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The full one-loop corrections, both the weak and QED corrections, to the process eþe− → Zϕ
(ϕ ¼ h0; H0) in the two-Higgs-doublet model (2HDM) at the Higgs factories are presented. Up to the
OðαemÞ level, the virtual corrections are evaluated by using the FeynArts/FormCalc packages. The real
emission corrections are computed using the Feynman Diagram Calculation (FDC) package, and the
collinear divergences are regularized by the electron structure functions. Using the FeynArts/FormCalc and
FDC packages, we study the corrections in the Standard Model (SM) and the 2HDM, respectively. Gauge
dependence arising in the renormalization of mixing angels is removed by using the pinch technique. After
taking into account experimental constraints from the current LHC data, we propose four interesting
benchmark scenarios for future colliders. By using these benchmark scenarios, we evaluate the deviation of
Δσðeþe− → ZϕÞ from their SM values. We also examine Higgs boson decays ϕ → bb̄ and ϕ → τþτ−,
which can have large electroweak (EW) contributions from triple Higgs couplings which are absent in the
SM. It is found that for these benchmark scenarios, both EWand real emission corrections are sizeable and
could be measured at future eþe− colliders such as the ILC, CLIC, and CEPC.
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I. INTRODUCTION

A Higgs-like boson (h) was discovered in the first run
of the Large Hadron Collider (LHC) in 2012 [1,2]. Based on
the data of Run 1, both the ATLAS and CMSCollaborations
have established a Higgs boson mass with mh ¼ 125.09�
0.21ðstatÞ � 0.11ðsystÞ GeV [3]. ATLAS and CMS have
also performed several Higgs coupling measurements to a
precision around 10%–20%, such as Higgs couplings to
dibosons VV with V ¼ W�; Z; γ through a global fit with
input from the measurement of Higgs decaying into two
weak bosons, weak-vector-boson-associated processes, and
vector boson fusion processes [4]. Very recently, ATLAS
and CMS have also measured Higgs couplings to the
fermions of the third generation over 5σ, via the process
pp → Vhðh → bb̄Þ [5,6], the vector boson fusion process
pp → jjhðh → τþτ−Þ [7,8], and pp → tth with combined
Higgs boson decay final states [9,10]. With Run 2 data, a

high precision for these measured Higgs boson couplings
has been achieved [11,12]. These measurements demon-
strate that the SM is consistent with the current Higgs data.
At the LHC, due to large theoretical uncertainties like the

parton distribution function (PDF) and the large exper-
imental background, the precision for the measured Higgs
boson couplings can reach 4%–6% or so at 300 fb−1 [13].
In contrast, due to its clean environment, an eþe− collider
can perform precision measurements on the production
and decay of the observed Higgs boson. For example, at a
240 GeV eþe− collider, the Higgs-strahlung process
eþe− → Zh is the dominant Higgs production channel,
where the Higgs boson can be reconstructed by using the
recoiled Z boson via its leptonic decay [14]. When a
sufficiently large dataset is accumulated, say 1 ab−1, the
projected precision for the vertex ZZh can reach to 0.1% or
so [15]. For a center-of-mass energy of 240–250 GeV and
an integrated luminosity of 250 fb−1 for each of the two
detectors in each year, a total Oð106Þ Higgs bosons can be
produced in a ten-year running (the total integrated lumi-
nosity can be estimated as 5 ab−1), which can lead the
precision of currently measured Higgs couplings to around
one percent level or less [15–19]. At the International
Linear Collider (ILC) experiments [20], the luminosity
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of a Higgs-factory run can be around 250 fb−1 atffiffiffi
s

p ¼ 250 GeV. The production rate of Higgs bosons from
the Higgs-strahlung process can be enhanced when polar-
ized beams [21] are used. However, at

ffiffiffi
s

p ¼ 500 GeV and/
or

ffiffiffi
s

p ¼ 800 GeV, the vector-boson fusion processWW →
h can be dominant [21], and ILC will have the capability to
reach a precision around 1% for most Higgs couplings [22].
Correspondingly, precise theoretical predictions of the
physical observables related to Higgs bosons, like cross
sections and branching ratios, are required.
In this paper, we propose some benchmark scenarios of

the 2HDM after taking into account theoretical constraints
as well as experimental restrictions from recent LHC data.
By using these benchmark scenarios, we will study the
effects of electroweak radiative corrections on the produc-
tion process eþe− → Zϕ (ϕ ¼ h0; H0) and report full next-
to-leading-order (NLO) calculations on the cross section
in the 2HDM by including both virtual corrections up
to one loop and real emissions of one photon. Our results
are consistent with Ref. [23] within the same set of
2HDM parameters. The complete SM one-loop correction
of σðeþe− → ZhSMÞ was calculated for the first time in
Ref. [24], then followed by Refs. [25,26]. Later on, it was
calculated using the GRACE system1 in Ref. [28], and we
reproduced the results for comparison. We find that the EW
corrections of new physics in our benchmark scenarios can
be of the order −10% ∼ −20%, while the contribution of
the real emission has a positive sign. Four benchmark
points are studied in this paper and find that both EW and
real emission corrections are sizeable, and could be the
physical target at future eþe− colliders such as the ILC,
CLIC, and CEPC.
One-loop corrections of the Higgs boson couplings have

been investigated in various models. QCD and electroweak
corrections of hff̄ were calculated in the SM in Refs. [29–
33]. Similar calculations have been done in various models
beyond the SM, like in the minimal supersymmetric SM
(MSSM). Due to their sizeable SUSY-QCD effects, it was
observed that hff̄ couplings can receive large corrections
[34–36]. Moreover, hff̄ couplings had been intensively
studied in the 2HDM [37–39]. In this work, we also
examine the deviations of hff̄ (f ¼ b, τ) in both type-I
and type-II scenarios and find that these deviations are
within the reach of future Higgs factories and are helpful in
distinguishing new physics models.
The plan of the paper is as follows: In Sec. II, we

introduce the benchmark points of the 2HDM model. In
Sec. III, we outline the framework of our calculation and
specify the renormalization scheme we will use. In Sec. IV,
we present the numerical results. We conclude this work
in Sec. V.

II. THE 2HDM AND BENCHMARK POINTS

The 2HDM was first introduced by T. D. Lee [40] in
order to have spontaneous T-parity breaking (or, equally,
CP-parity breaking), and a more comprehensive review can
be found in Refs. [41,42]. Before proposing benchmark
scenarios, we briefly review the main features of the 2HDM
model related to this work.2 The most general renormaliz-
able potential which is invariant under SUð2Þ ×Uð1Þ can
be written as

VðΦ1;Φ2Þ ¼ m2
1Φ

†
1Φ1 þm2

2Φ
†
2Φ2 − ðm2

12Φ
†
1Φ2 þ H:c:Þ

þ 1

2
λ1ðΦ†

1Φ1Þ2 þ
1

2
λ2ðΦ†

2Φ2Þ2

þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ

þ
�
1

2
λ5ðΦ†

1Φ2

�
2

þ ðλ6ðΦ†
1Φ1Þ

þ λ7ðΦ†
2Φ2ÞÞðΦ†

1Φ2Þ þ H:c:Þ; ð1Þ

where Φi, i ¼ 1, 2 are complex SUð2Þ doublets with
four degrees of freedom each, and m2

1, m2
2, and λ1–4

are all real, which follows from the Hermiticity of the
potential. However, the parameters λ5–7 and m2

12 can be
complex in general. Explicit CP violation may arise in the
Higgs sector by considering the imaginary parts of the
above complex parameters. In this work, we focus on our
study in the CP-conserving case, so we can assume all
parameters to be real. Furthermore, for the sake of
simplicity, we only include the soft breaking term propor-
tional to m2

12 and omit the terms proportional to λ6 and λ7,
as these lead to hard Z2 violation.
The Z2 symmetry is defined as ðΦ1;Φ2Þ → ðΦ1;−Φ2Þ,

which was introduced in order to suppress the tree-level
flavor-changing neutral current (FCNC) processes [43,44].
Exact Z2 symmetry will lead to the absence ofΦ2 couplings
into fermions, which makes Φ2 possible as a dark matter
candidate in the so-called inert doublet model [45–47].
However, in this work, we consider the case λ6 ¼ λ7 ¼ 0

but m2
12 ≠ 0, which can allow FCNC processes at loop

level [43,48].
In the CP-conserving 2HDM case, four realizations have

been considered in the 2HDM to avoid FCNC at the tree
level, known as type I, type II, type III (called “lepton-
specific”) and type IV (also called “flipped”) [49,50]. In the
type-I model, the Z2 symmetry is an exact symmetry, and
the Φ1 doublet gives mass to all fermions. In the type-II
model, the Φ1 doublet gives mass to leptons and down
quarks, while the Φ2 couples to up-type quarks. The
MSSM has a type-II Higgs sector. In the type-III model,
all quarks couple to the Φ2 doublet, while all charged

1
GRACE is a system of program packages for automatic

calculation; see [27].

2In this work, we follow the notations of Ref. [39], where more
details can be found.
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leptons couple to the Φ1 doublet. Finally, in the type-IV
model, down-type quarks couple to the Φ1 doublet, while
the rest of the fermions couple to the Φ2 doublet. With
these four arrangements in the flavor space of 2HDM, the
tree-level flavor-changing neutral current can be suppressed
safely.
From the initial eight degrees of freedom, if the SUð2Þ

symmetry is broken, we end up with two CP-even Higgs
states, usually denoted by h0 and H0; one CP-odd A0; two
charged Higgs bosons, H�; and three Goldstone bosons.
After the electroweak symmetry breaking, the potential
in Eq. (1) can be expressed with seven independent
parameters: namely mh0, mH0 , mA0 , mH� , tan β ¼ v2=v1,
sinðβ − αÞ, and λ5 (or, equivalently,m2

12). The angle β is the
rotation angle from the weak gauge eigenstates to the mass
eigenstates in the CP-odd and charged Higgs sector. The
angle α is the corresponding rotation angle for the CP-even
sector. From this potential, the triple Higgs couplings
needed for the present work can be derived, which are
functions of the physical parameters and are given in
Eqs. (B1)–(B8) of Appendix B.
The parameter space of the 2HDM is reduced by the

following theoretical and experimental constraints:
1. Vacuum stability conditions that ensure the potential

is bounded from below, where we use the conditions
derived in Ref. [51].

2. Perturbative tree-level unitarity for scattering ampli-
tudes of Higgs bosons and longitudinal components
of gauge bosons.

3. The perturbativity of all quartic coefficients of the
scalar potential: i.e., jλij ≤ 8π (i ¼ 1;…; 5).

4. EW precision observables (EWPOs): Due to the
contributions of extra Higgs bosons, the universal
parameters S, T, and U provide additional con-
straints on the mass splitting between these Higgs

bosons. To implement the constraints from EWPOs,
we consider the following values [52,53] for S, T,
and U: ΔS ¼ 0.05� 0.11, ΔT ¼ 0.09� 0.13,
and ΔU ¼ 0.01� 0.11.

5. Indirect experimental constraints from B physics
observables, which have been taken into account
by using the SuperIso [54] public code. Several im-
portant experimental values are tabulated in Table I,
which will be used to constrain parameters such as
tan β and the chargedHiggs bosonmass of the 2HDM
significantly.

The 2HDMC public code [59] allows us to check all the
listed constraints above. Furthermore, the proposed bench-
mark scenarios in this paper satisfy two more constraints:
1) the limits obtained from various searches for additional
Higgs bosons at the LHC and other collider data, and 2) the
requirement that there exist a neutral scalar which should
match the measured properties of the Higgs-like boson. We
evaluate the first constraint with the public code HiggsBounds-

5.3.2 [60–64], and the second constraint with the code
HiggsSignals-2.2.3 [65–67].
Here we stress that after the Higgs-like particle discov-

ery, several theoretical studies have performed global-fit
analysis for the 2HDM to pinpoint the allowed regions of
parameter space for a SM-like Higgs h0 [68–75], as well as
for a SM-like Higgs boson H0 [76,77]. Before presenting
our results, we would like to mention that we have
performed a cross-check of the results in Ref. [23] for
the subclass of Yukawa corrections considered there and
found perfect agreement.
To explore the effect of new physics in the 2HDM in

our following study, we propose four benchmark points
(BPs), as shown in Table II, based on the best fit from the
latest results of Higgs data using the HiggsBounds and
HiggsSignals public codes.

TABLE I. Experimental results of the observables combined by the Particle Data Group (PDG) and/or Heavy
Flavor Averaging Group (HFAG) Collaborations in Refs. [52–56]. As for B̄ðB0

q → μþμ−Þ, the combined results
from the LHCb and CMS Collaborations are shown as given in Ref. [57]. Reference [58] is used for constraints from
ðg − 2Þμ data.

Observable Experimental result SM contribution Combined error at 1σ

BðK → μνÞ=Bðπ → μνÞ 0.6357� 0.0011 [52] 0.6231� 0.0071 0.0071
B̄ðb → sγÞEγ>1.6 GeV ð3.32� 0.16Þ × 10−4 [55] ð3.36� 0.24Þ × 10−4 0.29 × 10−4

BðB → τνÞ ð1.14� 0.22Þ × 10−4 [56] ð0.78� 0.07Þ × 10−4 0.23 × 10−4

BðD → μνÞ ð3.74� 0.17Þ × 10−4 [52,56] ð3.94� 0.13Þ × 10−4 0.21 × 10−4

BðDs → τνÞ ð5.55� 0.24Þ × 10−2 [52,56] ð5.17� 0.11Þ × 10−2 0.26 × 10−2

BðDs → μνÞ ð5.57� 0.24Þ × 10−3 [52,56] ð5.28� 0.11Þ × 10−3 0.26 × 10−3

B̄ðB0
s → μþμ−Þ ð2.8� 0.7Þ × 10−9 [57] ð3.66� 0.28Þ × 10−9 0.75 × 10−9

B̄ðB0
d → μþμ−Þ ð3.9� 1.5Þ × 10−10 [57] ð1.08� 0.13Þ × 10−10 1.50 × 10−10

ΔMs ð17.757� 0.021Þ ps−1 [55] ð18.257� 1.505Þ ps−1 1.5 ps−1

ΔMd ð0.510� 0.002Þ ps−1 [55] ð0.548� 0.075Þ ps−1 0.075 ps−1

Δ0ðB → K�γÞ ð5.2� 2.6Þ × 10−2 [52] ð5.1� 1.5Þ × 10−2 3.0 × 10−2

δaμ ð261� 80Þ × 10−11 [58] � � � 80 × 10−11
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To demonstrate the impact of experimental data as well
as theoretical constraints upon the parameter spaces, we
perform a scan on sinðβ − αÞ= cosðβ − αÞ and the tan β
plane. The results are shown in Fig. 1, where we project the
LHC constraints discussed above onto allowed regions at a
95% confidence level (C.L.) (in yellow), as well as at a
68% C.L. (in green) in the [sinðβ − αÞ; tan β] plane for h
being SM-like for type-I (upper-left panel) and type-II
(upper-right panel) 2HDM. In the lower plots, the heavier
Higgs boson H is the SM-like Higgs boson with the same

coding color. The four selected benchmark points are given
in Table II, each of which corresponds to a red star in the
plots of Fig. 1.
Concerning the mass of the charged Higgs boson, here

we would like to point out that a light charged Higgs boson
less than 200 GeV can be consistent with the current LHC
Higgs data. As is well known, in the framework of 2HDM-
II and -IV, for example, the measurement of the b → sγ
branching ratio requires the mass of the charged Higgs
boson to be heavier than 580 GeV [78,79] for any value of

TABLE II. Selected benchmark points using Higgs data at 13 TeV with mh ¼ 125 GeV are presented for BP1-h
and BP2-h, and with mH ¼ 125 GeV for BP1-H and BP2-H. Obviously, in this notation, the BP1 (BP2) type is
related to type-I (type-II) 2HDM. Here we adopt four physical masses, two angles, and λ5 to describe each point in
the parameter space. In each BP, we examine the ratio of total decay width over the mass of a Higgs boson—i.e.,
Γϕ=mϕ—and find that it is smaller than 5% with ϕ ¼ H, A and H�.

BPs sinðβ − αÞ tan β mh (GeV) mH (GeV) mA (GeV) mH� (GeV) λ5

BP1-h 0.99679 14.300 125.00 212.00 98.20 178.27 0.5819
BP2-h 0.99999 2.012 125.00 594.00 512.00 592.00 0.0000
BP1-H −0.06000 2.830 95.00 125.00 169.00 170.00 −0.3220
BP2-H −0.03000 2.160 95.00 125.00 600.00 600.00 −5.7800

FIG. 1. Allowed ranges at 95% C.L. (yellow) and 68% C.L. (green) from direct search data in LHC Run 2 are shown. Regions
excluded by theoretical constraints are shown in cyan. A red star corresponds to the best-fit point for each scenario.
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tan β ≥ 1. Such a limit is much lower for the other 2HDM
types [80]. In 2HDM-I and -III, as long as tan β ≥ 2, there
are allowed regions in the parameter space with a charged
Higgs boson as light as 100 GeV [80,81] that are still
consistent with all B physics constraints, as well as with
LEP and LHC limits, as shown in the literature [82–87].
Due to the tiny Yukawa coupling of the Higgs/Goldstone

boson to the electron, the overwhelming and leading-order
(LO) contribution for the processes eþe− → Zh and
eþe− → ZH in the 2HDM comes from the Feynman
diagram given in Fig. 2. Then the total tree-level cross
section in the 2HDM, σ0, can be expressed as

σ0ðeþe− → ZϕÞ ¼ sin2ðβ − αÞ½cos2ðβ − αÞ�
× σ0SMðeþe− → ZhÞ for ϕ ¼ h½H�;

ð2Þ

where the tree-level cross section of the SM σ0SM is
defined as

σ0SMðeþe− → ZhÞ ¼ α2emπ

192ss4Wc
4
W
ðv2e þ a2eÞλ1

2
λþ 12m2

Z=s
ð1 −m2

Z=sÞ2
;

ð3Þ

where s is the squared collision energy, ae ¼ −1, ve ¼
−1þ 4 sin2 θW , αem¼e2=4π, λ¼ð1−m2

h=s−m2
Z=sÞ2 −

4m2
hm

2
Z=s

2. Here we have used sW and cW for sinðθWÞ
and cosðθWÞ, and θW is theWeinberg angle.With the relation
αem ¼ ffiffiffi

2
p

m2
Ws

2
WGF=π, it can be seen that our LO result in

the SM is consistentwith those inRefs. [88–90]. The formula
of tree-level cross sections for Higgs-strahlung processes at
eþe− colliders in the 2HDM can be also found in Ref. [91],
where the MSSM was considered, which has a built-in
type-II 2HDM in the Higgs sector.

III. ONE-LOOP RENORMALIZATION
AND CALCULATION

Calculations of higher-order corrections in perturbation
theory in general lead to ultraviolet (UV) divergences.
The standard procedure to eliminate these UV divergences
consists in the renormalization of the bare Lagrangian by
redefining the couplings and fields. In the SM, the on-shell
renormalization scheme is well elaborated [92–94].

As shown in Ref. [94], the renormalization constant for
charge δZe is obtained as

δZe ¼−
1

2
δZAA−

sW
cW

1

2
δZZA ¼

1

2
Πð0Þ− sW

cW

P
AZ
T ð0Þ
m2

Z
; ð4Þ

with

ΠðsÞ≡
P

AA
T ðsÞ
s

ð5Þ

and

Πð0Þ ¼ lim
s→0

P
AA
T ðsÞ
s

¼ ∂PAA
T ðsÞ
∂s

����
s¼0

; ð6Þ

where the definitions for δZe, δZAA and δZZA can be
found in Eqs. (C2) and (C3). This corresponds to the
running coupling constant obtained in the Thomson limit,
taken as αemðmeÞ or αemð0Þ. The vacuum polarizationΠð0Þ,
the first term in δZe, is sensitive to the hadronic contribu-

tion. Usually, a nonperturbative parameter Δαð5ÞhadronðmZÞ
(“5” here is the number of quark flavors, which means
the top quark is not included) is used to absorb the
hadronic contribution; i.e., Πð0Þ is modified as (the con-
tributions from leptons are also separated for further
discussion)

Πð0Þ ¼ Πð5Þ
hadronð0Þ þ Πleptonð0Þ þ Πremainingð0Þ

→ ReΠð5Þ
hadronðm2

ZÞ þ Δαð5ÞhadronðmZÞ
þ Πleptonð0Þ þ Πremainingð0Þ; ð7Þ

with Δαð5ÞhadronðmZÞ ¼ 0.02764 according to PDG data [95].
Then, δZe is rewritten as

δZeð0Þ ¼
1

2
ReΠð5Þ

hadronðm2
ZÞ þ

1

2
Δαð5ÞhadronðmZÞ þ

1

2
Πleptonð0Þ

þ 1

2
Πremainingð0Þ −

sW
cW

P
AZ
T ð0Þ
m2

Z
: ð8Þ

In the following text and Table III, we label the scheme
defined in Eq. (8) as the αemð0Þ scheme. Meanwhile,
whenever Πð0Þ is mentioned, it refers to the one defined
in Eq. (7).
Two additional schemes, labeled as αemðmZÞ and

αemð
ffiffiffi
s

p Þ, are defined below, where the large logarithmic
contributions of leptons are also absorbed into the redefi-
nition of the running coupling constant [94,96]:

FIG. 2. The LO Feynman diagram for the processes eþe− →
Zh and eþe− → ZH in the 2HDM is shown.
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δZeðμÞ≡ δZeð0Þ−
1

2
ΔαðμÞ ¼ 1

2
ReΠð5Þ

hadronðμ2Þ

þ 1

2
ReΠleptonðμ2Þ þ

1

2
Πremainingð0Þ−

sW
cW

P
AZ
T ð0Þ
m2

Z
;

ð9Þ

with

ΔαðμÞ≡ Πf≠topð0Þ − ReΠf≠topðμ2Þ
¼ ½ReΠð5Þ

hadronðm2
ZÞ þ Δαð5ÞhadronðmZÞ − ReΠð5Þ

hadronðμ2Þ�
þ ½Πleptonð0Þ − ReΠleptonðμ2Þ�: ð10Þ

And the running coupling constant is defined as

αemðμÞ≡ αemð0Þ
1 − ΔαðμÞ : ð11Þ

In the αemðmZÞ scheme, we take μ ¼ mZ, while in the
αemð

ffiffiffi
s

p Þ scheme, we take μ ¼ ffiffiffi
s

p
. Results in these two

schemes will be independent of logðmeÞ. In the following,
we use the αemðmZÞ scheme as our default choice. In the
procedure of renormalization using dimensional regulari-
zation, a scale μr is introduced. Usually this will generate a
logarithmic term, logðμrÞ. As we use a complete on-shell
scheme in both production processes, such terms which can
be considered as an overall factor of ðμ2rÞϵ in each individual
part [counterterms in themodifiedminimal subtraction (MS)
scheme do not have such a factor] will vanish upon the
cancellation of UV and infrared (IR) divergences when
summing over all the parts. This leads to μr independence of
our results for the production processes. On the other hand,
fromEq. (9) a new scaleμ is introduced that denotes the scale
at which charge is renormalized, and our results are
dependent on it. From now on, when we talk about
renormalization scale, it denotes μ, which is introduced in
the renormalization of charge, not μr.

The renormalization of 2HDM had been plagued by
the issue of the gauge dependence of the mixing param-
eters, like tan β, as in the MSSM case where type-II 2HDM
is needed [97–99]. A reasonable and convenient scheme
should be gauge independent, process independent, and
numerically stable [100]. Based on the renormalization
scheme worked out by Fleischer and Jegerlehner in
Ref. [32], which is now usually called the FJ tadpole
scheme, two groups find a way to fulfill such conditions.
The first one is the MS tadpole scheme (MSTS) [101–103],
where the mixing angles are renormalized using MS
subtraction. The other is the pinched tadpole scheme
(PTS) [104,105], where the pinch technique (see, e.g.,
Ref. [106]) is used to define gauge-independent counter-
terms for the mixing angles. More renormalization schemes
have been proposed and examined numerically [107,108]
and have been implemented in the HDecay package [109].
In this work, we adopt the on-shell PTS described in

Ref. [104]. “On-shell” here means that the on-shell scale is
chosen in the self-energies during the renormalization of
the mixing angles. More details about the renormalization
scheme in this work can be found in Appendix C.
In our calculation, a small photon mass λ is introduced to

regularize the soft divergence. Meanwhile, two cutoffs, ΔE
and Δθ, are introduced to deal with the IR singularities in
real correction processes. The three-body phase space of
the real correction process eþe− → Zhγ is divided into
three parts:

1. Soft (S) part: The energy of photon Eγ is smaller
than ΔE.

2. Hard collinear (HC) part: Eγ ≥ ΔE, and the angle
between the photon and the beam θγ is smaller
than Δθ.

3. Hard noncollinear (HC̄) part: The remaining, which
is finite.

Thus, next-to-leading-order (NLO) corrections can be
expressed as

dσ1 ¼ dσVðλÞ þ dσSðλ;ΔEÞ þ dσHCþCTðΔE;ΔθÞ þ dσHC̄ðΔE;ΔθÞ: ð12Þ

Here, dσV denotes the virtual correction, including loop diagrams and counterterms from renormalization.
The soft part is given by

dσS ¼ −
αem
π

dσ0 ×

�
log

4ΔE2

λ2

�
1þ log

m2
e

s

�
þ 1

2
log2

m2
e

s
þ log

m2
e

s
þ 1

3
π2
�
; ð13Þ

where dσ0 denotes the tree-level differential cross section. The hard collinear part is obtained in the collinear limit as

dσHC ¼ αem
2π

�
1þ z2

1 − z
log

Δθ2 þ 4m2
e=s

4m2
e=s

−
2z

1 − z
Δθ2

Δθ2 þ 4m2
e=s

�
dσ0ðzk1Þdzþ ðk1 ⇔ k2Þ

⟶
Δθ2≫m2

e=s αem
2π

�
1þ z2

1 − z
log

Δθ2s
4m2

e
−

2z
1 − z

�
× ½dσ0ðzk1Þ þ dσ0ðzk2Þ�dz; ð14Þ
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with 0 ≤ z ≤ 1 − δs ¼ 1–2ΔE=
ffiffiffi
s

p
, which is also related to the tree-level differential cross section dσ0. CT denotes the

“counterterm” from the electron structure function, which originates from the second term in Eq. (A1):

dσCT ¼ −
αem
2π

log
s

4m2
e
Pþ
eeðz; 0Þ × ½dσ0ðzk1Þ þ dσ0ðzk2Þ�dz; ð15Þ

with 0 ≤ z ≤ 1. Thus, the combination of HC and CT parts can be expressed as

dσHCþCT ≡ dσ�HCþCT þ dσSC;

dσ�HCþCT ¼ αem
2π

�
1þ z2

1 − z
logΔθ2 −

2z
1 − z

�
× ½dσ0ðzk1Þ þ dσ0ðzk2Þ�dz;

dσSC ¼ −
αem
π

log
s

4m2
e

�
3

2
þ 2 log δs

�
dσ0: ð16Þ

Both the soft and virtual parts are obtained with FormCalc,
while the other parts are obtained with the help of FDC

[110]. The λ dependence has been checked when we
combine the soft and virtual parts; more detailed checking
in the SM can be found in Appendix A.
In Appendix A, we examine the dependence of the SM

cross section on those unphysical parameters, such as δs in
Table IV and Δθ in Table V. From these results, it is
observed that within a reasonable region where δs ≪ 1 and
me=

ffiffiffi
s

p
≪ Δθ ≪ 1 are satisfied, our results are indeed

independent of those unphysical parameters introduced
by the algorithm. Meanwhile, as we adopt the αemðmZÞ
scheme, the cross section should also be independent of the

logarithm term of the electron mass, logðmeÞ. This inde-
pendence is shown in Table VI. After these checks, we
apply our procedure to the 2HDM; i.e., we calculate the
one-loop radiative corrections to the Higgs-strahlung proc-
ess eþe− → Zϕ.
Here we calculate the radiative corrections to the tree-

level eþe− → Zh0; ZH0 processes in 2HDM in the
Feynman–’t Hooft gauge, including all the particles of
the model in the loops. Counterterms are constructed by
specific renormalization conditions which allow us to
cancel all the UV divergences with one-loop diagrams.
Inserting these redefinitions into the Lagrangian, we find
the following counterterms for h0ZZ and H0ZZ:

δLh0ZZ ¼ emW sinðβ − αÞ
sWc2W

�
δZe −

δsW
sW

−
2δcW
cW

þ δm2
W

2m2
W
þ 1

2
δZh0h0 þ δZZZ

þ 1

2
cotðβ − αÞδZH0h0 þ cotðβ − αÞðδβ − δαÞ

�
h0ZμZνgμν; ð17Þ

δLH0ZZ ¼ emW cosðβ − αÞ
sWc2W

�
δZe −

δsW
sW

−
2δcW
cW

þ δm2
W

2m2
W
þ 1

2
δZH0H0 þ δZZZ

þ 1

2
tanðβ − αÞδZh0H0 − tanðβ − αÞðδβ − δαÞ

�
H0ZμZνgμν: ð18Þ

The one-loop Feynman diagrams related to the pro-
cesses eþe− → Zϕi are displayed in Figs. 3–6, which are
conveniently dubbed as the vertex corrections, the box
contributions, the self-energy corrections, and the coun-
terterms, respectively. In these Feynman diagrams, the
labels V, S, and F denote all insertions of vector, scalar,
and fermionic states of the 2HDM. As we used the on-
shell PTS in our renormalization scheme, we should also
include all possible tadpole diagrams, which have been
merged to corresponding counterterm diagrams in Fig. 6
and have not been shown explicitly.

There is one issue concerning the effects of the widths of
particles in the s-channel diagrams which we need to
clarify. For the processes that we consider here, the
intermediate Z boson is always far away from its mass
shell, as the collision energy is assumed to be 250 GeV or
even higher. Thus, it is plausible to neglect the effect of
the width of the Z boson in our calculation. Meanwhile,
it is observed that contributions from initial-state eþe−ϕ
vertices vanish in the limit me → 0 since both eþ and e−

are on shell, so it is justifiable to neglect the widths
of scalar bosons. Obviously, such an argument holds for
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the rest of the scalar boson exchange diagrams in the s
channel. As mentioned in the caption of Table II, the ratio
Γ=m for all the new Higgs boson particles is less than 5%,
and the narrow-width approximation can hold. Therefore,
in this work, for those s-channel diagrams, we simply
neglect the widths of the Z boson and other scalar bosons.
Finally, the total cross section at NLO, denoted as σNLO,

is defined as the sum of the LO cross section, σ0, and the
NLO corrections, σ1—i.e.,

σNLO ¼ σ0 þ σ1 ≡ σ0ð1þ δ1Þ; ð19Þ
where δ1 is defined as the ratio which measures the relative
strength of next-to-leading-order corrections over the tree-
level result.

As described in Sec. 3.1 of Ref. [111], the NLO
electroweak corrections σ1 can be safely grouped into
two gauge-invariant parts:

1. The “QED” part, which includes all the diagrams
which contain an extra photon attached to the LO
diagrams, such as the diagrams v23, v29, and v52 in
Fig. 3 when the vector boson denotes a photon.
Meanwhile, the photon’s contribution to the wave-
function renormalization of the electron is also
grouped into this part.

2. The “weak” part, which contains all the remaining
contributions.

In terms of the convention introduced in Ref. [111], we can
divide σ1 as

FIG. 3. Generic three-point one-loop Feynman diagrams in the 2HDM contributing to the process eþe− → Zh0 (we take ϕ ¼ h0) are
presented, where the labels U, V, S, and F refer to ghosts, vector gauge bosons, Higgs scalar bosons, and fermions, respectively.
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FIG. 4. Generic four-point one-loop Feynman diagrams in the 2HDM contributing to the process eþe− → Zh0 (we take ϕ ¼ h0) are
shown, where the labels of V, S, and F refer to vector gauge bosons, Higgs scalar bosons, and fermions, respectively.

FIG. 5. Generic two-point one-loop Feynman diagrams in the 2HDM contributing to the process eþe− → Zh0 (we take ϕ ¼ h0) are
shown, where the labels of U, V, S, and F refer to ghosts, vector gauge bosons, Higgs scalar bosons, and fermions, respectively.

FIG. 6. Generic one-loop counterterms in the 2HDM contributing to the process eþe− → Zh0 (we take ϕ ¼ h0) are presented.
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σ1 ¼ σ1;weak þ σ1;QED: ð20Þ

Correspondingly, the δ defined in Eq. (19) can also be
divided into two parts:

δ1 ¼ δ1;weak þ δ1;QED; ð21Þ
which represent the relative strengths of the weak and QED
corrections, respectively.

IV. NUMERICAL RESULTS
AND DISCUSSIONS

Below, we present the numerical results that are obtained
from the analysis of the processes eþe− → Z þ h=H at the
one-loop level in both the SM and the 2HDM.3 We focus on
the following two quantities: the ratio of the weak correc-
tion, δ1;weak, and the ratio of the full one-loop corrections
(including real emissions) to the leading-order results, δ1.
In our numerical calculation, parameters in Table II are

used as physical input in the Higgs sector, while in the
gauge sector, two different physical parametrizations
are used:

1. fαem; GF;mZg: These parameters are used in the
scan of the 2HDM parameter space, which finally
leads to Table II. They are also used in determining
the allowed range of λ5 and in the calculation of the
decay part.

2. fαem; mW;mZg: These parameters are used in the
calculation of production processes, as we have
used the on-shell condition for the renormalization
of W-boson self-energy there.

The values of the above parameters are taken from PDG
[95] as αem ¼ 1=137.036, GF ¼ 1.16638 × 10−5 GeV−2,
mZ ¼ 91.1876 GeV, and mW ¼ 80.385 GeV. It should
be noted that the vacuum expectation value (VEV) v is
different in these two cases. In the former case, it is

determined as v ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
GF

q
≈ 246.220 GeV, while in

the latter case, it is determined as v ¼ mW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

W=m
2
Z

p
=ffiffiffiffiffiffiffiffiffiffi

παem
p

and varies as the scale of αem changes. In the
αemðmZÞ scheme, it is v ≈ 243.137 GeV.

The total NLO cross section for eþe− → ZhSM including
the real emissions can be found in Table III. The results in
the αemð0Þ scheme still depend on logðmeÞ, while the other
two are independent. At the LO, the cross sections σ0 in
these three schemes read as 223.12, 252.00, and 257.68 fb,
respectively, where the maximal difference is 34.56 fb.
While at NLO, the cross sections σNLO read as 230.25,
228.93, and 228.05 fb, respectively, where the maximal
difference is 1.20 fb. From these numbers, we can see that
scale dependence has been greatly improved at NLO,
which can be exposed more clearly in Fig. 7. For the sake
of comparison with other literature, our definition of the
weak part agrees with the one defined in Refs. [96,112],
and we also find that our numerical results in the SM agree
with those given in Refs. [96,112].
In Fig. 7, the dependence on the renormalization

scale μ and the collision energy of the cross section in
the SM are explicitly shown. In Fig. 7(a), it is observed that
the leading-order results can change drastically when the
unphysical renormalization scale μ varies from 0 to

ffiffiffi
s

p
; i.e.,

the difference between the results of αemð0Þ and αemð
ffiffiffi
s

p Þ
can reach up to 15%, as given in Table III. In contrast, the
scale dependence of the results is significantly reduced at
the next-to-leading order. For example, the difference
between the NLO results of αemð0Þ and αemð

ffiffiffi
s

p Þ is 1%
or so. In Fig. 7(b), the line shapes of the LO and NLO cross
sections varying with the collision energy

ffiffiffi
s

p
are shown.

The largest difference between different renormalization
scales occurs near the threshold.
In Fig. 8, we compare the results of leading order and

those of the full NLO in the SM. In Fig. 8(a), the
distribution of the transverse momentum of the Higgs
boson in the process eþe− → Zh in the SM is shown
where the collision energy

ffiffiffi
s

p
is taken as 250 GeV. When

the angle of the outgoing Higgs boson with reference to the
incoming electron direction is defined as θ in the laboratory
frame, the transverse momentum of the Higgs boson is
defined as PtðhÞ ¼ jP⃗ðhÞj sin θ, where jP⃗ðhÞj denotes the
magnitude of the three-dimensional momentum of the
Higgs boson in the laboratory frame. The cutoff of
PtðhÞ is determined by the total collision energy. When
the collision is set to be 250 GeV, the maximum of PtðhÞ is
62.12 GeV, which is determined by kinematics. We find
that the line shapes of the LO and full NLO results are
similar except for a global scaling factor. In Fig. 8(b), the
energy dependence of the cross section is shown.

TABLE III. NLO SM results in different schemes at
ffiffiffi
s

p ¼ 250 GeV are shown (in units of fb). Three schemes are
chosen to demonstrate the scale dependence of the results.

Scheme 1=αemðμÞ σ0 σ1;weak σ1 σNLO ¼ σ0 þ σ1

αemð0Þ 137.036 223.12(0) 6.09(0) 7.13(2) 230.25(2)
αemðmZÞ 128.943 252.00(0) −24.33ð0Þ −23.07ð2Þ 228.93(2)
αemð

ffiffiffi
s

p Þ 127.515 257.68(0) −30.92ð0Þ −29.63ð2Þ 228.05(2)

3In the QED part, the extra photon can only attach to an initial
electron pair in this process either in the SM or in the 2HDM.
Thus, δ1;QED should be the same in both the SM and 2HDM
results.
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As a cross-check, we compare our LO cross section of
the SM with that computed using Whizard [113] [say, in the
αemðmZÞ scheme], and a good agreement is found.
Moreover, it is observed that although the line shape of
PtðhÞ given in Fig. 8(a) is different from Fig. 2(b) in
Ref. [114], where the distribution is a normalized one
with the effects of initial-state radiation (ISR) included,
a good agreement is found when we also normalize the
line shape of PtðhÞ given in Fig. 8(a) with the tree-level
results of Fig. 2(b) of Ref. [114] simulated using
MadGraph [115].
Based on the results of the SM, since the NLO results

have less dependence on the renormalization scale μ; in the
following study on the 2HDM, we will fix a renormaliza-
tion scale μ ¼ mZ to present the results.
Now, we start to present the results of the four bench-

mark points of the 2HDM. The parameter λ5, which is
related to the triple Higgs boson couplings, is given as [48]

λ5 ¼
m2

12 −m2
Asβcβ

v2sβcβ
: ð22Þ

Once λ5 is fixed, all the triple Higgs boson couplings are
fixed, as shown in Eqs. (B1)–(B8) of Appendix B. To
demonstrate the effects of triple Higgs boson self-cou-
plings, we try to vary it near its value for each benchmark
point in Table II. From now on, we treat each BP as a
scenario. In each scenario, we fix the mass spectra, α, and
tan β as given in Table II, and we let λ5 vary. Due to the
constraints from vacuum stability, unitarity, and perturba-
tivity to the theoretical parameters, the parameters λ5 for the
four benchmark scenarios are determined to be in the
ranges [0.545, 0.583], [−0.48, 0.37], [−1.32;−0.30], and
[−6.50;−5.74], respectively. We present our results in the
2HDMwith three typical values of λ5: the upper bound, the
lower bound, and the one in the benchmark point.
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In Fig. 9, the ratios δ1;weak and δ1, which are defined in
Eq. (21), are shown, where the results are obtained in the
αemðmZÞ scheme and the label h denotes that the lighter
CP-even Higgs boson is assumed to be the SM-like Higgs
boson. δ1, in which both the weak and QED corrections are
included is only presented for the SM; as we have discussed
before, δ1;QED is exactly the same in both SM and 2HDM. It
is found that the signs of the weak part and the QED part are
different in the SM. The QED part tends to increase the
total cross-section by þ0.5 ∼þ1% as the collision energy
increases.
Also, in the BP1-h and BP2-h scenarios, the differences

among the curves with different values of λ5 are small and
insignificant. For the BP1-h scenario, this may be attributed
to the fact that the allowed range for λ5 is too narrow and
the triple Higgs boson couplings are small, as shown in

Fig. 15(a). In contrast, for the BP2-h scenario, the allowed
range is wide enough and the triple Higgs couplings can be
large enough, as shown in Fig. 15(b); this small difference
instead can be attributed to the decoupling effects of the
heavy Higgs boson. It is found that for the BP2-h scenario,
this difference from the prediction of the SM is small and
typically less than 0.2% at most, which means that at NLO,
new physics plays a less important role. By contrast, for the
BP1-h scenario, it is observed that the difference between
the new physics and the SM can reach 0.8% or so from
300 GeV to 500 GeV.
In Fig. 10, two benchmark points for an alternative

interpretation of the SM-like Higgs boson are considered.
In such a scenario, the heavier CP-even Higgs boson has a
mass near 125 GeV. Detailed information on the mass
spectra and parameters of these two benchmark points is
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FIG. 9. Ratios of weak and full corrections to LO results for eþe− → Zh as functions of collision energy corresponding to benchmark
points BP1-h (left) and BP2-h (right) in the 2HDM, where h0 is assumed to be the SM-like Higgs boson. A few typical values of λ5 are
taken to show the effects of triple Higgs couplings.
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FIG. 10. Ratios of weak and full corrections to LO results for eþe− → ZH as functions of collision energy corresponding to
benchmark points BP1-H (left) and BP2-H (right) in the 2HDM. A few typical values of λ5 are taken to show the effects of triple Higgs
couplings.
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presented in Table II and labeled as the BP1-H and BP2-H
scenarios. Again, three typical values of λ5 are used to show
the effects of new physics. We observe that the ratio for the
BP1-H scenario (the pink dashed curve) varies from −13%
to −23% or so, while for the BP2-H scenario it varies from
−13.8% to −22%. Also, in this alternative interpretation,
the ratio difference for different values of λ5 (say, λ5 ¼
−1.32 and λ5 ¼ 0.30 for the BP1-H scenario, and λ5 ¼
−6.5 and λ5 ¼ −5.74 for the BP2-H scenario) can reach
more than 5%. It is found that the weak corrections of the
2HDM for these two benchmark points and the typical
values of λ5 have the same sign in the SM, which holds for
both the type-I and type-II cases, as well as for the
processes eþe− → Zh and eþe− → ZH. Last but not least,
all the lines have a bump near the collision energy at 350–
400 GeV, which can be attributed to the contribution of the
top quark pair in the loop functions.
In order to expose the contribution of new physics, in

Figs. 11 and 12, we present the contribution of new
physics:Δweak

Zh andΔweak
ZH , respectively, with different values

of λ5. The quantity Δweak is defined as

Δweak ¼ σ02HDM þ σ1;weak2HDM

σ0SM þ σ1;weakSM

− 1; ð23Þ

which describes the contribution of new physics compared
with the results of the SM. We have discussed before that
δ1;QED is exactly the same in both the SM and the 2HDM;
thus,Δweak is enough to show the differences. Obviously, in
this formula, the pure contribution of the SM is subtracted,
while the contributions of new physics and the interference
terms between the new physics and the SM are counted.
In Fig. 11, the quantities Δweak of the benchmark

scenarios BP1-h and BP2-h are demonstrated. In the left
panel, it is observed that the deviations caused by the
2HDM can change from −0.28% to −0.29% near the
threshold and can decrease to −0.54% and −0.52% when
the collision energy increases to 1000 GeV. A bump near
2mH� ¼ 356 GeV can be seen for the BP1-h scenario. In
the right panel, the deviations are flat in the explored energy
region and can change from −0.03% to −0.37% at the
threshold and can decrease to þ0.02% and −0.30% at
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FIG. 11. Ratios of new physics for the process eþe− → Zh as functions of collision energy with three typical values of λ5.
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FIG. 12. Ratios of new physics for the process eþe− → ZH as functions of collision energy with three typical values of λ5.
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1 TeV. Meanwhile, the deviations are more sensitive to λ5 in
the BP1-h scenario, where new Higgs bosons are relatively
lighter than those in the BP2-h scenario, although the
allowed range of λ5 is narrower. For these three cases of the
BP2-h scenario, the deviations show no obvious bumps
within the explored collision energy.
In Fig. 12, the quantitiesΔweak of the benchmark scenarios

BP1-H andBP2-H are shown. In the left panel, the deviations
for the BP1-H scenario are around −0.58% at the threshold
and are similar for both λ5 ¼ −0.32 and λ5 ¼ −0.30. For the
two cases with λ5 ¼ −0.32 and λ5 ¼ −0.30, when the
collision energy increases to 1000 GeV, the deviations
change to −0.8% or so. In the case with λ5 ¼ −1.32, the
deviation changes from −5.2% at the threshold to −6.6% at
1000 GeV. In the right panel, the deviations for the BP2-H
scenario can reach from −1.6% to −5.8% depending upon
the values of λ5. When the collision energy increases to
1000 GeV, the deviations change to 0.1% to −4.4%.
For the case of the BP1-H scenario with λ5 ¼ −1.32, a

little bump near the energy region
ffiffiffi
s

p ¼ 2mH� ¼ 340 GeV
can be observed. In contrast, for the two cases of the BP1-H
scenario with λ5 ¼ −0.30 and λ5 ¼ −0.32, the new physics
contributions show no clear structure with the increase of
collision energy due to smaller triple Higgs couplings. For
the BP2-H case with λ5 ¼ −6.50, an obvious dip near the
energy region

ffiffiffi
s

p ¼ mA0 þmh0 ¼ 695 GeV can be attrib-
uted to the contributions of A0 and H0 via diagrams like
v12, v14, v15, and v16 in Fig. 3.
Except for the differential cross sections of eþe− → Zϕi

for four benchmark points in the 2HDM, it might also be
interesting to explore the effects of new physics on the
branching fractions of Higgs boson decays, which can be
measured to a precision of 1% or less at future Higgs
factories.
The decay width of a neutral Higgs boson in a model

including one-loop correction can be formulated as

Γ1ðϕ → ff̄Þ ¼ NCGFm2
f

4
ffiffiffi
2

p
π

β3fðξϕf Þ2mϕẐϕ

× ½1 − Δrþ 2ReðΔM1Þ�; ð24Þ

where NC is the color number, GF is the fermion constant,
mf denotes the fermion’s mass, βf is the speed of the

fermion in natural units, and ξϕf is the ratio of the couplings

of neutral Higgs bosons in the model to those of the SM. Ẑϕ

refers to the finite wave function renormalization of the
external ϕ, while ΔM1 is the amplitude of the one-loop
vertex diagrams of ϕ → ff̄. The quantity Δr can be found
in Ref. [94], which is obviously model dependent and
renormalization-scheme dependent. As this part is a work
following Ref. [38], the same renormalization scheme
as in Ref. [38] is used. Our results for the decays are
renormalization-scale dependent, since the MS scheme is
used in the renormalization of Higgs boson wave functions.

We have chosen the scale as μr ¼ mϕ, the mass of the
decaying particle.
We can define a quantity ΔffðϕÞ from Eq. (24) as a

deviation from the predictions of the SM, which has the
following form:

ΔffðϕÞ ¼
Ẑϕð1 − Δr2HDM þ 2ReðΔM2HDM

1 ÞÞ
ð1 − ΔrSM þ 2ReðΔMSM

1 ÞÞ − 1;

f ¼ b; τ: ð25Þ

More details can be found in Ref. [39].
It is necessary to point out that the value of ΔffðϕÞ in the

SM is 0, and it is a measurement of new physics effects at
the quantum level. There are several studies which evaluate
the BSM effects at the tree-level and one-loop radiative
corrections to the decays of Higgs bosons [38], such as the
recent Refs. [116,117].
In the type-I and type-II models, the couplings of h0 to

bb̄ and τþτ− are proportional to the same factor, ξh
0

f . It is
cos α= sin β in type I and − sin α= cos β in type II. The
couplings of H0 to bb̄ and τþτ− are also both proportional
to the factor ξH

0

f . In type I, it is sin α= sin β, while in type II,
it is cos α= cos β. Obviously, there exist two special cases:
1) the couplings jξh0f j ¼ 1 if h0 corresponds to the SM-

like Higgs boson, and 2) the couplings jξH0

f j ¼ 1 if H0

corresponds to the SM-like Higgs boson. Apparently, from
tree-level expression, it is impossible to separate these
cases from the SM. Below, we explore whether it is
possible to distinguish these cases by using the quantum
corrections—i.e., by resorting to the information of
Δffðh0Þ and ΔffðH0Þ.
We use HiggsSignals [65–67], which incorporates the

simplified template cross section (STXS) framework [118]
to evaluate the χ2 of each point in the parameter space. The
χ2 of HiggsSignals we used here includes two parts: 1) a
signal strength, χ2μ, and 2) a mass peak,

P
i χ

2
mi
. In the

signal strength part, when N observables for a given Higgs
boson are considered, the χ2μ (here μ denotes one of Higgs
bosons) equals χ2μ ¼

P
N
α¼1 χ

2
μ;α ¼ ðμ̂ − μÞTC−1

μ ðμ̂ − μÞ,
where ðμ̂ − μÞ should be understood as an N-dimensional
vector and Cμ is the N × N signal strength covariance
matrix. Theoretical observables in the χ2 of HiggsSignals
are defined as signal strengths, μ̂. When the final states of
Higgs decay are specified, a signal strength is defined as
μ̂ ¼Piðσ2HDMi Br2HDMÞ=ðσSMi BrSMÞ, where σi denotes the
cross section of a production process and Br denotes the
decay branching fraction of the Higgs boson. The mass
peak part takes into account all neutral Higgs bosons in a
model, which is defined as χ2mi

¼PN
α¼1 χ

2
mi;α ¼ ðm̂−miÞT×

C−1
mi
ðm̂−miÞ, where N neutral Higgs bosons are assumed.

In our study of 2HDM, the χ2 mainly takes into account χ2μ
and the χ2mi

, where mi is assigned to be the SM-like Higgs
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boson. For example, whenH0 is assigned to be the SM-like
Higgs boson in the BP1-H and BP2-H scenarios, the
corresponding χ2μ and χ2mH0

are computed.
In Figs. 13 and 14, in order to examine ΔffðϕÞ in the

2HDM, we use the mass parameters from Table II and
jξϕf j ¼ 1 to fix α. Then we allow two parameters—tan β and
λ5—to change. These two parameters are allowed to vary
within the ranges 2 < tan β ≤ 15 and −6 ≤ λ5 ≤ 1 while
only points which satisfy all theoretical and experimental
constraints are accepted. In Fig. 13, we examine numeri-
cally ΔbbðhÞ and ΔττðhÞ for the D1-h and D2-h scenarios,
where h0 is assumed to be the SM-like Higgs boson. We
use D1-h and D2-h to label these two different scenarios
which have the same mass spectra as the BP1-h and BP2-h
scenarios in Table II, respectively. In this practice, it is
obvious that the sign of cosðβ − αÞ is allowed to vary;
therefore, we assume it to be either positive or negative. In
Fig. 14, we examine ΔbbðHÞ and ΔττðHÞ for the D1-H and
D2-H scenarios, where H0 is assumed to be the SM-like
Higgs boson; likewise, the D1-H and D2-H scenarios share
the same mass spectra as BP1-H and BP2-H, respectively.
Meanwhile, the sign of sinðβ − αÞ is allowed to be both

positive and negative, so we label the scenarios as �D1-H
and �D2-H. Similarly, we label other scenarios as �D1-h
and �D2-h. In total, we can have eight scenarios.
By scanning over the parameter space of 2HDM, we

can compute its corresponding χ2 value. Obviously, the χ2

can be determined for each point in the parameter space,
and then the difference ofΔχ2 ¼ χ2 − χ2min can be computed.
The total of number of freedoms ν is defined as ν ¼ no − np,
whereno is the number of observables taken fromexperiment
measurements (which is equal to 78 in this work) and np is
the number of model parameters in the 2HDM (which is
equal to 7). For a general fit, as shown in Fig. 1 and the results
provided in Table II, the number of freedoms is 78 − 7 ¼ 71.
Now, for the specific fits shown in Figs. 13 and 14, due to the
constraint of jξϕf j ¼ 1 and the fact that we have fixed four
mass parameters, there are only two free parameters.
Therefore, the degree of freedom is 78 − 2 ¼ 76.
In Figs. 13 and 14, we show points that have satisfied the

condition Δχ2 ≤ 11 (<3σ for a two-parameter fit). For all
eight scenarios (labeled as �Dh-1, �Dh-2, �DH-1, and
�DH-2), the main Δχ2 is mainly the contributions of χ2μ
from the signal-strength observables, since χ2 of the mass

FIG. 13. Correlations between relative precisions ΔττðhÞ and ΔbbðhÞ for the 2HDM, where h0 is assumed to be the SM-like Higgs
boson with mH ¼ 212 GeV for the �D1-h scenarios (upper panels) and mH ¼ 594 GeV for the �D2-h scenarios (lower panels).
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part is tiny and negligible. Plots are shown up to 99% C.L.
It is remarkable that our results are in good agreement with
previous publications [39,119]. There are a few comments:

1. A positive correlation between ΔττðhÞ and ΔbbðhÞ is
observed for both �D1-h and �D2-h, as demon-
strated in Fig. 13, where the color bar indicates
regions close to the minimum χ2. The best-fit point
is indicated by a red star in each of these figures.
It turns out that in the D1-h scenarios, the

corrections to ΔbbðhÞ and ΔττðhÞ depend on the
sign of cosðβ − αÞ; i.e., when cosðβ − αÞ > 0
[cosðβ − αÞ < 0], the corrections are positive (neg-
ative). It can deviate from the prediction of the SM
by þ15% (−6%) for the best-fit point. In contrast,
the opposite is the case for the BP2-h scenario, and it
is allowed to deviate from the prediction of the SM
by less than −6% (þ5%).

2. An interesting observation is that due to the positive
correlation betweenΔbbðhÞ andΔττðhÞ, it is possible
to determine the sign of cosðβ − αÞ by using precise
measurements of the branching fractions of h → bb̄

and h → ττ. As pointed out in Refs. [39,120–122], if
the couplings of Higgs to fermions can be deter-
mined up to 8%, it becomes possible to discriminate
the types of Yukawa interactions.

3. At the CEPC or the ILC [15,22,123], the precision of
Higgs coupling measurements can typically reach
Oð1Þ%, and there is no doubt on their capability to
discriminate the types of Yukawa interactions, like
the four scenarios introduced here.

The deviations of H decaying into bb̄ and ττ are
presented in Fig. 14, where the correlations of ΔbbðHÞ
and ΔττðHÞ for the �D1-H and �D2-H scenarios are
demonstrated. One remarkable difference from Fig. 13 is
that the allowed deviations of ΔbbðHÞ and ΔττðHÞ from
those of the SM are smaller than 2.5% and −3%, respec-
tively, for the best-fit point. Such a deviation is even smaller
(less than 1%), as shown by BP2-H, in the D2-H scenarios.
Such deviations are quite distinctive due to Yukawa
structure in these four scenarios. In other words, when a
deviation is observed, an upper limit can be set on the
mixing angles cosðβ − αÞ or sinðβ − αÞ.

FIG. 14. Correlation between relative precisions ΔττðHÞ and ΔbbðHÞ for the 2HDM, where H0 is assumed to be the SM-like Higgs
boson. The coding color is the same as in Fig. 13, withmh ¼ 95 GeV for the�D1-H scenarios (upper panels) and the�D2-H scenarios
(lower panels).
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V. DISCUSSIONS AND CONCLUSION

In this work, we have proposed four benchmark scenar-
ios of the 2HDM after taking into account the current Higgs
data from the LHC. We have evaluated the radiative
corrections to the process eþe− → Zϕ in the SM and these
four benchmark scenarios up to one-loop level.
In the Monte Carlo simulation results [124] obtained

using Whizard, it is found that the ISR can decrease the total
LO cross section of eþe− → Zh in the SM by more than
10% when the contributions of high-order logarithms are
resummed. In contrast, the real emission in this work can
increase the total LO cross section by only a factor of
þ0.5%. This simply manifests the difference between the
resummed and the fixed-order results. Meanwhile, we find
that the one-loop weak correction of the SM can reduce the
total NLO cross section by 9.15%, as demonstrated in
Table III.
As an estimation, we can express the total cross section

with ISR as

σLOðsÞ ¼ σ̄W;LOðsÞR
�
1 −

ΔE
E

; s

�
; ð26Þ

which had been proposed by Ref. [125] when ΔE
E ≪ 1 (E

denotes the energy of the electron/positron, and ΔE is the
energy of the soft photon), where Rð1 − ΔE

E ; sÞ denotes the
convolution of incoming fluxes of electrons and positrons
(i.e., ISR), and σ̄LOðsÞ denotes the cross section without
weak corrections. It should be pointed out that σ̄W;LO has
included high-order QED corrections but no weak correc-
tions. The numerical results given in Ref. [124] demon-
strate that Rð1 − ΔE

E ; sÞ is roughly equal to 0.90.
When the one-loop weak correction is taken into

account, the total cross section at NLO with ISR can be
expressed as

σNLOðsÞ ¼ σ̄W;NLOðsÞR
�
1 −

ΔE
E

; s
�
; ð27Þ

where Rð1 − ΔE
E ; sÞ (i.e., ISR) is the same as in the LO case.

Our results demonstrate that weak correction can reduce
σ̄W;LO by a factor of 9.15% with μ ¼ mZ. We can use the
NLO cross section σ̄W;NLO ¼ 228 fb with μ ¼ mZ to
estimate the total cross section with both ISR and weak
corrections, which yields σNLOðsÞ ¼ 228×0.9¼ 205.2 fb,
which is 18.6% smaller than the tree-level cross section in
the αemðmZÞ scheme given in Table III.
Here we add one more comment on the ISR. It is

well known that due to the soft collinear divergences
of QED, the large logarithmic terms in the form of
αnemlogn s

m2
e
logm me

λ (where λ denotes the mass of the photon

or IR cutoff) from the ISR should be resummed. The effects
of ISR at electron-positron colliders can affect cross
sections of physics processes significantly [126,127]. In

Whizard [113], the effect of ISR to all orders [125,128,129]
has been implemented in the structure functions of incom-
ing electrons and positrons. The ISR has been implemented
in other Monte Carlo codes [127,130–133] and applied to
LEP I [134] and LEP II [135] experimental analysis.
Therefore, it is expected that the results for the SM from
Whizard with ISR are more accurate in capturing large logs.
However, for the study of the 2HDM, currently the ISR
effect has not been implemented in Whizard, and therefore
there is no alternative code with which to check it.
We compute the decays ϕ → bb̄ and ϕ → τþτ− with ϕ ¼

h0 (H0) in Dh-1 and Dh-2 (DH-1 and DH-2) by including
the EW corrections. We have shown that in the Dh-2 and
DH-2 scenarios, the electroweak radiative corrections in
these two decay processes are rather small due to the fact
that the heavy states A0, H0, and H� have masses of the
order of 600 GeV, while they could be sizeable for D1-h
and D1-H, as shown in Figs. 13 and 14. Considering the
recent progress in the gauge-independent renormalization
schemes [101,104,107], it will be interesting to evaluate the
differences caused by different renormalization schemes.
Our results demonstrate that eþe− colliders (especially

the Higgs factories with
ffiffiffi
s

p ¼ 250 GeV) can offer us the
potential to distinguish various 2HDM models by looking
at quantum effects in Higgs observables. Except for
performing precision measurements of the SM-like
Higgs boson, linear colliders also have the potential to
discover new physics. For example, it can directly produce
the light charged Higgs boson pair in BP1-h and BP1-H
scenarios via eþe− → HþH− processes [136,137]. The
energy scan of eþe− colliders can also help to detect the
mass spectra of Higgs bosons and even triple couplings of
Higgs bosons, as shown in Figs. 11 and 12. If nature
chooses 2HDM as the new physics beyond the SM in the
TeV region, it would be hopeful to probe parameters of the
Higgs potential sector by using the data of productions and
decays. The results of the proposed benchmark points show
that precision measurement on the cross sections at differ-
ent collision energies is helpful for exploring the mass
spectra and Higgs couplings of the 2HDM.
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APPENDIX A: THE IR BEHAVIOR
OF e + e− → Zh IN THE SM

The dependence of the corrections at NLO, σ1, on ΔE
and Δθ are shown in Tables IV and V. In Table IV, the
dependence is seen in a wide range, and we choose
δs ¼ 10−3 as our default choice. In Table V, the result
becomes cut-dependent when Δθ is smaller than 10−4.
It is because the approximation in Eq. (14) demands
Δθ ≫ me=

ffiffiffi
s

p
∼ 2 × 10−6. Thus, we choose Δθ ¼ 10−3

in our setting.
One-loop radiation corrections include collinear singu-

larities which can be infinite when me goes to zero, and
they become terms proportional to logðmeÞ in this limit.
Some of these terms are canceled when virtual and real

corrections are summed up, and some of them can be
absorbed into the redefinition of running coupling constant
as mentioned above, but the collinear singularities cannot
be removed completely, which demands a careful
manipulation.
To deal with these remaining collinear singularities, we

used the following fixed-order electron structure function,
which can be derived from Eq. (11) of Ref. [125]:

feeðx; sÞ ¼ δð1 − xÞ þ αem
2π

log
s

4m2
e
Pþ
eeðx; 0Þ; ðA1Þ

with

TABLE IV. Check for ΔE-independence at
ffiffiffi
s

p ¼ 250 GeV (in units of 10−1 pb).

δs ¼ 2ΔE=
ffiffiffi
s

p
σSþV σHC̄ σ�HCþCT σSC σ1

10−1 −0.7127ð0Þ 0.1240(0) −0.1209ð0Þ 0.4794(0) −0.2302ð0Þ
10−2 −1.4347ð0Þ 0.5445(0) −0.5306ð1Þ 1.1903(0) −0.2305ð1Þ
10−3 −2.1567ð0Þ 0.9788(1) −0.9540ð2Þ 1.9012(0) −0.2307ð2Þ
10−4 −2.8787ð0Þ 1.4142(1) −1.3784ð2Þ 2.6121(0) −0.2308ð2Þ
10−5 −3.6006ð0Þ 1.8497(2) −1.8027ð4Þ 3.3230(0) −0.2306ð4Þ
10−6 −4.3227ð0Þ 2.2853(2) −2.2271ð5Þ 4.0339(0) −0.2306ð5Þ
10−7 −5.0446ð0Þ 2.7208(2) −2.6516ð6Þ 4.7448(0) −0.2306ð6Þ
10−8 −5.7666ð0Þ 3.1564(3) −3.0762ð7Þ 5.4558(0) −0.2306ð8Þ

TABLE V. Check for Δθ-independence at
ffiffiffi
s

p ¼ 250 GeV (in units of 10−1 pb).

Δθ σVþS σHC̄ σ�HCþCT σSC σ1

10−1 −2.1567ð0Þ 0.3856(1) −0.3608ð1Þ 1.9012(0) −0.2307ð1Þ
10−2 −2.1567ð0Þ 0.6822(1) −0.6574ð1Þ 1.9012(0) −0.2307ð1Þ
10−3 −2.1567ð0Þ 0.9788(1) −0.9540ð2Þ 1.9012(0) −0.2307ð2Þ
10−4 −2.1567ð0Þ 1.2751(1) −1.2506ð3Þ 1.9012(0) −0.2310ð3Þ
10−5 −2.1567ð0Þ 1.5527(1) −1.5471ð3Þ 1.9012(0) −0.2499ð3Þ
10−6 −2.1567ð0Þ 1.6227(2) −1.8437ð4Þ 1.9012(0) −0.4765ð4Þ

TABLE VI. Check for me-independence at
ffiffiffi
s

p ¼ 250 GeV (in units of 10−1 pb).

k σVþS σHC̄ σ�HCþCT σSC σ1

2−4 −2.5815ð0Þ 0.9788(1) −0.9540ð2Þ 2.3260(0) −0.2307ð2Þ
2−3 −2.4753ð0Þ 0.9788(1) −0.9540ð2Þ 2.2198(0) −0.2307ð2Þ
2−2 −2.3691ð0Þ 0.9788(1) −0.9540ð2Þ 2.1136(0) −0.2307ð2Þ
2−1 −2.2629ð0Þ 0.9788(1) −0.9540ð2Þ 2.0074(0) −0.2307ð2Þ
20 −2.1567ð0Þ 0.9788(1) −0.9540ð2Þ 1.9012(0) −0.2307ð2Þ
21 −2.0505ð0Þ 0.9788(1) −0.9540ð2Þ 1.7950(0) −0.2307ð2Þ
22 −1.9443ð0Þ 0.9788(1) −0.9540ð2Þ 1.6888(0) −0.2307ð2Þ
23 −1.8381ð0Þ 0.9788(1) −0.9540ð2Þ 1.5826(0) −0.2307ð2Þ
24 −1.7318ð0Þ 0.9788(1) −0.9540ð2Þ 1.4763(0) −0.2307ð2Þ
25 −1.6256ð0Þ 0.9788(1) −0.9540ð2Þ 1.3701(0) −0.2307ð2Þ
26 −1.5194ð0Þ 0.9788(1) −0.9540ð2Þ 1.2639(0) −0.2307ð2Þ
27 −1.4132ð0Þ 0.9788(1) −0.9540ð2Þ 1.1577(0) −0.2307ð2Þ
28 −1.3070ð0Þ 0.9788(1) −0.9540ð2Þ 1.0515(0) −0.2307ð2Þ
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Pþ
eeðz; 0Þ ¼

1þ z2

ð1 − zÞþ
þ 3

2
δð1 − zÞ; ðA2Þ

being the regularized Altarelli-Parisi splitting function. The
one-loop structure function is used here to ensure the
cancellation of collinear singularities, instead of using the
most commonly used resummed ones. The cancellation is
shown in Table VI. We vary the mass of the electron with a
factor of k from 2−4 to 28 and find the result unchanged.
Also, we can see that singular terms only appear in σVþS
and σSC parts.

APPENDIX B: TRIPLE HIGGS COUPLINGS
IN 2HDM

The Higgs potential of 2HDM determines the self-
couplings among Higgs bosons. Among them, the triple
Higgs couplings (THC) can be parametrized as a function
of the 2HDM parametersmh0 ,mH0 ,mA0 ,mH� , tan β, α, and
λ5. At tree level, these couplings are independent of the
Yukawa types, and they are given as follows:

λ2HDMh0h0h0 ¼
1

v

�
−

3

s22β
½ð2cαþβ þ s2αsβ−αÞs2βm2

h0 − 4c2β−αcβþαm2
12�
	
; ðB1Þ

λ2HDMH0h0h0 ¼
1

v

�
−
cβ−α
s22β

½ð2m2
h0 þm2

H0Þs2αs2β − 2ð3s2α − s2βÞm2
12�
	
; ðB2Þ

λ2HDMh0H0H0 ¼ 1

v

�
sβ−α
s22β

½ðm2
h0 þ 2m2

H0Þs2αs2β − 2ð3s2α þ s2βÞm2
12�
	
; ðB3Þ

λ2HDMh0H�H∓ ¼ 1

v

�
1

s22β
½ðm2

h0 − 2m2
H�Þsβ−αs22β − 2cβþαðm2

h0s2β − 2m2
12Þ�
	
; ðB4Þ

λ2HDMh0A0A0 ¼ 1

v

�
1

s22β
½ðm2

h0 − 2m2
A0Þsβ−αs22β − 2cβþαðm2

h0s2β − 2m2
12Þ�
	
; ðB5Þ

λ2HDMH0H0H0 ¼ 1

v

�
−

3

s22β
½ð2sαþβ − s2αcβ−αÞs2βm2

H0 − 4s2β−αsαþβm2
12�
	
; ðB6Þ

λ2HDMH0A0A0 ¼ 1

v

�
−

1

s22β
½sαþβð2m2

H0s2β − 4m2
12Þ − ðm2

H0 − 2m2
A0Þs22βcβ−α�

	
; ðB7Þ

λ2HDMH�H∓H0 ¼ 1

v

�
−

1

s22β
½sαþβð2m2

H0s2β − 4m2
12Þ − ðm2

H0 − 2m2
H�Þs22βcβ−α�

	
; ðB8Þ

where v is the VEVand m2
12 can be derived from mA, β, λ5,

and v, according to the relation given in Eq. (22). We have
used the notations sθ and cθ as shorthand notations for
sinðθÞ and cosðθÞ, respectively. The mixing angle β is
defined via tan β ¼ v2=v1.
As mentioned in the second paragraph of Sec. IV, two

different physical parametrizations have been used in this
paper, which yields different values of v, and hence
different THCs. Besides the overall factor 1=v, the remain-
ing terms of Eqs. (B1)–(B8) still depend on v, due to the
fact thatm2

12 is obtained via Eq. (22) and terms proportional
to λ5v2 will appear. In order to further investigate the
dependence, we rewrite the THCs as

λi ≡ ð246.220 GeVÞ2
v

λ̂i; i ¼ h0h0h0; H0h0h0;…; ðB9Þ

where the dimensionless couplings λ̂i are just the
terms in the curly brackets of Eqs. (B1)–(B8) divided
by ð246.220 GeVÞ2.
In Table VII, all the λ̂i values in the two cases are

tabulated, as well as corresponding values of m2
12. It

can be seen from the table that in the case of BP2-h
(BP2-H), some of the THCs are quite large compared
with h0h0h0 (H0H0H0). Although these THCs are
sizeable, we have checked that they still respect the
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conditions of perturbativity and the unitarity of scatter-
ing amplitudes of Higgs bosons in the model, as listed
in Sec. II.
On the other hand, although the deviation between the

two VEVs is smaller than 1.5%, it is observed that the
values of λ̂i can be significantly different, such as λ̂H0H�H� ,
λ̂H0A0A0 , and λ̂H0H0H0 in the case of BP1-h, and λ̂h0h0h0 ,
λ̂H0h0h0 , λ̂h0H�H� , and λ̂h0A0A0 in the case of BP2-H, which
indicates that the corresponding THCs are very sensitive to
the value of v. As v only appears in λ̂i in terms of λ5v2, this
also means that those THCs are very sensitive to the
value of λ5 (a deviation smaller than 3% will change the
corresponding λ̂i drastically). Usually, the effects caused by
the different values of v are regarded as higher-order
corrections. But from Table VII, we can see that in some
cases this will lead to totally different theoretical predic-
tions; e.g., the decay width of H0 → A0A0 in the case of
BP1-h. Fortunately, in this work, this difference in λ̂i does
not change our results very much (see also the discus-
sion below).
In Fig. 15, we show the dependence of λ̂i upon the

parameter λ5 for each of the benchmark mass spectra and
fixed parameters α and tan β given in Table II, where
v ¼ 243.137 GeV is used. In the benchmark points BP1-
h(H) and BP2-h(H), where h0 (H0) is assumed to be the
SM-like Higgs boson, the λ̂i’s related to h0 (H0) are
depicted as solid lines, while the others are depicted by
dashed lines, as they can also contribute via the renorm-
alization of wave functions or mixing angles. We have
merged several pairs of lines in the figure, since they are
identical or very close to each other, which can be easily
learned from Eqs. (B1)–(B8) and the mass spectra in
Table II.
The range of λ5 between two vertical dashed lines

denotes the allowed region for each benchmark point. It
is observed from the figure that the gradients of some
lines are quite large; thus, the corresponding λ̂i’s change
drastically in the allowed range of λ5, such as λ̂h0h0h0 in
the case of BP1-H, which changes from 7.5 to −0.05. As

we discussed before, the dependence of λ̂i on v can be
converted into the dependence on λ5. This explains the
discrepancy of some λ̂i values caused by the different
values of v in Table VII. Also, it can be estimated that
the effect caused by different values of v (after removing
the overall factor) is much smaller than the variation of λ5
in the allowed range, since the difference between the
values of v can be taken as a deviation smaller than 3%
on λ5.
We have discussed the dependence of THCs on v. In

fact, the allowed ranges of λ5 also depend on it. In
Table VIII, we show the allowed ranges of λ5 for all
the BPs. As mentioned in Sec. IV, we determine the
allowed ranges of λ5 by fixing other parameters and using
the constraints from vacuum stability, unitarity, and
perturbativity. In this procedure we have taken
v ¼ 246.220 GeV, the same as the value used in the
scan of the 2HDM parameter space. However, in the
calculation of production processes, v ¼ 243.137 GeV
is used.
It can be observed from Table VIII that both the upper

and lower bounds of λ5 will change when a different v is
used. The largest deviation is found in the lower bound of
BP2-h, which is about 10%. This cannot be simply
explained by an overall factor related to v only, and needs
further investigation.
The constraints used to determine the ranges of λ5 can

be expressed as several dimensionless inequalities
involving v and the 2HDM parameters: mh0 , mH0 ,
mA0 , mH� , tan β, α, and λ5. Besides an overall factor
1=v2, the only dependence on v in these inequalities is
the term λ5v2, similar to the case of THCs. This means
we can remove part of the effects from v by looking
into λ5v2 or m2

12. In Table VIII, the ranges of λ5v2 and
m2

12 are also presented. It is found that the upper bounds
of λ5v2 and m2

12 are almost the same even when different
values of v are used, while the lower bounds are quite
different. We have checked the constraints related to
each bound and found that all the upper bounds are
determined by the constraints from vacuum stability,

TABLE VII. Dimensionless couplings λ̂i with two typical values of v; the inputs of each of the benchmark points are given in Table II.
λ̂i values are defined from the THCs via Eq. (B9). The values of v are taken as explained in the second paragraph of Sec. IV.

v(GeV) BPs λ̂h0h0h0 λ̂H0h0h0 λ̂h0H0H0 λ̂h0H�H� λ̂h0A0A0 λ̂H0H�H� λ̂H0A0A0 λ̂H0H0H0 m2
12(GeV

2)

246.220 BP1-h −0.763 −0.048 −0.810 −0.375 0.353 −0.030 0.028 −0.195 3126.00
BP2-h −0.773 −0.049 −3.257 −3.199 −0.285 −2.305 −2.292 −6.917 104480.72
BP1-H 0.025 −0.240 −0.002 0.048 0.047 −0.895 −0.884 −0.774 2839.78
BP2-H −0.036 −0.235 −0.001 0.335 0.335 −11.807 −11.807 −0.773 3567.16

243.137 BP1-h −0.763 −0.047 −0.789 −0.388 0.340 −0.238 −0.179 −0.814 3064.92
BP2-h −0.773 −0.049 −3.257 −3.199 −0.285 −2.305 −2.292 −6.917 104480.72
BP1-H −0.037 −0.228 −0.0003 0.027 0.026 −0.880 −0.869 −0.774 2992.36
BP2-H −0.793 0.030 0.016 0.083 0.083 −11.527 −11.527 −0.773 6981.21
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while all the lower bounds are determined by the
constraints from unitarity. The constraints from vacuum
stability are homogeneous, so they are not affected by
the choice of v. On the other hand, the constraints from
unitarity are inhomogeneous, and some of them are even
nonlinear. This leads to more complicated v dependence
of λ5v2 and m2

12. From the table, we can see that the

effects of different v’s on the lower bounds can be
negligible, such as m2

12 in BP1-h, but they can also be
large, such as m2

12 in BP2-H.
From the above analysis, we can conclude that devia-

tions of the upper bounds of λ5 can be easily understood by
multiplying the ratio of two different v2 values, while the
lower bounds are more complicated. Moreover, together

TABLE VIII. Allowed ranges of λ5, λ5v2, and m2
12 with two typical values of v. The constraints from vacuum stability, unitarity, and

perturbativity are used to determine the ranges. The values of v are taken as explained in the second paragraph of Sec. IV.

v(GeV) BPs BP1-h BP2-h BP1-H BP2-H

246.220 λ5 [0.545, 0.583] ½−0.482; 0.377� ½−1.330;−0.294� ½−6.500;−5.737�
λ5v2ðGeV2Þ [33040, 35368] ½−29197; 22874� ½−80612;−17848� ½−394063;−347807�
m2

12ðGeV2Þ [2970, 3132] [92844, 113597] ½−16351; 3365� ½−12986; 4649�
243.137 λ5 [0.560, 0.598] ½−0.441; 0.387� ½−1.337;−0.302� ½−6.601;−5.884�

λ5v2ðGeV2Þ [33099, 35367] ½−26094; 22872� ½−79032;−17847� ½−390217;−347807�
m2

12ðGeV2Þ [2974, 3132] [94081, 113597] ½−15855; 3366� ½−11520; 4649�
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FIG. 15. The dependence of λ̂i upon λ5 for each of the benchmark points is demonstrated. In each plot, the range between the two
vertical dashed lines corresponds to the allowed λ5 by theoretical and experimental constraints and bounds. v is taken to be 243.137 GeV.
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with the situation of THCs, this hints that it is better to
choose independent physical parameters with the same
mass dimension.

APPENDIX C: ON-SHELL PINCHED TADPOLE
SCHEME IN THE 2HDM

In this Appendix, we present more details about the on-
shell PTS [104,105], which is used in the calculation of the
production eþe− → Zϕ. For the study on ϕ → ff̄ decay, as
it is a work following Ref. [38], the same renormalization
scheme as in Ref. [38] is used and will not be dis-
cussed here.

1. Definition of renormalization constants

In the following, we introduce renormalized quantities
and renormalization constants in the on-shell PTS, where
an index 0 is used to label bare quantities.

1. Gauge and fermion sectors: Things are similar to the
SM for these two sectors. The renormalization of
gauge boson and fermion masses are given by

m2
V;0 ¼ m2

V þ δm2
V; V ¼ W;Z;

mf;0 ¼ mf þ δmf; ðC1Þ

and the electric charge by

e0 ¼ ð1þ δZeÞe: ðC2Þ

Meanwhile, the renormalization of the gauge fields
are defined as

W�
0 ¼

�
1þ 1

2
δZWW

�
W�;

�
Z

A

�
0

¼
 
1þ 1

2
δZZZ

1
2
δZZA

1
2
δZAZ 1þ 1

2
δZAA

!�
Z

A

�
;

ðC3Þ

while for the fermion field, due to its left- and right-
handed chirality, it has independent field renormal-
ization constants:

fL0 ¼
�
1þ 1

2
δZL

f

�
fL

fR0 ¼
�
1þ 1

2
δZR

f

�
fR: ðC4Þ

2. Higgs sector: The renormalization is performed in a
Higgs physics basis. The renormalization of Higgs
masses is defined as

m2
ϕ;0 ¼ m2

ϕ þ δm2
ϕ; ϕ ¼ G�; H�; G0; H0; h0;

ðC5Þ

while the renormalization of Higgs fields is given by

�
H0

h0

�
0

¼
�
1þ 1

2
δZH0H0

1
2
δZH0h0

1
2
δZh0H0 1þ 1

2
δZh0h0

��
H0

h0

�
;

�
G0

A0

�
0

¼
�
1þ 1

2
δZG0G0

1
2
δZG0A0

1
2
δZA0G0 1þ 1

2
δZA0A0

��
G0

A0

�
;

�
G�

H�

�
0

¼
�
1þ 1

2
δZG�G� 1

2
δZG�H�

1
2
δZH�G� 1þ 1

2
δZH�H�

��
G�

H�

�
:

ðC6Þ

For the mixing angles, they are defined as

α0 ¼ αþ δα;

β0 ¼ β þ δβ: ðC7Þ
We have skipped the renormalization of λ5, as it is
not needed in our calculation. In order to expose the
difference between the on-shell PTS and the other
tadpole schemes, we also provide the renormaliza-
tion of the tadpoles in the standard tadpole scheme,
which is defined as given below:

TH0;0 ¼ TH0 þ δTH0 ;

Th0;0 ¼ Th0 þ δTh0 : ðC8Þ

In contrast, the on-shell PTS is based on the FJ
tadpole scheme [32], where the shifts of the VEVs
v1;2 → v1;2 þ Δv1;2 are introduced. We can choose
the values of Δv1;2 order by order to make renor-
malized tadpoles vanishing in the perturbation ex-
pansion. In such a procedure, we are able to
appropriately allocate the tadpole contributions
and define all counterterms in a gauge-independent
way.
It is noteworthy that in the on-shell PTS, there is

no need to define the tadpole counterterms given in
Eq. (C8) (i.e., δTH0;h0) anymore. Instead, their roles
are replaced by ΔTH0;h0, which are caused by the
shift of the VEVs and are given in Refs. [104,105] as

ΔTH0 ¼ ðcαΔv1 þ sαΔv2Þm2
H0 ;

ΔTh0 ¼ ð−sαΔv1 þ cαΔv2Þm2
h0 : ðC9Þ

To avoid confusion, we have deliberately changed
the convention of δT in Refs. [104,105] to ΔT in
order to indicate that the origin and meaning of ΔT
are different from δT given in Eq. (C8). Such a
convention has also been adopted in Ref. [101].

XIE, BENBRIK, HABJIA, TAJ, GONG, and YAN PHYS. REV. D 103, 095030 (2021)

095030-22



2. Renormalization conditions

Δv1;2=ΔTH0;h0 will appear in self-energies as well as
vertices. It has already been revealed in Refs. [101,104] that
the effect ofΔv1;2=ΔTH0;h0 can be easily included by adding
possible tadpole diagrams to generic one-particle irreducible
diagrams. In this scheme, well-known on-shell conditions
are used everywhere. The differences between the well-
known on-shell scheme and this scheme are as follows:

1. Tadpole counterterms δTH0;h0 defined in Eq. (C8)
vanish in this scheme.

2. Self-energies Σðk2Þ are replaced with Σtadðk2Þ by
adding possible tadpole contributions.

It should be pointed out that the derivatives of self-energies
Σ0ðk2Þ remain unchanged due to the fact that tadpole
contributions are independent of external momentum k; thus,
most wave function renormalization constants are the same.
In the following, we present more necessary information

about this on-shell PTS. For more details, please refer to
Ref. [104].
In gauge and fermion sectors, the same on-shell

conditions as in the SM are used [94]. Among all the
renormalization constants in these sectors, three are differ-
ent: δm2

W , δm
2
Z, and δmf. Only the first two are used in this

work; they are given by

δm2
V ¼ ReΣtad;T

VV ðm2
VÞ; V ¼ W;Z: ðC10Þ

In the Higgs sector, the renormalized self-energy of the
Higgs field ϕ is the following finite combination of the
unrenormalized self-energy:

Σ̂ϕϕðk2Þ ¼ Σtad
ϕϕðk2Þ − δm2

ϕ þ ðk2 −m2
ϕÞδZϕϕ;

ϕ ¼ G�; H�; G0; A0; H0; h0;

while for the mixing one, it is

Σ̂ϕ1ϕ2
ðk2Þ ¼ Σtad

ϕ1ϕ2
ðk2Þ þ 1

2
δZϕ1ϕ2

ðk2 −m2
ϕ1
Þ

þ 1

2
δZϕ2ϕ1

ðk2 −m2
ϕ2
Þ;

with ðϕ1;ϕ2Þ ¼ ðG�; H�Þ; ðG0; A0Þ, and ðH0; h0Þ.
The renormalization conditions for the masses and wave

functions in Higgs sector are given as follows:
1. For the masses, on-shell conditions are used:

ReΣ̂ϕϕðm2
ϕÞ ¼ 0; ϕ ¼ H�; A0; H0; h0: ðC11Þ

These conditions ensure that the physical masses of
Higgs bosons are pole masses of corresponding
renormalized propagators, from which we obtain

δm2
ϕ¼ReΣtad

ϕϕðm2
ϕÞ; ϕ¼H�;A0;H0;h0: ðC12Þ

2. For the wave functions, we require the residue of the
renormalized propagator of ϕ to be one:

ReΣ̂0
ϕϕðk2Þjk2¼m2

ϕ
¼ 0;

ϕ ¼ G�; H�; G0; A0; H0; h0; ðC13Þ

and the mixing self-energies vanish when one of the
external particles is on shell:

Σ̂ϕ1ϕ2
ðm2

ϕ1
Þ ¼ Σ̂ϕ1ϕ2

ðm2
ϕ2
Þ ¼ 0;

ðϕ1;ϕ2Þ ¼ ðG�; H�Þ; ðG0; A0Þ; ðH0; h0Þ: ðC14Þ

From the equations, we obtain

δZϕϕ ¼ −ReΣ0
ϕϕðm2

ϕϕÞ;
ϕ ¼ G�; H�; G0; A0; H0; h0;

δZϕ1ϕ2
¼ 2ReΣtad

ϕ1ϕ2
ðm2

ϕ2
Þ

m2
ϕ1

−m2
ϕ2

;

ðϕ1;ϕ2Þ ¼ ðG�; H�Þ; ðG0; A0Þ; ðH0; h0Þ: ðC15Þ

The renormalization of the mixing angles might be the
most important part of this Appendix. As the FJ tadpole
scheme is applied, gauge-independent definitions for the
counterterms δα and δβ are possible. In Ref. [101], MS
subtraction is used, while in this work, we follow the
procedure in Ref. [104] where the pinch technique (see,
e.g., Ref. [106]) is applied:

1. First, the pinched self-energies Σ̄ are obtained with
the help of the pinch technique. It is found to be a
sum of two parts:

Σ̄ðk2Þ ¼ Σtadjξ¼1ðk2Þ þ Σaddðk2Þ; ðC16Þ

where ξ stands for the gauge-fixing parameters ξZ,
ξW , and ξγ of the Rξ gauge. As shown in Eq. (C16),
the first part has the same form as the tadpole self-
energies evaluated in the Feynman gauge, and the
second one is an additional contribution which is
explicitly independent of the gauge fixing param-
eter ξ.

2. The counterterms are then defined through the above
pinched self-energies with the on-shell scale, namely

δα ¼ ReΣ̄H0h0ðm2
H0Þ þ ReΣ̄H0h0ðm2

h0Þ
2ðm2

H0 −m2
h0Þ

;

δβ ¼ −
ReΣ̄G0A0ð0Þ þ ReΣ̄G0A0ðm2

A0Þ
2m2

A0

; ðC17Þ

where the definition for δβ from the CP-odd Higgs
sector has been chosen.
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More details about this on-shell PTS can be found in Ref. [104]. For completeness, we list here the additional parts in the
pinched self-energies as the end of this Appendix:

Σadd
H0h0ðk2Þ ¼

g2sβ−αcβ−α
32π2c2W

�
k2 −

m2
H0 þm2

h0

2

�
f½B0ðk2;m2

Z;m
2
A0Þ − B0ðk2;m2

Z;m
2
ZÞ�

þ 2c2W ½B0ðk2;m2
W;m

2
H�Þ − B0ðk2;m2

W;m
2
WÞ�g;

Σadd
G0A0ðk2Þ ¼

g2sβ−αcβ−α
32π2c2W

�
k2 −

m2
A0

2

�
½B0ðk2;m2

Z;m
2
H0Þ − B0ðk2;m2

Z;m
2
h0Þ�; ðC18Þ

where B0 is the scalar two-point function [138].
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