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The nonlocal response functions to quantum fluctuations are used to find asymptotic expressions for the
Casimir free energy and entropy at an arbitrarily low temperature in the configuration of two parallel
metallic plates. It is shown that by introducing an alternative nonlocal response to the off-the-mass-shell
fluctuations the Lifshitz theory is brought into agreement with the requirements of thermodynamics.
According to our results, the Casimir entropy calculated using the nonlocal response functions, which take
into account dissipation of conduction electrons, remains positive and monotonously goes to zero with
vanishing temperature, i.e., satisfies the Nernst heat theorem. This is true for both plates with perfect crystal
lattices and for lattices with defects of structure. The obtained results are discussed in the context of the
Casimir puzzle.
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I. INTRODUCTION

The Casimir effect is the most impressive physical
phenomenon demonstrating an existence of the zero-point
oscillations of quantum fields. As was shown by H. B. G.
Casimir [1], two parallel ideal metal plates at zero temper-
ature placed in vacuum at a distance a are attracted by the
force per unit area −π2ℏc=ð240a4Þ, which is completely
determined by the zero-point oscillations of the electro-
magnetic field. Shortly thereafter E.M. Lifshitz created
unified theory of the van der Waals and Casimir forces
between two parallel plates made of any materials kept at
temperature T in thermal equilibrium with the environment
[2,3]. In the framework of this theory, the Casimir force is
caused by the joint action of zero-point and thermal
fluctuations. In so doing the response of plate materials
to quantum fluctuations is described by the frequency-
dependent dielectric permittivities, whereas the van der
Waals force proves to be a special case of the Casimir force
when separations between the plates are so small that the
speed of light c can be considered as infinitely large. In
recent years, the Lifshitz theory was generalized for the
case of two compact arbitrarily shaped bodies [4–6]. As a
result, it has become possible to express the Casimir force
between any two bodies using the formalism of thermal
quantum field theory in terms of the reflection amplitudes
of quantum fluctuations on their boundary surfaces.
In the early twenty first century, precise measurements of

the Casimir interaction between metallic surfaces per-
formed by R. S. Decca et al. [7–10] discovered a serious

discrepancy between theoretical Casimir forces calculated
using the Lifshitz theory and the measurement data. In
calculations, the response of metal to low-frequency
quantum fluctuations was described by the dissipative
Drude model, i.e., in the same manner as to real electro-
magnetic fields on the mass shell with nonzero field
strengths. The surprising thing is that the Lifshitz theory
agreed with the same experimental data if the dissipation-
less plasma response function was used which should not
be applicable at low frequencies. More recently, the results
of Refs. [7–10] were conclusively confirmed by many
experiments [11–19] (see also reviews [20,21]). This
situation has been characterized in the literature as the
Casimir puzzle or Casimir conundrum [22–26].
At the same time it was shown that the Casimir entropy

calculated within the Lifshitz theory for metals with perfect
crystal lattices goes to a negative quantity depending on the
plate parameters with vanishing temperature, i.e., violates
the third law of thermodynamics, the Nernst heat theorem, if
the Drude response function to quantum fluctuations is used
[27–31]. What is more, employing the experimentally
consistent plasma model brings the Lifshitz theory in agree-
ment with thermodynamics [27–31]. The reasons why the
evidently inapplicable at low frequencies response function
leads to so good results whereas the well tested Drude
response fails to reach an agreement with the measurement
data and thermodynamical laws remained unknown.
It should be mentioned that several authors argued for an

accord between the Lifshitz theory employing the Drude
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response function and thermodynamics [32–34]. In favor of
this statement they have shown that if the crystal lattice of a
metal contains some fraction of defects the Casimir entropy
abruptly jumps to zero at very low temperature starting
from negative values. For the perfect crystal lattice, how-
ever, it remained impossible to reconcile the Casimir
entropy calculated using the Drude model with thermody-
namics. Besides, the consideration of imperfect crystal
lattices was not helpful to attain an agreement between the
experimental data and theoretical predictions. Many attacks
to this problem have been undertaken in the literature (see,
e.g., Refs. [35–48]) but no wholly satisfactory solution is
yet available.
Quite recently a novel approach to the resolution of the

Casimir puzzle has been proposed [49]. This approach
assumes that the electromagnetic response of a metal to
quantum fluctuations is spatially nonlocal. However,
unlike the commonly applied nonlocal response functions
[36,50–55], the suggested response leads to nearly the same
results, as the standard Drude function, for the quantum
fluctuations on the mass shell, but to significantly different
results for the off-shell fluctuations. The proposed alter-
native Drude-like transverse and longitudinal dielectric
permittivities take a complete account of dissipation at
low frequencies, as does the conventional Drude model. It
was shown, however, that the Lifshitz theory using the
nonlocal response functions to quantum fluctuations
predicts values of the Casimir force which agree with
the measurement data as well as those predicted using the
dissipationless plasma model. It was also shown that the
suggested nonlocal dielectric functions describe correctly
the response of metal to real electromagnetic fields on the
mass shell in optical experiments and obey the Kramers-
Kronig relations. In essence, the possibility to introduce the
nonlocal Drude-like functions is based on the fact that the
electromagnetic response of a metal to quantum fluctua-
tions off the mass shell is not directly measurable.
Experimentally, some indirect information can be obtained
only concerning the longitudinal dielectric function [55]
which, however, does not affect a comparison between
theoretical Casimir forces and the measurement data [49].
In this paper, we find the Casimir free energy and

entropy given by the Lifshitz theory and the nonlocal
response functions introduced in Ref. [49]. We derive an
analytic asymptotic expression for the Casimir free energy
at arbitrarily low temperature and show that for metals with
perfect crystal lattices the respective Casimir entropy is
positive and goes to zero with vanishing temperature. Thus,
as opposed to the conventional Drude model, the Lifshitz
theory using nonlocal response functions is in agreement
with the laws of thermodynamics. It is shown also that this
result remains valid for crystal lattices with some fraction of
defects, i.e., the Casimir entropy remains positive and
monotonously goes to zero with decreasing temperature
according to the Nernst heat theorem.

The structure of the paper is as follows. In Sec. II, we
briefly introduce the nonlocal response functions and basic
expressions of the Lifshitz theory for the Casimir free
energy in spatially nonlocal case. Section III contains
derivation of the low-temperature expansion for the
Casimir free energy and entropy using these response
functions for metals with perfect crystal lattices. In
Sec. IV, the case of crystal lattices with defects of structure
is considered. Section V is for our conclusions and a
discussion. The Appendix contains some details of math-
ematical derivations.

II. THE NONLOCAL RESPONSE FUNCTIONS
TO QUANTUM FLUCTUATIONS

AND THE CASIMIR FREE ENERGY

We consider two parallel thick metallic plates at temper-
ature T in thermal equilibrium with the environment. The
separation distance between plates is notated a. For good
metals (Au, for instance) the plates of more than 100 nm
thickness can be considered as semispaces when calculat-
ing the Casimir free energy and pressure [20]. According to
the Lifshitz theory, the free energy of the Casimir inter-
action per unit area of the plates can be presented in the
form [2,3] (see also Refs. [20,21] for the current notations),

F ða; TÞ ¼
X
α

F αða; TÞ; ð1Þ

where the sum is over two independent polarizations of the
electromagnetic field, transverse magnetic (α ¼ TM) and
transverse electric (α ¼ TE), and

F αða; TÞ ¼
kBT
2π

X∞
l¼0

0 Z ∞

0

k⊥dk⊥

× ln ½1 − r2αðiξl; k⊥; TÞe−2aql �: ð2Þ

Here, kB in the Boltzmann constant, the prime on the
summation sign in l divides the term with l ¼ 0 by 2, k⊥ is
the magnitude of the projection of wave vector k on the
plane of plates (this plane is perpendicular to the Casimir
force), the Matsubara frequencies are ξl ¼ 2πkBTl=ℏ with
l ¼ 0; 1; 2;…, and ql ¼ qlðk⊥Þ ¼ ðk2⊥ þ ξ2l =c

2Þ1=2.
The quantities rα in Eq. (2) have a meaning of the

reflection coefficients calculated at the pure imaginary
Matsubara frequencies. In the spatially local case they
coincide with the familiar Fresnel coefficients,

rTMðiξl; k⊥; TÞ ¼
εlql − kl
εlql þ kl

;

rTEðiξl; k⊥; TÞ ¼
ql − kl
ql þ kl

; ð3Þ

where kl ¼ klðk⊥;TÞ ¼ ðk2⊥þ εlξ
2
l =c

2Þ1=2 and εl ¼ εðiξl;TÞ
is the dielectric permittivity which describes the local
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response of a metal to quantum fluctuations. Our notations
underline that the dielectric permittivity of metals explicitly
depends on T through the relaxation parameter (see below).
The reflection coefficients (3) also possess an implicit
dependence on T through the Matsubara frequencies.
In our case the dielectric response of a metal is spatially

nonlocal and, thus, is described by two independent
permittivities, the transverse one, εTrðω; k; TÞ, and the
longitudinal one, εLðω; k; TÞ, where the wave vector k ¼
ðk⊥; k3Þ [55,56]. We recall that εTr and εL describe the
response of a metal to the transverse electric field which is
perpendicular to k and to the longitudinal one which is
parallel to k, respectively. As was argued in Ref. [49], in the
plane-parallel Casimir geometries the nonlocal permittiv-
ities should depend only on k⊥. In this case it was proven
[49] that the reflection coefficients in Eq. (2) are given by

rTMðiξl; k⊥; TÞ ¼
εTrl ql − kTrl − k⊥ðεTrl − εLl ÞðεLl Þ−1
εTrl ql þ kTrl þ k⊥ðεTrl − εLl ÞðεLl Þ−1

;

rTEðiξl; k⊥; TÞ ¼
ql − kTrl
ql þ kTrl

; ð4Þ

where εTrl ¼ εTrðiξl; k⊥; TÞ, εLl ¼ εLðiξl; k⊥; TÞ and

kTrl ¼ kTrl ðk⊥; TÞ ¼
�
k2⊥ þ εTrl

ξ2l
c2

�
1=2

: ð5Þ

The alternative Drude-like nonlocal response functions
suggested in Ref. [49] take the form,

ε̃TrD ðω; k⊥; TÞ ¼ 1 −
ω2
p

ω½ωþ iγðTÞ�
�
1þ i

vTrk⊥
ω

�
;

ε̃LDðω; k⊥; TÞ ¼ 1 −
ω2
p

ω½ωþ iγðTÞ�
�
1þ i

vLk⊥
ω

�−1
; ð6Þ

where ωp is the plasma frequency, γðTÞ is the relaxation
parameter, and vTr; vL are the constants of the order of
Fermi velocity vF ∼ 0.01c. In the local limit k⊥ ¼ 0 and the
permittivities (6) reduce to the standard permittivity of the
Drude model,

ε̃TrD ðω; 0; TÞ ¼ ε̃LDðω; 0; TÞ ¼ εDðω; TÞ

¼ 1 −
ω2
p

ω½ωþ iγðTÞ� : ð7Þ

For the electromagnetic fields on the mass shell it holds
k⊥ ≤ ω=c. As a result one obtains

vTr;Lk⊥
ω

∼
vF
c
ck⊥
ω

≤
vF
c

≪ 1: ð8Þ

Because of this, for the on-shell fields the dielectric
permittivities (6) lead to nearly the same results as the

commonly used local Drude permittivity (7). As to the off-
shell fluctuations, the quantity vTr;Lk⊥=ω can be of the
order of and even larger than unity depending on the value
of k⊥. Thus, by using the permittivities (6) at the pure
imaginary Matsubara frequencies,

ε̃TrD;l ¼ 1þ ω2
p

ξl½ξl þ γðTÞ�
�
1þ vTrk⊥

ξl

�
;

ε̃LD;l ¼ 1þ ω2
p

ξl½ξl þ γðTÞ�
�
1þ vLk⊥

ξl

�−1
; ð9Þ

one can restore an agreement between theoretical predic-
tions of the Lifshitz theory with taken into account
dissipation properties of conduction electrons and the
measurement data [49].
In the next section, we consider the asymptotic behavior

of the Casimir free energy (1), (2) with the reflection
coefficients (4) and dielectric permittivities (9) at arbitrarily
low temperature. For this purpose it is convenient to present
both contributions to the free energy (1) as the sum of the
zero-temperature terms and the thermal corrections to them,

F αða; TÞ ¼ EαðaÞ þ ΔTF αða; TÞ: ð10Þ

The quantity EαðaÞ is obtained from F α defined in
Eq. (2) by putting T ¼ 0 and replacing the discrete
Matsubara frequencies ξl with a continuous variable ξ.
In so doing the sum in l is replaced with an integral,

kBT
X∞
l¼0

0
→

ℏ
2π

Z
∞

0

dξ; ð11Þ

and one obtains

EαðaÞ ¼
ℏ
4π2

Z
∞

0

dξ
Z

∞

0

k⊥dk⊥

× ln ½1 − r2αðiξ; k⊥; 0Þe−2aq�: ð12Þ

Here, the reflection coefficients are given by

rTMðiξ; k⊥; 0Þ

¼ εTrð0Þq − kTrð0Þ − k⊥ðεTrð0Þ − εLð0ÞÞðεLð0ÞÞ−1
εTrð0Þqþ kTrð0Þ þ k⊥ðεTrð0Þ − εLð0ÞÞðεLð0ÞÞ−1 ;

rTEðiξ; k⊥; 0Þ ¼
q − kTrð0Þ

qþ kTrð0Þ
; ð13Þ

where εTrð0Þ ¼ εTrðiξ; k⊥; 0Þ, εLð0Þ ¼ εLðiξ; k⊥; 0Þ and
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q ¼ qðk⊥Þ ¼
�
k2⊥ þ εTrð0Þ

ξ2

c2

�
1=2

;

kTrð0Þ ¼ kTrðk⊥; 0Þ ¼
�
k2⊥ þ εTrð0Þ

ξ2

c2

�
1=2

: ð14Þ

Equation (10) can be considered as a definition of the
thermal correction which presents a simple and straightfor-
ward way for its calculation in the limiting case of low
temperature.

III. LOW-TEMPERATURE BEHAVIOR OF THE
CASIMIR FREE ENERGY AND ENTROPY USING

THE NONLOCAL RESPONSE FUNCTIONS
FOR PERFECT CRYSTAL LATTICES

Now we consider asymptotic behavior of the thermal
correction ΔTF α defined in Eq. (10) at low temperature
where the Casimir free energy F α and energy Eα are
defined in Eqs. (2) and (12), respectively. It is convenient to
perform the asymptotic expansion using the dimensionless
variables,

ζl ¼
2aξl
c

; y ¼ 2aql: ð15Þ

In terms of these variables the thermal correction takes
the form,

ΔTF αða; TÞ ¼
kBT
8πa2

X∞
l¼0

0 Z ∞

ζl

ydy ln ½1 − r2αðiζl; y; TÞe−y�

−
ℏc

32π2a3

Z
∞

0

dζ

×
Z

∞

ζ
ydy ln ½1 − r2αðiζ; y; 0Þe−y�; ð16Þ

where ζ ¼ 2aξ=c similar to (15).
We introduce in the second line of Eq. (16) the

integration variable t ¼ ζ=τ, where τ ¼ 4πkBTa=ðℏcÞ,
and add and subtract on the right-hand side of Eq. (16)
the following quantity:

kBT
8πa2

X∞
l¼0

0 Z ∞

ζl

ydy ln ½1 − r2αðiζl; y; 0Þe−y�: ð17Þ

Then, taking into account, that ζl ¼ τl, one can identically
rewrite Eq. (16) as

ΔTF αða; TÞ ¼ Δexpl
T F αða; TÞ þ Δimpl

T F αða; TÞ; ð18Þ
where

Δexpl
T F αða; TÞ ¼

kBT
8πa2

X∞
l¼0

0 Z ∞

τl
ydy ln

1 − r2αðiτl; y; TÞe−y
1 − r2αðiτl; y; 0Þe−y

ð19Þ

and

Δimpl
T F αða; TÞ ¼

kBT
8πa2

�X∞
l¼0

0
ΦαðτlÞ −

Z
∞

0

dtΦαðτtÞ
�
;

ð20Þ

where

ΦαðxÞ≡
Z

∞

x
ydy ln ½1 − r2αðix; y; 0Þe−y�: ð21Þ

The quantity Δexpl
T F is called the explicit thermal

correction. It vanishes for the response functions and hence
for the reflection coefficients which do not possess an
explicit dependence on temperature as a parameter. As to
the quantity Δimpl

T F, which is called the implicit thermal
correction, it depends on temperature only through the
Matsubara frequencies.
We start with the implicit thermal correction which, as

shown below, provides the dominant contribution to the
low-temperature dependence of the Casimir free energy.
Using the Abel-Plana formula for the difference between
the sum and the integral [57], one can identically rearrange
Eqs. (1) and (20) to

Δimpl
T F ða; TÞ ¼ ikBT

8πa2

Z
∞

0

dt
e2πt − 1

×
X
α

½ΦαðiτtÞ −Φαð−iτtÞ�: ð22Þ

In subsequent derivations one should take into account
the dependence of the relaxation parameter γ on T. In this
section, we consider metals with perfect crystal lattices. In
this case, the relation γðTÞ ¼ bT2, where b is some
constant coefficient, is followed starting from the liquid
helium temperature down to zero temperature owing to
the electron-electron scattering [58]. Rewriting Eq. (9) at
T ¼ 0 (where ξl is replaced with ξ) in terms of the
dimensionless variables introduced above, one obtains

ε̃TrD
ð0Þ ¼ ε̃TrD ðix; y; 0Þ

¼ 1þ ω̃2
p

x2

 
1þ ṽTr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − x2

p
x

!
;

ε̃LD
ð0Þ ¼ ε̃LDðix; y; 0Þ

¼ 1þ ω̃2
p

x2

 
1þ ṽL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − x2

p
x

!−1

; ð23Þ

where ω̃p ¼ 2aωp=c, ṽTr ¼ vTr=c, and ṽL ¼ vL=c are the
dimensionless plasma frequency and respective velocities.
As a result, the reflection coefficients rαðix; y; 0Þ, enter-

ing Eq. (21), take the form,
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rTMðix; y; 0Þ ¼
ε̃TrD

ð0Þy −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ ðε̃TrD ð0Þ − 1Þx2

q
− ½ε̃TrD ð0Þ − ε̃LD

ð0Þ�ðε̃LDð0ÞÞ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − x2

p
ε̃TrD

ð0Þyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ ðε̃TrD ð0Þ − 1Þx2

q
þ ½ε̃TrD ð0Þ − ε̃LD

ð0Þ�ðε̃LDð0ÞÞ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − x2

p ;

rTEðix; y; 0Þ ¼
y −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ ðε̃TrD ð0Þ − 1Þx2

q
yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ ðε̃TrD ð0Þ − 1Þx2

q : ð24Þ

From Eqs. (23) and (24) it is easily seen that in the limiting
case of zero temperature, i.e., for x ¼ τt → 0, it holds

lim
x→0

rTMðix; y; 0Þ ¼ 1; lim
x→0

rTEðix; y; 0Þ ¼ −1: ð25Þ

Nowwe substitute Eqs. (23) and (24) in Eq. (21) and find
the first expansion terms in the powers of small x,

ΦTMðxÞ ¼
Z

∞

0

dy y lnð1 − e−yÞ

þ 4ṽL

ω̃2
p
x
Z

∞

0

dy
y2

ey − 1
þOðx2 ln xÞ;

ΦTEðxÞ ¼
Z

∞

0

dy y lnð1 − e−yÞ

þ 4

ω̃p

ffiffiffiffiffiffi
ṽTr

p ffiffiffi
x

p Z
∞

0

dy
y3=2

ey − 1
þOðxÞ: ð26Þ

From Eq. (26) it is seen that the leading contribution to the
thermal correction at a vanishing temperature is given by
the TE mode,

ΦðiτtÞ −Φð−iτtÞ ¼ ΦTEðiτtÞ −ΦTEð−iτtÞ

¼ 3i

ω̃p

ffiffiffiffiffiffi
ṽTr

p ffiffiffiffiffiffiffiffiffi
2πτt

p
ζ

�
5

2

�
þOðτÞ

¼ 3iπc
ωp

ffiffiffiffiffiffiffiffiffiffiffiffi
2kBTt
avTrℏ

r
ζ

�
5

2

�
þOðTÞ; ð27Þ

where ζðzÞ is the Riemann zeta function.
Substituting Eq. (27) in Eq. (22) and integrating with

respect to t, one arrives at

Δimpl
T F ða; TÞ ¼ −

3cζð3=2Þζð5=2Þ
32πωpa5=2

ffiffiffiffiffiffiffiffiffi
ṽTrℏ

p ðkBTÞ3=2 þOðT2Þ:

ð28Þ

Now we consider the explicit thermal correction defined
in Eq. (19). In terms of dimensionless variables, the
dielectric permittivities entering the reflection coefficients
rαðiτl; y; TÞ are obtained from Eq. (9),

ε̃TrD;l ¼ ε̃TrD ðiτl; y; TÞ

¼ 1þ ω̃2
p

τlðτlþ b̃T2Þ

 
1þ ṽTr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − τ2l2

p
τl

!
;

ε̃LD;l ¼ ε̃LDðiτl; y; TÞ

¼ 1þ ω̃2
p

τlðτlþ b̃T2Þ

 
1þ ṽL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − τ2l2

p
τl

!−1

: ð29Þ

Here, the dimensionless relaxation parameter γ̃ðTÞ ¼
2aγðTÞ=c ¼ b̃T2. As to the permittivities entering the
reflection coefficients rαðiτl; y; 0Þ, they are obtained from
Eq. (29) by putting T ¼ 0.
To calculate the quantity (19) at low temperature, we

present the reflection coefficients rαðiτl; y; TÞ as the zero-
temperature contributions and the thermal corrections to
them

rαðiτl; y; TÞ ¼ rαðiτl; y; 0Þ þ ΔTrαðiτl; y; TÞ: ð30Þ

It is evident that the thermal corrections ΔTrα go to zero
with vanishing temperature.
We substitute Eq. (30) in Eq. (19) and expand Eq. (19) up

to the first order in the small parameter,

ΔTrαðiτl; y; TÞ
rαðiτl; y; 0Þ

≪ 1; ð31Þ

like this was done in the literature for the case of graphene
[59]. The result is

Δexpl
T F αða; TÞ ¼ −

kBT
4πa2

X∞
l¼0

0 Z ∞

τl
ydyrαðiτl; y; 0Þ

×
ΔTrαðiτl; y; TÞ

ey − rα2ðiτl; y; 0Þ
: ð32Þ

It is convenient to consider separately the term of
Eq. (32) with l ¼ 0, Δexpl

T;l¼0F α, and the sum of all terms

with l ≥ 1, Δexpl
T;l≥1F α. The explicit form of the reflection

coefficients rαðiτl; y; TÞ in terms of the dimensionless
variables is given by Eq. (24) where x should be replaced
with τl and ε̃TrD

ð0Þ, ε̃LD
ð0Þ with ε̃TrD;l, ε̃

L
D;l defined in Eq. (29).

As a result, for α ¼ TM, l ¼ 0 one obtains
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rTMð0; y; TÞ ¼ 1 −
2b̃T2ṽLy

ω̃2
p þ 2b̃T2ṽLy

: ð33Þ

Expanding this quantity up to the first order in a small
parameter,

βðTÞ ¼ b̃T2ṽL

ω̃2
p

≪ 1; ð34Þ

one arrives at

rTMð0; y; TÞ ¼ 1 − 2βðTÞy: ð35Þ

From Eqs. (33) and (35), taking into account Eq. (30), we
find

rTMð0; y; 0Þ ¼ 1; ΔTrTMð0; y; TÞ ¼ −2βðTÞy: ð36Þ

Finally, substituting Eq. (36) in Eq. (32), we obtain

Δexpl
T;l¼0FTMða; TÞ ¼

kBT
4πa2

βðTÞ
Z

∞

0

dy
y2

ey − 1
: ð37Þ

By integrating and returning to dimensional quantities in
Eq. (34), the result (37) leads to

Δexpl
T;l¼0FTMða; TÞ ¼

kBbvLζð3Þ
4πa3ω2

p
T3: ð38Þ

One can see that it is a correction of the higher order in T
than in Eq. (28).
Now we turn our attention to the case l ¼ 0, α ¼ TE.

Using the dielectric permittivity (29), the reflection coef-
ficient rTEð0; y; TÞ takes the form,

rTEð0; y; TÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δðTÞyp

−
ffiffiffiffiffiffiffiffiffiffiffiffi
δðTÞyp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δðTÞyp þ ffiffiffiffiffiffiffiffiffiffiffiffi

δðTÞyp ; ð39Þ

where

δðTÞ ¼ b̃T2

ṽTrω̃2
p
≪ 1: ð40Þ

Expanding Eq. (39) up to the lowest order in δðTÞ,
we have

rTEð0; y; TÞ ¼ −1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
δðTÞy

p
: ð41Þ

Then from Eqs. (39) and (41) one obtains

rTEð0; y; 0Þ ¼ −1; ΔTrTEð0; y; TÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
δðTÞy

p
: ð42Þ

Substituting Eq. (42) in Eq. (32) for α ¼ TE, we arrive at

Δexpl
T;l¼0FTEða; TÞ ¼

kBT
4πa2

ffiffiffiffiffiffiffiffiffi
δðTÞ

p Z
∞

0

dy
y3=2

ey − 1

¼ 3kB
ffiffiffi
b

p
cζð5=2Þ

16
ffiffiffiffiffiffi
2π

p
a5=2ωp

ffiffiffiffiffiffi
vTr

p T2: ð43Þ

One can see that although Δexpl
T;l¼0FTE is of the lower order

thanΔexpl
T;l¼0FTM defined in Eq. (38), it is of the higher order

in T than Δimpl
T F defined in Eq. (28).

The sum of all terms with l ≥ 1 in Eq. (32) results in the
same temperature dependence at low T as in Eq. (43), i.e.,

Δexpl
T;l≥1FTMða; TÞ ∼ Δexpl

T;l≥1FTEða; TÞ ∼ T2; ð44Þ

(see the Appendix). Thus, by comparing Eqs. (28),
(38), (43), and (44), we conclude that the leading low-
temperature behavior of the thermal correction to the
Casimir energy between metallic plates with perfect crystal
lattices found within the Lifshitz theory using the alter-
native Drude-like response functions is determined by the
implicit term in Eq. (18) and takes the form,

ΔTF ða; TÞ ¼ −
3cζð3=2Þζð5=2Þ
32πωpa5=2

ffiffiffiffiffiffiffiffiffi
vTrℏ

p ðkBTÞ3=2: ð45Þ

From Eq. (45) it is easy to evaluate the dominant
contribution to the Casimir entropy at arbitrarily low
temperature,

Sða; TÞ ¼ −
∂ΔTF ða; TÞ

∂T
¼ 9kBcζð3=2Þζð5=2Þ

64πωpa5=2
ffiffiffiffiffiffiffiffiffi
vTrℏ

p ffiffiffiffiffiffiffiffi
kBT

p
: ð46Þ

It is seen that the Casimir entropy is positive and goes to
zero with vanishing temperature as it should be in accor-
dance to the third law of thermodynamics, the Nernst heat
theorem [60]. This makes the nonlocal Drude-like response
function (6) preferable as compared to the conventional
Drude response (7). For metals with perfect crystal lattices
the latter leads to the negative Casimir entropy at zero
temperature [27],

SDða; TÞ ¼ −
kBζð3Þ
16πa2

½1 − 4κ þ 12κ2 −…� < 0; ð47Þ

where κ ≡ c=ðωpaÞ. This entropy depends on the param-
eters of a system, such as the separation distance between
the plates and the plasma frequency of a metal, and, thus,
violates the Nernst heat theorem [60,61].
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IV. LOW-TEMPERATURE BEHAVIOR OF THE
CASIMIR FREE ENERGY AND ENTROPY

IN THE PRESENCE OF DEFECTS
OF A CRYSTAL LATTICE

Crystal lattices of real metallic samples unavoidably
contain some small fractions of defects (e.g., atoms which
are different from the native atoms of the lattice, vacancies
etc.). In this case, with decreasing temperature the relax-
ation parameter γðTÞ reaches at T ¼ T0 some minimum
value γ0 > 0 and remains unchanged at T < T0 [58]. Thus,
for typical Au samples γ0 ≈ 5.3 × 1010 rad=s. As discussed
in Sec. I, this fact was used in the literature [32–34] in
an attempt to reconcile the Lifshitz theory using the
Drude model with the Nernst heat theorem. It was shown,
however, that with decreasing temperature the Casimir
entropy takes a negative constant value over the wide
temperature interval and abruptly jumps to zero only at
T < 10−3 K which is somewhat nonphysical [20]. Because
of this, it is interesting to find the low-temperature behavior
of the Casimir entropy calculated using the nonlocal Drude-
like response functions for metals with defects of a crystal
structure.
Below we consider the temperature interval 0 ≤ T < T0

where γðTÞ ¼ γ0 ¼ const. In this interval, the nonlocal
Drude-like permittivities are given by Eq. (29) where one
should replace the term b̃T2 with γ̃0 ¼ 2aγ0=c. These
permittivities do not possess an explicit dependence on
T: ε̃TrD;l ¼ ε̃TrD ðiτl; yÞ and ε̃LD;l ¼ ε̃LDðiτl; yÞ. As a result, the
thermal correction (10) takes the same form as an implicit
thermal correction (20),

ΔTF αða; TÞ ¼
kBT
8πa2

�X∞
l¼0

0
ΦαðτlÞ −

Z
∞

0

dtΦαðτtÞ
�
; ð48Þ

where now

ΦαðxÞ≡
Z

∞

x
ydy ln ½1 − r2αðix; yÞe−y�: ð49Þ

The reflection coefficients rαðix; yÞ are given by the
right-hand sides of Eq. (24) where ε̃TrD

ð0Þ, ε̃LD
ð0Þ should

be replaced with ε̃TrD ;l, ε̃
L
D;l specified above.

Using the Abel-Plana formula, Eq. (48) can be rewritten
similar to Eq. (22),

ΔTF αða; TÞ ¼
ikBT
8πa2

Z
∞

0

dt
ΦαðiτtÞ −Φαð−iτtÞ

e2πt − 1
: ð50Þ

In order to obtain the behavior of ΔTF α at low T, it is
convenient to expand Φα up to the first power in x,

ΦαðxÞ ¼ Φαð0Þ þ xΦ0
αð0Þ; ð51Þ

where

Φ0
αð0Þ ¼ −2

Z
∞

0

ydy
rαð0; yÞr0αð0; yÞe−y
1 − r2αð0; yÞe−y

: ð52Þ

We start with the transverse magnetic polarization
α ¼ TM. In this case, we use the parameter (34) which
becomes temperature-independent because γ̃ðTÞ ¼ b̃T2 is
now equal to γ̃0,

β0 ¼
γ̃0ṽL

ω̃2
p

≪ 1: ð53Þ

An extreme smallness of this parameter is evident because
γ̃0=ω̃p ∼ 10−6, ṽL ∼ 10−2, whereas ω̃p ∼ 1 at a ¼ 10 nm
and increases with increasing separation between the
plates.
Expanding the reflection coefficient rTMð0; yÞ up to the

first power of small parameter (53), we find

rTMð0; yÞ ¼ 1 − 2β0y: ð54Þ

In a similar way,

r0TMð0; yÞ ¼
∂rTMðx; yÞ

∂x
����
x¼0

¼ −2β0
�
1

ṽL
þ y
γ̃0

�
: ð55Þ

Substituting Eqs. (54) and (55) in Eq. (52), in the lowest
order of the small parameter β0 one obtains

Φ0
TMð0Þ ¼ 4β0

Z
∞

0

ydy
ðṽLÞ−1 þ γ̃0

−1y
ey − 1

¼ 4β0

�
π2

6ṽL
þ 2ζð3Þ

γ̃0

�
: ð56Þ

Using Eqs. (51) and (56), we have

ΦTMðiτtÞ −ΦTMð−iτtÞ ¼ 8iβ0τt

�
π2

6ṽL
þ 2ζð3Þ

γ̃0

�
: ð57Þ

Then we substitute Eq. (57) in Eq. (50) and arrive at

ΔTFTMða; TÞ ¼ −
kBT
πa2

β0τ

�
π2

6ṽL
þ 2ζð3Þ

γ̃0

�

×
Z

∞

0

tdt
e2πt − 1

: ð58Þ

After integration and returning to the dimensional
quantities, we finally find

ΔTFTMða; TÞ ¼ −
ðkBTÞ2
12a2ℏω2

p

�
γ0

π2

6
þ vL

a
ζð3Þ

�
: ð59Þ

Now we continue with the transverse electric polariza-
tion, α ¼ TE. The parameter (40) used in this case in
Sec. III also becomes temperature-independent,
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δ0 ¼
γ̃0

ṽTrω̃2
p
≪ 1: ð60Þ

This parameter takes the maximum value ≈4 × 10−4 at
a ¼ 10 nm and further decreases with increasing separa-
tion between the plates. The reflection coefficient rTEð0; yÞ
takes the same form as in Eq. (39),

rTEð0; yÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ0y

p
−

ffiffiffiffiffiffiffi
δ0y

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ0y

p þ ffiffiffiffiffiffiffi
δ0y

p : ð61Þ

Expanding in Eq. (61) up to the lowest order of the
parameter (60), one obtains

rTEð0; yÞ ¼ −1þ 2
ffiffiffiffiffiffiffi
δ0y

p
: ð62Þ

Then, by expanding the derivative of rTEðx; yÞ with respect
to x at x ¼ 0, we have

r0TEð0; yÞ ¼
ffiffiffiffiffi
δ0

p
γ̃0

�
−

γ̃0
ṽTr

ffiffiffi
y

p þ ffiffiffi
y

p �
: ð63Þ

Substituting Eqs. (62) and (63) in Eq. (52), in the lowest
order of the parameter (60), one finds

Φ0
TEð0Þ ¼ 2

ffiffiffiffiffi
δ0

p
γ̃0

�
−

γ̃0
ṽTr

Z
∞

0

ffiffiffi
y

p
dy

ey − 1
þ
Z

∞

0

y
ffiffiffi
y

p
dy

ey − 1

�

¼
ffiffiffiffiffiffiffi
πδ0

p
γ̃0

�
3

2
ζ

�
5

2

�
−

γ̃0
ṽTr

ζ

�
3

2

��
: ð64Þ

Using Eq. (64), we have from Eq. (51),

ΦTEðiτtÞ −ΦTEð−iτtÞ ¼ 2iτt

ffiffiffiffiffiffiffi
πδ0

p
γ̃0

×

�
3

2
ζ

�
5

2

�
−

γ̃0
ṽTr

ζ

�
3

2

��
; ð65Þ

and substituting this in Eq. (50) arrive at

ΔTFTEða; TÞ ¼ −
kBT

4
ffiffiffi
π

p
a2

τ
ffiffiffiffiffi
δ0

p
γ̃0

×

�
3

2
ζ

�
5

2

�
−

γ̃0
ṽTr

ζ

�
3

2

��Z
∞

0

tdt
e2πt − 1

:

ð66Þ

Integrating in Eq. (66) and returning to the dimensional
quantities, we finally obtain

ΔTFTEða; TÞ ¼ −
ðkBTÞ2

ffiffiffi
π

p
c

48a5=2ℏωp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ0vTr

p
×

�
3

2
ζ

�
5

2

�
−
2aγ0
vTr

ζ

�
3

2

��
: ð67Þ

As can be seen from Eqs. (59) and (67), the dominant
contribution to the thermal correction is given by the TE
mode due to the much larger coefficient near the same
power in T. This is ultimately determined by the fact that
β0 ∼ 10−8 whereas δ0 ∼ 10−4. Because of this, the leading
low-temperature behavior of the thermal correction to the
Casimir energy between metallic plates with typical con-
centration of impurities found using the nonlocal Drude-
like response functions is given by

ΔTF ða; TÞ ¼ −
ffiffiffi
π

p
c

48a5=2ℏωp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ0vTr

p ðkBTÞ2

×

�
3

2
ζ

�
5

2

�
−
2aγ0
vTr

ζ

�
3

2

��
: ð68Þ

The respective Casimir entropy at low temperature takes
the form,

Sða; TÞ ¼
ffiffiffi
π

p
kBc

24a5=2ℏωp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ0vTr

p kBT

×

�
3

2
ζ

�
5

2

�
−
2aγ0
vTr

ζ

�
3

2

��
: ð69Þ

Thus, for metals with impurities the Casimir entropy
calculated using the alternative Drude-like response func-
tions monotonously decreases to zero with vanishing
temperature in accordance with the Nernst heat theorem.
Note also that the entropy (69) remains positive at all
separations below approximately 20 μm, i.e., in the region
related to the Casimir effect. These properties of Eq. (69)
are advantageous in comparison with the conventional
Drude model. The latter leads to the negative Casimir
entropy which abruptly jumps to zero for metals with
defects of a crystal lattice only at very low temperature.

V. CONCLUSIONS AND DISCUSSION

In the foregoing, we have elucidated thermodynamic
properties of the Casimir interaction calculated in the
framework of the Lifshitz theory using the spatially non-
local Drude-like response functions to quantum fluctua-
tions. Although the Lifshitz theory is a well-studied branch
of thermal quantum field theory, it suffers from a serious
flaw known as the Casimir puzzle. The problem lies in the
fact that theory is in disagreement with the measurement
data and thermodynamic constraints when using the con-
ventional Drude response function to quantum fluctuations.
Recently it was shown, however, that an agreement of the
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Lifshitz theory with the measurement data can be restored
when using alternative nonlocal response functions which
ensure almost the same response, as the standard Drude
model, to the on-shell fluctuations but respond differently
to quantum fluctuations off the mass shell [49]. However,
the thermodynamic problem in the Lifshitz theory remained
unresolved.
According to the above results, the Lifshitz theory using

the suggested nonlocal Drude-like response functions is in
complete agreement with the requirements of thermody-
namics. Using rigorous analytic methods, it is shown that
for metals with perfect crystal lattices the Casimir entropy
calculated using these functions is positive and monoto-
nously goes to zero as the square root of temperature when
the temperature vanishes. The same characteristic proper-
ties are preserved for crystal lattices possessing some
fraction of defects with the only difference that the
Casimir entropy vanishes linearly in temperature. This
means that the Lifshitz theory combined with nonlocal
Drude-like response functions satisfies the third law of
thermodynamics, the Nernst heat theorem.
Taking into consideration that the suggested nonlocal

response functions to quantum fluctuations not only make
the theoretical predictions consistent with the measurement
data but also secure an agreement between two fundamen-
tal theories, they constitute a serious alternative to the
commonly accepted Drude model and deserve further
investigation.
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APPENDIX: CONTRIBUTION FROM NONZERO
MATSUBARA FREQUENCIES

Here, we derive low-temperature asymptotic behavior of
the contribution to explicit thermal correction (32) from all
Matsubara terms with l ≥ 1. For this purpose, in each term
of Eq. (32) with l ≥ 1 we introduce the new integration
variable z ¼ y − τl and obtain

Δexpl
T;l≥1F αða; TÞ ¼ −

kBT
4πa2

X∞
l¼1

e−τlXα;lðτÞ; ðA1Þ

where

Xα;lðτÞ ¼
Z

∞

0

dzðzþ τlÞ

×
rαðiτl; zþ τl; 0ÞΔTrαðiτl; zþ τl; τÞ

ez − r2αðiτl; zþ τl; 0Þe−τl : ðA2Þ

Note that in Eq. (A2) we have replaced an explicit
dependence of ΔTrα on T with a dependence on τ using
the fact that T ¼ ℏcτ=ð4πakBÞ. The thermal correction
ΔTrα on T depends on T as a parameter owing to the
temperature-dependent relaxation parameter. As discussed
in Sec. III, at temperatures below the liquid helium
temperature the dimensionless relaxation parameter is of
the order of T2. Below we present it in the form,

γ̃ðTÞ ¼ 2aγðTÞ
c

¼ b̃T2 ¼ ˜̃bτ2; ðA3Þ

where

b̃ ¼ 2ab
c

; ˜̃b ¼ cℏ2b
8π2k2Ba

: ðA4Þ

The reflection coefficients rαðiτl; zþ τl; 0Þ are given by
Eq. (24) where x should be replaced with τl and y with
zþ τl. To obtain the coefficients rαðiτl; zþ τl; τlÞ from
Eq. (24), one should also replace ε̃TrD

ð0Þ, ε̃LD
ð0Þ with ε̃TrD ;l, ε̃

L
D;l

defined in Eq. (29) taking into account Eq. (A3).
Now we begin with the transverse magnetic polari-

zation, α ¼ TM, and expand both reflection coefficients
rTMðiτl; zþ τl; 0Þ and rTMðiτl; zþ τl; τÞ in the powers of
small τ,

rTMðiτl; zþ τl; 0Þ ¼ 1 −
2ṽLlz
ω̃2
p

τ

þ 2l2

ω̃4
p
½−ω̃2

pð1þ ṽLÞ þ 2ðṽLÞ2z2�τ2 þOðτ5=2Þ;

rTMðiτl; zþ τl; τÞ ¼ 1 −
2ṽLlz
ω̃2
p

τ

−
2l2

ω̃4
p

�
ω̃2
p

�
1þ ṽL þ

˜̃bṽL

l2
z

�
− 2ðṽLÞ2z2

�
τ2 þOðτ5=2Þ:

ðA5Þ

Then from Eq. (30) one obtains

ΔTrTMðiτl; zþ τl; τÞ ¼ −
2 ˜̃bṽLz
ω̃2
p

τ2: ðA6Þ

Substituting the first line of Eqs. (A5) and (A6) in Eq. (A2),
we find in the lowest order,
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XTM;lðτÞ ¼ −
2 ˜̃bṽL

ω̃2
p

τ2
Z

∞

0

z2dz
ez − 1

¼ −
4 ˜̃bṽL

ω̃2
p

ζð3Þτ2: ðA7Þ

Then from Eq. (A1) one arrives at

Δexpl
T;l≥1FTMða; TÞ ¼

kBT
˜̃bṽLτ2

πa2ω̃2
p

ζð3Þ
X∞
l¼1

e−τl: ðA8Þ

Performing the summation in l and returning to the
dimensional quantities with account of Eq. (A4), in the
lowest order we finally find

Δexpl
T;l≥1FTMða; TÞ ¼

kBT
˜̃bṽLτ2

πa2ω̃2
p

ζð3Þ
eτ − 1

¼ ℏcbvLζð3Þ
8π2a4ω2

p
T2: ðA9Þ

This result is in accordance with Eq. (44).
We continue with the transverse electric polarization,

α ¼ TE, and expand the coefficients rTEðiτl; zþ τl; 0Þ and
rTEðiτl; zþ τl; τÞ in the powers of τ,

rTEðiτl; zþ τl; 0Þ ¼ −1þ 2
ffiffiffiffi
lz

p

ω̃p

ffiffiffiffiffiffi
ṽTr

p ffiffiffi
τ

p
−

2zl
ṽTrω̃2

p
τ

þ l3=2ðṽTrω̃2
p − ω̃2

p þ z2Þ
ðṽTrÞ3=2ω̃3

p
ffiffiffi
z

p τ3=2 þOðτ2Þ;

rTEðiτl; zþ τl; τÞ ¼ −1þ 2
ffiffiffiffi
lz

p

ω̃p

ffiffiffiffiffiffi
ṽTr

p ffiffiffi
τ

p
−

2zl
ṽTrω̃2

p
τ

þ l3=2½ṽTrω̃2
pð1þ ˜̃bl−2zÞ − ω̃2

p þ z2�
ðṽTrÞ3=2ω̃3

p
ffiffiffi
z

p

× τ3=2 þOðτ2Þ: ðA10Þ

Using Eq. (30) for the thermal correction, we obtain

ΔTrTEðiτl; zþ τl; τÞ ¼
˜̃b
ffiffiffi
z

pffiffiffiffiffiffi
ṽTr

p
ω̃p

ffiffi
l

p τ3=2: ðA11Þ

Substituting Eq. (A11) and the first line of Eq. (A10) in
Eq. (A2), one finds

XTE;lðτÞ ¼ −
˜̃bffiffiffiffiffiffi

ṽTr
p

ω̃p

ffiffi
l

p τ3=2
Z

∞

0

z3=2

ez − 1
dz

¼ −
3
ffiffiffi
π

p ˜̃b

4
ffiffiffiffiffiffi
ṽTr

p
ω̃p

ffiffi
l

p ζ

�
5

2

�
τ3=2: ðA12Þ

Then, the substitution of Eq. (A12) in Eq. (A1) and
summation in l lead to

Δexpl
T;l≥1FTEða; TÞ ¼

3kBT
˜̃bτ3=2

16
ffiffiffi
π

p
a2

ffiffiffiffiffiffi
ṽTr

p
ω̃p

ζ

�
5

2

�
Li1=2ðe−τÞ;

ðA13Þ

where LiβðzÞ is the polylogarithm function.
Taking into account that at small τ it holds [62]

Li1=2ðe−τÞ ≈
ffiffiffi
π

pffiffiffi
τ

p ; ðA14Þ

and returning to the dimensional quantities, we obtain

Δexpl
T;l≥1FTEða; TÞ ¼

3ℏc3=2bζð5=2Þ
64πa3

ffiffiffiffiffiffi
ṽTr

p
ω̃p

T2; ðA15Þ

i.e., Eq. (44) is finally proven.
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