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We show that using renormalization-group summation to generate the QCD radiative corrections to the
π − γ transition form factor, calculated with light-cone sum rules (LCSR), renders the strong coupling free of
Landau singularities while preserving the QCD form-factor asymptotics. This enables a reliable applicability
of the LCSRmethod to momenta well below 1 GeV2. This way, one can use the new preliminary BESIII data
with unprecedented accuracy below 1.5 GeV2 to fine tune the prefactor of the twist-six contribution. Using a
combined fit to all available data below 3.1 GeV2, we are able to determine all nonperturbative scale
parameters and a few Gegenbauer coefficients entering the calculation of the form factor. Employing these
ingredients, we determine a pion distribution amplitude with conformal coefficients ðb2; b4Þ that agree at the
1σ level with the data for Q2 ≤ 3.1 GeV2 and fulfill at the same time the lattice constraints on b2 at N3LO
together with the constraints from QCD sum rules with nonlocal condensates. The form-factor prediction
calculated herewith reproduces the data below 1 GeV2 significantly better than analogous predictions based
on a fixed-order power-series expansion in the strong coupling constant.
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I. INTRODUCTION

A useful scheme to consider quantitatively exclusive
reactions of hadrons in QCD is provided by the method
of lightcone sum rules (LCSRs) in terms of a dispersion
relation [1,2]. The core advantage of this calculational
scheme is that it incorporates collinear factorization and the
operator product expansion (OPE) on the light cone.
Especially the pion-photon transition form factor (TFF)
measured in single-tag experiments has been analyzed
extensively within this approach because one can include
in the dispersion relation the physical photon using a
vector-meson resonance in the spectral density. However,
the applicability of LCSRs at Q2 values below the typical
hadronic scale of Oð1 GeV2Þ is limited. This is related to
the fact that one includes QCD radiative corrections in

terms of a power series expansion order by order of the
strong coupling using fixed-order perturbation theory
(FOPT). But the successive inclusion of such terms suffers
from a restricted accuracy, especially at low momenta,
because particular terms of the expansion may give too
strong contributions that would eventually be offset by
neglected still higher-order terms. To make progress, it
would be desirable, even necessary, to perform a summa-
tion of such terms using the renormalization group (RG).
This work is devoted to this task and extends further the
previous analysis in [3] (see also [4]), both conceptually
and computationally. The resulting phenomenological
improvements are also worked out.
In essence, the present approach is based on the RG

summation of QCD radiative corrections by combining
the formal solution of the Efremov-Radyushkin-Brodsky-
Lepage (ERBL) [5,6] evolution equation with a dispersion
relation. This combination generates a new kind of strong
couplings and exceeds the standard formulation of the
LCSRs in the framework of FOPT. The emerging modified
scheme of LCSRs amounts to a particular version of
fractional analytic perturbation theory (FAPT) [7,8]—
FAPT/LCSR. FAPT extends the original APT, introduced
by Shirkov and Solovtsov [9,10] for integer powers of the
strong coupling, to any real power in both the Euclidean
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and the Minkowski space, see [11,12] for reviews and [13]
for paving the way for this development. The crucial
advantage of the FAPT/LCSR scheme is that it ensures
the analyticity of the strong coupling by rearranging the
power series expansion into a nonpower series of FAPT
couplings that have no Landau singularities when Q2 ≃
Λ2
QCD [7,8]. However, in order to include the RG summation,

a further generalization of the FAPT procedure is necessary,
as first discussed in [3]. To this end, a new analytic coupling
Iν has to be introduced that generalizes the previous FAPT
couplings Aν, Aν, in the Euclidean and Minkowski region,
respectively, in the sense that they now appear as limiting
cases of the new coupling [3,4]. As a result, the domain of
applicability of the QCD perturbative expansion within the
FAPT/LCSR approach is significantly extended toward
lower momentum transfers allowing a comparison with
the data within a more reliable margin of error.
Phenomenologically, this is all the more important in the

case of the preliminary BESIII data which bear belowQ2 <
1.5 GeV2 an unprecedented accuracy [14]. As shown in
[15,16], the LCSR predictions within FOPT tend to
underestimate these low-Q2 data points. In this work, we
derive a TFF prediction within FAPT/LCSR that provides a
significantly better agreement in this low-momentum
regime. To achieve this goal, we perform a fine tuning
of the nonperturbative scale factors δ2tw-4 (twist four) and
δ2tw-6 (twist six) with the help of a confection of data
from different experiments in the momentum interval
Q2 ≤ 3.1 GeV2. We find that fitting only the twist-six
parameter is actually enough to reach agreement with the
experimental data. This procedure is augmented by a more
realistic description of the hadronic content of the quasireal,
i.e., the physical, photon in terms of a spectral density that
uses a Breit-Wigner (BW) form to include the resonances
of the ρ- and ω-mesons. The results of the fit are combined
with the latest lattice constraints from [17] at
the NNLO (two-loop) and N3LO (three-loop) level in
conjunction with further constraints provided by QCD
sum rules with nonlocal condensates [18], the aim being
to determine in this Q2 regime appropriate values of the
conformal coefficients b2 and b4 of the twist-two pion
distribution amplitude (DA).
The rest of the paper is organized as follows. In Sec. II we

present the new theoretical scheme to calculate the pion-
photon transition form factor within QCD. This section
encompasses the perturbative ingredients pertaining to
factorization and focuses on the implementation of the
RG summation in connection with a dispersion relation.
Section III discusses the TFF within the LCSR approach in
combination with ERBL summation, emphasizing the role
of the hadronic photon content of the LCSR. The subsequent
Sec. IV is devoted to the processing of the experimental data
in the BESIII range, from 0.3 to 3.1 GeV2, in order to extract
best-fit values of the nonperturbative scale parameters δ2tw-4,

δ2tw-6, and the Gegenbauer coefficients b2 and b4. A table
with the BESIII data extracted from Fig. 3 in [14] using the
tool PlotDigitizer [19] is included. The TFF predictions
obtained with the new FAPT/LCSR scheme are shown in
comparison with a collection of data in a wider momentum
region up to Q2 < 5.5 GeV2 in Sec. V making it apparent
that our approach works well even above the low-Q2

range used in the fit. Our conclusions are given in
Sec. VI. Some important calculational details are collected
in four appendices.

II. THEORETICAL BASIS OF THE π − γ
TRANSITION FORM FACTOR

The pion-photon transition form factor Fγ�γ�π0 for
two highly virtual photons entering the reaction
γ�ð−Q2Þγ�ð−q2Þ → π0 with virtualities Q2; q2 ≫ m2

ρ can
be written by virtue of factorization as follows

Fγ�γ�π0ðQ2; q2; μ2Þ
∼ Tð2ÞðQ2; q2; μ2; xÞ⊗

x
φð2Þ
π ðx; μ2Þ ð1aÞ

þ Tð4ÞðQ2; q2; μ2; xÞ⊗
x
φð4Þ
π ðx; μ2Þ þ h:t:; ð1bÞ

where h.t. abbreviates higher twist. Here TðmÞ, related to the
process γ�γ� → qðGμνÞq̄, are perturbatively calculable
hard-scattering parton amplitudes entering convolutions

with pion DAs φðmÞ
π of nonperturbative nature, where

⊗x ≡ R
1
0 dx and the superscript (m) denotes the twist level

of expansion. To avoid unnecessary complications, the
factorization (label F) and renormalization (label R) scales
have been set equal to each other μF ¼ μR ¼ μ (default
scale setting). To perform the summation over the infinite
series of the logarithmic corrections, related to the renorm-
alization of the coupling as ¼ αsðμ2Þ=4π and the renorm-

alization of the pion DA of leading-twist two φð2Þ
π ðx; μ2Þ,

we define a new running coupling āsðq2ȳþQ2yÞ≡ āsðyÞ
which also enters the ERBL exponent [3]. The ERBL
exponent incorporates all evolution kernels akþ1

s Vk,
whereas the partonic subprocesses, encoded in the coef-
ficient functions aksT ðkÞ, are taken into account in terms of
the leading-twist amplitude Tð2Þ.

A. Main perturbative ingredients
using RG summation

In order to carry out the RG summation, it is useful to

expand φð2Þ
π ðx; μ2Þ, as well as the corresponding contribu-

tion to the TFF in (1a), over the conformal basis of the
Gegenbauer harmonics fψnðxÞ ¼ 6xx̄C3=2

n ðx − x̄Þg,
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φð2Þ
π ðx; μ2Þ ¼ ψ0ðxÞ þ

X∞
n¼2;4;…

bnðμ2ÞψnðxÞ; ð2aÞ

Fðtw¼2ÞðQ2; q2Þ ¼ Fðtw¼2Þ
0 ðQ2; q2Þ

þ
X∞

n¼2;4;…

bnðμ2ÞFðtw¼2Þ
n ðQ2; q2Þ: ð2bÞ

The partial form-factor contributions Fðtw¼2Þ
n in the fψng

basis in terms of the evolution exponential are given by

Fðtw¼2Þ
n ðQ2; q2Þ

¼ NTT0ðyÞ⊗
y

�
½1þ āsðyÞT ð1Þðy; xÞ

þ ā2sðyÞT ð2Þðy; xÞ þ… � � ��

⊗
x
exp

�
−
Z

āsðyÞ

as

Vðα; x; zÞ
βðαÞ dα

��
⊗
z
ψnðzÞ: ð3Þ

Evaluating this expression at the one-loop level, its right-
hand side (rhs) reduces to

Fðtw¼2Þ
n ðQ2; q2Þ !1-loopFðtw¼2Þ

ð1lÞn

¼ NTT0ðyÞ⊗
y
½1þ āsðyÞT ð1Þðy; xÞ�

�
āsðyÞ
asðμ2Þ

�
νn
⊗
x
ψnðxÞ;

ð4Þ

where T ð1Þ is the next-to-leading-order (NLO) coefficient
function and T0ðyÞ is the Born term of the perturbative
expansion of Tð2Þ. The other quantities entering (4) are the
following

T0ðyÞ≡ T0ðQ2; q2; yÞ ¼ 1

q2ȳþQ2y
; ð5Þ

Vðas; y; zÞ → asV0ðy; zÞ; βðαÞ → a2sβ0;

1 ¼ δðx − yÞ; NT ¼
ffiffiffi
2

p
fπ=3;

V0ðy; zÞ ⊗ ψnðzÞ ¼ −
1

2
γ0ðnÞψnðyÞ; ð6Þ

where V0ðy; zÞ is defined in Eq. (A2a) and asγ0ðnÞ denotes
the one-loop anomalous dimension of the corresponding
composite operator of leading twist with νn ¼ 1

2

γ0ðnÞ
β0

.
The next-to-next-to-leading-order (NNLO) expression for

Fðtw¼2Þ
ð2Þn , analogous to Eq. (4), is worked out in Appendix C.

One notes that expression (4) does not contain the simple
product of the coupling āνsðyÞ≡ āνsðq2ȳþQ2yÞ and the
coefficient function T ðy; xÞ, as usual, but their convolution.
For small values of q2, this convolution has for anyQ2 only
a formal, not a physical meaning. This becomes obvious
from T0ðQ2; q2; yÞ, whose scale argument q2ȳþQ2y
approaches small values for y → 0, even if Q2 is large,
so that the perturbative expansion becomes unprotected.
This deficit is avoided, when a dispersion relation is
involved. As we show next, in this case, an equation like
Eq. (4) can still be safely used in the TFF calculation even
for small Q2 values.

B. RG technique in connection
with a dispersion relation

As we now demonstrate, summing over all radiative
corrections in Eq. (4), entails a new contribution to the

imaginary part of Fðtw¼2Þ
n ðQ2;−σÞ and for the same reason

also to the spectral density, where −σ is dual to q2 [3].
This marks an important difference to the standard version
of the LCSRs [2,20–22]. To be specific, the imaginary part
of the Born contribution is induced by the singularity of
T0ðQ2;−σ; yÞ multiplied by a power of logarithms. By
contrast, the RG resummed radiative corrections lead to a
term in the spectral density that originates from the
Imðāνsð−σȳþQ2yÞ=πÞ contribution. We consider bellow
the implementation of the RG summation in two steps,
starting with the same dispersion relation used in the
LCSRs but temporarily ignoring the hadronic content of
the quasireal photon. This will be taken into account in a
subsequent step.
To start with, we go back to Eq. (4) and express T0ðyÞ in

the form of a dispersion relation with respect to the variable
q2 → −σ. However, in contrast to the analogous result in
[3], we start integrating at m2 ≥ 0, considering it as the
threshold of particle production. This way, we obtain

T0ðQ2; q2; yÞðāνns ðyÞÞ ⊗ ψnðyÞ →
q2→−σ 1

π

Z
∞

m2

dσ
Im½T0ðQ2;−σ; yÞāνns ð−σȳþQ2yÞ�

σ þ q2
⊗ ψnðyÞ ¼ InðQ2; q2Þ

¼ 1

π

Z
∞

m2

dσ
σ þ q2

fRe½T0ðQ2;−σ; yÞ�Im½āνns ð−σȳþQ2yÞ� þ Im½T0ðQ2;−σ; yÞ�Re½āνns ð−σȳþQ2yÞ�g ⊗ ψnðyÞ ð7Þ

¼ 1

π

Z
∞

m2

dσ
Re½T0ðQ2;−σ; yÞ�Im½āνns ð−σȳþQ2yÞ�

σ þ q2
⊗ ψnðyÞ þ 0 ⊗ ψnðyÞ: ð8Þ
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The finite low integration limit modifies the result
of the LCSR even at the level of the Born term.
From a phenomenological point of view, m2 can be
assumed to be m2 ¼ ð2mπÞ2 ≈ 0.078 GeV2, relating it
to the pion pole, or it can be considered as a tunable
parameter.
Decomposing in Eq. (8) the numerator T0ðQ2;−σ; yÞ ∼

1=ð−σȳþQ2yÞ and the denominator σ þ q2, while replac-
ing the variables σ → s ¼ −ð−σȳþQ2yÞ ≥ 0, one derives
the integral

InðQ2; q2Þ ¼ −
Z

∞

mðyÞ
ds

ρνnðsÞ
sðsþQðyÞÞ ⊗ ψnðyÞ; ð9aÞ

where

ρνðsÞ ¼ Im½āνsð−s − iεÞ�=π; QðyÞ≡ q2ȳþQ2y;

mðyÞ ¼ m2ȳ −Q2y: ð9bÞ

Keeping mðyÞ > 0, we obtain

InðQ2; q2Þ ¼ −
�
θðmðyÞ > 0Þ

Z
∞

mðyÞ
ds

ρνnðsÞ
sðsþQðyÞÞ þ θðmðyÞ ≤ 0Þ

Z
∞

0

ds
ρνnðsÞ

sðsþQðyÞÞ
�
⊗ ψnðyÞ

¼ −½θðmðyÞ > 0ÞJνnðmðyÞ; QðyÞÞ þ θðmðyÞ ≤ 0ÞJνnð0; QðyÞÞ� ⊗ ψnðyÞ; ð10Þ

where the second term corresponds to mðyÞ ≤ 0 and the
integral starts at s ¼ 0. The new terms JνnðmðyÞ; QðyÞÞ can
be recast in the form

−Jνðy; xÞ ¼ −
Z

∞

y
ds

ρνðsÞ
sðsþ xÞ

¼ 1

x
½Iνðy; xÞ −AνðyÞ�; ð11aÞ

Iνðy; xÞ ¼def
Z

∞

y

dσ
σ þ x

ρðlÞν ðσÞ;

Iνðy → 0; xÞ ¼ AνðxÞ;
Iνðy; x → 0Þ ¼ AνðyÞ; ð11bÞ

I1ðy → 0; x → 0Þ ¼ A1ð0Þ ¼ A1ð0Þ; ð11cÞ

where Iν is a new coupling with l-loop content, introduced
in [3], and Aν [7], Aν [8] are the standard FAPT couplings
in the spacelike and timelike regions, respectively. Use of
(11a) in (10) enables us to derive the important expression

InðQ2; q2Þ ¼ T0ðQ2; q2;yÞ
× f½IνðmðyÞ;QðyÞÞ−AνðmðyÞÞ�θðmðyÞ> 0Þ
þ ½AνðQðyÞÞ−Aνð0Þ�θðmðyÞ ≤ 0Þg
⊗ ψnðyÞ; ð12Þ

in which the former couplings appear as limiting cases of
Iν, cf. (11c), while

Iνðy; xÞ ¼
Z

∞

y

ds
sþ x

ρνðsÞ ¼ AνðxÞ −
Z

y

0

ds
sþ x

ρνðsÞ

¼ AνðyÞ − x
Z

∞

y

ds
sðsþ xÞ ρνðsÞ ð13Þ

represents a generalized two-parameter coupling within
FAPT [3].
Equipped with these results, we now consider the

spectral density, starting with the expression

ρðlÞν ðσÞ ¼ 1

π
Im½aνðlÞð−σÞ� ¼

1

π

sin½νφðlÞðσÞ�
ðRðlÞðσÞÞν

!1-loop 1
π

sin
h
ν arccos

	
Lσ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
σ þ π2

p 
i
βν0½π2 þ L2

σ�ν=2
ð14Þ

obtained in FAPT, where Lσ ≡ lnðσ=Λ2
QCDÞ and both the

radial part RðlÞ and the phase φðlÞ have a l-loop content, see
[8]. For our considerations below, it is useful to introduce
a new effective coupling Aν by means of the parameter
ym ¼ m2=ðm2 þQ2Þ to get

Aνðm2; yÞ ¼ θðy ≥ ymÞ½AνðQðyÞÞ −Aνð0Þ�
þ θðy < ymÞ½IνðmðyÞ; QðyÞÞ −AνðmðyÞÞ�:

ð15Þ

The coupling Aνðm2; yÞ is a continuous function with
respect to y according to (11c). In the applications to
follow, we use in (15) the zero-threshold approximation
m2 → 0 so that

Aνðm2 → 0; yÞ → Aνð0; yÞ ¼ AνðQðyÞÞ −Aνð0Þ; ð16Þ

where the second term Aνð0Þ ¼ Aνð0Þ on the rhs demands
some care [3], see Sec. II C.

C. Pion-photon TFF in FAPT

Using Eq. (15) in the limits q2 → 0, QðyÞ → yQ2, and
m2 ≥ 0, we derive for the TFF at one loop, cf. Eq. (4), the
following expressions
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νðn ¼ 0Þ ¼ 0;Q2Fðtw¼2Þ
FAPT;0ðQ2Þ≡ F0ðQ2;m2Þ ¼ NT

�Z
1

ym

ψ0ðxÞ
x

dxþ
�
A1ðm2; yÞ

y

�
⊗
y
T ð1Þðy; xÞ⊗

x
ψ0ðxÞ

�
; ð17aÞ

νðn ≠ 0Þ ≠ 0;Q2Fðtw¼2Þ
FAPT;n≠0ðQ2Þ≡ FnðQ2;m2Þ

¼ NT

aνns ðμ2Þ
��

Aνnðm2; yÞ
y

�
⊗
y
ψnðyÞ þ

�
A1þνnðm2; yÞ

y

�
⊗
y
T ð1Þðy; xÞ⊗

x
ψnðxÞ

�
: ð17bÞ

These equations can be reexpressed in the initial form of
Eq. (4) by performing a chain of substitutions that include
the zero-threshold m2 → 0 approximation and the replace-

ments ðym;Aνðm2; yÞÞ !m¼0ð0;Aνð0; yÞÞ → ð0; āνsðyÞÞ. But,
in contrast to Eq. (4), these expressions can be integrated
over y, because Aν has no Landau singularities. This
notwithstanding, singularities still appear at the origin
Q2 ¼ 0 for particular values of the index ν, notably, for
0 < ν < 1. In addition, for ν ¼ 1 at the upper bound of the
interval (0, 1), A1ð0Þ ¼ A1ð0Þ ¼ 1=β0 [9] violates the
asymptotic value of the TFF Q2FðQ2 → ∞Þ ¼ ffiffiffi

2
p

fπ,
which is an exact result of perturbative QCD in the
asymptotic limit, see [6]. To fulfill it, we have to impose
“calibration conditions” on the analytic couplings and
demand that [3]

Aνð0Þ ¼ Aνð0Þ ¼ 0 for 0 < ν ≤ 1: ð18Þ

Let us mention that the models proposed in [23,24] comply
with these conditions.

D. About the role of NNLO corrections OðA2Þ
to the TFF

Here we consider the NNLOβ approximation of the
partial form factors Fn within FAPT pertaining to the
standard RG expressions given in Appendix C in terms of
Eqs. (C2), (C3). The truncated series (C3) of the powers
āns ðyÞ in the ERBL evolution factor can be easily mapped
into the same series by means of the replacement ānsðyÞ →
Anðm2; yÞ due to the linearity of the dispersion relation.
Applying the same calculational scheme as in Sec. II C in
the limits q2 → 0, QðyÞ → yQ2, we obtain from Eq. (C3)
the expression

Q2Fðtw¼2Þ
FAPT;nðQ2Þ ≈ NT

½asðμ2Þ�νn ½1þ c1asðμ2Þ�ωn

�
Aνnðm2; xÞ

x
þ
�
A1þνnðm2; yÞ

y

�
⊗
y
T ð1Þðy; xÞ

þ ωnc1

�
A1þνnðm2; xÞ

x
þ A2þνnðm2; xÞ

x
c1ðωn − 1Þ

2
þ
�
A2þνnðm2; yÞ

y

�
⊗
y
T ð1Þðy; xÞ

�

þ
�
A2þνnðm2; yÞ

y

�
⊗
y
T ð2Þðy; xÞ

�
⊗
x
ψnðxÞ; ð19Þ

where the terms contributing in the leading logarithmic
approximation (LLA), cf. Eqs. (17), are underlined.
The couplings aνs and Aðl¼2Þ

ν ðm2; xÞ should be evaluated
with a two-loop running, while c1 ¼ β1=β0 and ωn ¼
½γ1ðnÞβ0 − γ0ðnÞβ1�=½2β0β1�. The calculation of the FAPT

couplings Aðl¼2Þ
2þνn

with a two-loop running in Eq. (19) is
rather cumbersome. Moreover, the couplings with the next
higher index 2þ νn are approximately an order of magni-
tude smaller than the couplings A1þνn with a lower index.
We refrain from such a complicated and insignificant
calculation here. To estimate the effect of the next-to-
leading logarithmic approximation (NLLA), it is sufficient
to take into account the contribution from the coefficient
function T ð2Þðy; xÞ of the hard process in Eq. (19), denoted
by the doubly underlined term in the third line of Eq. (19).

Only this term survives for the numerically important case
of the zero-harmonic, i.e., for ωn¼0 ¼ 0, while the terms in
the second line represent the effect of the two-loop ERBL-
evolution. For this reason, we use as a first estimate c1 ¼ 0.
To our knowledge, only the β0 part of the two-loop ERBL
evolution is known [25]. It is related to the contribution

β0T
ð2Þ
β0

→ T ð2Þ and enters the third line of Eq. (19), see
Appendix A. We can estimate the size of this effect by
taking into account the single contribution

NTβ0
½asðμ2Þ�νn

��
A2þνnðm2; yÞ

y

�
⊗
y
T ð2Þ

β0
ðy; xÞ

�
⊗
x
ψnðxÞ ð20Þ

in addition to the LLA in Eq. (17), keeping the evaluation
of A2þνnðm2; yÞ at the level of the one-loop running.
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III. TRANSITION FORM FACTOR WITHIN THE
LCSR EMPLOYING ERBL SUMMATION

In the previous section we constructed a new perturbative
expansion that uses RG summation to include all radiative
corrections to the TFF while preserving its QCD asymp-
totics via calibration conditions. In this section, we are
going to implement this scheme to the LCSR formulation
of the TFF by means of the calibrated FAPT expansion.
Taking into account in the LCSR the hadronic content of
the quasireal, i.e., the physical, photon in terms of the
transition form factor fρFρπ in the spectral density [2,20]

ρphðsÞ ¼ δðs −m2
ρÞ

ffiffiffi
2

p
fρFρπðQ2Þ þ θðs > s0ÞNTρðQ2; sÞ;

ð21Þ

we get for Q2Fγπ
LCSR [2,20,21], the well-known expression

Q2Fγπ
LCSRðQ2Þ ¼ NT

�Z
1

xs

ρ̄ðQ2; x̄Þdx
x

þQ2

m2
ρ

Z
xs

0

exp

�
m2

ρ −Q2x=x̄

M2

�
ρ̄ðQ2; x̄Þdx

x̄

�

ð22aÞ

¼ NT

�
HðQ2Þ þQ2

m2
ρ
VðQ2;M2Þ

�
; ð22bÞ

ρ̄ðQ2; xÞ ¼ φð2Þ
π ðxÞ þ ρ̄tw-4ðQ2; xÞ þ ρ̄tw-6ðQ2; xÞ;

ð22cÞ

where the integration variable in the spectral density has
been replaced by s→x¼ s=ðQ2þsÞ and xs¼ s0=ðQ2þs0Þ.
Note that we use the δ-resonance model (21) only in order
to simplify the discussion, while the actual calculations are
performed by employing spectral densities that include the
resonances of the ρ- and ω-mesons in the form of a Breit-
Wigner distribution, see Appendix D and the discussion
that follows.
The hard (H) and the soft (V) hadronic part of the TFF

are given, respectively, by

HðQ2Þ ¼
Z

1

xs

ρ̄ðQ2; x̄Þ dx
x
; ð22dÞ

VðQ2;M2Þ ¼
Z

xs

0

exp

�
m2

ρ −Q2x=x̄

M2

�
ρ̄ðQ2; x̄Þ dx

x̄
: ð22eÞ

We use below the conformal expansion of the leading
twist-two part of ρ̄, expressing it in terms of the
Gegenbauer harmonics to read ρ̄ðQ2; xÞ ¼ ρ̄0ðQ2; xÞ þP

n¼2;4;… bnðQ2Þρ̄nðQ2; xÞ. Moreover, we combine the
twist-four and twist-six contributions (see Appendix B)

with the ψ0 component of the twist-two spectral density
into a single spectral density termed ρ̄0, i.e.,

ρ̄0ðQ2; xÞ ¼ ψ0ðxÞ þ ρ̄tw-4ðQ2; xÞ þ ρ̄tw-6ðQ2; xÞ;
ð23aÞ

ρ̄nðxÞ ¼ ψnðxÞ: ð23bÞ

The radiative contribution to the partial hard part Hn
contains the coupling Aνðs0; yÞ, cf. (15),

Aνðs0; yÞ ¼ θðy ≥ ysÞ½AνðQðyÞÞ −Aνð0Þ�
þ θðy < ysÞ½Iνðs0ðyÞ; QðyÞÞ −Aνðs0ðyÞÞ�;

ð24Þ

and was derived in Sec. II C.
On the other hand, the soft part Vn contains the coupling

Aνðm2; yÞ −Aνðs0; yÞ ¼ θðys > yÞΔνðm2; s0; yÞ; ð25aÞ

where

Δνðm2; s0; yÞ ¼ θðys > y > ymÞ½AνðQðyÞÞ
− Iνðs0ðyÞ; QðyÞÞ þAνðs0ðyÞÞ −Aνð0Þ�
þ θðym > yÞ½IνðmðyÞ; QðyÞÞ
− Iνðs0ðyÞ; QðyÞÞ þAνðs0ðyÞÞ
−AνðmðyÞÞ�:

Employing the zero-threshold approximation, expression
(25a) reduces to

Aνð0; yÞ − Aνðs0; yÞ ¼ θðys > yÞΔνðs0; yÞ;
Δνðs0; yÞ ¼ AνðQðyÞÞ − Iνðs0ðyÞ; QðyÞÞ

þAνðs0ðyÞÞ −Aνð0Þ: ð25bÞ

Combining the H-part, Eq. (24), with the V-part, Eq. (25b),
we obtain the total partial contribution to the TFF within the
FAPT/LCSR scheme

Q2Fγπ
LCSR=FAPT;nðQ2Þ ¼ NT

�
HFAPT;nðQ2Þ

þQ2

m2
kðM2ÞVFAPT;nðQ2;M2Þ

�
:

ð26Þ

To include the vector resonances into the spectral density
entering the V-part, we employ the more realistic Breit-
Wigner formula [2,20] rather than the simple δðσ −m2

VÞ
model. This improved description of the soft part leads to
the appearance of an additional coefficient kðM2Þ in front
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of the term VðQ2;M2Þ for the partial TFF Fγπ
LCSR;nðQ2Þ in (26), see Appendix D and [20]. Going one step further, we take

into account the OðA2Þ contribution given in Eq. (20) to derive the following analytic expressions, where the mentioned
NLLA terms are shown at the end of each equation:

for n ¼ 0; HFAPT;0ðQ2Þ ¼
Z

x̄s

0

dx
x̄
ρ̄0ðQ2; xÞ þ

�
A1ðs0; xÞ

x
⊗
x
T ð1Þðx; yÞ þ A2ðs0; xÞ

x
⊗
x
β0T

ð2Þ
β ðx; yÞ

�
⊗
y
ψ0ðyÞ; ð27aÞ

VFAPT;0ðQ2;M2Þ ¼
Z

1

x̄s

dx
x
exp

�
m2

ρ

M2
−
Q2

M2

x̄
x

�
½ρ̄0ðQ2; xÞ þ ðΔ1ðs0; x̄ÞT ð1Þðx̄; yÞ þ Δ2ðs0; x̄Þβ0T ð2Þ

β ðx̄; yÞÞ⊗
y
ψ0ðyÞ�;

ð27bÞ

for n > 0; HFAPT;nðQ2Þ ¼ 1

aνns ðμ2Þ
�
Aνnðs0; yÞ

y
þ A1þνnðs0; xÞ

x
⊗
x
T ð1Þðx; yÞ þ A2þνnðs0; xÞ

x
⊗
x
β0T

ð2Þ
β ðx; yÞ

�
⊗
y
ψnðyÞ;

ð27cÞ

VFAPT;nðQ2;M2Þ ¼ 1

aνns ðμ2Þ
Z

1

x̄s

dx
x
exp

�
m2

ρ

M2
−
Q2

M2

x̄
x

�
½Δνnðs0; x̄ÞψnðxÞ

þ ðΔ1þνnðs0; x̄ÞT ð1Þðx̄; yÞ þ Δ2þνnðs0; x̄Þβ0T ð2Þ
β ðx̄; yÞÞ⊗

y
ψnðyÞ�: ð27dÞ

Here the functions Δνnðs0; x̄Þ and Δ1þνnðs0; x̄Þ, defined in
(25b), represent effective couplings entering the soft part
with x̄s ≡ 1 − xs ¼ Q2=ðQ2 þ s0Þ. The hard partial con-
tributions HFAPT;n in Eqs. (27a), (27c) coincide with the
FAPT results given by Eq. (17) after substituting s0 by m2

to get s0ðyÞ ↔ mðyÞ, ys ↔ ym. Hence, the hard part of the
process receives radiative corrections driven by the same
effective couplings, though these corrections contribute at
different thresholds m2 and s0. On the other hand, the
higher-twist contributions enter (27a), (27b) by means of
the term ρ̄0 from Eq. (23b). Let us emphasize that the
evaluation of the perturbative contributions in Eq. (27) at
low momentum transfers is, in contrast to the FOPT case,
unrestricted.

IV. EXTRACTION OF NONPERTURBATIVE
PARAMETERS FROM A DATA FIT

AT Q2 ≤ 3.1 GeV2

According to the exposition above, the domain of small
Q2 values under single-tag conditions becomes now

accessible to a trustworthy perturbative description within
the FAPT/LCSR scheme using the TFF expression (26),
which involves resummed radiative corrections. On the
other hand, the higher-twist contributions can be safely
included within FOPT, see [16,22]. This allows for the first
time a detailed and reliable comparison with the recently
released data with an unprecedented accuracy below Q2 ¼
1.5 GeV2 of the BESIII experiment [14,26]. Because of the
competitive accuracy up to 3.1 GeV2 of these data, it is
possible to combine them with the measurements of
previous single-tag experiments, notably, CELLO [27]
and CLEO [28] within the same range of momenta. This
way, we can perform a simultaneous best-fit analysis of these
data sets with the aim to determine the values of the involved
nonperturbative parameters in the calculation of the TFF.
These are the conformal coefficients b2 and b4 at twist-two
in Eq. (2), and the scale parameters for the twist-four, δ2tw4,
and the twist-six, δ2tw6, terms, given in Appendix B. At the
normalization scale μ20 ¼ 1 GeV2, the mentioned parameters
assume values in the following ranges

twist-twoBMSDAdomain ½18; 29; 30�∶ fb2ðμ20Þ ¼ ½0.146; 0.272�; b4ðμ20Þ ¼ ½−0.23;−0.049�g ð28aÞ

twist-four ½32�∶ δ2tw-4ðμ20Þ ¼ 0.19� 0.04 GeV2 ð28bÞ

twist-six∶δ2tw-6ðμ20Þ ¼
� h ffiffiffiffiffi

αs
p

q̄qi2 ¼ ð1.76� 0.13Þ × 10−4 GeV6 ðhereÞ
h ffiffiffiffiffi

αs
p

q̄qi2 ¼ ð1.84þ0.84
−0.24Þ × 10−4 GeV6 ½28�: ð28cÞ
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Fitting procedure—step 1. We perform a data fit that
proceeds in two steps: First, we use Eqs. (26), (27) to
determine best-fit values of the higher-twist parameters
δ2tw-4; δ

2
tw-6 keeping the twist-two nonperturbative coeffi-

cients b2 and b4 fixed, see left panel of Fig. 1. This gives
rise to stretched out ellipses that degenerate into strips.
These strips for different DA models taken from the BMS-
like family, cf. (28a) overlap almost completely. Such strips
with χ2ndf ≤ 1 are displayed in the figure. The uncertainties
related to the higher-twist scales are shown graphically in
terms of shaded rectangles with respect to the central values
of the δ2tw-4 and δ2tw-6 scales in (28c). The fitting is done by
employing particular DAs with b2, b4 values at 1 GeV
obtained within QCD sum rules with nonlocal condensates:

(i) BMS model (b2 ¼ 0.203, b4 ¼ −0.143) ( )—the
center of the BMS domain [18],

(ii) platykurtic (pk) ðb2 ¼ 0.0812; b4 ¼ −0.0191Þ ( )
[31,32]—see [16] for further discussion,

(iii) ðb2 ¼ 0.159; b4 ¼ −0.098Þ —crossing point of
the N3LO mean value from lattice [17] with the
long axis of the BMS domain, see the right panel
of Fig. 1.

These DAs can be used to fix the variations of the twist-
two contributions and thus enable the determination of
the best-fit centers of the confidence ellipses for the scale
coefficients δ2tw-4; δ

2
tw-6. In fact, the main result of this fitting

procedure is that all determined strips have a common
long axis. This implies that these parameters are strongly

correlated and are aligned with this regression line. On the
other hand, this ascertained quasilinear dependence would
entail an unpleasant overfitting of the best-fit positions of
δ2tw-4; δ

2
tw-6 for the particular DAs. Therefore, we proceed

differently. Using the mean value of δ2tw-4 from Eq. (28b),
this axis yields for the twist-six prefactor the value
δ2tw-6 ¼ ð1.61� 0.26Þ × 10−4 GeV6, where the error mar-
gin can be determined by imposing the condition χ2ndf ≤ 1.
This result bears no dependence on the choice of a
particular model DA. This δ2tw-6 value—the red dot at the
bottom of the rectangles in the figure—is in good agree-
ment with different independent estimates of δ2tw-6 at its low
limit. This is outlined in Eq. (28c) and is discussed in more
detail in Appendix B. It corresponds to the dark violet
rectangle in the left panel of Fig. 1.
Fitting procedure—step 2. We can now use the best-fit

values of the twist-four and twist-six parameters (δ2tw-4 ¼
0.19 GeV2 and δ2tw-6 ¼ 1.61 × 10−4 GeV6) to derive the
confidence regions of the twist-two expansion parameters
b2 and b4. The results of this step of the fitting procedure
are displayed in the right panel of Fig. 1. The best-fit point
with χ2ndf ¼ 0.38 is marked by the thick blue dot (bb-f2 ¼
0.112, bb-f4 ¼ −0.029), whereas the 1σ error ellipse and
the 2σ error ellipse are denoted by the innermost red solid
line and the blue solid line, respectively. The outermost
blue dashed ellipse corresponds to χ2ndf ¼ 1. In close
correspondence to the left panel, we also show the positions
of the considered DA models at the normalization scale

FIG. 1. Results of the two-step fitting procedure described in the text. The following notations are used: BMS DA—black cross [18];
platykurtic DA—black/white cross [31,32]; DA shown as a grey triangle selected from the BMS set of DAs to be inside the 1σ error
ellipse (innermost red line) while fulfilling the N3LO (vertical solid lines) lattice constraints on b2 from lattice QCD [17]. Left: first step
of this procedure in which we determine the admissible regions of the higher-twist parameters δ2tw-4 and δ2tw-6. The larger rectangle
denotes the range of values with δ2tw-6 ¼ ð1.84þ0.84

−0.24 Þ × 10−4 GeV6, obtained in [33], while the smaller rectangle corresponds to the
estimate δ2tw-6 ¼ ð1.76� 0.13Þ × 10−4 GeV6. This estimate and the red point δ2tw-6 ¼ ð1.61� 0.26Þ × 10−4 GeV6 were obtained in this
work. Right: results of the fitting procedure for the twist-two conformal coefficients b2, b4 with fixed higher-twist parameters. The two
rectangles along the lower diagonal denote the range of ðb2; b4Þ determined within the BMS approach [18] for two different values of
λ2q ¼ 0.4 GeV2 (larger shaded rectangle) and 0.45 GeV2 (transparent rectangle), where the BMS DA [18] is represented by . The
smaller shaded rectangle encloses the range of ðb2; b4Þ coefficients associated with DAs having a platykurtic profile [32], like the model
proposed in [31]. The dashed-dotted, dashed, and solid vertical lines show the lattice results for b2 from [17] for the NLO (0.109(37)),

NNLO (0.139(32)), and N3LO (0.159þ0.025
−0.027 ), respectively.
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μ0 ¼ 1 GeV. The other ingredients of Fig. 1 (right panel)
are the following:

(i) Large shaded rectangle in green color—BMS
domain with the coefficients b2, b4 given above,
for the average virtuality of vacuum quarks λ2q ¼
0.40 GeV2 [18],

(ii) Transparent rectangle bounded by a dashed line—
domain of BMS DAs obtained for the larger vir-
tuality λ2q ¼ 0.45 GeV2.

(iii) Small light-green rectangle—platykurtic range [32]
for the pk DA [31].

(iv) We also display for comparison, the most recent
lattice constraints on b2 from [17] using vertical
lines. These are obtained from left to right with NLO
matching to MS scheme (dashed-dotted red lines),
NNLO matching (dashed red lines), and N3LO, i.e.,
three-loop matching (solid blue lines). This se-
quence of lines exhibits the progressive change of
these constraints as the loop order increases and the
width of the corresponding strip decreases. It is
worth noting in this context that the various un-
certainties of the lattice constraints have been added
in quadrature which means that they are dominated
by the largest systematic error originating from
the nonperturbative renormalization using the regu-
larization independent momentum subtraction
(RI’/MOM) scheme [17,34].

From this figure we can draw the following conclusions.
(1) The different sources of data below Q2 ≤ 3.1 GeV2

give rise to a 2σ error ellipse (based on the NLLA)
which has a significant overlap with a large part of
the BMS domain and also the lattice constraints at
the NNLO and N3LO level, restricting the values of
b2 to the range [0.107, 0.184].

(2) A good portion of the BMS domain for bBMS
2 <

0.171 lies within the 1σ confidence ellipse of the
data and also inside the N3LO lattice strip. This
compatibility provides support to the BMS non-
perturbative scheme and its ingredients.

(3) Imposing the most stringent combination of these
constraints—1σ ellipse and N3LO lattice range—
one can determine a DA within the BMS domain
defined by the crossing point of the N3LO lattice
value b2 ¼ 0.159 (at μ20 ¼ 1 GeV2) with the long
axis of the BMS rectangle to obtain the value
b4 ¼ −0.098. This uniquely defined DA with the
parameters (b2 ¼ 0.159; b4 ¼ −0.098) provides a

good compromise for the simultaneous fulfillment
of three distinct types of constraints originating from
different sources. It is denoted in Fig. 1 by and is
used in the following section to obtain predictions
for the TFF.

(4) Note that an analogous crossing point of the NNLO
middle point with the long BMS line would fulfill
the same requirements but would be outside the
BMS rectangle.

(5) The platykurtic range lies entirely within the 1σ
confidence ellipse and is close to the lattice NNLO
strip.

V. TFF PREDICTIONS IN THE RANGE
Q2 ≤ 5.5 GeV2 VS DATA

In this section, we present our TFF predictions
obtained within the FAPT/LCSR scheme developed in
the previous sections. We have two main objectives: To
compare with various data up to an intermediate momen-
tum Q2 ¼ 5.5 GeV2 and doing this to expose the improve-
ments relative to the FOPT/LCSR results. Different
approaches applicable to the calculation of the TFF in
the low-Q2 regime, are mentioned in [16]. We include the
full data sets of the BESIII [14] and CELLO [27]
Collaborations and also the measurements below
5.5 GeV2 of the CLEO [28], BABAR [35], and Belle
[36] experiments. The BESIII data with their errors have
been extracted from the graphics in Fig. 3 of [14] using the
tool PlotDigitizer [19] and are tabulated in Table I. This
restricted data selection is justified because our primary
goal is to show the utility of the summation technique in
performing a LCSR calculation below/around 1 GeV2. At
high Q2, one can rely upon the FOPT/LCSR method, see
[16] for such predictions and a complete list of the other
data. An alternative approach attempting to determine the
higher moments of the twist-two pion DA more reliably,
was recently proposed in [37]. We note in similar context
the Dyson-Schwinger-equations based approach recently
reviewed in [38] which uses a basis of Gegenbauer
polynomials whose degree is included in the optimization
procedure to improve the convergence of the polynomial
expansion.
The TFF calculation is performed at the NNLOβ0 for

FOPT and in the NLLA for FAPT (see Eqs. (27)). Using
the expansion in Eq. (2b) and the partial TFF terms
Fγπ
LCSR=FAPT;n from Eqs. (26), (27), we obtain predictions

TABLE I. Preliminary BESIII data on the scaled pion-photon TFF extracted from Fig. 3 in [14].

Q2 [GeV2] 0.351 0.45 0.551 0.652 0.751 0.851 0.951 1.075 1.226 1.374 1.526 1.701 1.901 2.101 2.3 2.5 2.7 2.95

ΔQ2 0.05 0.049 0.05 0.05 0.049 0.052 0.049 0.073 0.075 0.074 0.075 0.101 0.1 0.099 0.101 0.099 0.1 0.15
Q2FðQ2Þ 0.057 0.068 0.073 0.081 0.087 0.091 0.099 0.107 0.116 0.113 0.113 0.121 0.117 0.14 0.131 0.123 0.164 0.135
Q2ΔFðQ2Þ 0.006 0.005 0.004 0.004 0.004 0.008 0.008 0.006 0.009 0.011 0.016 0.017 0.016 0.024 0.024 0.034 0.049 0.044
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for Q2Fγπ
FAPTðQ2Þ in terms of the conformal coefficients

f1; b2; b4;…g that can be used for any pion DA (for a more
detailed derivation at this level of accuracy, see [16,22] and
references cited therein). The results are shown graphically
in Fig. 2.
With reference to Fig. 1, we display the TFF derived with

the DAs from the BMS domain (large shaded rectangle)
in the form of a green strip with a variable width
quantifying the variation of these predictions entailed by
the theoretical uncertainties of their key ingredients. These
are resolved at the bottom of the figure in order to give
quantitative estimates of their relevance (see the graphical
explanations inside Fig. 2). Note that all displayed results
are obtained by using in Eq. (26) the soft V-part given by
Eqs. (27b), (27d) and including the vector resonances ρ
and ω in the form of a Breit-Wigner distribution, see
Appendix D. This induces an additional factor that depends
on the Borel parameter M2, taken to vary in the interval
ð0.75–1.1Þ GeV2 and depending on the momentum Q2 as
in [39,40]. The masses and widths of the vector resonances
are mρ¼0.77GeV, Γρ¼0.1502GeV, mω ¼ 0.7826 GeV,
Γω ¼ 0.00844 GeV. The other LCSR parameters have
been fixed in previous investigations to the values [2,41]
fπ ¼ 0.132 GeV, s0 ≈ 1.5 GeV2, δ2tw-4ðμ20Þ ¼ 0.95 λ2q=2 ¼
0.19 GeV2 [29] and are not varied here. The twist-six scale
δ2tw-6ðμ20Þ ¼ h ffiffiffiffiffi

αs
p

q̄qi2ðμ20Þ ¼ 1.61 × 10−4 GeV6 was deter-
mined in Sec. IV by a fit to the experimental data under the
condition δ2tw-4 ¼ 0.19 GeV2, (see the previous section)
and is approximately equal to the lower bound of the

estimates in (28b), (28c). Finally, the strong coupling
αsðμ20Þ ¼ 0.48� 0.024, as well as the evolution of the
DAs, are both taken in the two-loop approximation, see
Appendix A in [16].
The other displayed TFF predictions are the following.

The FAPT/LCSRTFF for the DA denoted by the symbol ,
is shown by the solid grey line, while the analogous result
for the FOPT/LCSR TFF is represented by the solid red
line. For both curves the same values of the twist-four and
twist-six parameters are used. The displayed red curve
serves only to demonstrate the tendency of the FOPT/
LCSR result to underestimate the data. In fact, at 0.5 GeV2

the calculated TFF is already outside the applicability
domain of this scheme. In contrast, the FAPT/LCSR
prediction, given by the light-grey line, reproduces the
data for momenta below Q2 ¼ 5.5 GeV2 and down to
values as low as 0.3 GeV2 with an accuracy of χ2ndf ¼ 0.57.
It is remarkable that the TFF calculated with the platykurtic
DA ( ) [31] (black dashed line) turns out to be close to this
line with χ2ndf ¼ 0.77. This agrees with the results obtained
recently within FOPT/LCSR in [16]. An important obser-
vation from the curves shown at the bottom of Fig. 2 is
that above Q2 > 2 GeV2, the NNLOβ parts of both LCSR
schemes (FOPT–dashed-dotted line and FAPT—dashed
line) yield congruent results. Below Q2 ≲ 1 GeV2, the RG
summation of the radiative corrections (dashed line at the
bottom) in the FAPT/LCSR scheme avoids the overesti-
mation of the NNLO correction in the FOPT/LCSR scheme
(dashed red line at the bottom), clearly demonstrating its
superiority.

VI. CONCLUSIONS

In this work we developed and outlined a new theoretical
scheme to calculate the pion-photon transition form factor
with single-tag kinematics that involves RG summation of
radiative corrections while avoiding Landau singularities
of the running strong coupling. We showed that this
scheme, termed FAPT/LCSR, is capable of providing
trustworthy results well below the typical hadronic scale
of 1 GeV, a regime not reliably accessible using FOPT/
LCSR. This allows the comparison of theoretical predic-
tions with the recently released preliminary data of the
BESIII Collaboration [14] which bear very small errors just
in this momentum region.
To include the hadronic content of the quasireal photon,

we used in the phenomenological part of the LCSR a Breit-
Wigner distribution which provides a more realistic repre-
sentation than a simple δ-function ansatz. This admits the
possibility of comparing more precisely the obtained TFF
predictions with those in the state-of-the-art analysis within
FOPT/LCSR in [16], which also employs the Breit-Wigner
form. This way, the effect of including the QCD radiative
corrections by means of RG summation has been properly
determined. Doing so, we were able to substantially exceed

FIG. 2. Theoretical predictions for the scaled γ�γπ0 transition
form factor Q2Fγπ

FAPTðQ2Þ [GeV] using different DAs discussed
in the text in comparison with various data up to Q2 < 5.5 GeV2

with labels as indicated in the figure. The grey and the red solid
lines were obtained with the DA denoted by using the FAPT/
LCSR and FOPT/LCSR scheme, respectively. The black dashed
line represents the FAPT result obtained with the pk-DA [31],
while the green strip shows the theoretical uncertainties of the
BMS DAs calculated with QCD sum rules with nonlocal
condensates [18]. The displayed FAPT/FOPT TFF results employ
the best-fit nonperturbative higher-twist parameters δ2tw-4 ¼
0.19 GeV2 and δ2tw-6 ¼ 1.61 × 10−4 GeV6.
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our exploratory analysis in [3,4] and promote our under-
standing of the TFF behavior at much lower momentum
scales. In the following we collect and discuss further the
key results of our analysis.

(i) We used the available experimental data in the low-
momentum domain up to Q2 ≤ 3.1 GeV2 in order
to determine best-fit values of the higher-twist
parameters.
Especially the measurement of the BESIII experi-

ment [14] provided data with an unprecedented
accuracy below Q2 ¼ 1.5 GeV2. Using this data
set in combination with previous data of the
CELLO [27] and CLEO [28] Collaborations, we
obtained a reliable estimate for the twist-six con-
tribution δ2tw-6 ¼ 1.61 × 10−4 GeV6 using δ2tw-4 ¼
0.19 GeV2 from [29] and keeping the conformal
coefficients b2 and b4 within the BMS domain.

(ii) In the second step, we used these parameters to
extract the most trustworthy regimes of the con-
formal coefficients (b2, b4) by applying additional
constraints from the data and the most recent lattice
calculations of b2. To be precise, we determined the
1σ and 2σ error ellipses of the data and combined
them with the lattice constraints of [17] at the
NNLO, and N3LO level. Combing these constraints
in the most stringent way, we found that the crossing
point of the middle value of the N3LO lattice range
of b2 with the long axis of the BMS domain [18] of
the (b2, b4) values, defines a DA, marked by the
symbol , that agrees with the employed data at the
1σ level.

(iii) Employing this DA as nonperturbative input, we
performed a twin-calculation of the TFF in FAPT/
LCSR and in FOPT/LCSR in order to quantify the
advantage of including the radiative corrections via
RG summation. The corresponding TFF curves are
shown in Fig. 2 in terms of a grey and a red curve,
respectively. One appreciates that the FAPT result
reproduces the data in a momentum range starting
below 1 GeV2 and extending up to 5.5 GeV2 at the
level of an overall accuracy of χ2ndf ¼ 0.57.

(iv) The FAPT/LCSR TFF result for the platykurtic
pion DA [31], shown as a black dashed line in
Fig. 2, follows closely the grey curve and the BMS
strip (in green color) of predictions though this DA
has a unimodal profile in contrast to the bimodal
shapes of the BMS DAs. This can be traced to the
values of their inverse moments that almost
coincide. For the discussion of the properties of
this DA, we refer to [16].

As a last remark, we mention that our exposed method
may be useful in providing insight into the hadronic light-
by-light contribution of the g-2 of the muon, see [42,43]
and [44] for a recent review. Moreover, a pion DA very

close to was used very recently in [45] (see Table I) to
calculate the B̄ → π form factors and determine jVubj in
agreement with inclusive estimates.
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APPENDIX A: QCD PERTURBATIVE
EXPANSION BEYOND LEADING ORDER

NLO. The coefficient function of the partonic subprocess
T ð1Þ is

T ð1Þðx; yÞ
CF

¼ ½−3Vb þ g�þðx; yÞ − 3δðx − yÞ; ðA1aÞ

gþðx; yÞ ¼ −2
�
θðy > xÞ ln ð1 − x=yÞ

y − x

þθðy < xÞ lnð1 − x̄=ȳÞ
x − y

�
þ
; ðA1bÞ

while the elements of the one-loop evolution kernel V0 are

V0ðx; yÞ
CF

¼ Vð0Þ
þ ðx; yÞ ¼ 2

�
Cθðy > xÞ x

y

�
1þ 1

y − x

��
þ

≡ 2½Vaðx; yÞ þ Vbðx; yÞ�þ; ðA2aÞ

Vaðx; yÞ ¼ Cθðy > xÞ x
y
;

Vbðx; yÞ ¼ Cθðy > xÞ x
y

�
1

y − x

�
; ðA2bÞ

where the symbol C means C ¼ 1þ fx → x̄; y → ȳg. The
key term of the convolution T ð1Þðx; yÞ ⊗ ψnðyÞ that enters
the harmonic expansion can be significantly simplified to get
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1

CF
T ð1Þðx; yÞ⊗

y
ψ0ðyÞ ¼

�
−3þ π2

3
− ln2

�
x̄
x

��
ψ0ðxÞ − 2ψ0ðxÞ; ðA3Þ

1

CF
T ð1Þðx; yÞ⊗

y
ψnðyÞ ¼

�
−3ð1þ vbðnÞÞ þ π2

3
− ln2

�
x̄
x

��
ψnðxÞ − 2

Xn
l¼0;2;…

Gnlψ lðxÞ; ðA4Þ

vbðnÞ ¼ 2ðψð2Þ − ψð2þ nÞÞ; vðnÞ ¼ 1=½ðnþ 1Þðnþ 2Þ� − 1=2þ 2ðψð2Þ − ψð2þ nÞÞ; ðA5Þ

see Appendix A in [20]. The quantities vbðnÞ and vðnÞ ¼
− 1

2CF

1
2
γ0ðnÞ are the eigenvalues of the elements Vbþ and

Vaþ þ Vbþ of the one-loop kernel in Eq. (A2), respectively.
Gnl denotes the elements of a calculable triangular matrix
(omitted here)—see for details [20] and corrections in [21].
The explicit expressions for the first coefficients of the

expansion of the QCD β function are

β0 ¼
11

3
CA−

4

3
TrNf; β1 ¼

34

3
C2
A−

�
4CFþ

20

3
CA

�
TrNf:

ðA6Þ

NNLO. The β0 part of the coefficient function T ð2Þ, the
β0T

ð2Þ
β term, reads

T ð2Þ
β ðx; yÞ ¼ CF

�
29

12
2Va þ 2 _Va −

209

36
Vð0Þ −

7

3
_Vð0Þ

−
1

4
V̈ð0Þ þ 19

6
gþ _g

�
þ
ðx; yÞ − 6CFδðx − yÞ:

ðA7Þ

This expression was originally derived in [25], but its
elements are presented here using a different notation
following [20], where also the omitted explicit expressions
for the elements _Va; _Vð0Þ; V̈ð0Þ, and _g can be found.

APPENDIX B: HIGHER-TWIST CONTRIBUTIONS

The explicit expressions for the twist-four and twist-six
[21] contributions are given by

ρ̄tw-4ðQ2; xÞ ¼ δ2tw-4ðQ2Þ
Q2

x
d
dx

φð4ÞðxÞ;

φð4ÞðxÞ ¼ 80

3
x2ð1 − xÞ2; ðB1Þ

δ2tw-4ðQ2Þ ¼
�
asðQ2Þ
asðμ20Þ

�γT4
β0
δ2tw-4ðμ20Þ;

δ2tw-4ðμ20Þ ¼ 0.95λ2q=2 ¼ 0.19 GeV2 ½29�; γT4 ¼ 32=9;

ðB2Þ

ρ̄tw-6ðQ2; xÞ ¼ 8π
CF

Nc

αshq̄qi2
f2π

x
Q4

�
−
�

1

1 − x

�
þ

þ ð2δðx̄Þ − 4xÞ þ xð3þ 2 lnðxx̄ÞÞ
�

ðB3Þ

at μ20 ¼ 1 GeV2. The NLO evolution of the quark con-
densate hq̄qiðμ2Þ reads

hq̄qiðμ2Þ ¼ hq̄qið4 GeV2Þ
�
āð2Þs ð4 GeV2Þ

āð2Þs ðμ2Þ

�ν

×

�
1þ c1ā

ð2Þ
s ð4 GeV2Þ

1þ c1ā
ð2Þ
s ðμ2Þ

�ω
ðB4aÞ

for Nf ¼ 3, Λð3Þ
MS ¼ 392 MeV with a two-loop running,

where

ν ¼ γ0=β0; γ0 ¼ 4; β0 ¼ 11 −
2

3
Nf; ðB4bÞ

β1 ¼ 102 −
38

3
Nf; ω ¼ ½γ1β0 − γ0β1�=½β0β1�; ðB4cÞ

γ1 ¼
202

3
−
20

9
Nf; c1 ¼ β1=β0: ðB4dÞ

The quark-condensate density is obtained from the Gell-
Mann-Oakes-Renner relation

hq̄qiðμ2Þ ¼ −
f2πm2

π

2ðmu þmdÞðμ2Þ
: ðB5Þ

Taking into account the estimate ðmuþmdÞðμ2L¼4GeV2Þ¼
7.28ð82ÞMeV from lattice computations [46] and per-
forming a two-loop running according to (B4), we obtain
for a “quasi” (one-loop) RG invariant quantity the new
estimate

h ffiffiffiffiffi
αs

p
q̄qi2ðμ20Þ ¼ ð1.76� 0.13Þ × 10−4 GeV6;

αsðμ20Þ ¼ 0.48� 0.024; ðB6aÞ

by employingaNLOapproximation.A result for this quantity
close to thatwas found in [33]within a similar approach using
the RUNDEC code, see Fig. 1 (left panel):
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h ffiffiffiffiffi
αs

p
q̄qi2ðμ20Þ ¼ ð1.84þ0.84

−0.24Þ × 10−4 GeV6;

αsðμ20Þ ¼ 0.486� 0.024: ðB6bÞ

Our best-fit estimate δ2tw-6 ¼ h ffiffiffiffiffi
αs

p
q̄qi2ðμ20Þ ¼ ð1.61�

0.26Þ × 10−4 GeV6 overlaps within errors with both values
given above.

APPENDIX C: ERBL SUMMATION AT NNLO

The conformal symmetry of the ERBL equation at the
two-loop level of evolution is broken. This entails within
the basis of Gegenbauer harmonics the appearance of a
nondiagonal part along with the dominating diagonal one
[47,48]. We consider here the most significant diagonal
part at the two-loop level of the evolution exponential in
Eq. (3), notably,

exp

�
−
Z

āsðyÞ

asðμ2Þ

Vðα; x; zÞ
βðαÞ dα

�
⊗
z
ψnðzÞ

!2 loop exp
�Z

āsðyÞ

asðμ2Þ

γnðaÞ
βðaÞ da

�
ψnðxÞ

¼
�
āsðyÞ
asðμ2Þ

�
νn
�
1þ c1āsðyÞ
1þ c1asðμ2Þ

�
ωn

ψnðxÞ; ðC1Þ

where as has a two-loop running and c1 ¼ β1=β0, with βi
being the expansion coefficients of the QCD β-function.
The evolution exponent of the coupling is defined by
νn ¼ γ0ðnÞ=2β0, ωn ¼ ½γ1ðnÞβ0 − γ0ðnÞβ1�=½2β0β1�. The
corresponding diagonal part of the partial form factors

Fðtw¼2Þ
n (in the fψng basis) has the form

Fðtw¼2Þ
n ðQ2; q2Þ ¼ NTT0ðyÞ⊗

y
½1þ āsðyÞT ð1Þðy; xÞ þ ā2sðyÞT ð2Þðy; xÞ�

�
āsðyÞ
asðμ2Þ

�
νn
�
1þ c1āsðyÞ
1þ c1asðμ2Þ

�
ωn

⊗
x
ψnðxÞ: ðC2Þ

Every harmonic ψn generates under the two-loop evolution the contribution of off-diagonal higher harmonics [48], but these
are small compared to the diagonal ones. Therefore, they are not considered here. Moreover, we use the following
approximation to (C2)

Fðtw¼2Þ
n ðQ2; q2Þ≈ NT

½asðμ2Þ�νn ½1þ c1asðμ2Þ�ωn
T0ðyÞ⊗

y

�
½āsðyÞ�νn þ ½āsðyÞ�1þνnT ð1Þðy; xÞ

þωnc1

�
½āsðyÞ�1þνn þ ½āsðyÞ�2þνn

ðωn − 1Þ
2

c1 þ ½āsðyÞ�2þνnT ð1Þðy; xÞ
�
þ ½āsðyÞ�2þνnT ð2Þðy; xÞ

�
⊗
x
ψnðxÞ;

ðC3Þ

where the last factor ½1þ c1āsðyÞ�ωn in (C2) has been
expanded. The additional new terms are presented in
the second and the third line of Eq. (C3), while the terms
with a “NLO structure”, cf. Eq. (4), in the first line are
underlined.

APPENDIX D: PION TFF IN LCSR WITH A
BREIT-WIGNER RESONANCE MODEL

We present the original expression [3] as the sum of a
hard term H and a vector-resonance term V

Fγπ
LCSR;nðQ2Þ ¼ NT

Q2

�
HnðQ2Þ þQ2

m2
ρ
kðM2ÞVnðQ2;M2Þ

�
;

ðD1Þ

where the coefficient k has been introduced to modify the
original expression [3] by modeling the rho-meson reso-
nance contribution in terms of a BW distribution instead of

a delta-function ansatz used in [3]. For the BW case, the
coefficient kðM2Þ takes the form

kðM2Þ ¼
R s0
4m2

π
dsðΔρðsÞ þ ΔωðsÞÞm2

ρ=sR s0
4m2

π
dsðΔρðsÞ þ ΔωðsÞÞ exp ðm

2
ρ

M2 − s
M2Þ

; ðD2Þ

where the BW spectral densities are described by means of
the massmV and the width ΓV of the included resonances of
the rho and omega mesons (V ¼ ρ, ω), i.e.,

ΔVðsÞ≡ 1

π

mVΓV

ðm2
V − sÞ2 þm2

VΓ2
V
: ðD3Þ

Replacing the BW model by a delta-function form
ΔVðsÞ → δðs −m2

VÞ, one gets for the coefficient kðM2Þ
kðM2Þ → kδðM2Þ ¼ 1: ðD4Þ

This reduces Eq. (D1) to the form given in [3].
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