
 

Lensing of Dirac monopole in Berry’s phase
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Berry’s phase, which is associated with the slow cyclic motion with a finite period, looks like a Dirac
monopole when seen from far away but smoothly changes to a dipole near the level crossing point in the
parameter space in an exactly solvable model. This topology change of Berry’s phase is visualized as a
result of the lensing effect; the monopole supposed to be located at the level crossing point appears at the
displaced point when the variables of the model deviate from the precisely adiabatic movement. The
effective magnetic field generated by Berry’s phase is determined by a simple geometrical consideration of
the magnetic flux coming from the displaced Dirac monopole.
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I. MONOPOLE IN BERRY’S PHASE

The notion of topology and topological phenomena have
become common in various fields in physics. Among them,
topological Berry’s phase arises when one analyzes level
crossing phenomena in quantummechanics by a careful use
of the adiabatic theorem [1–3]. The basic mechanism of the
phenomenon is very simple and it is ubiquitous in quantum
physics. It is thus surprising that one encounters Dirac’s
magnetic monopolelike topological phase [4] essentially at
each level crossing point for the sufficiently slow cyclic
motion in quantum mechanics [2,5]. The general aspects of
the monopolelike topological Berry’s phase in the adiabatic
limit and the smooth change of Berry’s phase to a dipole in
the nonadiabatic limit have been analyzed in [6] using an
exactly solvableversion ofBerry’smodel [5].We here report
on a more quantitative description of the magnetic field
generated by Berry’s phase, which is essential to under-
standing the motion of a particle placed in the monopolelike
field, together with a surprising connection of the topology
change of Berry’s phase with the formal geometrical move-
ment of Dirac’s monopole in the parameter space caused by
the nonadiabatic variation of parameters. This movement is
characterized as an analog of the lensing effect of Dirac’s
monopole in Berry’s phase.
We first briefly summarize the essential setup of the

problem for the sake of completeness. Berry originally
analyzed the Schrödinger equation [2]

iℏ∂tψðtÞ ¼ ĤψðtÞ ð1Þ

for the Hamiltonian Ĥ ¼ −μℏσ⃗ · B⃗ðtÞ describing the
motion of a magnetic moment μℏσ⃗ placed in a rotating
magnetic field

B⃗ðtÞ ¼ Bðsin θ cosφðtÞ; sin θ sinφðtÞ; cos θÞ ð2Þ

with σ⃗ standing for Pauli matrices. The level crossing takes
place at the vanishing external field B ¼ 0. It is explained
later that this parametrization (2) describes the essence of
Berry’s phase. It has been noted that Eq. (1) is exactly
solved if one restricts the movement of the magnetic field to
the form φðtÞ ¼ ωt with constant ω, and constant B and θ
[5]. The exact solution is then written as

ψ�ðtÞ ¼ w�ðtÞ exp
�
−
i
ℏ

Z
t

0

dtw†
�ðtÞðĤ − iℏ∂tÞw�ðtÞ

�

¼ w�ðtÞ exp
�
−
i
ℏ

Z
t

0

dtw†
�ðtÞĤw�ðtÞ

�

× exp

�
−
i
ℏ

Z
t

0

A�ðB⃗Þ ·
dB⃗
dt

dt

�
ð3Þ

where

wþðtÞ ¼
�
cos 1

2
ðθ − αÞe−iφðtÞ

sin 1
2
ðθ − αÞ

�
;

w−ðtÞ ¼
�
sin 1

2
ðθ − αÞe−iφðtÞ

− cos 1
2
ðθ − αÞ

�
: ð4Þ
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It is important that these solutions differ from the so-called
instantaneous solutions used in the adiabatic approxima-
tion, which are given by setting α ¼ 0; the following
analysis of topology change is not feasible using the
instantaneous solutions. The parameter αðθ; ηÞ is defined
by μℏB sin α ¼ ðℏω=2Þ sinðθ − αÞ or equivalently [5]

cot αðθ; ηÞ ¼ ηþ cos θ
sin θ

ð5Þ

with η ¼ 2μℏB=ℏω for 0 ≤ θ ≤ π, which specifies the
branch of the cotangent function. The second term in the
exponential of the exact solution (3) is customarily called
Berry’s phase which is defined by a potential-like object (or
connection)

A�ðB⃗Þ≡ w†
�ðtÞ

�
−iℏ

∂
∂B⃗

�
w�ðtÞ: ð6Þ

This potential describes an azimuthally symmetric static
magnetic monopolelike object in the present case.
The solution (3) is confirmed by evaluating

iℏ∂tψ�ðtÞ ¼ fiℏ∂tw�ðtÞ þ w�ðtÞ½w†
�ðtÞðĤ − iℏ∂tÞw�ðtÞ�g

× exp

�
−
i
ℏ

Z
t

0

dt0w†
�ðt0ÞðĤ − iℏ∂t0 Þw�ðt0Þ

�

¼ fiℏ∂tw�ðtÞ þ w�ðtÞ½w†
�ðtÞðĤ − iℏ∂tÞw�ðtÞ�

þ w∓ðtÞ½w†∓ðtÞðĤ − iℏ∂tÞw�ðtÞ�g

× exp

�
−
i
ℏ

Z
t

0

dt0w†
�ðt0ÞðĤ − iℏ∂t0 Þw�ðt0Þ

�

¼ Ĥψ�ðtÞ ð7Þ

where we usedw†∓ðĤ − iℏ∂tÞw� ¼ 0 by noting (5), and the
completeness relation wþw

†
þ þ w−w†

− ¼ 1.
The parameter η ≥ 0 is written as

η ¼ 2μℏB
ℏω

¼ μBT
π

ð8Þ

when one defines the period T ¼ 2π=ω. The parameter η is
a ratio of the two different energy scales appearing in the
model, namely, the static energy 2μℏB of the dipole
moment in an external magnetic field and the kinetic
energy (rotation energy) ℏω: η ≫ 1 (for example,
T → ∞ for any finite B) corresponds to the adiabatic limit,
and η ≪ 1 (for example, T → 0 for finite B) corresponds to
the nonadiabatic limit. In a mathematical treatment of the
adiabatic theorem, the precise adiabaticity is defined by
T → ∞ with fixed B [3].
The parameter αðθ; ηÞ in (5) is normalized as αð0; ηÞ ¼ 0

by definition. Then the topology of the monopolelike
object is specified by the value

lim
θ→π

αðθ; ηÞ ¼ 0;
1

2
π; π; ð9Þ

for η > 1, η ¼ 1, and η < 1, respectively, as is
explained later.
The extra phase factor for one period of motion is

written as

exp

�
−
i
ℏ

I
A�ðB⃗Þ ·

dB⃗
dt

dt

�

¼ exp

�
−i

I
−1 ∓ cosðθ − αðθ; ηÞÞ

2
dφ

�

¼ exp

�
−i

I
1 ∓ cosðθ − αðθ; ηÞÞ

2
dφþ 2iπ

�

¼ exp

�
−
i
ℏ
Ω�

�
; ð10Þ

with the monopolelike integrated flux

Ω� ¼ ℏ
I ½1 ∓ cosðθ − αðθ; ηÞÞ�

2B sin θ
B sin θdφ: ð11Þ

In (10), we adjusted the trivial phase 2πi for the conven-
ience of the later analysis; this is related to a gauge
transformation of Wu and Yang [6,7]. The corresponding
energy eigenvalues are

E� ¼ w†
�ðtÞĤw�ðtÞ ¼∓ ðμℏB cos αÞ: ð12Þ

From now on, we concentrate on Ωþ associated with the
energy eigenvalue Eþ; the monopole Ω− associated with
the energy eigenvalue E− is described by −Ωþ up to a
gauge transformation of Wu and Yang. We then have an
azimuthally symmetric monopolelike potential [6]

Aφ ¼ ℏ
2B sin θ

½1 − cosΘðθ; ηÞ� ð13Þ

and Aθ ¼ AB ¼ 0, where we defined

Θðθ; ηÞ ¼ θ − αðθ; ηÞ: ð14Þ

The standard Dirac monopole [4] is recovered when one
sets αðθ; ηÞ ¼ 0 [or in the ideal adiabatic limit η ¼ ∞ in
(5)], namely, Θ ¼ θ in (13) and when B is identified with
the radial coordinate r in real space. The crucial parameter
Θðθ; ηÞ is shown in Fig. 1 [6].
The Dirac string appears at the singularity of the

potential (13). There exists no singularity at θ ¼ 0 since
Θðθ; ηÞ → 0 for θ → 0. The singularity does not appear at
the origin B ¼ 0 with any fixed T since αðθ; ηÞ → θ for
B → 0, namely, if one usesΘðθ;ηÞ→0 for η ¼ μBT=π → 0
in (5). In fact the potential vanishes at B ¼ 0 for any finite
T; we have a useful relation in the nonadiabatic domain
η ¼ μBT=π ≪ 1 [6],
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Aφ ≃
ℏ
4B

ðμTB=πÞ2 sin θ ð15Þ

that has no singularity associated with the Dirac string at
θ ¼ π near B ¼ 0 and vanishes at B ¼ 0. Thus the Dirac
string can appear only at θ ¼ π and only when Θðπ; ηÞ ≠ 0,
namely, η ≥ 1 in Fig. 1 or equivalently

B ≥
π

μT
ð16Þ

for any fixed finite T [6]; the end of the Dirac string is
located at π

μT and θ ¼ π. The total magnetic flux passing
through a small circle C around the Dirac string at the point
B and θ ¼ π is given by the potential (13)I

C
AφB sin θdφ ¼ eM

2
ð1 − cosΘðπ; ηÞÞ ð17Þ

with eM ¼ 2πℏ. This flux agrees with the integrated flux
outgoing from a sphere with a radius B covering the
monopole due to Stokes’s theorem, since no singularity
appears except for the Dirac string. For η > 1, one sees
from Fig. 1 that the above flux is given by eM ¼ 2πℏ and
thus Dirac’s quantization condition is satisfied in the
sense exp½−ieM=ℏ� ¼ 1. On the other hand, the flux
vanishes for η < 1 (i.e., B < π

μT) and thus the object
changes to a dipole [6].

A. Fixed T configurations

We analyze the behavior of the magnetic monopolelike
object (13) for fixed T and varying B; this is close to the
description of a monopole in the real space if one identifies
B with the radial variable r of the real space. The topology
and topology change of Berry’s phase when regarded as a

magnetic monopole defined in the space of B⃗ is specified
by the parameter η, as is suggested by a discrete jump of the
end point limθ→π Θðθ; ηÞ in Fig. 1 [6].
Using the exact potential (13) we have an analog

of the magnetic flux in the parameter space B⃗ ¼
Bðsin θ cosφ; sin θ sinφ; cos θÞ,

B≡∇ ×A ¼ ℏ
2

∂Θðθ;ηÞ
∂θ sinΘðθ; ηÞ

sin θ
1

B2
eB

−
ℏ
2

∂Θðθ;ηÞ
∂B sinΘðθ; ηÞ

B sin θ
eθ ð18Þ

for θ ≠ π and B ≠ 0 with eB ¼ B⃗
B, and eθ is a unit vector in

the direction θ in the spherical coordinates. We have

∂Θðθ; ηÞ
∂θ ¼ ηðηþ cos θÞ

1þ η2 þ 2η cos θ
; ð19Þ

by noting ∂αðθ;ηÞ
∂θ ¼ 1þη cos θ

ðηþcos θÞ2þsin2 θ in (5), and thus
∂Θðθ;ηÞ

∂θ ¼ 0

at cos θ0 ¼ −η for η < 1. The factor in the second term in
(18) is given by recalling η ¼ μTB=π,

∂Θðθ; ηÞ
∂B ¼ μT

π

∂Θðθ; ηÞ
∂η ¼ η

B
sin θ

1þ η2 þ 2η cos θ
ð20Þ

using (5) and (14). Thus we have (by setting eM ¼ 2πℏ)

B≡∇ ×A

¼ eM
4π

sinΘðθ; ηÞ
sin θ

η

B2

1

1þ η2 þ 2η cos θ

× ½ðηþ cos θÞeB − sin θeθ�: ð21Þ

We also have from (5),

cos α ¼ ηþ cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2 þ 2η cos θ

p ;

sin α ¼ sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2 þ 2η cos θ

p ; ð22Þ

and thus

sinΘðθ; ηÞ ¼ sinðθ − αÞ ¼ sin θ cos α − cos θ sin α

¼ η sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2 þ 2η cos θ

p ; ð23Þ

and similarly cosΘðθ;ηÞ¼½1þηcosθ�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þη2þ2ηcosθ

p
.

We finally have the azimuthally symmetric magnetic
field from (21)

B ¼ eM
4π

η2

B2

1

ð1þ η2 þ 2η cos θÞ3=2 ½ðηþ cos θÞeB − sin θeθ�:

ð24Þ

FIG. 1. The relation between θ and Θðθ; ηÞ ¼ θ − αðθ; ηÞ
parametrized by η. We have the exact relations Θðθ;∞Þ ¼ θ,
Θðθ; 1Þ ¼ θ=2, and Θðθ; 0Þ ¼ 0, respectively, for η ¼ ∞, η ¼ 1,
and η ¼ 0. Topologically, η > 1 corresponds to a monopole,
η ¼ 1 corresponds to a half-monopole, and η < 1 corresponds to
a dipole, respectively [6]. Note that cos θ0 ¼ −η with η < 1, for
which ∂Θðθ; ηÞ=∂θ ¼ 0.
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We note that B=η ¼ π=μT and θ ¼ π define the end point
of the Dirac string in the fixed T picture. The magnetic field
B is not singular at θ ¼ π for η > 1 which shows that the
Dirac string is not observable if it satisfies the Dirac
quantization condition. In the adiabatic limit η → ∞
(π=μT → 0 with fixed B) in (24), the outgoing magnetic
flux agrees with that of the Dirac monopole

B ¼ eM
4π

1

B2
eB ð25Þ

located at the origin (level crossing point) in the parameter
space. This is the common magnetic monopole field
associated with Berry’s phase in the precise adiabatic
approximation. At the origin B ¼ 0 with fixed finite T,
which corresponds to the nonadiabatic limit η¼μBT=π→0,
themagnetic field (24) approaches a constant field parallel to
the z axis

B ¼ eM
4π

�
μT
π

�
2

½cos θeB − sin θeθ�: ð26Þ

Aview of the magnetic flux generated by the monopolelike
object (24) is shown in Fig. 2.
In passing, we comment on the notational conventions:

B⃗ðtÞ stands for the externally applied magnetic field to

define the original Hamiltonian in (1) and B⃗ is used to
specify the parameter space to define Berry’s phase, and B
stands for the “magnetic field” generated by Berry’s phase
in the parameter space. The calligraphic symbols A, B, ∇
and the bold e stand for vectors without arrows.

B. Lensing of Dirac monopole in Berry’s phase

We show that the monopole associated with Berry’s
phase is mathematically regarded as a Dirac monopole
moving away from the level crossing point of the parameter
space driven by the force generated by the nonadiabatic
rotating external field with finite period T ¼ 2π=ω < ∞ in
Berry’s model. We consider the configuration in Fig. 3.
We then have

O0P2 ¼ B2 þ
�
B
η

�
2

− 2B

�
B
η

�
cosðπ − θÞ

¼ B2

η2
½1þ η2 þ 2η cos θ�; ð27Þ

and the unit vector e in the direction of O⃗0P is

e ¼ cos αeB − sin αeθ ð28Þ

FIG. 2. Arrows indicating the direction and magnitude of the
magnetic flux from the azimuthally symmetric monopolelike
object associated with Berry’s phase (24) in the fixed T picture.
Two spheres with radii B > π=μT (i.e., η > 1) and B < π=μT
(i.e., η < 1) are shown. The wavy line stands for the Dirac string
with the end located at B ¼ π=μT and θ ¼ π from which the
magnetic flux is imported. Only in the ideal adiabatic limit
T → ∞, the end of the Dirac string and the geometrical center of
Berry’s phase which is located at the origin agree.

FIG. 3. A geometric picture in the three-dimensional parameter
space B⃗ with a sphere centered at O and the radius B by assuming
azimuthal symmetry. We suppose that a genuine azimuthally
symmetricDiracmonopole is locatedat thepointO0 in the parameter
space. The distance betweenO andO0 is chosen atOO0 ¼ B=η. The
three angles θ, α, andΘ ¼ θ − α are shown. The observer is located
at the point P. The wavy line indicates the Dirac string.
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with eB ¼ B⃗=B and eθ is a unit vector in the direction of θ
in the spherical coordinates. Then the magnetic flux of
Dirac’s monopole located at O0 when observed at the point
P is given by

B0 ¼ eM
4π

1

O0P2
e

¼ eM
4π

η2

B2

1

1þ η2 þ 2η cos θ
ðcos αeB − sin αeθÞ: ð29Þ

Next we fix the parameter α. We have ðB=ηÞ2 ¼ B2 þ
O0P2 − 2BO0P cos α which gives

cos α ¼ 1

2BðB=ηÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2 þ 2η cos θ

p

×

�
B2 þ

�
B
η

�
2

ð1þ η2 þ 2η cos θÞ −
�
B
η

�
2
�

¼ ηþ cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2 þ 2η cos θ

p ð30Þ

and from the geometrical relation Bsinα
Bsinθ¼ B=η

ðB=ηÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þη2þ2ηcosθ

p ,

sin α ¼ sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2 þ 2η cos θ

p : ð31Þ

The parameter α agrees with the parameter in (22). The
azimuthally symmetric flux (29) is thus given by

B0 ¼ eM
4π

η2

B2

1

ð1þ η2 þ 2η cos θÞ3=2
× ½ðηþ cos θÞeB − ðsin θÞeθÞ� ð32Þ

which agrees with the flux given by Berry’s phase (24).

This agreement of two expressions (24) and (32) shows
that the Dirac monopole originally at the level crossing
point in the parameter space formally appears to drift
away by the distance B=η ¼ π=μT in the parameter space
when the precise adiabaticity condition T ¼ ∞ [3]
is spoiled by the finite T. It is interesting that two
dynamical parameters, the strength of the external
magnetic field and the period in Berry’s model, are
converted to very different geometrical parameters in
Berry’s phase, namely, the shape of the monopole and
the distance of the deviation of the monopole from the
level crossing point. The observed magnetic field on
the sphere with a radius B, which is controlled by the
observer, thus changes when one changes the parameter T
that determines the end of the Dirac string located at π=μT
in the parameter space. This geometrical picture is useful
when one draws the precise magnetic flux from the
monopolelike object for finite T as in Fig. 4 and it is
essential when one attempts to understand the motion of a
particle in the magnetic field.
In terms of the original physical setting of a

magnetic dipole placed in a given rotating magnetic
field described by the Hamiltonian (1), the cone drawn
by the dipole becomes sharper compared to the cone of the
given magnetic field, which subtends the solid angle
Ω ¼ 2πð1 − cos θÞ, when the rotating speed of the exter-
nal magnetic field becomes larger and the dipole moment
is left behind, namely [5],

ψ†
þðtÞσ⃗ψþðtÞ ¼ w†

þðtÞσ⃗wþðtÞ
¼ ðsinΘ cosφðtÞ; sinΘ sinφðtÞ; cosΘÞ
¼ −ψ†

−ðtÞσ⃗ψ−ðtÞ ð33Þ

(a) (b) (c)

FIG. 4. Arrows indicating the direction and magnitude of the magnetic flux observed at the point Pwith fixed B and θ when the end of
Dirac string at π=μT is varied from the point π=μT < B (a) to the boundary π=μT ¼ B (b) and then to the point π=μT > B (c), which
correspond to the change of the basic parameter η ¼ μBT=π from the adiabatic domain η ¼ 2.5 > 1 to the boundary η ¼ 1 and then to
the nonadiabatic domain η ¼ 0.5 < 1, respectively. The wavy line stands for the Dirac string with the end at B ¼ π=μT and θ ¼ π.
These figures after a suitable rescaling may also be interpreted as the results with the end of the Dirac string kept fixed at π=μT and θ ¼ π
and varying the distance B, starting with a large B > π=μT (a) toward a small B < π=μT (c) in the parameter space, such as the two
spheres in Fig. 2.
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that subtends the solid angle Ω ¼ 2πð1 − cosΘÞ with
Θ ¼ θ − α; this sharper cone is effectively recognized
as the drifting monopole in Berry’s phase by an observer
located at the point P in Fig. 3.
Note that the agreement of the solid angle drawn by the

spinor solution (4) with Berry’s phase is known to be
generally valid in the two-component spinor. The general
orthonormal spinor bases are parametrized as

vþðtÞ ¼
�
cos 1

2
θðtÞe−iφðtÞ

sin 1
2
θðtÞ

�
;

v−ðtÞ ¼
�
sin 1

2
θðtÞe−iφðtÞ

− cos 1
2
θðtÞ

�

that give the spin vector

v†þðtÞσ⃗vþðtÞ ¼ ðsin θðtÞ cosφðtÞ; sin θðtÞ sinφðtÞ; cos θðtÞÞ
¼ −v†−ðtÞσ⃗v−ðtÞ

subtending the solid angle Ω̃� ¼ H ð1 ∓ cos θðtÞÞdφðtÞ for
a closed movement. On the other hand, the “holonomy,”
which is related to Berry’s phase, satisfies [5]

I
dtv†�ðtÞi∂tv�ðtÞ ¼ −

1

2

I
ð1 ∓ cos θðtÞÞdφðtÞ þ 2π

¼ −
1

2
Ω̃� þ 2π:

These two quantities thus agree up to the factor 1=2
and up to trivial phase 2π in the case of spinor bases.
The important fact is that our exact solution of the
Schrödinger equation (4) has this structure of vþðtÞ and
v−ðtÞ with θðtÞ ¼ θ − αðθÞ.
One may thus prefer to understand that Fig. 3 implies an

analog of the effect of lensing of Dirac’s monopole, since
the movement of the monopole in the parameter space
is a mathematical one. In the precise adiabatic limit with
T ¼ ∞ [3], the monopole is located at the level crossing
point O, but when the effect of nonadiabatic rotation with
finite T < ∞ is turned on, the image of the monopole is
displaced to the point O0 located at π=μT by keeping the
topology and strength of the pointlike monopole intact. In
this picture, it is important that the topological monopole
itself is not resolved in the nonadiabatic domain but it
disappears from the observer’s view located at the point P
for fixed B when π=μT ¼ B=η → large with fixed B (i.e.,
η → small). In the middle, the formal topology change
takes place when π=μT touches the sphere with the fixed
radius B (i.e., η ¼ 1). Even in the picture of lensing, the
“magnetic flux” generated by Berry’s phase measured at
the point in the parameter space specified by ðB; θÞ is the
real flux. It will be interesting to examine the possible
experimental implications of these aspects of Berry’s phase,

which is expressed by the magnetic field (24), in a wider
area of physics.
As for the smooth transition from a monopole to a

dipole, it appears in the process of shrinking of the sphere
with a radius B covering the end of the Dirac string located
at π=μT to a smaller sphere for which B < π=μT as in
Fig. 2. When the sphere touches the end of the Dirac string
(at η ¼ 1) in the middle, one encounters a half monopole
with the outgoing flux which is half of the full monopole
eM=2 ¼ πℏ. See Stokes’s theorem (17) with Θðπ; η ¼ 1Þ ¼
π=2 in Fig. 1. At this specific point, the Dirac string
becomes observable [6], corresponding to the Aharonov-
Bohm effect [8] of the electron in the magnetic flux
generated by the superconducting Cooper pair [9]. It is
then natural to attach the end of the Dirac string to an
infinitesimally small opening on the sphere forming a
closed sphere and thus leading to the vanishing net out-
going flux, which corresponds to a dipole. The idea of the
half monopole at η ¼ 1 is interesting, but it is natural to
incorporate it as a part of a dipole. The monopolelike object
(13) is always a dipole if one counts the Dirac string as in
Fig. 2 and Stokes’s theorem (17) always holds. In this
sense, no real topology change takes place for the move-
ment of B, from large B to small B, except for the fact that
the unobservable Dirac string becomes observable at B ¼
π=μT and triggers the topology change from a monopole to
a dipole.

II. DISCUSSION AND CONCLUSION

The topology or singularity in Berry’s phase arises from
the well-known adiabatic theorem [10,11], namely, no
level crossing takes place in the precise adiabatic limit
T → ∞. This theorem implies the appearance of some
kind of obstruction or barrier to the level crossing in the
precise adiabatic limit; the appearance of Dirac’s monop-
ole singularity in the adiabatic limit may be regarded as a
manifestation of this obstruction or barrier in the param-
eter space. Off the precise adiabatic limit with finite T,
which is physically relevant for the applications of Berry’s
phase as was noted by Berry [2], no more obstruction to
the level crossing appears. This is a basis of our expect-
ation of the topology change in Berry’s phase in the
nonadiabatic domain.
The topology change in Berry’s phase in the exactly

solvable model has been analyzed in detail including the
appearance of a half-monopole in [6]. The analysis is
essentially based on Fig. 1 that is a result of solving the
relation (5), which is in turn a result of the Schrödinger
equation (1). Because of this complicated logical pro-
cedure, the exact “magnetic field” generated by Berry’s
phase was not very transparent. In the present paper, we
remedied this shortcoming in [6] by giving a more explicit
representation of the magnetic field. In this attempt, we
recognized that the magnetic field is in fact given by a very
simple geometrical picture in Fig. 3. We thus encountered
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an interesting mathematical description of the topology
change in Berry’s phase in terms of a geometrical move-
ment of Dirac’s monopole caused by the nonadiabatic
variations of parameters in Berry’s model. It is remarkable
that the monopole remains intact without being resolved
even in the nonadiabatic domain. We analyzed the monop-
olelike object and its topological property in Berry’s phase
by treating B⃗ as a given classical parameter. If one adds
other physical considerations, there appear some conditions
on the parameters of the exactly solvable model (1). For
example, the two levels in (12) cross at αðθ; ηÞ ¼ π=2,
which is related to the topology change from a monopole to
a dipole in an intricate way if one remembers αðθ; ηÞ ¼
θ − Θ and Fig. 1.
Traditionally, we are accustomed to understanding the

topology change in terms of the winding and unwinding of
some topological obstruction. The present geometrical
description of topology change in terms of the moving
monopole is a hitherto unknown mechanism. This new
mechanism partly arises from the fact that Berry’s phase is
not a simple monopole but rather a complexity of the
monopole and the level crossing point located at the origin
of coordinates. If one instead understands Berry’s phase as
a simple monopole, one will find a novel class of
monopoles [12,13].
A notable application of Berry’s phase in momentum

space, which is defined by the effective Hamiltonian by
replacing B⃗ðtÞ → p⃗ðtÞ in the original model of Berry

Ĥ ¼ −μσ⃗ · p⃗ðtÞ; ð34Þ

is known in the analyses of the anomalous Hall effect [14]
and the spin Hall effect [15]. This effective Hamiltonian of
the two-level crossing for the generic p⃗ðtÞ (Bloch momen-
tum) has been analyzed in detail in [6], and it has been

shown that Berry’s phase for (34) is determined by the time
derivative of the azimuthal angle _φðtÞ in both adiabatic
(monopole) and nonadiabatic (dipole) limits, and thus our
parametrization (2) describes an essential aspect of the
topology of Berry’s phase. To be more precise, Berry’s
phase becomes trivial, namely, either 0 or 2π, in the model
(34) for the nonadiabatic limit [6]

ðμjp⃗jÞT=ℏ ≪ 1 ð35Þ

which corresponds to η ≪ 1 in terms of the parameter in
(8). This estimate is consistent with the analysis of the
exactly solvable model for η → 0 for which Θ → 0 in
Fig. 1, and thus Ω�=ℏ → 0 or 2π in (11). Our present
analysis implies that one may be able to observe exper-
imentally the effective movement of the monopole in
momentum space, as is represented by the magnetic field
in (24) (by replacing B → jp⃗j), at away from the precise
adiabaticity in the model (34). Also, it will be interesting to
examine the implications of the present analysis on the very
basic issue if Berry’s phase associated with (34) deforms
the principle of quantum mechanics by giving rise to
anomalous canonical commutators [16].
In conclusion, the analysis of an exactly solvable model

has revealed that the topology change in Berry’s phase is
mathematically visualized as the geometrical movement or
the lensing of Dirac’s monopole in the parameter space.
This will help better understand both Berry’s phase and
Dirac’s monopole.

ACKNOWLEDGMENTS

The present work is supported in part by JSPS
KAKENHI (Grant No. 18K03633).

[1] H. Longuet-Higgins, Proc. R. Soc. A 344, 147 (1975).
[2] M. V. Berry, Proc. R. Soc. A 392, 45 (1984).
[3] B. Simon, Phys. Rev. Lett. 51, 2167 (1983).
[4] P. A. M. Dirac, Proc. R. Soc. A 133, 60 (1931).
[5] K. Fujikawa, Int. J. Mod. Phys. A 21, 5333 (2006); K.

Fujikawa, Ann. Phys. (Amsterdam) 322, 1500 (2007).
Earlier works on the basic aspects of Berry’s phase are
quoted in these references.

[6] S. Deguchi and K. Fujikawa, Phys. Rev. D 100, 025002
(2019).

[7] T. T. Wu and C. N. Yang, Phys. Rev. D 12, 3845 (1975).
[8] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
[9] A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J.

Endo, S. Yano, and H. Yamada, Phys. Rev. Lett. 56, 792
(1986).

[10] M. Born and V. Fock, Z. Phys. 51, 165 (1928).
[11] T. Kato, J. Phys. Soc. Jpn. 5, 435 (1950).
[12] S. Deguchi and K. Fujikawa, Phys. Lett. B 802, 135210

(2020).
[13] A recent review of the magnetic monopole is found in N. E.

Mavromatos and V. A. Mitsou, Int. J. Mod. Phys. A 35,
2030012 (2020).

[14] T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev.
Lett. 88 (2002) 207208; Z. Fang et al., Science 302, 92
(2003), and references therein.

[15] J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999); S.-F. Zhang,
Phys. Rev. Lett. 85, 393 (2000); S. Murakami, N. Nagaosa,
and S.-C. Zhang, Science 301, 1348 (2003).

[16] S. Deguchi and K. Fujikawa, Ann. Phys. (Amsterdam) 416,
168160 (2020).

LENSING OF DIRAC MONOPOLE IN BERRY’S PHASE PHYS. REV. D 103, 096004 (2021)

096004-7

https://doi.org/10.1103/PhysRevLett.51.2167
https://doi.org/10.1142/S0217751X06033799
https://doi.org/10.1016/j.aop.2006.10.003
https://doi.org/10.1103/PhysRevD.100.025002
https://doi.org/10.1103/PhysRevD.100.025002
https://doi.org/10.1103/PhysRevD.12.3845
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1103/PhysRevLett.56.792
https://doi.org/10.1103/PhysRevLett.56.792
https://doi.org/10.1007/BF01343193
https://doi.org/10.1143/JPSJ.5.435
https://doi.org/10.1016/j.physletb.2020.135210
https://doi.org/10.1016/j.physletb.2020.135210
https://doi.org/10.1142/S0217751X20300124
https://doi.org/10.1142/S0217751X20300124
https://doi.org/10.1103/PhysRevLett.88.207208
https://doi.org/10.1103/PhysRevLett.88.207208
https://doi.org/10.1126/science.1089408
https://doi.org/10.1126/science.1089408
https://doi.org/10.1103/PhysRevLett.83.1834
https://doi.org/10.1103/PhysRevLett.85.393
https://doi.org/10.1126/science.1087128
https://doi.org/10.1016/j.aop.2020.168160
https://doi.org/10.1016/j.aop.2020.168160

