In the nondiagonal case, a ≠ b, their SM expect-
ation values need not be zero, but are found numerically to
be negligibly small. In Tables II and III we assume that the
momenta of ρ∓ mesons can be experimentally determined,
and we treat them as on-shell particles with the τ-spin
analyzing power given in (A10). The symbols l and l0
denote either the electron or muon, both are taken to be
massless. We sum over the diagonal and nondiagonal ll0
channels for estimating the respective sensitivity to the real
and imaginary parts of the τ EDM. In a diagonal decay
channel the number of events is Naa ¼ NττðBrðτ → aÞÞ2,
while for a nondiagonal channel including its charge-con-
jugate mode we have Nab ¼ 2NττBrðτ → aÞBrðτ → bÞ.
The τ branching ratios are taken from [1]. We assume that
the Belle II experiment will eventually record Nττ ¼ 4.5 ×
1010 τ pairs [19]. Considering as an example the measure-
ments of T33 and Q33 in the decay channels ab̄ and bā the
resulting ideal 1 s.d. statistical errors of the dimensionful
EDM couplings Redτ and Imdτ are given by

δRedτðsÞ ¼
effiffiffi
s

p 1ffiffiffiffiffiffiffiffi
Nab

p 3½hT2
33iab�1=2
jcabj

;

δImdτðsÞ ¼
effiffiffi
s

p 1ffiffiffiffiffiffiffiffi
Nab

p 3½hQ2
33iab�1=2
jκabj

: ð85Þ

Equation (85) yields the absolute value that Redτ ðImdτÞ
must have in order that hT33iab ðhQ33iabÞ deviates from its
SM prediction, namely zero, by 1 s.d. obtained from the
square root of its SM variance. Formulas analogous to (85)
hold for the dimensionless observables T̂33 and Q̂33.
Tables II and III contain our results for the expectation

values [as defined in Eqs. (82) and (83)] and square roots of
the variances of the observables (44)–(47) for several one-
prong decays of τ∓ where the charged particle has a sizable
τ-spin analyzing power. Moreover, the resulting 1 s.d.
sensitivities to the real and imaginary parts of the τ EDM
form factor are listed.3 Results for Tij and Q̂ij were
previously given in [9] and agree with those in Tables II
and III. The accuracies δRedτ and δImdτ attainable in the
various τ∓ decay channels listed in Tables II and III show
that the dimensionful observable T33 is more sensitive than
T̂33, while in the case of Q33 and Q̂33 it is the other way
around—except for the lρ decay channel which has, in any
case, a rather poor sensitivity compared to the other
decay modes.
Next we apply the optimal observables (54) for meas-

uring Red̂τ and Imd̂τ to the reactions of Sec. III. As in
Eq. (52) and in the following equations, the labels a, b refer
here to the decays of τ− and/or τþ to one, two, or three
measured particles. In particular, we take now the

TABLE II. Observables Tij and T̂ij at
ffiffiffi
s

p ¼ 10.58 GeV ðNττ ¼ 4.5 × 1010Þ.
τ− → τþ → cab ½GeV3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hT2
33iab

p
½GeV3� δRedτ ð×10−19 e cmÞ c̃ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hT̂2

33iab
q

δRedτ ð×10−19 e cmÞ

π−ν πþν̄ 4.46 11.34 6.21 0.332 1.02 7.50
ρ−ν ρþν̄ 0.71 10.07 14.7 0.043 1.06 25.5
π−ν ρþν̄ 1.79 10.71 6.74 0.110 1.03 10.5
l−νν̄ l0þν̄ν 0.36 4.68 9.86 0.037 0.98 19.9
l−νν̄ πþν̄ −1.27 6.66 5.05 −0.111 0.96 8.3
l−νν̄ ρþν̄ −0.51 6.78 8.32 −0.037 1.00 16.9

TABLE III. Observables Qij and Q̂ij at
ffiffiffi
s

p ¼ 10.58 GeV ðNττ ¼ 4.5 × 1010Þ.
τ− → τþ → κab ½GeV3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hQ2
33iab

p
½GeV3� δImdτ ð×10−19 e cmÞ κ̃ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hQ̂2

33iab
q

δImdτ ð×10−19 e cmÞ

π−ν πþν̄ −5.26 6.56 3.04 −0.601 0.59 2.38
ρ−ν ρþν̄ −2.28 7.01 3.18 −0.171 0.34 2.05
π−ν ρþν̄ −3.77 7.07 2.11 −0.386 0.52 1.52
l−νν̄ l0þν̄ν 1.40 4.90 2.64 0.201 0.64 2.40
l−νν̄ πþν̄ −1.93 7.24 3.61 −0.200 0.65 3.14
l−νν̄ ρþν̄ −0.44 7.32 10.4 0.015 0.54 22.5

3The last digit of the expectation values and variances listed in
Tables II, III, and IV is rounded. The sensitivities δRedτ and
δImdτ listed in these tables are computed with these rounded
numbers.
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differential decay density matrices for τ → 2πντ and τ →
3πντ given in Appendix A into account. Using (38), (39),
and (40) and the respective decay matrices Da and Db̄ we
define

Oab̄
R ¼ Tr½χRCPDaDb̄�

Tr½χSMDaDb̄� ; Oab̄
I ¼ Tr½χICPDaDb̄�

Tr½χSMDaDb̄� ; ð86Þ

where the trace is taken with respect to the spin indices of
τ− and τþ. Both observables are CP-odd and Oab̄

R is also
TN-odd while Oab̄

I is TN-even. As already emphasized we
compute the expectation values by integrating over the
whole phase space. According to the general theory
discussed in Sec. IV and Appendix B the covariance
matrix for a decay channel ab̄ is given, for zero τ EDM,
by (58), (71):

VðO0ab̄Þ ¼ VðO0bāÞ ¼
�
E0ðO0ab̄

R O0ab̄
R Þ E0ðO0ab̄

R O0ab̄
I Þ

E0ðO0ab̄
I O0ab̄

R Þ E0ðO0ab̄
I O0ab̄

I Þ

	
;

ð87Þ

where

E0ðO0ab̄
R O0ab̄

R Þ≡ hðO0ab̄
R Þ2i0; E0ðO0ab̄

I O0ab̄
I Þ≡ hðO0ab̄

I Þ2i0;
ð88Þ

etc., denote the expectation values for dτ ¼ 0. The expect-
ation values for nonzero τ EDM are given by (76):

0
B@E

�
1
2
Oab̄

R þ 1
2
Obā

R

�

E
�
1
2
Oab̄

I þ 1
2
Obā

I

�
1
CA≡

�hOab
R i

hOab
I i

	
¼VðO0ab̄Þ

�
Red̂τðsÞ
Imd̂τðsÞ

	
:

ð89Þ

We get for the covariance matrix of the optimal estimators
of Red̂τðsÞ and Imd̂τðsÞ [see (62), (64) and (75), (77)]

VðγÞ ¼ 1

Nab
V−1ðO0ab̄Þ: ð90Þ

Here Nab is the number of events in the diagonal channels
a ¼ b, whereas for a ≠ b it is the sum of the events ab̄ and
b̄a, assuming that their numbers are equal.
However, with the form of the differential cross section

used in this paper considerable simplifications occur. In the
case where the τ leptons decay to one measured particle
and/or to 2πντ where both pions are measured we have, as
shown in Appendix B,

hOab̄
i i0 ¼ 0; O0ab̄

i ¼Oab̄
i ði¼R;IÞ; hOab̄

R Oab̄
I i0¼ 0:

ð91Þ

That is, for these channels the respective covariance matrix
(87) is diagonal.
When τ−, τþ, or both τ leptons decay to three measured

pions, hOab̄
i i0 ¼ 0 (i ¼ R, I) still holds in the one-photon

approximation (see Appendix B), but the covariance matrix
is no longer diagonal. Yet we find for these decay modes
that hOab̄

R Oab̄
I i0 < a few × 10−4 with numerical uncertain-

ties below 10−3. Therefore, within the precision of our
numerical analysis the relations (91) hold also for these
decay channels, and (89) simplifies to4

hOab
R i ¼ wab̄ðsÞRed̂τðsÞ; hOab

I i ¼ ωab̄ðsÞImd̂τðsÞ;
ð92Þ

where we used the abbreviations

wab̄ ≡ hðOab̄
R Þ2i0; ωab̄ ≡ hðOab̄

I Þ2i0: ð93Þ

The resulting 1 s.d. errors of the dimensionful EDM
couplings Redτ and Imdτ are given by

δRedτðsÞ ¼
effiffiffi
s

p 1ffiffiffiffiffiffiffiffi
Nab

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðOab̄

R Þ2i0
q ;

δImdτðsÞ ¼
effiffiffi
s

p 1ffiffiffiffiffiffiffiffi
Nab

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðOab̄

I Þ2i0
q : ð94Þ

Table IV contains our results for the expectation values
defined in Eq. (92) and for the square roots of the variances
of the observables (86) for several τ∓ decays to one, two,
and/or three measured particles. The numbers in this table
show that taking into account the full kinematic informa-
tion on the hadronic system in the τ → 2πντ and τ → 3πντ
decays results in maximal τ-spin analyzing power [34,35],
as is the case in the decay τ → πντ. In addition, the resulting
1 s.d. sensitivities to the real and imaginary parts of the τ
EDM form factor are given in Table IV, assuming again
4.5 × 1010 τ-pair events. The 1 s.d. statistical errors δRedτ
and δImdτ exhibited in Table IV signify that taking into
account the channels where one or both τ leptons decay to
two and/or three measured pions yields a significant
improvement in the sensitivity to the τ EDM form factor.
Comparing for each channel the accuracies δRedτ and
δImdτ exhibited in Table IV with those in Tables II and III
shows that, as expected, the optimal observables (86) are
significantly more sensitive to the τ EDM than the
observables T33 and Q̂33.
If the measurement errors of the various exclusive τþτ−

decay modes are uncorrelated, we may add in quadrature
the statistical errors of Redτ and Imdτ attainable for each
channel:

4The left-hand sides of (92) denote averages according to (49).
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δRedτ ¼
�X

ab

1

ðδRedτÞ2ab

	
−1=2

; ð95Þ

and analogously for δImdτ. Performing these quadratures
with the uncertainties listed in Tables II, III, and IV yields
the 1 s.d. errors δRedτ and δImdτ given in Table V. As to the
optimal observables we assumed here for the purpose of
comparison that they are measurable for all channels listed
in Table IV. For the leptonic modes this may not be possible
in an unambiguous way; see below. The numbers in
Table V show that the sensitivity to Redτ is improved
by a factor of about 6 with the optimal observable OR as
compared to using the simple ones, whereas the sensitivity
to Imdτ is improved by a factor of about 4.
We briefly discuss the measurability of the observables

used in this section. The KEKB accelerator is an asym-
metric eþe− collider; particle momenta measured in the
laboratory frame can of course be transformed to the eþe−
c.m. frame. The simple CP observables (44)–(47) applied
to the τþτ− decay channels listed in Tables II, III require the
momenta of charged mesons and of e, μ in the eþe− c.m.
frame. They can be straightforwardly measured, except for
the momentum of ρ� whose determination requires the
reconstruction of the decay ρ� → π�π0.
The optimal observables involve the momenta of various

particles from τ� decay in the respective τ� rest frame. This
requires the knowledge of the τ� momenta in the eþe− c.m.
frame. If both τþ and τ− decay semihadronically their
momenta can be reconstructed in an unambiguous way
[36]. If one of the τ leptons decays semihadronically and
the other one to either e or μ, one may discard radiative

events in this class such that the τþ and τ− in the remaining
events are, to good approximation, back to back and carry
half of the c.m. energy in the eþe− frame. If the τ
momentum can be reconstructed in the semihadronic decay,
e.g., by reconstructing the τ production and decay vertices,
the momentum of the leptonically decaying τ can be
inferred. If both τ leptons decay leptonically the determi-
nation of their momenta is not possible in an unambiguous
way. Therefore, we discard the results for the ll0 channels
in Table IV and add in quadrature the statistical errors of
Redτ and Imdτ attainable with the events listed in Table IV
where both τ’s decay semihadronically and for the case
where the semihadronic-leptonic decays of τþτ− are added
to the purely semihadronic events. The resulting 1 s.d.
errors are given in Table VI. The numbers in this table and
in Table V show that restriction to purely semihadronic
τþτ− decays does not lead to a significant decrease in
sensitivity to Redτ and Imdτ.
Next we investigate the effects of cuts on the sensitivities

to the τ EDM. A full-fledged Monte Carlo analysis with
detailed cuts is beyond the scope of this paper. We analyze

TABLE IV. Optimal observables Oab̄
R and Oab̄

I at
ffiffiffi
s

p ¼ 10.58 GeV ðNττ ¼ 4.5 × 1010Þ.

τ− →
τþ → wab̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðOab̄

R Þ2i0
q

δRedτ ð×10−19 e cmÞ ωab̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðOab̄

I Þ2i0
q

δImdτ ð×10−19 e cmÞ

π−ν πþν̄ 0.111 0.333 2.45 0.352 0.593 1.37
π−π0ν πþπ0ν̄ 0.111 0.333 1.04 0.352 0.593 0.58
π−π−πþν πþπþπ−ν̄ 0.111 0.333 2.84 0.352 0.593 1.59
π−ν πþπ0ν̄ 0.111 0.333 1.13 0.352 0.593 0.63
π−ν πþπþπ−ν̄ 0.111 0.333 1.86 0.352 0.593 1.05
π−π0ν πþπþπ−ν̄ 0.111 0.333 1.21 0.352 0.593 0.68
l−νν̄ l0þν̄ν 0.004 0.064 4.04 0.055 0.235 1.08
l−νν̄ πþν̄ 0.020 0.142 2.26 0.162 0.402 0.80
l−νν̄ πþπ0ν̄ 0.020 0.142 1.47 0.162 0.402 0.52
l−νν̄ πþπþπ−ν̄ 0.020 0.142 2.43 0.162 0.402 0.86

TABLE V. Ideal 1 s.d. statistical errors on Redτ and Imdτ that result from adding the respective uncertainties
attainable in the various decay channels in quadrature.

δRedτ ½e cm� δImdτ ½e cm�
hT33iab hT̂33iab hOab

R i hQ33iab hQ̂33iab hOab
I i

2.93 × 10−19 4.53 × 10−19 5.1 × 10−20 1.23 × 10−19 9.4 × 10−20 2.4 × 10−20

TABLE VI. Ideal 1 s.d. statistical errors on Redτ and Imdτ that
result from adding in quadrature the respective uncertainties
attainable with the optimal observables Oab

R and Oab
I in the

semihadronic decays ðhhÞ and in the semihadronic and semi-
hadronic-leptonic ðhhþ hlÞ decays of τþτ−.

δRedτ ½e cm� δImdτ ½e cm�
hh∶ 5.8 × 10−20 3.2 × 10−20

hhþ hl∶ 5.1 × 10−20 2.5 × 10−20
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in the following only the expectation values of the optimal
observables in the channels where both τ leptons decay
semihadronically, as these observables and decay modes
appear to have the highest sensitivity to dτ and allow for an
unambiguous reconstruction of the τ� momenta. We apply
the following CP-invariant phase-space cuts on the final-
state pions in the eþe− c.m. frame:

23° < θ� < 157°; pT > 0.2 GeV; ð96Þ

where θ� is the polar angle of a pion with respect to the
eþe− beam and pT its transverse momentum.5 Table VII
contains the resulting coefficients wab̄ and ωab̄ of the
expectation values of Oab̄

R and Oab̄
I , respectively, defined

in (92). The event numbers and sensitivities given in
Table VII are estimated by assuming an integrated lumi-
nosity of 50 ab−1 that corresponds to assuming Nττ ¼
4.5 × 1010 in the case of no cuts. The expectation values are
somewhat increased by the cuts while the event numbers
are, of course, diminished. The resulting overall sensitiv-
ities are given in Table VIII. Comparing these numbers with
those of Table VI shows that the cuts (96) lead only to a
slight decrease in sensitivity to the τ EDM.
Moreover, the following remark is in order. As already

indicated below Eq. (6) our results for the normalized
expectation values listed in Tables II, III, IV, and VII do not
depend on the fact that there is a resonance enhancement atffiffiffi
s

p ¼ 10.58 GeV; these numbers hold also for the direct
continuum production of τ pairs. In addition, we emphasize
again that the event numbers, respectively, the integrated

luminosity that we use for our sensitivity estimates to the τ
EDM are expectations taken from [19].
The sensitivity to the τ EDM that the Belle II experiment

may eventually achieve with purely semihadronic τþτ−
decays was investigated also in [16]. The authors of this
paper use the termproportional todτ of thematrix element for
eþe− → τþτ− → hντh0ν̄τ as optimal observable. It is evalu-
ated with the momenta of the mesons and the reconstructed
one of the neutrinos. The real and imaginary parts of the τ
EDM are not separately determined. Assuming the same
τþτ− event number as we did above, the authors of Ref. [16]
find that a 1 s.d. statistical sensitivity δjdτj ¼ 2 × 10−19 e cm
can be achieved with their approach.

VI. THE τ EDM FORM FACTOR
IN SOME SM EXTENSIONS

In theSMtheEDMdl of a charged lepton is extremely tiny
and generated only at high loop order. The dominant short-
distance contribution to dl is thought to arise via Kobayashi-
Maskawaphase induced four-loop contributions that contain,
for instance, the induced EDM form factor of theW boson. It
can be estimated to be of the order dτ ∼Oð10−42Þ e cm. (One
may take, for instance, the estimate of [37] for de and apply it
to the τ lepton.) Recently it was pointed out that long-distance
hadronic contributions are considerably larger [38]. For the τ
EDM was found that these contributions amount to dτ ≃
−7.3 × 10−38 e cm [38]. Nevertheless, this is undetectable
for the time being.
Thus, the detection of a nonzero particle EDM, in

particular of the τ lepton, in a present-day experiment or
one in the foreseeable future would be evidence for a new
type of CP violation. In this section we consider three SM
extensions with CP-violating interactions that generate
EDM form factors of fundamental fermions already at
one loop. The models we are interested in have CP-
violating Yukawa couplings. These interactions can induce
a τ EDM that can be much larger than the electron EDM
generated in these models.6 We compute the τ EDM at one
loop in a type-II two-Higgs-doublet model and in two

TABLE VII. Optimal observablesOab̄
R andOab̄

I at
ffiffiffi
s

p ¼ 10.58 GeV for the semihadronic τ decay channels with cuts specified in (96).
In the case of nondiagonal channels the event numbers Nab include those of the charge-conjugate mode.

τ− → τþ → Nab wab̄ δRedτ ð×10−19 e cmÞ ωab̄ δImdτ ð×10−19 e cmÞ
π−ν πþν̄ 4.21 × 108 0.128 2.54 0.359 1.52
π−π0ν πþπ0ν̄ 16.88 × 108 0.137 1.23 0.390 0.73
π−π−πþν πþπþπ−ν̄ 1.73 × 108 0.139 3.81 0.408 2.22
π−ν πþπ0ν̄ 16.53 × 108 0.135 1.25 0.386 0.74
π−ν πþπþπ−ν̄ 5.18 × 108 0.137 2.21 0.401 1.29
π−π0ν πþπþπ−ν̄ 10.74 × 108 0.138 1.53 0.401 0.90

TABLE VIII. Ideal 1 s.d. statistical errors on Redτ and Imdτ
that result from adding in quadrature the respective uncertainties
attainable with the optimal observables Oab

R and Oab
I in the

semihadronic decays ðhhÞ of τþτ− given in Table VII.

δRedτ ½e cm� δImdτ ½e cm�
hh∶ 6.8 × 10−20 4.0 × 10−20

5The cut on θ� is inspired by the acceptance of the Belle II
detector in the KEKB laboratory frame [19].

6We recall that in models with Higgs-Yukawa-like CP-violat-
ing couplings the dominant contribution to the electron EDM
occurs at two loops [39].
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scalar leptoquark models and investigate its potential
magnitude in the timelike region q2 ∼ ð10 GeVÞ2, taking
into account phenomenological constraints, in particular
the tight upper bound (1) on the electron EDM.

A. Type-II two-Higgs doublet extension

In two-Higgs doublet models (2HDM) the field content
of the SM is extended by an additional Higgs doublet H2.
We consider here as an example the so-called type-II
model. It is defined by its Yukawa coupling structure:
the doublet H1 is coupled to right-chiral down-type quarks
and charged leptons, whileH2 is coupled to right-chiral up-
type quarks only. By construction, flavor-changing neutral
currents are absent at tree level in this model. Assuming a
CP-violating Higgs potential VðH1; H2Þ the particle spec-
trum of the 2HDM contains three neutral Higgs bosons hj
(j ¼ 1, 2, 3) that are CP mixtures. In flavor-conserving
2HDM their Yukawa couplings to quarks and leptons are of
the form

LY;f ¼ −ð
ffiffiffi
2

p
GFÞ1=2mf½af;jf̄f − bf;jf̄iγ5f�hj; ð97Þ

where f ¼ q;l, GF is the Fermi constant, and the reduced
Yukawa couplings af;j and bf;j depend on the specific type
of 2HDM. In the type-II model the reduced couplings of the
mass eigenstates hj to the τ lepton are (we use here the
conventions of [40])

aτ;j ¼ Rj1= cos β; bτ;j ¼ Rj3 tan β: ð98Þ

Here tan β ¼ v2=v1 is the ratio of the vacuum expectation
values of the two Higgs doublet fields, and ðRijÞ is a real
orthogonal matrix that relates the CP eigenstates and the
mass eigenstates of the three physical neutral Higgs bosons.
The relations (98) hold also for the other charged leptons
and the down-type quarks. (For up-type quarks, see for
instance [40].) If af;jbf;j ≠ 0, then (97) violates CP.
Here we identify h1 with the 125 GeV Higgs boson and

assume that h2 and h3 are heavier than 400 GeV. The
exchange of the hj induces a τ EDM at one loop shown by
the diagram Fig. 3(a). With the convention of Eq. (7) we
get7

dτðsÞ ¼
X3
j¼1

aτ;jbτ;jd
ðjÞ
τ ðsÞ; ð99Þ

dðjÞτ ðsÞ ¼ −
e

ffiffiffi
2

p
GFm3

τ

4π2sβ2τ
½B0ðs;m2

τ ; m2
τÞ − B0ðm2

τ ; m2
j ; m

2
τÞ

þm2
jC0ðs;m2

τ ; m2
j ; m

2
τÞ�; ð100Þ

where βτ ¼ ð1 − 4m2
τ=sÞ1=2 and mj is the mass of hj. The

functions B0 and C0 denote the standard scalar one-loop
two-point and three-point functions [42]. For s ≥ 4m2

τ the
EDM form factor (99) has both a real and an imagi-
nary part.
However, apart from the upper bound (1) on the electron

EDM existing constraints from experiments at the LHC
preclude a τ EDM of order 10−20 e cm or larger in this
model. A recent analysis of the decay of the 125 GeVHiggs
boson to τþτ− by the CMS experiment restricts the size of a
potentially existing pseudoscalar coupling of h1 to the τ
lepton: jbτ;1=aτ;1j ≤ 0.38 at 68% C.L. [43]. Searches for
additional neutral Higgs bosons with decays to τþτ−
exclude Higgs-boson masses of about 400 GeV and below
for a large range of Higgs coupling to τ leptons; see, for
example, [44,45] and references therein.
We exemplify the order of magnitude of dτ that is

compatible with these constraints by assuming the masses
of the Higgs bosons h2 and h3 to be m2 ¼ 500 GeV and
m3 ¼ 800 GeV, respectively. Moreover, we choose tan β ¼
1 and the angles of the mixing matrix R, in the para-
metrization of [40], to be α1 ¼ α3 ¼ 0.785, α2 ¼ 0.209.
The resulting real and imaginary parts of the τ EDM (99)
are given in Table IX for several c.m. energies in the energy
range considered in this paper.
By and large the order of magnitude of the τ EDM form

factor listed in Table IX is characteristic for a large class of
Higgs models. Significantly larger values of RedτðsÞ and
ImdτðsÞ would be possible if, for instance, Higgs bosons
exist with exclusive CP-violating couplings to the third

FIG. 3. One-loop diagrams that contribute to the τ EDM form
factor in the models considered in Sec. VI. In the type-II 2HDM
only diagram (a) contributes and the dashed and solid internal
lines correspond to hj (j ¼ 1, 2, 3) and τ, respectively. In the
leptoquark models both diagrams contribute and the dashed and
solid internal lines correspond to a spin-zero leptoquark and the
top quark, respectively.

TABLE IX. Values of the real and imaginary parts of the τ
EDM form factor (99) in the type-II 2HDM, evaluated with the
parameter choice given in the text.
ffiffiffi
s

p
[GeV] 3.6 4 10.58 12

RedτðsÞ ½10−24 e cm� 2.24 2.13 1.38 1.30
ImdτðsÞ ½10−24 e cm� 0.13 0.38 0.77 0.78

7The real and imaginary parts of the EDM form factor of a
fermion were computed for a class of 2HDM including the type-II
model in [41] and evaluated for the top quark.
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generation of quarks and leptons, such that the stringent
constraint (1) on the electron EDM can be evaded.

B. Spin-zero leptoquarks

Leptoquarks, whose interactions connect a lepton and a
quark, occur naturally in unified models of strong and
electroweak interactions. In recent years they have come
again into the focus of numerous investigations in the
context of possible explanations of semileptonic B and D
meson decay and muon (g − 2) anomalies; see, for instance,
[46–50] and references therein. Here we are interested in
spin-zero leptoquarks with CP-violating Yukawa cou-
plings. They can generate EDMs of the muon and tau
lepton that are significantly larger than that of the electron,8

as pointed out some time ago in [24,52] (cf. also [53]).
We consider in the following two different spin-zero

leptoquark models, namely the SM extended by a weak
SU(2) leptoquark doubletΦ with SUð3Þc×SUð2ÞL×UYð1Þ
quantum numbers Φð3; 2; 7=6Þ (model I) and a SM
extension by a weak singlet S with quantum numbers
Sð3; 1;−1=3Þ (model II). The gauge-invariant interaction
Lagrangians are [54]

LI ¼ ½LLΛLϵuR þ eRΛRQL�Φ† þ H:c:; ð101Þ

LII ¼ ½Lc
LYLϵQL þ ecRYRuR�S† þ H:c: ð102Þ

Here LL ¼ ðνiL; ei;LÞT , QL ¼ ðui;L; di;LÞT , eR ¼ ðei;RÞ,
uR ¼ ðui;RÞ, where i ¼ 1, 2, 3 is a generation index. The
label c denotes charge conjugation. The 2 × 2 matrix ϵ ¼
iτ2 acts on the SU(2) indices. The electric charge (in units
of e > 0) of S is QS ¼ −1=3. For the components of the
doublet Φ ¼ ðφ;φ0ÞT we have Qφ ¼ 5=3 and Qφ0 ¼ 2=3.
The ΛL, ΛR and YL, YR denote complex 3 × 3 matrices in
flavor space. Usually the interactions (101) and (102) are
defined in the weak basis and are rotated, after electroweak
symmetry breaking, to the mass basis. We can choose a
basis in which the Yukawa matrices of the up-type quark
and of the charged-lepton couplings to the SM Higgs boson
are already diagonal. Then only the down-type quark and
neutrino fields must be rotated with their respective mixing
matrices when one transforms to the mass basis. The
interactions in (101) involving charged leptons and up-
type quarks, with which we are concerned here, remain
unaffected.
We assume that the off-diagonal elements of the matrices

ΛL, ΛR and YL, YR in generation space are very small and
can be neglected. Let us denote

λJ ¼ ðΛJÞ33 and yJ ¼ ðYJÞ33; J ¼ L;R; ð103Þ

and

fI ¼ Imðλ�LλRÞ and fII ¼ Imðy�RyLÞ: ð104Þ

If fI ≠ 0 ½fII ≠ 0�, then the interaction Eq. (101) [Eq. (102)]
generates a nonzero τ EDM at one loop. It is represented by
Figs. 3(a) and 3(b) where the internal fermion and boson
lines correspond to the top quark t and the φ leptoquark in
model I and to t and S in model II, respectively. The τ EDM
form factor is given by [24]

dτðsÞ¼ emtNc
fκ
8π2

1

sβ2τ
½QtKtðsÞ−QχKχðsÞ�; κ¼ I; II;

ð105Þ

where Nc ¼ 3, mt is the mass of the top quark which
provides the chirality flip, Qt ¼ 2=3 and Qχ ¼ 5=3ð−1=3Þ
in case of model I (II), where χ denotes either φ or S.
Moreover,

KtðsÞ ¼ B0ðs;m2
t ; m2

t Þ − B0ðm2
τ ; m2

t ; m2
χÞ

þ ðm2
χ þm2

τ −m2
t ÞC0ðs;m2

t ; m2
χ ; m2

t Þ; ð106Þ

KχðsÞ ¼ B0ðs;m2
χ ; m2

χÞ − B0ðm2
τ ; m2

t ; m2
χÞ

þ ðs=2þm2
t −m2

χ −m2
τÞC0ðs;m2

χ ; m2
t ; m2

χÞ:
ð107Þ

Here mχ is the mass of φðSÞ in the case of model I (II).
Because mt;mφ; mS ≫

ffiffiffi
s

p
in the kinematic range that we

consider here, the τ EDM form factor (105) is real.
In order to estimate the potential size of dτ we choose the

leptoquark masses mχ ¼ 1.5 TeV (χ ¼ φ; S) which are
compatible with the experimental bounds from LHC
[55,56] and the constraints from the anomalous magnetic
moments of the electron and muon [49]. For comparison
we evaluate (105) also for mχ ¼ 1 TeV and 2 TeV. With
mt ¼ 172.4 GeV [1] we get from (105) the values listed in
Table X.
The numbers in Table X show that for a given leptoquark

mass the form factor RedτðsÞ is essentially flat in the
kinematic range considered here. So far, the experimental

TABLE X. Values of the τ EDM form factor (105) in the
doublet (I) and singlet (II) leptoquark model. The numbers in the
first, second, and third rows of each model are obtained with
mχ ¼ 1, 1.5, and 2 TeV (χ ¼ φ; S). Moreover, we use
mt ¼ 172.4 GeV.
ffiffiffi
s

p
[GeV] 3.6 4 10.58 12

Model I: RedτðsÞ ½10−20fI e cm� 14.44 14.44 14.45 14.45
7.89 7.89 7.89 7.89
5.04 5.04 5.04 5.04

Model II: RedτðsÞ ½10−20fII e cm� 8.85 8.85 8.86 8.86
5.24 5.24 5.25 5.25
3.51 3.51 3.51 3.51

8A recent analysis of the effects of spin-zero leptoquarks on the
EDMs of leptons, quarks, and nucleons was made in [51].
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bounds on the CP parameters fI, fII are not stringent.
Using the experimental bound (3) and the numbers given in
Table X for

ffiffiffi
s

p ¼ 10.58 GeV and mχ ¼ 1.5 TeV, we get

jfIj < 570; jfIIj < 857 for mχ ¼ 1.5 TeV: ð108Þ

If leptoquark couplings to the τ lepton and the c quark
are taken into account in (101) and (102), then dτðsÞ
develops also an imaginary part for

ffiffiffi
s

p
> 2mc. However,

away from the charm threshold, the c-quark contribution to
dτ is suppressed in magnitude by the factor mc=mt ∼ 10−2

as compared to the leading contribution (105), regardless of
additional suppression due to small off-diagonal Yukawa
couplings.
One may expect that the Yukawa couplings of the spin-

zero leptoquarks are of the Higgs-boson type. Then the
(diagonal) couplings of φ and S in (101) and (102) will be
proportional to the right-handed fermion involved. That is,

λL ∼mt=MI; λR ∼mτ=MI;

yL ∼mτ=MII; yR ∼mt=MII; ð109Þ

where MI and MII are mass scales that are expected to be
larger than the electroweak symmetry breaking scale
v ¼ 246 GeV. In this case the magnitude of RedτðsÞ will
be smaller by a factor of at least 10−2 than the numbers
listed in Table X.

C. Box contributions

The one-loop S-matrix element of eþe− → τþτ− can
receive in SM extensions also one-particle irreducible
CP-violating box contributions that involve Lorentz struc-
tures such as ðēeÞðτ̄iγ5τÞ. Here we argue that in the models
considered in Secs. VI A and VI B these contributions that
are depicted in Fig. 4 can be neglected compared to those of
the τ EDM form factors.
In the type-II 2HDM only diagram Fig. 4(a) appears.

From the Yukawa interaction (97) one obtains that this

contribution is proportional to GFm2
e. Thus this contribu-

tion to the S-matrix element of eþe− → τþτ− is negligible
compared to that of the τ EDM form factor (100).
As to the spin-zero leptoquark models: If one considers

interactions (101), (102) that are diagonal in generation
space, then only diagram (a) contributes with f ¼ u, f0 ¼ t,
and this contribution entails a suppression factor mu=

ffiffiffi
s

p
where mu is the mass of the u quark. In the case of
interactions that are nondiagonal in generation space,
diagrams (a) and (b) contribute, but those contributions
that involve leptoquark couplings between the electron and
the c and t quark contain off-diagonal matrix elements
ðΛJÞ1j or ðYJÞ1j ðJ ¼ L;R; j ≠ 1Þ that are small due to
experimental constraints (see, e.g., [49,50]).
Thus we conclude that within the above SM extensions

the CP-violating part of the one-loop S-matrix element of
eþe− → τþτ− is given to very good approximation by the
contribution from the τ EDM form factor. In addition, we
remark that the one-loop EDM form factors computed in
Secs. VI A and VI B are gauge invariant. Needless to say,
the contribution of the electron EDM form factor to this
matrix element is completely irrelevant.

VII. CONCLUSIONS

The huge data samples of τþτ− production and decay
that will eventually be recorded at existing low-energy
eþe− colliders will allow, among other investigations, the
search for a τ electric dipole form factor dτðsÞ with a
precision that is significantly higher than existing bounds.
We reconsidered the issue of using simple and optimal CP
observables for such measurements. We discussed the
general formalism of optimal observables and applied it
to two CP-odd observables based on CP-odd τ-spin
correlations and polarization asymmetries that are sensitive
to the real and imaginary parts of dτðsÞ, respectively.
Special emphasis was put on the covariance of these
observables. In our numerical analysis we computed the
expectation values and covariances of the optimal CP
observables for τ-pair production in eþe− collisions at
theϒð4SÞ resonance with subsequent decays of τ� to major
leptonic or semihadronic modes. These results hold also for
the continuum production of τ pairs at

ffiffiffi
s

p ¼ 10.58 GeV.
For the τ decays to two pions and three charged pions we
took the full kinematic information of the hadronic system
into account by incorporating the respective differential τ�
decay density matrices into the optimal observables. In this
way the maximal τ-spin analyzing power is obtained also
with these decay modes. Assuming that the Belle II
experiment will eventually record and analyze 4.5 × 1010

τþτ− events at
ffiffiffi
s

p ¼ 10.58 GeV we found that with purely
semihadronic τþτ− decays 1 s.d. sensitivities δRedτ ¼
5.8 × 10−20 e cm and δImdτ ¼ 3.2 × 10−20 e cm can be
obtained with these optimal observables. For Redτ this is
better than a factor of 5 and for Imdτ better than a factor of 3

FIG. 4. One-loop box diagrams that contribute to the S-matrix
element of eþe− → τþτ− in the models considered in Secs. VI A
and VI B. In the type-II 2HDM only diagram (a) contributes and
the dashed and solid internal lines correspond to hj (j ¼ 1, 2, 3)
and f ¼ e, f0 ¼ τ, respectively. In the leptoquark models both
diagrams can contribute and the dashed and solid internal lines
correspond to a spin-zero leptoquark and an up-type quark,
respectively. Crossed diagrams are not shown.
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as the sensitivities attainable with the simple CP-odd
observables that we analyzed, too. Including events where
one (or both) τ leptons decay leptonically does not lead to a
significant increase in sensitivity to Redτ and Imdτ. These
results were obtained without cuts. We analyzed also the
sensitivity of the optimal observables to Redτ and Imdτ in
the purely semihadronic τþτ− decay channels by applying
cuts on the final-state pions. Assuming an integrated
luminosity of 50 ab−1, which corresponds to the above
number of τþτ− events in the case of no cuts, we obtained
δRedτ ¼ 6.8 × 10−20 e cm and δImdτ ¼ 4.0 × 10−20 e cm.
That is, the 1 s.d. sensitivities decrease only slightly.
Furthermore, we discussed a few SM extensions with

nonstandard CP violation that predict a nonzero τ EDM
already at one-loop order. The tight experimental upper
bound on the electron EDM, experimental results from the
LHC on the CP nature of the 125 GeV Higgs boson, and
bounds on the mass and couplings of new particles severely
constrain the potential magnitude of dτ. Within the type-II
2HDM, which we consider in this context to be exemplary
for a large class of two-Higgs doublet extensions of the SM,
the τ EDM form factor turns out to be too small to be
detected in the foreseeable future. However, in scalar
leptoquark extensions of the SM RedτðsÞ ∼ 10−20 e cm
is still possible in the energy range considered in this paper.
In any case, future τ EDM measurements with the Belle II
and also the BES III experiment using optimal observables
will provide significant information about new sources of
CP violation.
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APPENDIX A: τ DECAY DENSITY MATRICES

Here we list the density matrices that describe several
major decays of polarized τ∓. Most of them given below
are used in Sec. V. The kinematic variables in this appendix
are defined in the respective τ� rest frame unless stated
otherwise. The decay density matrices are computed in the
Standard Model; potential CP-violating effects in τ decays
are not taken into account.
First we consider τ∓ decays into one charged prong,

τ∓ → a∓ þ X with particle multiplicity hnai ¼ 1. The
charged particle a∓ acts as the τ∓ spin analyzer.
Assuming CP invariance in the decays of τ∓ we have in
the τ rest frame

ha−ðqÞ; XjT jτ−β i ¼ ηahaþð−qÞ; XCPjT jτþβ i; ðA1Þ

where XCP is the CP transform of X and ηa ¼ �1. If a
denotes a lepton, we have ηa ¼ 1; for a ¼ meson, ηa is the
product of the intrinsic parity and charge-parity quantum
numbers of a. Thus, for a pion (ρ meson) we get ηπ ¼ −1
ðηρ ¼ þ1Þ. Equation (A1) implies for the τ∓ decay density
matrices

Da−
β0βðτ− → a−ðqÞ þ XÞ ¼ Daþ

β0βðτþ → aþð−qÞ þ XCPÞ:
ðA2Þ

The respective decay density matrix Da ¼ ðDa
β0βÞ defined

in (26) and (27) is of the form

d3q∓
ð2πÞ32Ea∓

Da∓ðτ∓ → a∓ðq∓Þ þ XÞ

¼ dEa∓
dΩa∓

4π
nðEa∓Þ½l� hðEa∓Þq̂∓ · σ�; ðA3Þ

where Ea∓ is the energy of a∓ and dΩa∓ ¼ d cos θa∓dφa∓ .
In (A3) the symbol 1 denotes the two-dimensional unit
matrix and σ ¼ ðσ1; σ2; σ3Þ is the vector of Pauli matrices.
The function nðEaÞ determines the energy spectrum of
τ → a while hðEaÞ encodes the τ-spin analyzing power of
the charged prong. Equation (A3) is used in the calculations
of Sec. V. If the right-hand side of (A3) is integrated over
Ea∓ , it takes, due to the normalization convention (27),
the form

dΩa∓

4π

Z
dEa∓nðEa∓Þ½1� hðEa∓Þq̂∓ · σ�

¼ dΩa∓

4π
½1� αaq̂∓ · σ�; ðA4Þ

where αa ðjαaj ≤ 1Þ is a measure of the τ spin-analyzing
power of a.
Next we list the spectral functions nðEaÞ and hðEaÞ of

several decay density matrices (A3). The functions nðEaÞ
have dimension 1/energy while the functions hðEaÞ are
dimensionless.

1. The decay τ∓ → l∓ðq∓Þ+ νlντ
In the leptonic decays τ∓ → l∓νlντ the mass of l ¼ e, μ

can be neglected. (Here and below the symbol ν denotes a
neutrino or antineutrino, depending on the case.) Using
x ¼ 2El=mτ, where El is defined in the τ rest frame, one
has [57]

nlðElÞ ¼
4

mτ
x2ð3 − 2xÞ; hlðElÞ ¼

1 − 2x
3 − 2x

ðA5Þ

with 0 ≤ x ≤ 1. Integrating over the charged lepton energy
in (A3) yields (A4) with the τ-spin analyzing power
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αl ¼ −
1

3
: ðA6Þ

The value of αl can be increased by a suitable cut on El.

2. The decay τ∓ → π∓ðq∓Þ+ ντ
In the two-body decay τ → π þ ντ the energy Eπ in the τ

rest frame is fixed and the functions nπðEπÞ and hπðEπÞ are
given by [57]:

nπðEπÞ ¼ δ

�
Eπ −

m2
τ þm2

π

2mτ

	
; hπðEπÞ ¼ 1: ðA7Þ

Here the τ-spin analyzing power is maximal,

απ ¼ 1: ðA8Þ

3. The decay τ∓ → ρ∓ðq∓Þ+ ντ
If the four-momentum of the intermediate ρ meson can

be determined in the decay τ∓ → π∓π0ντ by measuring the
energies and momenta of both π∓ and π0, the ρ meson can
be used as a τ-spin analyzer. It is well known that in the
two-body decay of a polarized τ to a transversely or
longitudinally polarized spin-1 meson and ντ the τ-spin
analyzing power of the meson is maximal [58]. However,
the polarization of the vector meson cannot be determined
event by event. Summing over the polarizations of the ρ
meson and treating it as an on-shell particle, one obtains τ∓
decay density matrices of the form (A3) with the spectral
functions [57,58]

nρðEρÞ ¼ δ

�
Eρ −

m2
τ þm2

ρ

2mτ

	
; hρðEρÞ ¼

m2
τ − 2m2

ρ

m2
τ þ 2m2

ρ
:

ðA9Þ

Using mρ ¼ 0.775 GeV we obtain

αρ ¼ 0.45: ðA10Þ

We use this two-body decay mode with (A3) and (A9) in
our analysis of the simple CP observables in Sec. V.

4. The decay τ∓ → π∓ðq1Þ +π0ðq2Þ+ ντ
The differential rate of the decay of polarized τ leptons to

a charged and neutral pion via a ρ meson was calculated in
[57] in the on-shell approximation for the intermediate ρ
meson. A more elaborate description of this decay mode
takes the ρ and ρ0 resonances and their finite widths as
intermediate states into account [59–61]. We use the matrix
element of [59,60] for the decay chain τ → ρðρ0Þ → 2πντ.
Exact isospin invariance is assumed. In the τ− rest frame we
obtain for the τ− → π−π0ντ decay density matrixD2π that is
differential in the pion momenta:

Y2
i¼1

d3qi
ð2πÞ32q0i

D2πðτ−ðkÞ → π−ðq1Þπ0ðq2ÞντÞ

¼ 1

2mτΓ2π
dΦ2jM2j2; ðA11Þ

where Γ2π ¼ Γðτ− → π−π0ντÞ and

jM2j2 ¼ G2
FjVudj2jFπðQ2Þj2ðA21þH2 · σÞ: ðA12Þ

Here GF and Vud denote the Fermi constant and the ud
Cabibbo-Kobayashi-Maskawa matrix element, respec-
tively. The terms in the squared matrix element are

A2 ¼ 4½2ðk · qÞ2 þ q2ðQ2 − k ·QÞ�; ðA13Þ

Hj
2 ¼ 4mτ½2ðk · qÞqj þ q2Qj�; ðA14Þ

where j ¼ 1, 2, 3, k ¼ ðmτ; 0ÞT in the τ rest frame,
Q ¼ q1 þ q2, and q ¼ q1 − q2.
The phase-space measure dΦ2 can be parametrized as

follows:

dΦ2 ¼
1

64ð2πÞ5 dQ
2θðm2

τ −Q2ÞθðQ2 − 4m2
πÞdΩQ

×
λ1=2ðm2

τ ; Q2; 0Þ
m2

τ
dΩ�

1

λ1=2ðQ2; m2
πm2

πÞ
Q2

; ðA15Þ

where dΩQ ¼ d cos θQdφQ is the solid angle element ofQ,
i.e., of ρðρ0Þ, in the τ rest frame and dΩ�

1 is the solid angle
element of the charged pion π−ðq1Þ in the rest frame of
ρðρ0Þ. Moreover,

λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz: ðA16Þ

The form factor Fπ in (A12) can be parametrized by [59]

FπðQ2Þ ¼ BρðQ2Þ þ β2Bρ0 ðQ2Þ
1þ β2

; ðA17Þ

where

BρðxÞ ¼
m2

ρ

m2
ρ − x − imρΓρðxÞ

and ρ → ρ0: ðA18Þ

The label ρ (ρ0) refers to the ρ (ρ0) resonance and β2 is a
tuning parameter (see below).
We use for the energy-dependent off-shell widths of the ρ

and ρ0 that are needed in (A18)

ΓρðxÞ ¼ Γρðm2
ρÞ

mρffiffiffi
x

p
�

pðxÞ
pðm2

ρÞ
	

3

θðx − 4m2
πÞ; ðA19Þ

where
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pðxÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − 4m2

π

q

and Γρ0 ðxÞ is given by the same formula with label ρ → ρ0.
A value for the on-shell width Γρðm2

ρÞ and Γρ0 ðm2
ρ0 Þ,

respectively, is given in (A20).
We use the following input values for the computations

of the optimal CP observables in Sec. V:

mτ ¼ 1.777 GeV; mπ ¼ 0.140 GeV;

mρ ¼ 0.775 GeV; mρ0 ¼ 1.465 GeV;

GF ¼ 1.1664 × 10−5 ðGeVÞ−2; Vud ¼ 0.974;

Γρ ¼ 0.149 GeV; Γρ0 ¼ 0.400 GeV: ðA20Þ

With this input, agreement with the experimental width
Γðτ− → π−π0ντÞexp ¼ 5.78 × 10−13 GeV is obtained when
the tuning parameter β2 in Eq. (A17) is chosen to be

β2 ¼ −0.175: ðA21Þ

The differential decay density matrix for the charge-
conjugate decay

τþðkÞ → πþðq1Þπ0ðq2Þν̄τ
is of the same form as (A11) with the squared matrix
element

jM0
2j2 ¼ G2

FjVudj2jFπðQ2Þj2ðA2l −H2 · σÞ; ðA22Þ

and A2 and H2 are given in Eqs. (A13) and (A14),
respectively.
One may also determine the τ-spin analyzing power of

the “resonance” Q∓ in the τ∓ → π∓π0ντ decay mode by
computing the following decay density matrix:

dx
dΩQ

4π
DQ∓ ¼ dx

dΩQ

4π
½a2;QðxÞ1� b2;QðxÞQ̂ · σ�; ðA23Þ

where 4ðmπ=mτÞ2 ≤ x≡Q2=m2
τ ≤ 1 and Q̂ ¼ ðq1 þ q2Þj=

jðq1 þ q2Þj. The spectral functions a2;Q and b2;Q are shown
in Fig. 5. Integrating the right-hand side of (A23) over x the
decay density matrix takes the form (A4) with αa → α2;Q
and q̂∓ → Q̂. We get for α2;Q

α2;Q ¼ 0.42: ðA24Þ

Comparison with (A10) shows that taking into account the
finite widths of the intermediate resonances and the whole
kinematic range of Q2 leads to a slightly smaller τ-spin
analyzing power. Nevertheless, we will use the value (A10)
in the computation of the expectation values of the simple
CP observables in Sec. V.

For completeness we determine also the τ-spin analyzing
power of the charged pion in τ∓ → π∓ðq1Þ þ π0ντ. The
respective 1-prong decay density matrix is given by

d3q1
ð2πÞ32E1

Dπ∓ðτ∓ → π∓ðq1Þ þ π0ντÞ

¼ dx1
dΩ1

4π
½a1ðx1Þ1� b1ðx1Þq̂1 · σ�; ðA25Þ

where x1 ¼ 2E1=mτ and 2mπ=mτ ≤ x1 ≤ 1. The spectral
functions a1 and b1 are shown in Fig. 6. Integrating the
right-hand side of (A25) over x1 the decay density matrix
takes the form (A4) with αa → α1 and q̂∓ → q̂1. We get for
the τ-spin analyzing power α1 of the charged pion9

 0
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FIG. 5. The spectral functions a2;Q (solid curve) and b2;Q
(dotted curve) defined in Eq. (A23).
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FIG. 6. The spectral functions a1 (solid curve) and b1 (dotted
curve) defined in Eq. (A25).

9This decay mode was analyzed in [9] using only the
intermediate ρ in the narrow-width approximation.
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α1 ¼ −0.036: ðA26Þ

Figure 6 shows that negative and positive contributions
cancel to a large extent when b1 is integrated over the whole
kinematic range, leading to the small value (A26). The
value of α1 can be enhanced by a suitable cut on x1. We do
not use (A25) in our analysis of Sec. V.

5. The decay τ∓ → a∓1 → π∓ðq1Þ+ π∓ðq2Þ+ π�ðq3Þ+ ντ
The decay mode to three charged prongs proceeds

mainly via an intermediate a1 resonance. If one approx-
imates the τ → 3π decay mode by τ decay to an on-shell a1,
the τ-spin analyzing power of this resonance would be
maximal, as stated above, if the a1 polarization states can
be separated efficiently [34,58]. If one sums over the a1
polarizations, the τ → a1ντ decay density matrix is of the

form (A3) and (A9) with the label ρ → a1. The a1 mass is
not precisely determined but, in any case, the τ-spin
analyzing power of this resonance is poor in the on-shell
approximation. Using (A9) (withmρ → ma1) with the value
ma1 ¼ 1.230 GeV given by the Particle Data Group [1] one
obtains αa1 ¼ 0.02.
However, maximal sensitivity to the τ polarization can be

obtained with the 3π decay mode if the full decay dynamics
is exploited and the energies and momenta of the three
pions are measured. We use the τ → 3πντ matrix element
given in [59] (cf. also [60,61]) where this decay is described
by the decay chain τ → a1 → ρðρ0Þπ → 3π with off-shell
intermediate resonances. Exact isospin invariance is
assumed.10 We obtain for the differential τ− → 2π−πþντ
decay density matrix D3π in the τ− rest frame with the
normalization conventions (31) and (32)

Y3
i¼1

d3qi
ð2πÞ32q0i

D3πðτ−ðkÞ → π−ðq1Þπ−ðq2Þπþðq3ÞντÞ ¼
1

2mτΓ3π
dΦ3jM3j2; ðA27Þ

where Γ3π ¼ Γðτ− → π−π−πþντÞ and the phase-space measure is given in the recursive phase-space parametrization by

dΦ3 ¼
1

29ð2πÞ8 dQ
2duθðm2

τ −Q2ÞθðQ2 − 9m2
πÞθ

�� ffiffiffiffiffiffi
Q2

p
−mπ

�
2
− u

�
θðu − 4m2

πÞ

× dΩQ
λ1=2ðm2

τ ; Q2; 0Þ
m2

τ
dΩ�

3

λ1=2ðQ2; u; m2
πÞ

Q2
dΩ��

2

λ1=2ðu;m2
π; m2

πÞ
u

: ðA28Þ

Here Q ¼ q1 þ q2 þ q3, u ¼ ðq1 þ q2Þ2, and dΩQ ¼ d cos θQdφQ is the solid angle element of Q, i.e., a1, in the τ rest
frame, dΩ�

3 is the solid angle element of πþðq3Þ in the rest frame of a1, and dΩ��
2 is the solid angle element of π0ðq2Þ in the

rest frame of ρ, i.e., the zero-momentum frame of q1 þ q2. Note that the statistics factor 1=2 for two identical particles in the
final state is compensated here by the normalization convention (32). The squared matrix element is given by

jM3j2 ¼ G2
FjVudj2ðA31þH3 · σÞ; ðA29Þ

where

A3 ¼ jF1j2½4ðk · V1Þ2 − 2ðk ·Q −Q2ÞV2
1� þ jF2j2½4ðk · V2Þ2 − 2ðk ·Q −Q2ÞV2

2�
þ ReðF1F�

2Þ½8k · V1k · V2 − 4ðk ·Q −Q2ÞV1 · V2� − 2iðF2F�
1 − F1F�

2Þϵðk;Q; V1; V2Þ; ðA30Þ

Hj
3 ¼ 2mτfjF1j2½2k · V1V

j
1 þ V2

1Q
j� þ jF2j2½2k · V2V

j
2 þ V2

2Q
j�

þ2ReðF1F�
2Þ½k · V2V

j
1 þ k · V1V

j
2 þ V1 · V2Qj�g

þ 2imτðF2F�
1 − F1F�

2Þϵðq0; j; V1; V2Þ; ðA31Þ

and j ¼ 1, 2, 3, k ¼ ðmτ; 0ÞT , q0 ¼ k −Q,

Vμ
1 ¼

�
gμν −

QμQν

Q2

	
ðq1 − q3Þν; Vμ

2 ¼
�
gμν −

QμQν

Q2

	
ðq2 − q3Þν; ðA32Þ

10The τ → 3πντ decay was analyzed in [62] within the resonance chiral theory using an elaborate description of the a1 off-shell width.
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and ϵðk;Q; V1; V2Þ ¼ ϵμναβkμQνVα
1V

β
2, ϵðq0; j; V1; V2Þ ¼

ϵμjαβq0μVα
1V

β
2, and we use the convention ϵ0123 ¼ þ1.

Moreover,

F1 ¼ FðQ2; sÞ; F2 ¼ FðQ2; tÞ; ðA33Þ

where s ¼ ðq1 þ q3Þ2 and t ¼ ðq2 þ q3Þ2. The function F
is given by [59]

FðQ2; xÞ ¼ 2
ffiffiffi
2

p

3fπ
Ba1ðQ2ÞFπðxÞ; ðA34Þ

where fπ is the pion decay constant (in the convention
fπ ¼ 0.093 GeV) and Ba1 denotes the Breit-Wigner
enhancement factor of the a1 meson:

Ba1ðQ2Þ ¼ m2
a1

m2
a1 −Q2 − ima1Γa1ðQ2Þ : ðA35Þ

We use as a model for the energy-dependent off-shell width
of the a1 meson

Γa1ðQ2Þ ¼ Γa1ðm2
a1Þ

gðQ2Þ
gðm2

a1Þ
; ðA36Þ

where Γa1ðm2
a1Þ is the on-shell width (see below) and the

function g is given in Eq. (3.16) of Ref. [59]. Moreover, the
pion “form factor” FπðxÞ is given by the formulas (A17)–
(A19) above where now the tuning parameter β2 is to be
replaced by β3 that will be determined below.
The differential decay density matrix for the charge-

conjugate decay

τþðkÞ → πþðq1Þπþðq2Þπ−ðq3Þν̄τ
is of the same form as Eqs. (A27) with the squared matrix
element

jM0
3j2 ¼ G2

FjVudj2ðA31 −H3 · σÞ; ðA37Þ

and A3 and H3 are given in Eqs. (A30) and (A31),
respectively.
To the best of our knowledge the differential τ → 3πν

density matrix (A27)–(A31) was so far not given in this
explicit form in the literature.
For our computation of the expectation values of the

optimal observables in Sec. V we use the above formulas
with the input values (A20) and

fπ ¼ 0.093GeV; ma1 ¼ 1.230GeV; Γa1 ¼ 0.483GeV:

ðA38Þ

It remains to fix the tuning parameter β3. Using the
above squared matrix element and input parameters we

find agreement with the experimental width Γðτ− →
2π−πþντÞexp ¼ 2.11 × 10−13 GeV when the tuning param-
eter β3 is chosen to be

β3 ¼ −0.204: ðA39Þ

6. The decay τ∓ → a∓1 → π0ðq1Þ+ π0ðq2Þ+ π∓ðq3Þ+ ντ
For completeness we discuss here also this decay mode,

although we do not use it in the analysis of Sec. V. Assuming
exact isospin invariance the differential decay density matri-
ces for τ∓ → 2π∓π�ντ derived in the previous subsection
can be used also for these decay modes. Using the
above input parameters with the exception mπ ¼ mπþ ¼
0.140 GeV → mπ ¼ mπ0 ¼ 0.135 GeV, agreement with
the experimental width Γðτ− → 2π0π−ντÞexp ¼ 2.10 ×
10−13 GeV is obtained with the following value of the
tuning parameter, here denoted by β03:

β03 ¼ −0.190: ðA40Þ

Moreover, the τ-spin analyzing power of the charged
pion in this decay mode is also of interest. The 1-prong
decay density matrix for τ∓ → π∓ðq3Þ þ 2π0ντ, normal-
ized to the charged particle multiplicity nπ� ¼ 1, is
given by

d3q3
ð2πÞ32E3

Dπ∓ðτ∓ → π∓ðq3Þ þ 2π0ντÞ

¼ dx3
dΩ3

4π
½a3ðx3Þ1� b3ðx3Þq̂3 · σ�; ðA41Þ

where x3 ¼ 2E3=mτ and 2mπ=mτ ≤ x3 ≤ 1–3ðmπ=mτÞ2.
The spectral functions a3 and b3 are shown in Fig. 7.
Integrating the right-hand side of (A41) over x3 the decay
density matrix takes the form (A4) with αa → α3 and

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

 a
3,

  b
3

 x3 = 2 E3/mτ

FIG. 7. The spectral functions a3 (solid curve) and b3 (dotted
curve) defined in Eq. (A41).
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q̂∓ → q̂3. We get for the τ-spin analyzing power α3 of the
charged pion11

α3 ¼ −0.144: ðA42Þ

This number is rather small because b3 has both negative
and positive contributions that cancel to a large extent when
integrated over x3. The analyzing power can be enhanced
by a suitable cut on x3.

APPENDIX B: EXPECTATION VALUES AND
COVARIANCES OF CP-ODD OBSERVABLES

In this Appendix we discuss general properties of
expectation values and covariances of the CP-odd observ-
ables introduced in Sec. IV and computed in Sec. V. We
treat first case (i) of Sec. III where only one charged particle
is measured from τ− and τþ decays, respectively. The
differential cross section of the two-particle inclusive
reaction (28) and (29) as used in this paper is given by (30):

dσab̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4m2

τ=s
p

16πs
Brðτ− → AÞBrðτþ → B̄Þ

×Tr½RDaDb̄� jq
�
−j

ð2πÞ2
jq�þj
ð2πÞ2 dE

�
−dE�þ

dΩkþ

4π

dΩ�
−

4π

dΩ�þ
4π

;

ðB1Þ

where we have used in (30) the momenta of the charged
particles a and b̄ and the corresponding phase-space
measures in the respective τ− and τþ rest frame. The
one-particle inclusive decay density matrices in the τ∓ rest
frames are given in (A3). We recall the relation between the
respective rest-frame momenta q�∓ and k�∓ ¼ ðmτ; 0ÞT and
the momenta q∓ and k∓ in the eþe− c.m. frame. With the
Lorentz boost

Λk ¼

0
B@

k0
mτ

kj
mτ

ki
mτ

δij þ k̂ik̂j
�
k0−mτ
mτ

�
1
CA; ðB2Þ

where k is the three-momentum of τþ in the eþe− c.m.
frame, we have

Λ�kk∓ ¼ k�∓; Λ�kq∓ ¼ q�∓: ðB3Þ

Next we decompose (B1) according to (51) and (52),
neglecting terms quadratic in d̂τ. Here our phase-space
variables are

ϕ ¼ ðE�
−; E�þ; k̂; q̂�

−; q̂�þÞ; ðB4Þ

and the measure is

dϕ ¼ dE�
−dE�þ

dΩk

4π

dΩ�
−

4π

dΩ�þ
4π

: ðB5Þ

We get

dσab̄ ¼ fSab̄SMðϕÞ þ Sab̄CP;RðϕÞRed̂τ þ Sab̄CP;IðϕÞImd̂τgdϕ;
ðB6Þ

where, using (A3),

Sab̄SMðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

τ=s
p

16πs
Brðτ− → AÞ

× Brðτþ → B̄Þ χSM;αα0ββ0

j1þ e2ΠcðsÞj2
× naðE�

−Þ½δβ0β þ haðE�
−Þq̂�

− · σβ0β�
× nbðE�þÞ½δα0α − hbðE�þÞq̂�þ · σα0α�: ðB7Þ

The quantities Sab̄CP;R and Sab̄CP;I are obtained from (B7) by
the replacements

χSM → χRCP and χSM → χICP; ðB8Þ

respectively; see (38)–(40).
We can now perform the traces in (B7). With (43) we see

that this amounts to make the following replacements in
(38)–(40):

1 → 4nbna;

σþ → −4nbhbnaq̂�þ;

σ− → 4nbnahaq̂�
−;

σrþσs− → −4nbhbnahaq̂�rþ q̂�s− : ðB9Þ

Next, we consider the transformation

k → −k; qþ → −qþ; q− → −q−; ðB10Þ

which, using (B3), implies

k̂ → −k̂; q̂�þ → −q̂�þ; q̂�
− → −q̂�

−; ðB11Þ

and vice versa. These transformations correspond to the
naive “time reversal” transformation12 TN referred to in
Sec. III. Inspection of χSM, χRCP, and χ

I
CP, i.e., of Eqs. (38)–

(40) with the replacements (B9), shows that applying (B11)
we have

11A simpler description of this decay mode was used in [9] and
the value απ ¼ −0.18 was obtained. 12One may also transform p → −p, but this is irrelevant here.
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Sab̄SMðϕÞ → Sab̄SMðϕÞ; Sab̄CP;RðϕÞ → −Sab̄CP;RðϕÞ;
Sab̄CP;IðϕÞ → Sab̄CP;IðϕÞ: ðB12Þ

We turn to the simple and optimal observables of Sec. IV.
We assume integration over the whole phase space or, if
cuts are applied, we assume the cuts to be CP-symmetric.
In addition, we assume the cuts to be invariant under (B10).
The tensors T̂ij and Tij of (44) and (45) are odd, whereas
Q̂ij and Qij of (46) and (47) are even under the trans-
formation (B10).
Let us first consider the case a ¼ b. TheCP properties of

the observables T and Q imply

E0ðTijÞ ¼ 0; E0ðT̂ijÞ ¼ 0;

E0ðQijÞ ¼ 0; E0ðQ̂ijÞ ¼ 0: ðB13Þ

Moreover, turning to the covariance matrix of one of the T
and one of the Q variables, the transformation (B10)
implies

E0ðTijQklÞ ¼ 0 ðB14Þ

and likewise for the other TQ correlations. That is, the
covariance matrix of the T, Q variables is diagonal.
The optimal CP observables are in the case a ¼ b

Oaā
R ðϕÞ ¼ SaāCP;RðϕÞ

SaāSMðϕÞ
; Oaā

I ðϕÞ ¼ SaāCP;IðϕÞ
SaāSMðϕÞ

: ðB15Þ

TheCP transformation properties of these observables imply

E0ðOaā
R Þ ¼ 0; E0ðOaā

I Þ ¼ 0; ðB16Þ

and applying the TN transformation (B10) it follows that

E0ðOaā
R Oaā

I Þ ¼ 0: ðB17Þ

Thus, the covariance matrix is diagonal in this case:

VðOaāÞ ¼
�
E0ðOaā

R Oaā
R Þ 0

0 E0ðOaā
I Oaā

I Þ

	
: ðB18Þ

Next we turn to the case a ≠ b. As this final state is no
longer CP-symmetric, the CP transformation properties of
the observables are no longer of immediate use. Let us first
consider the simple observables, for instance, Tij and Q̂ij.
Applying the TN transformation (B10) we get

Eab̄
0 ðTijÞ≡ hTiji0;ab̄ ¼ 0: ðB19Þ

The transformation (B10) implies also that expectation
values of the form (B14) vanish in the nondiagonal case. As
to the SM expectation value

Eab̄
0 ðQ̂ijÞ≡ hQ̂iji0;ab̄; ðB20Þ

there is, however, in the case a ≠ b no symmetry argument
implying that it vanishes, too. Therefore, one should use in
this case in general the observables

Q̂0ij ¼ Q̂ij − hQ̂iji0;ab̄: ðB21Þ

From the CP property of Q̂ij one gets, of course,

hQ̂iji0;ab̄ þ hQ̂iji0;bā ¼ 0: ðB22Þ

Thus, the respective quantity to probe for CP violation
is (49),

1

2
fhQ̂ijiab̄ þ hQ̂ijibāg: ðB23Þ

But the corresponding variance in the SM, for instance
of the i ¼ j ¼ 3 components, has to be calculated in
general as

hQ̂033Q̂033i0;ab̄ ¼ hQ̂033Q̂033i0;bā: ðB24Þ

The above statements apply, of course, also to Qij. Yet in
our analysis where we use the SM matrix element of the
form (B7) and integrate over the whole phase space we find
that (B20) vanishes within our numerical uncertainties of
order 10−4. This holds also for the respective expectation
values of Qij.
The optimal observables are in the case a ≠ b [cf. (86)]:

Oab̄
R ðϕÞ ¼ Sab̄CP;RðϕÞ

Sab̄SMðϕÞ
; Oab̄

I ðϕÞ ¼ Sab̄CP;IðϕÞ
Sab̄SMðϕÞ

; ðB25Þ

where Oab̄
R ðϕÞ and Oab̄

I ðϕÞ are odd and even under the
transformation (B11), respectively; see (B12). Therefore,
we have

E0ðOab̄
R Þ ¼ 0: ðB26Þ

For analyzing E0ðOab̄
I Þ we perform in dσab̄, Eq. (B6), the

variable transformation

k → −k: ðB27Þ

The term Sab̄SMðϕÞ remains invariant, whileOab̄
i ðϕÞ (i ¼ R, I)

change sign; see (38)–(40) and (B7), (B8). Thus

E0ðOab̄
I Þ ¼ 0 ðB28Þ

if one integrates over the whole angular range of k or over a
range that is symmetric with respect to (B27). Beyond the

one-photon approximation E0ðOab̄
i Þ (i ¼ R, I) will in
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general be nonzero. Therefore, one should use in general
[cf. (56)]

O0ab̄
R ðϕÞ ¼ Oab̄

R ðϕÞ − E0ðOab̄
R Þ;

O0ab̄
I ðϕÞ ¼ Oab̄

I ðϕÞ − E0ðOab̄
I Þ: ðB29Þ

In our case here the transformations (B11) and (B27) imply
that the covariance matrix VðO0ab̄Þ is still diagonal and is
given by

VðO0ab̄Þ ¼ VðOab̄Þ ¼
�
E0ðOab̄

R Oab̄
R Þ 0

0 E0ðOab̄
I Oab̄

I Þ

	
:

ðB30Þ

This covariance matrix is then used in (75) and (77) for the
estimators γi and their covariance matrix VðγÞ.
We come now to the final states of case (ii) of Sec. III to

which we apply the optimal CP observables. The channels
where τ → 3πντ is involved require a more detailed
discussion. In our models for the hadronic τ decays
outlined in Appendix A the squared matrix element of
this decay mode given in (A29)–(A31) differs from the
respective squared matrix element of τ → 2πντ and those of
the one-particle inclusive decays in that it contains con-
tributions from absorptive parts caused by the finite widths
of the intermediate resonances. This implies that a TN
transformation can no longer be used to discriminate
between the optimal observables OR and OI . In order to
see this explicitly let us for definiteness consider the case
where τ− decays to three observed pions (labeled by the
symbol A), while in the decay of τþ only one charged
particle is measured (label b̄). The differential cross section
is obtained by inserting the respective decay density
matrices into (30), taking into account (31)–(33). Using
(A29) the matrix element SAb̄SM is obtained from (B7), up to
an overall factor, by replacing

naðE�
−Þ½δβ0β þ haðE�

−Þq̂�
− · σβ0β� → ½A3δβ0β þH3 · σβ0β�:

ðB31Þ

The matrix elements SAb̄CP;R and SAb̄CP;I are obtained in the

same fashion. Inspection of the functions A3 and H
j
3 shows

that neither has a definite behavior under the following
transformation that is analogous to (B11):

k → −k; q�
i → −q�

i ði ¼ 1; 2; 3Þ: ðB32Þ

The dispersive terms in A3 and Hj
3 are even under (B32),

whereas the absorptive terms are odd. Therefore, the matrix
elements SAb̄SM, SAb̄CP;R, and SAb̄CP;I do not have a definite

transformation behavior under (B32), too. Hence we expect
that

E0ðOAb̄
CP;RO

Ab̄
CP;IÞ ≠ 0: ðB33Þ

Thus, the covariance matrix VðO0Ab̄Þ can have nondiagonal
elements that are nonvanishing. On the other hand, apply-
ing the transformation (B27), k → −k, to SAb̄SM and to SAb̄CP;i
(i ¼ R, I) shows that the first term remains invariant while
the two others change sign. Therefore, with our matrix
elements we have

E0ðOAb̄
CP;RÞ ¼ 0; E0ðOAb̄

CP;IÞ ¼ 0: ðB34Þ

Beyond the one-photon approximation (B34) will no
longer hold. Thus when τ-pair decays to final states
Ab̄þ bĀ, AĀ, and AB̄þ BĀ are considered, one should
in general apply—especially in experimental analyses—the
full formalism of the optimal observable method as
explained in Sec. IV. The nondiagonal elements of the
respective covariance matrix of the optimal CP observables
computed with the matrix elements for τ-pair production
and decay used in this paper at

ffiffiffi
s

p ¼ 10.58 GeV are very
small and can be neglected in view of our numerical
uncertainties; see Sec. V.
At last a remark that applies if the full formalism of

Sec. IV has to be used. Suppose the parameters Redτ and
Imdτ have been measured in k decay channels. Let us
denote the results for their mean values in the channel κ by

X̄ðκÞ ¼
�
Red̄ðκÞτ

Imd̄ðκÞτ

	
; ðκ ¼ 1;…; kÞ; ðB35Þ

and for the respective covariance matrix by VðκÞ.
Furthermore, we assume these k measurements to be
independent, i.e., uncorrelated. We define the matrix

V−1 ¼
Xk
κ¼1

ðVðκÞÞ−1 ðB36Þ

and the overall mean

X̄ ¼ V
Xk
κ¼1

ðVðκÞÞ−1X̄ðκÞ: ðB37Þ

The covariance matrix is then given by V. That is, the 1 s.d.
error ellipse for the mean values (B37) in the Redτ − Imdτ
plane is given by

ðX − X̄ÞTV−1ðX − X̄Þ ¼ 1: ðB38Þ
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