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The Breit-Wheeler pair production process in 2þ 1 dimensional spacetime is investigated. In the
perturbative regime, nonvanishing rates at the energy threshold are found when odd numbers of photons
take part in the reaction. This behavior is understood as a direct consequence of the reduced dimensionality
and resembles a corresponding prediction made in gapped graphene monolayers. In the nonperturbative
strong field regime, the effect of the dimensionality manifests itself in a different rate dependence on the
quantum nonlinearity parameter. The consequence of this deviation is discussed briefly in line with the
applicability of perturbation theory. We argue that, in addition to large values of the quantum nonlinearity
parameter, the super-renormalizable character of quantum electrodynamics in 2þ 1 dimensional spacetime
might give rise to a breakdown of perturbation theory within certain energy scales.
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I. INTRODUCTION

With the ongoing development of laser and accelerator
infrastructures, the interest in producing electron-positron
pairs from photon collisions has strongly grown over the
last years as this process—despite being one of the most
fundamental predictions of quantum electrodynamics
(QED3þ1)—has not been validated experimentally in full
glory. After the pioneering work due to Breit and Wheeler
on the pair production by the collision of two photons [1]
(linear Breit-Wheeler process), further theoretical efforts
revealed a phenomenology which manifests—among other
issues—the nonlinear feature of QED3þ1. Initially, several
authors considered interaction of light quanta with a plane-
wave electromagnetic background [2–5]. Special attention
has been paid to the perturbative [ξ ≪ 1] and nonpertur-
bative [ξ ≫ 1] regimes defined by the intensity parameter
of the involved laser wave ξ ¼ −eE0=ðωmÞ, with electron
charge e < 0, its mass m, frequency ω, and amplitude E0

of the plane wave.1 Besides, more elaborated treatments
have been put forward in order to reach a more precise
description of laser configurations [6–16], with particular

emphasis on the highly nonlinear nonperturbative regime
due to important links to a wider range of elusive
phenomena [17–22]. Of special interest has been the
region in which the quantum nonlinearity parameter
χ ¼ ξkk0=m2—involving photon momenta k and k0—
exceeds unity considerably as it might come accompanied
with a breakdown of perturbation theory when αχ2=3 ≥ 1

(α ¼ e2=4π ≈ 1=137 is the fine structure constant) [23–31].
Despite the theoretical endeavor, experimental validation

of Breit-Wheeler pair creation has, so far, been possible
solely in the multiple-photon regime at ξ≲ 1 [32]. While
this experiment provided important insights into this
process, neither linear pair creation—for recent proposals
see [33–38]—nor Breit-Wheeler pair creation at ξ ≫ 1
has been observed by now. The reason why the former
process is still elusive stems from the current limitations of
reaching energetic photon beams with adequate intensities.
Conversely, accessing the nonperturbative regime demands
peak intensities I ¼ E2

0 ∼ Ic ≈ 4.6 × 1029 Wcm−2, corre-
sponding to the Schwinger electric field scale Ec ≈ 1.3 ×
1016 Vcm−1 in the relevant frame of reference. Reaching
this condition requires ultrahigh laser intensities I ∼
ð1021 − 1024Þ Wcm−2 in the laboratory frame in conjunc-
tion with a beam of sufficiently energetic γ photons,
which represents a hard challenge to overcome (for recent
proposals, see [39,40]).
A low-energy test ground for yet unobserved QED3þ1

processes is provided by band-gapped graphene mono-
layers. In this two dimensional honeycomb of carbon
atoms, charge carriers near the degeneracy points possess
a Dirac-like dispersion relation with the speed of
light replaced by the Fermi velocity vF ≈ 1=300. Hence,
their behavior can be effectively described by a 2þ 1
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dimensional Dirac model and the interband transition of
electrons, i.e., the production of electron-hole pairs, can be
exploited as a toy model for addressing QED3þ1 pair
production-related questions. This idea has motivated
investigations of analogs to the Schwinger mechanism
[41,42] by delivering inherent insights caused by the
low-dimensional material: The power of the preexponential
factor is changed from 2 in QED3þ1 to 3=2 in graphene.
Likewise, band-gapped graphene has been presented as a
suitable material to simulate the Breit-Wheeler process with
two (linear case) and three photons [43]. In the latter case,
as in the studies linked to the Schwinger-like mechanism,
inherent properties due to the low-dimensional character of
the medium came to a scene. Contrary to QED3þ1, the rate
linked to this process does not vanish at the energy
threshold. This poses special feature questions, whether
its occurrence extends to perturbative Breit-Wheeler reac-
tions in which more than three photons are absorbed and to
which extent the Lorentz symmetry breaking caused by the
Fermi velocity takes part in its realization. Addressing these
questions is not an easy task within the Dirac model, mainly
because the dispersive properties of the medium make the
theoretical treatment difficult to handle.2

Against this background, we study in the present paper
the Breit-Wheeler pair production in 2þ 1 dimensional
quantum electrodynamics (QED2þ1) in various interaction
regimes from weak to very strong fields. In particular, we
show that the threshold lifting persists in this Lorentz
invariant framework when an odd number of photons are
absorbed, confirming that this phenomenon results as an
inherent consequence of the reduced spacetime dimension-
ality. Besides, we reveal characteristic influences of the
dimensionality on the nonperturbative production rates for
both small and large values of the quantum nonlinearity
parameter and discuss the implications for a breakdown of
perturbation theory in this scenario.
Considerations of low-dimensional scenarios have

proven useful in various areas of physics. They revealed,
for example, valuable insights on nonperturbative aspects
of QCD (see, e.g., [44] and references therein) and
even provided a solvable quantum field theory model for
gravity [45]. Investigations of the Chern-Simons term—
intrinsically linked to QED2þ1 [46]—have improved our
understanding of the high temperature behavior of
QED3þ1, leading, in addition, to an accurate description
of the quantum Hall effect [47]. Likewise, various research
on the subject of Schwinger pair creation in arbitrary
spacetime dimensions has been performed by considering
different field configurations such as constant uniform
electric and magnetic fields [48] and electric fields of finite

duration [49]. Regarding Breit-Wheeler pair production, a
recent study based on a model Hamiltonian in one spatial
dimension has allowed for spacetime resolution of this
process [50]. Moreover, the accuracy of predictions from an
intrinsically one-dimensional QED theory when applied
to a highly symmetric system in 3þ 1 dimensions was
studied [51].
Another important area of applicability for lower

dimensional theories is the field of quantum simulation.
Gradually, this branch is gaining interest as it enables one
to simulate the behavior of various many-body ensembles
via ultracold atom systems placed in sophisticated optical
lattices. Because of a complex technical implementation,
these quantum simulators have been restricted so far to
systems of lower dimensionality, so the question arises of
which differences occur as compared to 3þ 1 dimensions.
In the realm of quantum electrodynamics, the progress
in this field has led to an experimental implementation of
the 1þ 1-dimensional Schwinger mechanism [52,53],
which was investigated thoroughly by theoreticians
[54–56], whereas current research efforts are spent toward
QED2þ1 [57–60]. Hence, with the present study of the
nonperturbative Breit-Wheeler pair creation, we provide a
scenario that may be further explored through the branch of
quantum simulation.
Our paper is organized as follows: In Sec. II, we

introduce Volkov states in QED2þ1 and apply them in
Sec. III to obtain a general expression of the Breit-Wheeler
pair production rate. Afterward, in Sec. IV, we evaluate the
rate numerically in various intensity regimes and support
this analysis by an asymptotic study. Our conclusions are
given in Sec. V, while in Appendix A, we briefly review the
Breit-Wheeler rates in 3þ 1 dimensions, and the two-
photon pair production process is described in the lowest
order of perturbation theory in Appendix B.

II. VOLKOV STATES IN 2 + 1 DIMENSIONS

In a 2þ 1 dimensional spacetime, the time evolution of
planar relativistic electrons interacting with an electromag-
netic field aμðxÞ is described by the Dirac equation,

ði=D −mÞψ ¼ 0; ð1Þ

which manifests a SOð1; 2Þ invariance [61,62]. In this
expression, ψðxÞ stands for a two component spinor
wave function, whereas =D≡ γμDμ and Dμ ¼ ∂μ þ ieaμ
refers to the covariant derivative, with e < 0 denoting the
electric charge in 2þ 1 dimensions. Observe that the
latter notation differs from the one used in the introduction
(e). The reason behind this change will be discussed
below. The γμ matrices linked to this low-dimensional
scenario are determined by Pauli matrices γμ ¼
ðσ3; iσ2;−iσ1Þ and are also constricted by the Clifford
algebra fγμ; γνg ¼ 2gμν12×2, with μ ¼ 0, 1, 2.

2As a consequence of the asymmetry introduced by the
simultaneous appearance of the Fermi velocity and the speed
of light, solutions to the Dirac equation of graphene in the field of
a plane wave are much more difficult to obtain than in QED3þ1.
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As in 3þ 1 dimensions, the solvability of Eq. (1) is
restricted to a certain class of electromagnetic fields. Here,
we will focus on the solution resulting when aμðxÞ is
chosen as a polarized plane-wave-like three-potential,

aμðkxÞ ¼ a0ϵμ cosðkxÞ; ð2Þ

characterized by the amplitude a0, the wave vector
kμ ¼ ðω; k⃗Þ, and a transverse polarization ϵμ [ϵμkμ ¼ 0],
which is normalized according to ϵμϵμ ¼ −1. We remark
that in 2þ 1 dimensions, the magnetic field provided by
aμðxÞ is a pseudoscalar, whereas the electric field is a
two component vector. It is worth emphasizing that the
field in Eq. (2) is supposed to be a solution of a Maxwell
equation without taking the Chern-Simons contribution
into account, an assumption that applies whenever the
energy-momentum transfer is much larger than the topo-
logical mass of the gauge field.
Despite the inherent differences caused by the

dimensionality, the procedure for establishing the 2þ 1
dimensional Volkov-states does not differ much from the
well-known approach in QED3þ1 (see, for instance,
Refs. [3,63,64]). In line, we find

ψp−ðxÞ ¼
ffiffiffiffiffiffiffiffiffi
m
q−0A

r �
1þ e

2kq−
=k=a

�
up−

× exp

�
−iq−x − i

ea0q−ϵ
kq−

sinðkxÞ

− i
e2a20
8kq−

sinð2kxÞ
�
: ð3Þ

The state given above has been normalized in such a way
that the time averaged electron density hj0i ¼ hψ̄p−γ0ψp−i
with ψ̄p− ≡ ψ†

p−γ0 amounts to one particle in the normali-
zation area A. While up− refers to a free spinor [aμ ¼ 0]

with positive energy, the quantity q−μ ¼ p−
μ þ e2a2

0

4kp− kμ stands
for an averaged effective electron momentum with
kp− ¼ kq−, ϵp− ¼ ϵq−, where the electron momentum
is denoted by p−. Moreover, the Volkov solution for a
positron ψpþðxÞ can be read off from Eq. (3) by carrying
out the replacements, p− → −pþ and up− → vpþ , where
vpþ is the free negative-energy solution. Both spinors up−

and vpþ are normalized in accordance with the following
rules:

up− ūp− ¼ =p− þm
2m

; vpþ v̄pþ ¼ =pþ −m
2m

ð4Þ

and ūp−γμup− ¼ p−
μ =m for ūp− ≡ u†p−γ0, v̄pþ ≡ v†pþγ0.

III. BREIT-WHEELER PAIR
CREATION IN QED2 + 1

A. General considerations

In QED2þ1, the reduction of space dimensions gives rise
to changes in the physical dimensions of the involved fields
ψ , aμ, and the electric charge e,

½ψ � ¼ E; ½a� ¼ E1=2 and ½e� ¼ E1=2; ð5Þ

where E stands for the dimension of energy. As the charge
in the equation above has a positive energy dimension,
QED2þ1 belongs to the class of super-renormalizable
theories. This fact prevents us from identifying e2=4π
with the traditional fine-structure constant α ≈ 1=137 and
demands one to look for an adequate dimensionless
parameter from which a perturbative treatment can be
justified.
In the scope of the strong-field Breit-Wheeler process,

two gauge fields are involved in the pair creation: a strong
field aμ and a low-intensity field a0μ. Hence, we can identify
dimensionless3 intensity parameters η ¼ −ea0=m > 0 and
η0 ¼ −ea00=m > 0, where a0 and a00 stand for the field
amplitudes, and perform the perturbative expansion in η0,
assuming that η0 ≪ 1.
Accordingly, our starting point is the generic transition

amplitude for the Breit-Wheeler process [see Fig. 1],

Sfi ¼ −ie
Z

d3xψ̄p−ðxÞ=a0ðxÞψpþðxÞ; ð6Þ

where a0μðxÞ ¼ a0
0

2
ϵ0μe−ik

0x denotes the photon wave func-
tion, which refers to the amplitude a00 rather than being
normalized to one particle in the area, and the polarization
ϵ0μ satisfies the conditions ϵ0k0 ¼ 0; ϵ0ϵ0 ¼ −1, with

k0μ ¼ ðω0; k⃗0Þ.4 In this expression, ψp−ðxÞ and ψpþðxÞ stand
for the Volkov solutions as given in Sec. II.
However, we point out that the applicability of Eq. (6)

also depends on the regime dictated by η, where additional
specification of the expansion parameters may be in order.
Indeed, as it happens in QED3þ1, large values of η ≫ 1
might compensate the smallness of η0, making the effective
coupling strength far from being perturbative. In this
scenario, the effect of radiative corrections should be

3It is worth remarking that, in a minimally coupled frame-
work, the combination eað0Þ0 has always a dimension of
energy regardless the number of space dimensions d: ½eað0Þ0 � ¼
Eð3−dÞ=2Eðd−1Þ=2 ¼ E.

4As will be seen below, the pair production rate depends on the
Lorentz invariant product kk0. In most studies of the strong-field
Breit-Wheeler process conducted so far, a counterpropagating
beam geometry (maximizing kk0 ¼ 2ωω0) has been considered,
with ω0 ≫ m ≫ ω in view of the experimental capabilities.
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included in the transition amplitude. Further discussion on
this topic will follow at the end of Sec. IV B.
To evaluate the integral in Eq. (6), we follow the

usual procedure and introduce a Fourier expansion of an
exponential,

e−iz− sinðkxÞ−izþ sinð2kxÞ ¼
X∞
n¼−∞

e−inkxJ̃nðz−; zþÞ; ð7Þ

in which the generalized Bessel function is defined as an
infinite sum of a product of ordinary Bessel functions of
one argument [3,65,66],

J̃nðz−; zþÞ ¼
X∞

m¼−∞
Jn−2mðz−ÞJmðzþÞ; ð8Þ

and write (l ¼ 1, 2),

coslðkxÞe−iz− sinðkxÞ−izþ sinð2kxÞ ¼
X∞
n¼−∞

e−inkxJ̃ l
n;

J̃ 1
n ≡ 1

2
½J̃nþ1ðz−; zþÞ þ J̃n−1ðz−; zþÞ�;

J̃ 2
n ≡ 1

4
½J̃nþ2ðz−; zþÞ þ 2J̃nðz−; zþÞ þ J̃n−2ðz−; zþÞ�: ð9Þ

By exploiting these definitions, we can write Eq. (6) as

Sfi ¼ −i
ea00
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

qþ0 q
−
0A

2

s X∞
n¼−∞

ð2πÞ3δnkþk0;qþþq−

× ūp−Mnvpþ ; ð10Þ
where δx;y ≡ δ3ðx − yÞ, and Mn is of the following form:

Mn ¼ =ϵ0J̃n þ
ea0
2

J̃ 1
n

�
=ϵ=k=ϵ0

kq−
−
=ϵ0=k=ϵ
kqþ

�

−
e2a20

2kqþkq−
ϵ0μkμJ̃ 2

n=k: ð11Þ

Notice that energy-momentum conservation qþ þ q− ¼
nkþ k0, anticommutativity of gamma matrices, and trans-
versal condition have been employed, and the arguments
of generalized Bessel functions read z− ¼ ea0ðq

þϵ
qþk −

q−ϵ
q−kÞ,

zþ ¼ − e2a2
0

8
kk0

kqþkq−. Next, we consider the differential rate of
pair creation per area defined as

dR ¼ jSfij2
TA

A2
d2q−

ð2πÞ2
d2qþ

ð2πÞ2 : ð12Þ

Here, the phase space is expressed in terms of the effective
particle momenta, in accordance with the normalization
chosen in Eq. (3). When inserting Eq. (10) into the equation
above, we end up with

dR ¼ e2a020 m
2

8π

X∞
n¼−∞

jūp−Mnvpþj2

× δnkþk0;qþþq−
d2q−

q−0

d2qþ

qþ0
; ð13Þ

where the sum over n can be interpreted as a sum over a
number of absorbed photons from the classical field
aμðkxÞ. Furthermore, the square of the amplitude jMnj2 ¼
jūp−Mnvpþj2 can be written as

jMnj2 ¼ Tr

�
=p− þm
2m

Mn
=pþ −m
2m

M̄n

�
; ð14Þ

with M̄n ¼ γ0M†
nγ0. To show the relation above, the

properties of free Dirac spinors in 2þ 1 dimensions given
in Eq. (4) were used. It is interesting to point out that,
although the form of the squared amplitude remains
unchanged as compared to 3þ 1 dimensions, the trace is
no longer taken over a 4 × 4 matrix but over one of the
dimension 2 × 2. This feature is responsible for introducing
major differences with respect to QED3þ1.

5

Additionally, since the gauge field in 2þ 1 dimensions
has only one transverse polarization direction, we can make
use of the relation,

ϵ0μϵ0ν ¼ −gμν −
k0μk0ν − n0k0ðk0μn0ν þ k0νn0μÞ

ðn0k0Þ2 ; ð15Þ

FIG. 1. Feynman diagram of the Breit-Wheeler pair creation
process in a plane-wave background. Here, the wavy line
represents a quantized photon, whereas the solid double lines
stand for Volkov states of electron and positron.

5In the calculations, we have used

γ0γ†μγ0 ¼ γμ; γμγμ ¼ 312×2;Tr½γμγν� ¼ 2gμν;

Tr½γμγμ� ¼ 6; γμγνγμ ¼ −γν;Tr½γν� ¼ 0;

Tr½γμγνγα� ¼ −2iϵμνα; γμγνγαγμ ¼ 4gνα − γνγα;

γμγνγαγβγμ ¼ γνγαγβ − 2γβγαγν;

Tr½γμγνγαγβ� ¼ 2ðgμνgαβ − gμαgνβ þ gμβgναÞ;

with Levi-Civita tensor ϵμνα with ϵ012 ¼ 1.
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where n0μ ¼ ð1; 0; 0Þ. It is worth emphasizing that, owing
to the Ward identity, only the term containing −gμν will
contribute to the squared amplitude. Having these proper-
ties in mind, we arrive at

jMnj2 ¼ J̃2n −
e2a20
m2

�
1 −

ðkk0Þ2
4kqþkq−

�
½ðJ̃ 1

nÞ2 − J̃nJ̃
2
n�;

ð16Þ
where the energy-momentum balance and transversal
condition (kϵ ¼ 0) have been used. We remark that,
when deriving this formula, the following relation was
exploited [3,65]:

ðnþ 2zþÞJ̃n − z−J̃
1
n − 4zþJ̃ 2

n ¼ 0: ð17Þ

Inserting Eq. (16) into Eq. (13), the rate for Breit-Wheeler
pair creation in 2þ 1 dimensions reads,

dR ¼ e2a020 m
2

8π

X∞
n≥n0

δnkþk0;qþþq−
d2q−

q−0

d2qþ

qþ0

×

�
J̃2n − η2

�
1 −

ðkk0Þ2
4kqþkq−

�
½ðJ̃ 1

nÞ2 − J̃nJ̃
2
n�
�
: ð18Þ

The fact that the summation index starts at n0 ¼ 2m2�=ðkk0Þ,
with m2� ¼ m2ð1þ η2=2Þ ¼ q�2 referring to the effective
electron mass, is understood here as a consequence of
the energy-momentum balance. Leaving aside the lower
dimensionality of the delta functions and the involved inte-
gration measures, the main source of difference between
dR and the unpolarized rate in 3þ 1 dimensions [see
Eq. (A3) in Appendix A] lies in the precise structure of the
squared amplitude [compare with Eq. (16)]. It resembles
the squared amplitude of the pair production by a photon
with polarization parallel to the electric field of the wave [as
given in Eqs. (A1) and (A2)]. This fact highlights the
restriction provided by a lower dimensionality: Both
photon wave vectors and polarizations are bound to a
plane. Hence, when moving the system to a center-of-
momentum frame, where photons are counterpropagating,
their polarizations have to be parallel.
In order to highlight the consequences linked to the

spacetime dimensionality further, we change the integration
variables to a set referred to as the center of momentum of
the created particles, where q⃗− ¼ −q⃗þ ¼ −q⃗, nk⃗ ¼ −k⃗0,
nω ¼ ω0. Afterward, q− is integrated out, and the remain-
ing integral is expressed in polar coordinates,

R ¼ e2a020 m
2

8π

X∞
n≥n0

Z
2π

0

dϕ
Z

∞

0

dq
2q0

δðq − q�nÞ

×

�
J̃2n − η2

�
1 −

1

1 − q2

ω02 cos2ðϕÞ

�
½ðJ̃ 1

nÞ2 − J̃nJ̃
2
n�
�
;

ð19Þ

when setting jq⃗j≡ q, kqþ ¼ ω½ω0 − q cosðϕÞ�, kq− ¼
ω½ω0 þ q cosðϕÞ�, ϵq− ¼ −ϵqþ ¼ q sinðϕÞ, and q�n ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω02 −m2�

p
, q0 ¼ ω0. Additionally, we introduce a

Mandelstam invariant s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kk0=2m2

p
, which allows us

to write q�n ¼ ω0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ η2=2Þ=ns2

p
. Requiring that the

number of absorbed photons exceeds a critical number
n ≥ ð1þ η2=2Þ=s2, we obtain for every value of n a
threshold energy s2 ≥ ð1þ η2=2Þ=n ¼ s2n, which must be
overpassed so that the process takes place.

B. Threshold behavior

Now, we are interested in investigating the behavior of
the rate at the energy threshold, where the particles are
created with zero momentum (q ¼ 0). It is noteworthy that
at the threshold, the integral over the phase space will not
always vanish and is governed solely by the form of the
amplitude. This fact represents a crucial difference to the
3þ 1 dimensional case where, after integrating over q− in
the center-of-momentum frame, the remaining integralR d3q

q2o
δð2q0 − 2ω0Þ ∝ q�n always goes to zero at the thresh-

old. Therefore, we focus on the behavior of the process
amplitude. In this context, the arguments of the generalized
Bessel functions in the center-of-momentum frame read,

z− ¼ −
2η

ms2
q sinðϕÞ

1 − q2

ω02 cos2ðϕÞ
!s→sn

0; ð20Þ

zþ ¼ −
η2

4s2
1

1 − q2

ω02 cos2ðϕÞ
!s→sn −

η2

4s2n
≡ zþn; ð21Þ

and, consequently, the generalized Bessel function at the
threshold can be written as [65,66]

J̃nð0; zþnÞ ¼
�
Jn=2ðzþnÞ; n even;

0; n odd:
ð22Þ

Hence, when an even number of strong field photons
n ¼ 2l is absorbed, the rate [see Eq. (19)] at the threshold
behaves as

Rs→sn ¼
e2a020 m

8

X∞
2l≥n0

J2lð− η2l
2ð1þη2=2ÞÞ

1þ η2=2
: ð23Þ

While this expression tends to vanish as η grows (η ≫ 1),
the contribution for η ≪ 1 approximates

Rη≪1
s→sn ≈

e2a020 m
8

X∞
2l≥n0

η4l
l2ðl−1Þ

24lΓ2ðlÞ ; ð24Þ

where ΓðxÞ stands for the gamma function [67]. We see that
the rate above does not vanish. This causes a lifting of the
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rate at each threshold when an even number of strong field
photons is absorbed, which resembles the behavior at low
intensity of the Breit-Wheeler process in graphene [43].
Our analysis indicates that this peculiarity is a general
consequence of the 2þ 1 dimensionality and does not rely
on the Lorentz invariance breakdown that is caused by the
Fermi velocity of this medium.

IV. ASYMPTOTIC STUDY

This section is devoted to establishing asymptotic expres-
sions of theBreit-Wheeler pair creation rate [see Eq. (18)] for
different intensity parameters of the strong field η.

A. Behavior for η ≪ 1

For small laser parameter η ≪ 1, the leading order
contribution of Eq. (18) results, when energetically
allowed, from the absorption of a single laser photon
(n ¼ 1). A representative Feynman diagram for this
process is depicted in the upper panel of Fig. 2. In this
limiting case, the effective electron and positron momenta
can be simply taken as q� ¼ p� so that the arguments
of the generalized Bessel functions read as z− ¼
ηmðp−ϵ

p−k −
pþϵ
pþkÞ, zþ ¼ − η2m2

8
kk0

kpþkp−. Their respective propor-

tionality on η and η2 allows us to expand the Bessel
functions (see Appendix C in [65]),

J̃nðηβ; η2ϱÞ ≈
�
η2ϱ

2

�n
2

×

(Pn=2
k¼0

ðβ2=2ϱÞk
ð2kÞ!ðn=2−kÞ! for evenn;Pðn−1Þ=2

k¼0
ðβ2=2ϱÞkþ1=2

ð2kþ1Þ!ððn−1Þ=2−kÞ! for odd n;

ð25Þ

where the shorthand notation β ¼ mðp−ϵ
p−k −

pþϵ
pþkÞ, ϱ ¼

− m2

8
kk0

kpþkp− has been introduced. Hence, in the lowest order
in η, the squared amplitude can be written as

jMn¼1
η≪1j2 ¼

η2β2

4
−
η2

4

�
1 −

ðkk0Þ2
4kpþkp−

�
: ð26Þ

The use of Eq. (15) in combination with the energy-
momentum balance pþ þ p− ¼ kþ k0 allows us to express
the differential rate of the pair production in the following
form:

dRn¼1
η≪1 ¼

e2a020 m
2

8π
δkþk0;pþþp− jMn¼1

η≪1j2
d2p−d2pþ

p−
0p

þ
0

;

jMn¼1
η≪1j2 ¼

η2

4

� ðkk0Þ2
4kpþkp− − 1þ 2m2kk0

kpþkp− −
m4ðkk0Þ2
ðkpþkp−Þ2

�
:

ð27Þ

It is worth mentioning that this expression coincides with
the outcome resulting from perturbation theory when the
classical field in Eq. (1) is canonically quantized (see
details in Appendix B).
Finally, we integrate the rate in Eq. (27) by adopting

polar coordinates. To facilitate the integrations over the
momenta, we go over to the center-of-momentum frame,
where p⃗ ¼ p⃗þ ¼ −p⃗−, pþ

0 ¼ p−
0 , ω ¼ ω0, kk0 ¼ 2ωω0 ¼

2ω2, and kp ¼ ωðp0 − jp⃗j cosðϕÞÞ. Then, after integrating
out p− and p0 we arrive at

Rn¼1
η≪1 ¼

e2a020 m
2

8π

η2

4

1

2ω

Z
2π

0

dϕ

�
−1

−
4u2

½1 − ð1 − uÞcos2ðϕÞ�2 þ
ð1þ 4uÞ

½1 − ð1 − uÞcos2ðϕÞ�
�
;

ð28Þ

with u ¼ m2=ω2. The remaining integration can be per-
formed analytically by using Eqs. (3.616.8) and (3.642.3)
in Ref. [68],

Rn¼1
η≪1 ¼

e2a020 m
8π

πη2

4s

�
−1 −

2ðs2 þ 1Þ
s3

þ ð4þ s2Þ
s

�
; ð29Þ

where the result has been expressed in terms of the
Mandelstam variable s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kk0=2m2

p
. Observe that in this

context, the energy threshold translates into s ≥ 1. We
remark that for s ¼ 1, the rate above vanishes. In the upper
panel of Fig. 3, a comparison between the asymptotic

FIG. 2. Feynman diagrams of two (upper panel) and three
(lower panel) photons pair creation processes. In both panels, free
fermions are represented by external solid lines, and internal lines
stand for the free fermion propagators, while wavy lines corre-
spond to photons stemming from quantized and classical sources
(the latter are marked by crossed circles).
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expression in Eq. (29) (red dashed line) and the numerical
evaluation for n ¼ 1 in Eq. (18) (blue curve) is depicted.
This assessment has been done by taking η ¼ 0.01. For
further comparison, Fig. 3 exhibits the behavior of the
corresponding process in 3þ 1 dimensions colored in
black. While the solid line results from an unpolarized
photon beam, the dotted one refers to the case of parallel
polarization.
Usually, the derivation of the linear Breit-Wheeler rate is

performed within the second order of perturbation theory
when considering two quantized photons (see Appendix B).
To bring Eq. (29) into the corresponding form, the replace-

ments að0Þ20 ≡ 2=ωð0ÞA need to be done. This way, the
quantity α2þ1 ¼ e2=ð4πmÞ appears in the rate, which is
the counterpart of the fine structure constant in QED3þ1. We
remark that α2þ1 plays the role of a perturbative coupling
constant, provided m ≫ e2=ð4πÞ.
Next, we consider the case where two strong field

photons are absorbed (n ¼ 2) [see lower panel of Fig. 2
for the corresponding Feynman diagram]. The leading
order contribution to this process is described by the
amplitude,

jMn¼2
η≪1j2 ¼

�
η2ϱ

2
þ η2β2

8

�
2

−
η2

4

�
1 −

ðkk0Þ2
4kpþkp−

��
η2β2

8
−
η2ϱ

2

�
; ð30Þ

where the involved Bessel functions were expanded with
help of Eq. (25). Furthermore, we perform the integration in
the center-of-momentum frame, which is defined similarly
to the case n ¼ 1, taking into account that ω0 ¼ 2ω.
Consequently, the asymptote of the three-photon reaction
reads,

Rn¼2
η≪1 ¼

e2a020 m
8π

πη4

128s8
½10 − 30s2 þ 19s4 þ 12s8�: ð31Þ

We note that at the threshold s ¼ s2 ¼
ffiffiffiffiffiffiffiffi
1=2

p
, the expres-

sion above coincides with the outcome resulting from
Eq. (24) for n ¼ 2, providing a nonzero contribution.
This effect can be seen in the lower panel of Fig. 3, where
the asymptote as given in the equation above is depicted in
blue, whereas the red dashed curve results from evaluating
Eq. (18) for n ¼ 2. These outcomes are compared with the
QED3þ1 rates for unpolarized photon (black solid) and
photon polarized parallel to the classical field (black
dotted), which vanish at the threshold.
Finally, we remark that the fact that η and η0 are

dimensionless regardless of the spacetime dimension
would allow us to transfer our predictions for the produc-
tion rate from the 2þ 1 dimensional model to a real situa-
tion once it is assumed that they coincide with those
defined from the physical charge and amplitude in 3þ 1
dimensions, i.e., if η ¼ ξ. Observe that, identifying alter-
natively α2þ1 with α ≈ 1=137 makes the rate a function
depending explicitly on the field amplitude in 2þ 1
dimensions. However, the dimension of this quantity
½a0� ¼ E1=2 differs from the one of its 3þ 1 dimensional
counterpart ∼E, preventing, this way, a mutual matching
and so, a direct link with physical quantities.

B. Behavior for η ≫ 1

Contrary to the previous case of small laser parameters,
for η ≫ 1, a large number of summands in Eq (18) will
provide non-negligible contributions to the rate. Indeed, a
huge amount of photons is needed for the process to take
place so that a transition to the continuum limit

P
n … →R

dn… can be developed.6 Afterward, n together with
q⃗þ are integrated out by using the delta functions.
Consequently, Eq. (18) reduces to

FIG. 3. Dependence of the pair production rate in 2þ 1
dimensions on the Mandelstam invariant s for η ¼ 0.01. In the
upper panel, the numeric evaluation of the n ¼ 1 summand of
Eq. (18) is depicted in blue, and the corresponding asymptotic
expression [see (29)] is colored in red. For comparison, the
QED3þ1 rates for unpolarized, and parallel polarized photons [3]
are shown in black solid and black dotted lines, correspondingly.
In the lower panel, we compare the outcome of Eq. (31) with the
numerically evaluated summand for n ¼ 2 of Eq. (18), using the
same color scheme as in the upper picture.

6Actually, the transition is made on the variable sn ≡ n=
ð1þ η2=2Þ ¼ 1=s2n, for which the interval between two neighbor
terms converges to zero Δsn ¼ ð1þ η2=2Þ−1 → ds as η → ∞.
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Rη≫1 ¼
e2a020 m

2

8π

Z
d2q−

q−0 kq
þ jMn¼n�

η≫1 j2: ð32Þ

Here, jMn¼n�
η≫1 j2 is given in Eq. (16), where n → n� and

n� ¼ q−k0=½ωðω0 − k02 − q−0 þ q−2 Þ�. We assume without
loss of generality that the strong field aμ is polarized
in x1− direction. Next, let us introduce new variables,

X ¼ kqþ

m2
η; X 0 ¼ kq−

m2
η; γ− ¼ q−0 − q−2 : ð33Þ

Observe that these definitions allow us to write z� [see
below Eq. (7)] in the following form:

zþ ¼ −
η3κ

8XX 0 ; z− ¼ η2

mXX 0 ðq−ϵX − qþϵX 0Þ; ð34Þ

where the quantum nonlinearity parameter in 2þ 1 dimen-
sions κ ¼ ηkk0=m2 has been introduced. Further, we
perform a substitution q−2 → γ−, which allows us to write
the integral in Eq. (32) as

Rη≫1 ¼
e2a020 m

2

8π

η

m2

Z
∞

−∞

dq−1
X

Z
λ

0

dγ−

γ−
jMn¼n�

η≫1 j2; ð35Þ

where λ ¼ ω0 − k02, and

jMn¼n�
η≫1 j2 ¼ J̃2n� − η2

�
1 −

κ2

4XX 0

�
½ðJ̃ 1

n� Þ2 − J̃n�J̃
2
n� �:

ð36Þ
The matrix element above still contains generalized Bessel
functions. In order to proceed, we have calculated their
asymptotic expansions in the relevant limits,7 following the
lines of Appendix B in Ref. [3] and paying special attention
to modifications arising from the reduced dimensionality. It
turns out that the latter induces some minor changes but
does not affect the derivations substantially. Having this in
mind, we find that for η ≫ 1 and η ≫ κ1=3, the square of the
matrix element approximates

jMn¼n�
η≫1 j2≈

2

π

�
−

1

4zþsin2ðx0Þ
�

2=3

×

�
Φ2ðzÞ−

�
1−

κ2

4XX 0

��
Φ2ðzÞþΦ02ðzÞ

z

��
;

ð37Þ

with z ¼ ð−4 sin2ðx0ÞzþÞ2=3
η2 sinðx0Þ . Moreover,ΦðzÞ stands for the Airy

function [3]. Observe that in the equation above, a new
substitution involving x0 was introduced: cosðx0Þ ¼
− ω

κm3 ðq−1 γþ − qþ1 γ
−Þ, with γþ ¼ qþ0 − qþ2 , γþ þ γ− ¼ λ

and x0 ∈ ½0; π�. Furthermore, we substitute X 0 ¼ ηω
m2 γ−

and define X 0 ¼ κ
2
½1þ tanhðϑÞ�, X ¼ κ

2
½1 − tanhðϑÞ�.

Notice that the integral over X 0 is defined over the interval
½0; κ�. As the integrand is symmetric in X 0 and X with
X 0 þ X ¼ κ, we can write

R
κ
0 dX

0… ¼ 2
R κ=2
0 dX 0….

Therefore, the integration over ϑ will run from 0 to ∞.
Having these in mind, we obtain

Rη≫1 ≈
e2a020 m
8π

8

π

Z
π=2

0

dx0

Z
∞

0

dϑ
ch2ðϑÞ

ffiffiffi
z

p

×
�
Φ2ðzÞ þ sh2ðϑÞ

�
Φ2ðzÞ þΦ02ðzÞ

z

��
; ð38Þ

with z ¼ ð2ch2ðϑÞκ sinðx0ÞÞ
2=3

. We remark that using the relations

Φ02ðzÞ=z ¼ 1=ð2zÞd2Φ2ðzÞ=dz2 −Φ2ðzÞ and Φ2ðzÞ ¼
1

22=3
ffiffi
π

p
R
∞
0

dtffiffi
t

p Φðtþ 22=3zÞ, combined with the defining

equation for the Airy functions [71], allows us to write
the rate as a function depending linearly on the Airy
function of shifted argument tþ 22=3z,

Rη≫1 ≈
e2a020 m
8π

8

22=3π3=2

Z
π=2

0

dx0

Z
∞

0

dtffiffi
t

p

×
Z

∞

0

dϑ
ffiffiffi
z

p
ch2ðϑÞ

�
1þ 21=3sh2ðϑÞ

z

�
Φðtþ 22=3zÞ:

ð39Þ

For derivation of asymptotes, we come back to Eq. (38)
and start with considering κ ≪ 1. Since the Airy functions
decrease monotonically, the largest contribution to the
integral in Eq. (38) results from the region close to
ϑ̃ ¼ 0 and x̃0 ¼ π=2. Hence, we expand Φ and Φ0 for
large arguments as 1=κ ≫ 1,

Φ2ðzÞ ¼ z
3π

K2
1=3

�
2

3
z3=2

�
!z→∞ z−1=2

4π
e−

4
3
z3=2 ; ð40Þ

Φ02ðzÞ ¼ z2

3π
K2

2=3

�
2

3
z3=2

�
!z→∞ z1=2

4π
e−

4
3
z3=2 ; ð41Þ

with the modified Bessel functions of the second kind
KνðxÞ [67]. Taking into account the expansions above, we
further expand all involved functions in ϑ̃ and x̃0 and
perform the remaining integrations, ending up with

Rη≫1;κ≪1 ≈
e2a020 m
8π

3κ

8
ffiffiffi
2

p e−
8
3κ: ð42Þ

7In order to exploit the large argument behavior, the Bessel
functions are written in their integral representation J̃nðz−; zþÞ ¼
1
πRe½

R
π
0 dθefðθÞ�, with fðθÞ ¼ −iz− sinðθÞ − izþ sinð2θÞ þ inθ,

and the integration is performed asymptotically via the method
of steepest descent [69] by expanding fðθÞ around the saddle
point. Since we are interested in deriving asymptotic formulas for
both κ ≪ 1 and κ ≫ 1, an expansion up to the third order term is
needed [70].
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Comparing the equation above with its 3þ 1 dimensional
analog [as given in Eq. (A4) in Appendix A], we see that
the power linked to the quantum nonlinearity parameter κ in
the preexponential factor is equal to 1 rather than 3=2. This
difference comes from the reduced dimensionality of the
phase space: Similarly, as in QED3þ1, the integrand in this
limit depends on κ solely through the exponential function
e−

4
3
z3=2 , and integration over each variable provides a factor

κ1=2. Since in 2þ 1 dimensions z does not depend on a
variable responsible for a dimension orthogonal to the
plane spanned by photon polarization and propagation
vectors, we obtain a power of 1=2 less in the quantum
nonlinearity parameter than in 3þ 1 dimensions.
Establishment of the asymptotic formula for κ ≫ 1

demands a more elaborated procedure. To this end, we
substitute κ sinðx0Þ ¼ p and chðϑÞ ¼ u in Eq. (38),

Rη≫1;κ≫1 ≈
e2a020 m
8π

16

3π2

Z
κ

0

dp

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − p2

p Z
∞

1

duffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 1

p

×

�
u2K2

1=3

�
4u2

3p

�
þ ðu2 − 1ÞK2

2=3

�
4u2

3p

��
;

ð43Þ

and split the integration over p into two intervals: ½0; p0�
and ½p0; κ�, with p0 ≪ κ. Then, the contribution from the
first interval will be negligible as it scales with κ−1,

Z
p0

0

dp

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − p2

p … ≈
1

κ

Z
p0

0

dp
p

… ∼
p4=3
0

κ
≪ 1: ð44Þ

For the extant integral, we perform a transition to a new
variable t ¼ 4u2=3p, whereas p remains unchanged. As a
consequence,

Rη≫1;κ≫1 ≈
e2a020 m
8π

4ffiffiffi
3

p
π2

Z
κ

p0

dpffiffiffiffi
p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − p2

p Z
∞

4
3p

dt

×

"
3p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t

3pt
4
− 1

s
K2

1=3ðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3pt
4
− 1

t

s
K2

2=3ðtÞ
#
:

ð45Þ

At this point, it is suited to split the integration over t into
two sectors:

Z
∞

4=3p
dt… ¼

Z
t0

4=3p
dt…þ

Z
∞

t0

dt…: ð46Þ

Here, the parameter t0 satisfies the conditions 4=3κ ≪
4=3p0 ≪ t0 ≪ 1; 3κt0=4 ≫ 3p0t0=4 ≫ 1. Let us consider
firstly the contribution defined over ½t0;∞�. In this region,
3pt=4 ≫ 1 holds, and we obtain approximately

Z
∞

t0

dt… ≈
Z

∞

t0

dt

ffiffiffiffiffiffi
3p
4

r
ðK2

1=3ðtÞ þ K2
2=3ðtÞÞ

≈
ffiffiffiffiffiffi
3p
4

r
3Γ2ð2

3
Þ

22=3t1=30

; ð47Þ

where the smallness of t0 has been used [t0 ≪ 1], and ΓðxÞ
denotes the gamma function [67].
Now, let us turn our attention to the contribution in

Eq. (46) defined over ½4=3p; t0�. As in this interval t ≪ 1,
we can use the small argument behavior of the modified
Bessel functions KνðtÞ ≈ ΓðνÞ=2ðt=2Þν [67] and, conse-
quently, perform the integration over t. Taking advantage of
the fact that 4=3pt0 ≪ 1 and t0 ≪ 1, we arrive at

Z
t0

4=3p
dt… ≈ −

ffiffiffiffiffiffi
3p
4

r
3Γ2ð2

3
Þ

22=3t1=30

þ 35=6
ffiffiffi
π

p
210=3

Γ2ð2
3
ÞΓð1

3
Þ

Γð11
6
Þ p5=6

þ 31=6
ffiffiffi
π

p
25=3

Γ2ð1
3
ÞΓð− 1

3
Þ

Γð1
6
Þ p1=6: ð48Þ

We combine both Eqs. (47) and (48) in Eq. (46). As a
consequence, t0 drops out as it should, and the resulting
expression is inserted into Eq. (45). Hence, to the leading
order in κ, we obtain

Rη≫1;κ≫1 ≈
e2a020 m
8π

311=6

21=35π
Γ2

�
2

3

�
κ1=3: ð49Þ

As for the case κ ≪ 1, a deviation with respect to QED3þ1

occurs. Indeed, the presence of the κ1=3 dependence is in
sharp contrast to the well-established χ2=3 behavior so that
the rate in 3þ 1 dimensions manifests [for comparison, see
Eq. (A5) in Appendix A]. It provides the first evidence
that the proper expansion parameter for QED2þ1 in the
strong field [see Eq. (1)] could be g ∼ α2þ1κ

1=3 whenever
g ≪ 1. However, at this point, this statement must be
considered as a conjecture; its confirmation will require a
more elaborative investigation of consecutive terms within
the perturbative expansion [28–31]. While this analysis is
beyond the scope of the present study, some interesting
consequences can be anticipated owing to the super-
renormalizable feature of the theory. Firstly, upon identify-
ing κ ∼ χ ≫ 1, the presence of the 1=3 exponent
would induce a breakdown of perturbation theory softer
than in strong-field QED3þ1 if α2þ1 ∼ α. However, if
α2þ1 ≫ ακ1=3, i.e., for a mass scale of the electric charge
e2=ð4πÞ ≫ mακ1=3, this breakdown in QED2þ1 could be
stronger than in QED3þ1.
The result of this section is summarized in Fig. 4, which

shows the dependence of R on the quantum nonlinearity
parameter κ (blue solid line). This figure depicts, in
addition, the asymptotes for small κ (purple dotted line)
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and large κ (red dashed line) given in Eqs. (42) and (49),
correspondingly.

V. CONCLUSION

In the present work, we have investigated the Breit-
Wheeler pair creation in 2þ 1 dimensional Minkowski
space. Special attention was paid to the domains of small
and large intensity parameter η. We have shown that the
dimensionality plays a crucial role when considering
the process rates, leading to surprising differences when
comparing them to the 3þ 1 dimensional case. We have
found that for η ≪ 1, the low dimensionality causes non-
vanishing contributions to the rate at the threshold when
an even number of strong field photons is absorbed. This
outcome supports and extends the results obtained in a
recent study on band-gapped graphene [43]. As this feature
persists in a Lorentz invariant vacuum, we conclude that in
a honeycomb of carbon atoms, it occurs independently of
the medium.
In the high intensity regime (η ≫ 1), the 2þ 1 dimen-

sionality induces changes in the pair production rate, which
are manifested through a dependence on the quantum
nonlinearity parameter κ different from the one appearing
within the pure QED3þ1 context. On the basis of this
finding, we have argued that the so far accepted criteria
within the strong field QED3þ1 community on the appli-
cability of perturbation theory might be subject to mod-
ifications as the spacetime dimensionality changes. Indeed,
we have seen that the super-renormalizable character of
QED2þ1 constitutes an aspect to take into account in this
regard because, once the electron mass becomes smaller
than the energy scale linked to the square of the electric
charge, the effective fine-structure constant is no longer a
small parameter, and a breakdown of perturbation theory

could take place even for quantum nonlinearity parameter
of the order of unity.
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APPENDIX A: STRONG-FIELD BREIT-WHEELER
PROCESS IN QED3 + 1

Following [3], the differential pair production rate per
volume in QED3þ1 for a linearly polarized strong laser
field reads,

dR3þ1
⊥;k ¼ e2m2

8ω0Vπ2
X∞
n≥n0

δnkþk0;qþþq−
d3q−

q−0

d3qþ

qþ0
w⊥;k; ðA1Þ

with

wk ¼ σJ̃2n − ξ2
�
1 −

ðkk0Þ2
4kqþkq−

�
½ðJ̃ 1

nÞ2 − J̃nJ̃
2
n�;

w⊥ ¼ ð1 − σÞJ̃2n þ ξ2
ðkk0Þ2

4kqþkq−
½ðJ̃ 1

nÞ2 − J̃nJ̃
2
n�; ðA2Þ

and σ ¼ −ξ2ð z2−
64z2þ

þ 1
2
þ n

4zþ
Þ. Here, the subscripts k;⊥

denote the cases of parallel and perpendicular polarization
of the quantized photon, respectively, when compared to the
polarization of the strong field. Notice that in 2þ 1 dimen-
sions for counterpropagating photons, only parallel alignment
is allowed, and σ ¼ 1 holds. When taking this point into
account, one finds the similarity of dR3þ1

k with Eq. (18) when

adjusting the prefactors (1=2ω0V ≡ a02
0 =4, with a0

0 denoting
the field amplitude in 3+1 dimensions), the dimension of the
delta function, substituting the four vectors with three vectors,
and ξwith η. Usually, in 3þ 1 dimensions, one averages over
the polarizations of quantized photons obtaining the unpo-
larized differential rate per volume,

dR3þ1 ¼ 1

2

�
dR3þ1⊥ þ dR3þ1

k

�
: ðA3Þ

In the limit ξ ≫ 1, we find f see Eqs. (36’) and (36”) in
Ref. [3]g for χ ≪ 1,

R3þ1
k ¼ 3e2m2

32ω0V

�
χ

2π

�
3=2

e−8=ð3χÞ; R3þ1⊥ ¼ 2R3þ1
k ; ðA4Þ

and

R3þ1
k ¼ 27Γ7ð2

3
Þe2m2

56π5ω0V

�
3χ

2

�
2=3

; R3þ1⊥ ¼ 3

2
R3þ1
k ðA5Þ

10-1 1 10 102 103 104

10-4
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102

FIG. 4. Dependence of the Breit-Wheeler pair production rate
in QED2þ1 on the quantum nonlinearity parameter κ (blue solid
line) at asymptotically large value of η. The corresponding
behavior of R for κ ≪ 1 [see Eq. (42)] and κ ≫ 1 [see
Eq. (49)] are plotted in purple dotted and red dashed lines,
respectively.
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for χ ≫ 1. The expressions above are to be compared with
their 2þ 1 dimensional analogs in Eqs. (42) and (49).

APPENDIX B: PAIR CREATION BY TWO
PHOTONS IN 2 + 1 DIMENSIONS

In 2þ 1 dimensions, the S-matrix element that describes
the electron positron pair creation out of two photons looks
similar to its counterpart in QED3þ1,

Sfi ¼ −
ie2

A2

ffiffiffiffiffiffiffiffiffiffiffiffi
m2

pþ
0 p

−
0

s ffiffiffiffiffiffiffiffiffiffiffiffi
1

22ωω0

r
ð2πÞ3δkþk0;pþþp−Mp; ðB1Þ

with

Mp ¼ ūp−

�
=ϵ=ϵ0

=k0 − pþ −mþ i0
þ =ϵ0=ϵ
=k − pþ −mþ i0

�
vpþ :

ðB2Þ

Here, the fermion propagator in 2þ 1 dimensions reads,

SFðx − yÞ ¼
Z

d3p
ð2πÞ3

eipðx−yÞ

p −mþ i0
:

The probability rate associated with the perturbative pair
creation results from Eq. (12) when substituting q− → p−

and qþ → pþ. Explicitly,

dRγγ0 ¼
e4

A2

m2

8πωω0 δkþk0;pþþp− jMpj2
d2p−

p−
0

d2pþ

pþ
0

; ðB3Þ

where the square of the S-matrix element is

jMpj2

¼ 1

16m2
Tr

��
=ϵ
=k0− =pþ þm

k0pþ =ϵ0 þ=ϵ0
=k− =pþ þm

kpþ =ϵ

�
ð=pþ−mÞ

×

�
=ϵ0
=k0− =pþ þm

k0pþ =ϵþ=ϵ
=k− =pþ þm

kpþ =ϵ0
�
ð=p−þmÞ

�
:

ðB4Þ

Using the properties of the gamma matrices (see footnote 5)
and the energy-momentum conservation, the expression
above reduces to

jMpj2 ¼
1

m2

� ðkk0Þ2
4kpþkp− − 1þ 2m2kk0

kpþkp− −
m4ðkk0Þ2
ðkpþkp−Þ2

�
:

ðB5Þ

We note that the form of jMpj2 differs from its 3þ 1

dimensional counterpart (see [72]). When inserting
Eq. (B5) into Eq. (B3), we obtain the differential rate,

dRγγ0 ¼
e4a20a

02
0

32π
δkþk0;pþþp−

d2p−

p−
0

d2pþ

pþ
0

×

� ðkk0Þ2
4kpþkp− − 1þ 2m2kk0

kpþkp− −
m4ðkk0Þ2
ðkpþkp−Þ2

�
;

ðB6Þ

where the relation að0Þ20 ≡ 2=ωð0ÞA has been used. This
expression coincides with Eq. (27), provided the intensity
parameter η ¼ ea0=m is identified.
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