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Anomaly-free Abelian gauge symmetries with Dirac scotogenic models
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We perform a systematic analysis of standard model extensions with an additional anomaly-free gauge
U(1) symmetry, to generate Dirac neutrino masses at one loop. Under such symmetry, standard model
fields could either transform or be invariant, corresponding to an active U(1)y or a dark U(1),, symmetry,
respectively. Having an anomaly-free symmetry imposes nontrivial conditions to the number and charges
of the unavoidable new states. We perform an intensive scan, looking for nonanomalous solutions for a
given number of extra chiral fermions. In particular, we concentrate on solutions giving rise to scotogenic
neutrino masses via the effective Dirac mass operator. We study the cases where the Dirac mass operator
with dimension 5 or 6 is mediated by Dirac or Majorana states and corresponds to an active U(1) or a dark

U(1), symmetry. Finally, we comment on the solutions featuring no massless chiral fermions.
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I. INTRODUCTION

The standard model (SM) of particle physics is a very
successful theory, even though it has to be extended in
order to account for neutrino masses and dark matter (DM).
The interpretation of neutrino experimental data in terms of
neutrino oscillations is compatible with both Majorana and
Dirac neutrino masses [1], with no theoretical preference
for either of the possibilities. However, most of the
proposals in the literature assume that neutrinos are
Majorana in nature (see Ref. [2] for a review), whereas
mass generation mechanisms for Dirac type neutrinos are
less studied but have recently received increased attention
(see, i.e., Refs. [3-43]).

To explain Dirac neutrino masses, right-handed neutri-
nos (RHNs) have to be introduced; however, that is not
enough. An extra local symmetry is also required to
guarantee proper total lepton number conservation [7].
Even so, the resulting Yukawa couplings can turn out to be
too small, of the order O(107'%) or even smaller, if Dirac
neutrino masses are induced directly from the SM Higgs
mechanism [25,44]. Nevertheless, if the symmetry forbids
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the tree-level contribution driven by the SM Higgs, a Dirac-
seesaw mechanism can be implemented. For example, the
type-I Dirac seesaw could appear in the context of
anomaly-free gauge U(1),_; symmetries [7]. At one loop,
the heavy particles in the radiative seesaw can be fully
associated with an Abelian gauge dark symmetry U(1),
with the lightest of them as a DM candidate [32,45-47], as
well as to an active Abelian gauge symmetry U(1)y, like a
U(1)g_; [24,25,32]. Until now, the studies of one-loop
Dirac neutrino masses have typically focused on finding
specific anomaly-free solutions of these two kinds of
symmetries (see, e.g., Refs. [30,31,33,42,48,49]). Here,
we present a complete set of relevant anomaly-free sol-
utions to the general problem of the generation of Dirac
neutrino masses at one loop with chiral singlet fermions.
Each of the solutions leads to a unique model with its
specific phenomenological implications. Our method can
be easily applied to find the full set of anomaly-free
solutions to a well-defined phenomenological problem.
In this work, we look for anomaly-free solutions to SM
extensions with an additional U(1) gauge symmetry, giving
rise to scotogenic Dirac neutrino masses. For that purpose,
in Sec. II we study the conditions to have a nonanomalous
U(1) gauge symmetry. In particular, we show that the case
where the SM is extended with an active Abelian gauge
symmetry U(1)y with nonvanishing generation indepen-
dent charges and a set of N’ singlet chiral fermions shares
the same anomaly-free solutions as an Abelian gauge dark
symmetry U(1), with N’ + 3 singlet chiral fermions
having at least three equal charges. In Sec. III, we focus
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on solutions giving rise to scotogenic neutrino masses via
the effective Dirac mass operator. For that purpose, we
perform an intensive scan, looking for nonanomalous
charge assignments for a given number of extra chiral
fermions. We study the cases where the Dirac mass
operator, with dimension 5 or 6, is mediated by Dirac or
Majorana states and corresponds to an active U(1)y or a
dark U(1), symmetry. We pay special attention to the
solutions where all chiral fermions obtain mass via the
spontaneous symmetry breaking (SSB) of the U(1).
Finally, in Sec. IV our conclusions are presented.

II. ANOMALY CONDITIONS

We consider an extension of the SM with an additional
U(1)y gauge symmetry and N’ right-handed chiral fields v,
singlets under the SM SU(3), ® SU(2), ® U(1), group,
with charges n, under the U(l)y, where p =1,...,N'".
Additionally, we assume that the SM right-handed chiral
fermions transform under the U(1),, with charges denoted
with the same name of the field.' To avoid having an
anomalous U(1)y, the three linear anomaly conditions are

[SU3) J2U(1)y: [Bu+3d) + 3 x20] =0, (1)

[SU2),PU(1)x: 2L +3 x2Q] =0, (2)

(1), 2U(1),: [(—z)ze +3 <‘3i)2u 43 (- %)261]
+ [2(—1)2L +3x z(%)zg] —0. (3)

As they only depend on the SM fermions, three of
their X charges can be expressed in terms of the other
two [32,50-52], chosen to be e and L, as

2L
Uu=—e—=
3 9

We note that the quadratic anomaly condition in U(1)y is
trivially satisfied. However, the mixed gauge-gravitational
[Grav]>U(1)y and the cubic [U(1)y]? Anomaties do depend on
the extra fermion charges n,, and therefore two additional

conditions have to be imposed in order to avoid an
anomalous U(1)y [32],

N’ N’
> on,+3m=0. Y ni43m=0, (5
p=1 p=1

where m = e 4+ 2L. Equation (4) can be rewritten as

lQ and L are the X charges of the fermion doublets Q" and LT,
respectively.

4L 2L
Uu=—-m, d=m-—

L
3 3 0 3 e=m (6)

Finally, we note that the SM Higgs must have a X charge
h=-e—L=L-m, (7)

to guarantee that SM quarks and charged leptons acquire
masses through the standard Higgs mechanism.” Along
these lines, we also assume that the singlet chiral fermions
v, only acquire mass through the SSB of the extra U(1)y
symmetry. This excludes solutions with vectorlike states.
We note that the existence of fields charged under both
hypercharge and U(1)y induce at loop level the kinetic
mixing operator £ D §B*X,,, where B* and X*” are the
field strengths related to the U(1), and the extra U(1)y,
respectively. The dimensionless parameter € depends on the
masses of the particles in the loop, as well as their specific
charge assignment and the gauge couplings under the two
U(1) symmetries [53-55].

It is interesting to note that the conditions in Eq. (5) are
completely equivalent to the ones coming from a scenario
where the SM is extended with a dark U(1), gauge
symmetry with N = N’ + 3 right-handed singlet chiral
fermions, N’ of them with the charges n, and three with
charge m, and where the SM is invariant (hence a dark
symmetry). Even if comparable, there is a major technical
advantage of the latter approach: if the SM is extended with
an additional dark U(1), gauge symmetry (under which it
is uncharged) and N right-handed chiral fields singlets
under the SM group, the U(1),, is not anomalous if the
Diophantine equations

N

an:0 and

N

n, =0 (8)
p=1 p=1
coming from the mixed gauge-gravitational [Grav]*U(1),,
and cubic [U(1)]? conditions are fulfilled. It is well-known
that the solution of Eq. (8) is highly nontrivial [4,8,56-59].
However, for a U(1) symmetry, it can be parametrized as a
function of two sets of integers £ and k, with dimensions
(N-3)/2and (N —1)/2forNoddorN/2 —1and N/2 — 1
for N even [58]. We have implemented an official PYTHON
package called Anomalies” to obtain the solution associated
with any set of integers # and k.

In general, a very large number of solutions can be
found for a given N. For example, for N <9, O(10%)
different combinations of # and k exist, if one allows
charges to reach a maximum absolute value of 30.
However, the number of chiral solutions (i.e., without

’In particular, if h = 0 a gauge symmetry with SM-fermion
charge X = m(B — L) is obtained, where B — L are the baryon-
minus-lepton charges.

*See Ref. [60].
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featuring vectorlike states) reduces to around 30000. We
note that nearly half of them have at least a pair of repeated
charges, corresponding to a requirement for having at least
a couple of RHNs. This large number of solutions is too
large in practice to perform a phenomenological study.
However, a manageable set of solutions can be found by
imposing further constraints. For example, one can look for
realizations of the effective Dirac mass operator of dimen-
sions 5 and 6 through scotogenic models mediated by
heavy chiral fermions. This possibility will be explored in
the next section.

II1. DIRAC SCOTOGENIC MODELS

In this section, we look for anomaly-free U(1), or
U(1)y gauge extensions of the SM, with N or N -3
singlet chiral fermions, respectively, realizing one-loop
effective Dirac neutrino mass operators [61,62]. In the
two-component spinor notation, they can be written as

. §\ 6
Letr = h (Vo) T€ap Ly H (X) +H.c,

with i=1,2,3, 9)
and 6 = 1 or 2 for dimension 5 (D-5) or 6 (D-6) operators,
respectively. Here h%' correspond to dimensionless induced
couplings, vp, are at least two RHNs (o = 1,2, ...) with the
same D or X charge v, L; are the lepton doublets with X
charge —L, H is the SM Higgs doublet with X charge
h =L —m, S is the complex singlet scalar responsible for
the SSB of the anomaly-free gauge symmetry with D or X
charge s = —v/dor s = —(v + m) /8, respectively, and A is
a scale of new physics, which is parametrically the typical
mass scale of the new (heavy) states. In general, after the
SSB, a remnant Z | discrete symmetry is left, which can
guarantee the stability of a potential DM candidate [46,63].
Additionally, we note that the SM Higgs boson can mix
with the scalar S, after symmetry breaking. In general, the
mixing between these two bosons can lead to a stabilization
of the metastable electroweak vacuum of the SM [64].
The left (right) panels of Fig. 1 present the topologies
realizing the D-5 (D-6) effective Lagrangian in Eq. (9), if
one only allows SSB masses for the singlet chiral fermions.
The different diagrams are labeled following the notation
used in Ref. [21]. Here X; and X, correspond to the singlet
chiral fermion fields. Without loss of generality, one can
choose X; to be a right-handed field yz with D or X
charge r. After the SSB of the extra Abelian symmetry, a
heavy Majorana or Dirac mediator is generated depending
if one chooses X, to be the same y or a new (i)', with D
or X charge [. In the last two rows, X3 is a doublet
vectorlike fermion with an additional coupling to the Higgs
and a singlet chiral fermion. Finally, Y; corresponds to
either singlet or doublet inert scalars according to the

specific vertex. For example, for the topology T1-3-E, Y is
an inert doublet scalar, while Y, is an inert singlet scalar.
The realizations of the D-5 operator featuring heavy
Dirac (Majorana) mediators are shown in the left (right)
panel of Fig. 2. The realizations of the D-6 operators are
almost identical, but with an additional extra external
singlet scalar line and are therefore not shown. For
example, the upper left diagram in Fig. 2, labeled as T1-
3-E-D, is realized for a dark U(1),, symmetry if the flux of
the D charges in each vertex satisfy
s=r+1, c=n, (10)

n=r, c=—-l—-v,

and therefore, the fermion chiral D charges obey
v+Il+r=0. (11)

The scalar D charges can be expressed as a function of / and
r as
s=-v=r+I, c=n=r. (12)

In general, for realizing one-loop Dirac neutrino masses,
one requires

v+6(l+r)+m=0, (13)

with m = 0 for a gauge U(1), symmetry, and [ = r for
realizations with massive Majorana mediators.

As mentioned previously, in order to limit the total
number of solutions that cancel the anomaly induced by the
additional U(1)y or U(1), symmetries, the following
restrictions are taken into account:

(1) By construction, all new chiral fermions have to be
charged under U(1)y or U(1), symmetries, i.e.,
solutions with vanishing charges are disregarded.

(2) For the chiral fields, the maximal charge allowed (in
absolute value) is 30.

(3) Solutions with vectorlike fermions are disregarded,
i.e., the ones containing two opposite charges.

(4) At least two charges have to be equal. Their
corresponding fields are identified with the RHNS.

(5) Inthe case of a U(1), symmetry, another set of three
equal charges is required.

(6) We restrict ourselves to N <9 fields, with charges
satisfying the two Diophantine conditions in Eq. (8),
and take the minimal charge (in absolute value) to be
positive. We note that there are no solutions for
N <5 with at least two equal charges [5,65].

(7) The charge assignment may not allow all chiral
fields to acquire masses via the SSB. We only
consider solutions that have at most two massless
chiral fields.

(8) We want RHN masses to be generated radiatively.
That implies that all vertices between S, the RHN,
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FIG. 1.
Eq. (9). Here we follow the notation used in Ref. [21].

and the other chiral fields should be forbidden by the
symmetries.

(9) A DM candidate should flow in the loop, in order to

have a scotogenic solution.

Additionally, we note that, for a fixed number of chiral
fields and a given topology, different solutions could share
the same qualitative behavior. For example, there are four
solutions for a U(1),, symmetry with Dirac mediators, N=6
chiral fields, and neutrino masses generated via the D-5
operator: (1,-2,-3,5,5,-6), (2,-3,-10,13,13,-15),
(3,-4,-21,25,25,-28), and (3,-5,-12,17,17,-20).
However, they all feature the same phenomenology, i.e.,
two RHNs and four other massive chiral fermions.
Therefore, in this case only one solution (the one with
the smallest charge in absolute value) will be reported in the
following.

The solutions of the Diophantine equations satisfying all
the previously enumerated conditions are shown in Tables I
and II for the D-5 and D-6 operators, respectively. The

———— ==
L i Y, VR

Ys
|

T1-2-B-D-6

Topologies leading to one-loop Dirac neutrino masses via the dimension 5 (left) or dimension 6 (right) operators described in

solutions for N extra chiral fermions are parametrized as a
function of two sets of integers #Z and k (first three
columns). The fourth column shows the charge assign-
ments, whereas the fifth shows the general common
denominator (GCD) of the original solution.* The last four
columns correspond to the charges for the RHNs in the
cases of U(1), symmetry with a Dirac mediator, U(1),
symmetry with a Majorana mediator, U(1), symmetry with
a Dirac mediator, and U(1)y symmetry with a Majorana
mediator.” We note that, even if most of the solutions
contain at least one massless chiral fermion, there are few
solutions without (highlighted in bold): six in the D-5 case
and three in the D-6 case. Regarding these solutions
without massless fermions, a few comments are in order:

*The solutions presented were normalized to have a GCD
equal to 1.

A small set of the solutions has already been explored in
Refs. [4,25,32,42,43,66].

095032-4
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FIG. 2. Diagrams for the D-5 realizations of Dirac neutrinos mass with Dirac heavy mediators (left) and Majorana heavy mediators
(right). Similar diagrams, but with an extra external singlet scalar line, are expected for the D-6 realization.

(@)

(ii)

For a U(1),, symmetry, a new solution for the D-5
operator (0 =1) with a Dirac mediator and a
minimal set of N =6 fermion chiral fields was
found, corresponding to (1, -2, -3, 5, 5, —6).6 In
this case, there are two RHNs with charges v = 5.
The other four chiral fermions combine in pairs
[(1, —6) and (-2, —3)] to form a couple of Dirac
fermions that obtain mass via the extra scalar S with
charge s = —v/6 = —5. The two Dirac fermions are
stable and give rise to a multicomponent DM
scenario. The solution mediated by a Majorana state
is not viable because it will require a fermion with a
charge r = —v/2 = —5/2, which is absent. Finally,
there cannot be solutions for the U( 1), symmetry, as
there is no charge repeated three times.

The solution with N = 9 fermion chiral fields with
charges (1,1, —4,-5,9,9,9, —10, —10) is recovered
[42]. It includes three RHNs with charge 9, together
with two pairs (1, —10) and one pair (—4, —5). This
scenario also features multicomponent DM.

®This solution was very recently presented in Ref. [43].

(iif)

(iv)

)

(vi)

095032-5

In addition, we found another new solution with
N=9:(, -2,3,4,6, -7, =7, =7, 9). It includes
three RHNs with charge —7 and three massive
singlet Dirac fermions (1, 6), (=2,9), and (3, 4),
all of which can be independent DM particles.
The solution with N = 9 correspondingto (1, -2, -2,
-2, 5, =7, 8,9, —10), contains three RHNs with
charge —2. The condition in Eq. (13) is fulfilled for
the Dirac mediator (—7,9) and for the Majorana
mediator associated with the chiral fermion of
charge 1. Both of them acquire masses from the
SSB of the scalar singlet with charge 2. This scalar
also generates a mixed sector of three chiral fermions
(5,-7,9) and a massive Dirac fermion (8, —10).
The last solution for N = 9 corresponds to a U(1)y
symmetry and a Dirac mediator and has the charge
assignment (1, 2, —6, —6, —6, 8, 9, 9, —11). It
includes two RHNs with charge 9 and four chiral
fermions that pair like (1, 2) and (8, —11) to get a
mass via the scalar § with charge —3.

Let us consider now the D-6 operators. For a U(1)y
symmetry with Dirac mediators, there is a new
solution with N =7 corresponding to (3, 3, 3,
-5, =5, =7, 8). It includes two RHNs with charge
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TABLE L.

Set of charges satisfying the Diophantine equations together with the conditions enumerated in the text, for N extra chiral

fermions, featuring Dirac neutrino masses generated by D-5 operators. The last four columns correspond to the charges for the RHNs in
the cases of U(1),, or U(1)y symmetries and Majorana (Maj.) or Dirac mediators. The solutions without massless chiral fermions are

highlighted with a bold font.

VR
Solutions u(l), U(l)y
N 4 k Charges GCD Ref. Dirac Majorana  Dirac  Majorana
6 (-1,1) (=2,0) (1,-2,-3,5,5, —6) 1 [43] (5)
7 (=1,1) (-1,0,-1) (1,2,2,-3,-3,-3,4) 1 [43] (=3)
7 (1,-1) (-2,-5,-4) (1,1,-3,-4,6,6,-7) 1 1, 6) (6)
7 (=1,1) (-1,-2,-1) (1,3,-4,5,-6,-6,7) 1 (—6) (—6)
8 (-1,-5,-3) (-6,-4,-7) (1,1,2,3,-4,—-4,-5,6) 1 (-4,1) (—4)
8 (-1,2,-2) (7,4, 0) (1,2,2,2,-3,-5,-6,7) 1 2)
8 1,2, 1) (-5,-10,-11) (1,2,2,4,-5,-5,-7,8) 1 (=5)
8 (1,-3,-2) (-4,-9,-5,-3) (1,3,3,3,-5,-7,-7,9) 1 (=7)
8 (2,-1,0) (-5,-9,-1,0) (1,2,3,5,-6,-6,-9,10) 1 (—6) (—6)
8 (-1,0,-1) (=2,1,-1) (2,-5,-5,-5,7,8,8,-10) 1 [25] 8) ®)
8 (0,-1,0) (-1,-5,-1,1) (1,1,1,-5,-7,11,11,-13) 2 (11)
8 (-4,-1,0) (-1,0,-8.,8) (3,-4,-5,8,8,-11,-12,13) 1 ®) (8)
9 (-2,0,2) (-1,1,0,-1) (1,1,-4,-5,9,9,9,-10,-10) 1 [42] 9) (1)
9 (-4,-5,3) (-2,0,-1,-2) (3,3,-4,5,5,-6,-8,-8, 10) 1 (-8,3,5)
9 (5,0, 1) (-1,-2,0,2) (1,1,-5,-7,12,14, 14, -15,-15) 3 (-15,1,14) (14
9 (1,4,-1) (=2,-5,-4,8) (1,1,1,2,5,-6,-6, -6, 8) 1 (-6,1)
9 (-1,0,1) (=1,1,=-2,-1) (1,-3,-3,-3,-5,8,8,8,-11) 1 (-3,8)
9 (-7,-5,3) (-6,-4,-5,2) (1,-2,-2,-4,7,-9,11,11,-13) 1 (=2,11) (=2)
9 (3,-2,3) (-2,-1,-2,4) (4,4,4,-5,-9,-10,-10,11,11) 1 (—10,11)
9 (-2,-6,5) (-5,-1,-3,-6) (1,1,2,2,3,-5,-6,-6,8) 1 2) (—6)
9 (-2,3,2) (-2,-9,-5,9) (1,-2,3,4,6,-7,-7,-17,9) 1 (-7)
9 (-3,-1,5) (-9,3,-4,-1) (1,2,-3,4,-5,-6,8,8,-9) 1 8)
9 (-8,-7.5) (-9,3,-4,-2) (1,-2,-2,-2,5,-7,8,9,-10) 1 (-2) (=2)
9 (-4,-1,-4) (-3,-5,1,-4) (2,-3,4,4,4,-6,-7,-1.9) 1 “4) (=7)
9 (-3,1,-2) (—4,-3,-6,-3) (2,-3,-3,-3,-5,7,7,8,-10) 1 (=3)
9 (-3,6,5) (-1,-6,2,-7) (2,-3,-3,-3,-6,7,7,11,-12) 2 ()
9 (-4,2,-3) (-2,-5,5,-6) (1,2,-6,-6,-6,8,9,9,—11) 2 ) 9)
9 (1,-1,2) (-2,-1,0,-2) (2,-3,4,6,6,—7,—10,—11,13) 1 (6) ©6)
9 (-2,-1,-3) (-1,-4,-3,-4) (4,4,6,6,-7,—-7,—-7,—12,13) 1 ©6)
9 (-4,1,2) (-1,-4,2,1) (1,-2,-2,-3,-3,-3,14,20,-22) 2 (=2)
9 (1,4, 7) (-1,6,4,-5) (1,-2,-2, 5 =7,-7,14,18,-20) 4 (=2)
9 (8,-1,0) (-1,-6,-3,-6) (1,9,—-12,-21,-21,24,24,24,-28) 18 (24) (—=21)

—5 and an extra scalar with charge 1 that gives mass
to an extra singlet Dirac fermion (-7, 8), which is
also a DM candidate.
There is another solution with N = 9 given by (1, =3,
8, 8,8, —12, =12, —17, 19). It includes two RHNs
with charge —12, an extra scalar with charge 2 that
gives mass to the Majorana pair (1, —3) and the Dirac
pair (—17, 19) as two independent DM candidates.

All other solutions presented in Tables I and IT have either
one or two massless chiral fermions. They can be either extra
relativistic degrees of freedom or additional DM candidates if
they acquire mass from another mechanism.

Finally, the one-loop topologies must be realizations of
the effective operators of D-5 or D-6 in Eq. (9), with a
sufficiently rich h% structure to explain the full neutrino

(vii)

oscillation data. That can be guaranteed by having a rank 2
Dirac neutrino mass matrix via the inclusion of a proper set
of inert scalars for each solution. For example, for the first
solution in Table I corresponding to the charges (1, —2, —3,
5, 5, —6), three possibilities for the charges of the scalar
fields participating in the Dirac neutrino mass loop can be
chosen, as shown in Table III. The labels in parentheses in
the first column refer to the diagrams in Fig. 3.

Before concluding, we note that the presence of #;,’
through the first vertex from left to right in the diagrams of
Fig. 3, i.e.,

"This also applies to the vectorlike fermion doublet in the
realizations of topologies without # (T1-2-A-D and T1-2-A-M) in
Fig. 2.

095032-6
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TABLE II. Same as Table I but for neutrino masses generated via D-6 operators.
VR

Solutions u(l), U(l)y
N 4 k Charges GCD Refs. Dirac Majorana  Dirac  Majorana
6 (-1,-2) (-1,2) (1,1,1,-4,-4,5) 1 [32,43] (—4)
6 (1,-2) (—4,1) (1,-4,-4,9,9,-11) 3 (-4)
6 2,1 (-2,-1,0) (1,-4,-8,14,14,-17) 1 (14)
7 (1,-2,1) (-9,6,3) (1,1,-4,-4,7,8,-9) 1 (—4)
7 3, D (-1,-5,7) (2,2,-4,7,-8,-8,9) 1 2) (-8)
7 (=3,-1) (-2,-3,1) (3,3,3,-5,-5,-7,8) 1 (-5)
7 (=3,-4) (=5,-7,-4) (4,4,5,-7,-8,-9,11) 2 (G))
8 (1,2,-2) (-7.3,0) (1,-7,-7,17,17,19, =20, —20) 6 (—20)
8 1,2, 1) (=5,-10,—11) (1,2,2,4,-5,-5,-7,8) 1 2)
8 (3,2,-2) (—4,-3,4,5) (1,1,-4,-4,-4,12,15,-17) 4 (—4)
8 (—1,2,4) (—4,2,-3,0) (4,4,7,14,—16, —16 —22,25) 4 (G)) (—16)
8 (—10,-5,-15) (-10,-12,12) (5,5,5,-17,-27,-27,28,28) 100 (—27,28)
8 (3,1,-3) (—12,-14,-4) (1,-3,-3,5,-11,12,12,-13) 1 (12) (12)
8 (=2,0,-1) (—4,-3,-2) (1,2,2,-8,-8,12,15,-16) 2 2) (-8)
8 (-2,-5,-4) (-3,-5,-2,0) (2,-3,7,-8,-8,11, 14,-15) 2 (-8) (-8)
8 (0,-9,4) (—4,-6,-7,4) (1,-2,-4,—4,-4,15,22,-24) 2 (—4)
8 (-1,0,-1) ( -9,1,-1) (3,3,3,-7,17,-23,-23,27) 4 (-23)
8 ©, 1, 0) (-1,-4,3,-4) (1,-5,-11,15,-16, 20,20, —24) 2 (20) (20)
9 (3,-4,5) (- 4, -3,1,-3) (1,-3,8,8,8,—12,—-12,-17,19) 4 (-12) (-12)
9 (-2,6,-4) (-8,-7,6,3) (3,3,3,5,-16,22,-23,-23,26) 20 (-23) (-23)
9 (-9,2,3) (-1,-7,6,-9) (1,-4,5,5,-9,-9,-9, 10, 10) 3 ®))
9 (1,4,-1) (-2,-5,-4,8) (1,1,1,2,5,-6,—6, -6, 8) 1 (—6)
9 (-9,6,7) ( 2,4,3,1) (1,1,1,4,-9,-10,-10,11,11) 3 (—10) (—10,11)
9 (-3,-2,-4) (-1,-9,-7,4) (,3, ,—4,—4,8,—-11,-11,13) 2 (—4) (—11,-4)
9 (-3,0,-1) (-4,-1,-6,-4) (2,-3,-3,-8,-9,12,12,14,-17) 3 (12) (12)
9 4, 6, 4) (-3,-4,-3,5) (3,4,-10,-10,-10,12,12,13,-14) 2 (12) (12)
9 (2,7,-4) (-5,-6,3,-6) (1,1,1,-4,—-4,-11,18,26,-28) 50 (-4)
9 (-3,-6,2) (-5,1,7,-8)  (3,-4,-4,-9,-13,16,16,16,-21) 90 (16) (—4)
9 (5,-3,7) (—1,3,2,-4) (5,7,7,-8,-15,-15,-15,17,17) 22 7, 17)
9 (-6,-3,5) (—4,-2,-6,8) (4,7,-8,9,-16,—-16,-16,18,18) 4 (18) (—16) (18)
9 (-2,1,2) (—-6,-8,7,6) (4,4,4,5,—6,—6,—6,—10, 11) 2 (4,-6)
9 (-9,2,-3) (-2,-8,5,2) (1,-2,-2,—4,-4,-4,17,27,-29) 81 (—4)
9 (-5,-4,0) (=2,-1,-4,4) (1,-4,-4,-4,12,-14,15,18,-20) 2 (-4)
9 (2,4,-2) (—1,-4,9,3) (1,-4,-4,-5,7,-9,16,23,-25) 2 (—4) (-4)
TABLE III.  Possible charge assignments to obtain a light Dirac neutrino mass matrix of rank 2, for the first solution of Table I, i.e., (1,

-2,-3,5,5, —6). In the row T1-3-E-D-(I-I) [T1-3-E-D-(II-1)] the second (first) heavy Dirac fermion, from (y;5) ¥z S [(x21) xr1 5],
does not participate directly in the neutrino loop.

Field VRa XR1 (re1 )T m o] XR2 ()(Lz)T Uyl 02 S
T1-3-E-D-(I-1I) 5 -2 -3 -2 -2 1 -6 1 -5
T1-3-E-D-(I-I) 5 -2 -3 -2 -2 1 -6 -2 -2 -5
T1-3-E-D-(II-1I) 5 -2 -3 1 1 1 -6 1 -5

L2 yy(er1) eawnlint +He.,

imply the presence of lepton flavor violating processes, as
for example /; — [y, which is induced at one-loop level

and mediated by the charged scalar 5;". By using the current

(14)

experimental constraint on Br(u — ey) < 5.7 x 10713

at 90% confidence level [67], upper bounds can be

095032-7

established for the product of Yukawa couplings like
yiyii| [32].
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FIG. 3.

IV. CONCLUSIONS

Even if neutrino experimental data are compatible with
both Majorana and Dirac neutrino masses, most of the
proposals in the literature assume that neutrinos are
Majorana. Having a Dirac neutrino requires the addition
of singlet RHNs trivially charged under the SM gauge
group and an extra symmetry spontaneously broken by a
new Higgs field. Additionally, if the symmetry forbids the
tree-level contribution to neutrino masses, a Dirac-seesaw
mechanism can be implemented at loop level, therefore
avoiding the Yukawa coupling being too small. Such
symmetry can be either a dark U(1), under which the
SM fields are all singlets or an active U(1)y if the SM
transforms under its action. Finally, a nonanomalous theory
requires the introduction of a set of singlet fermions, with
well-defined charges under the new symmetry.

Studies on one-loop Dirac neutrino masses have typi-
cally focused on finding specific anomaly-free solutions for
these two kinds of symmetries. In the present work, a
complete set of relevant anomaly-free solutions to the
general problem of the generation of Dirac neutrino masses
at one loop with chiral singlet fermions has been presented.
In particular, we restricted the analysis to solutions satisfy-
ing a set of general conditions enumerated in the text, and
we focused on scotogenic solutions, i.e., the ones with a
DM candidate flowing in the loop. Each of the presented
solutions leads to a unique model with specific phenom-
enological implications. The full set of solutions is shown
in Tables I and II.

We found 32 and 34 sets of charges that realize the one-
loop effective Dirac neutrino mass operator for dimensions
5 and 6, respectively. Solutions corresponding to both
U(l), and U(l)y gauge symmetries and Dirac or

T1-3-E-D-I (i = 1) or T1-3-E-D-TI (i = 2)

Possible contributions to the Dirac neutrino mass matrix.

Majorana mediators were analyzed. We emphasize that,
even if most of the solutions contain one or two massless
chiral fermions, there are few solutions (six and three for
dimensions 5 and 6, respectively) with all extra fermions
getting mass via the spontaneous symmetry breaking of the
new Higgs field. The massless fermions can either con-
tribute to the relativistic degrees of freedom ANy in the
early Universe [32] or acquire masses after the introduction
of an extra singlet scalar, becoming independent DM
candidates [68].

Finally, we note that the methodology presented can be
easily applied to find the full set of anomaly-free solutions
to well-defined phenomenological problems. Additionally,
some particular models presented here are the subject of a
detailed phenomenological study in an ongoing study [69].
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