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We present new results for classical-particle propagation subject to Lorentz violation. Our analysis is
dedicated to spin-nondegenerate operators of arbitrary mass dimension provided by the fermion sector of
the Standard-Model extension. In particular, classical Lagrangians are obtained for the operators b̂μ and
Ĥμν as perturbative expansions in Lorentz violation. The functional dependence of the higher-order
contributions in the background fields is found to be quite peculiar, which is probably attributed to particle
spin playing an essential role for these cases. This paper closes one of the last gaps in understanding
classical-particle propagation in the presence of Lorentz violation. Lagrangians of the kind presented will
turn out to be valuable for describing particle propagation in curved backgrounds with diffeomorphism
invariance and/or local Lorentz symmetry explicitly violated.
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I. INTRODUCTION

Theories of physics at the Planck scale such as strings
[1], loop quantum gravity [2], noncommutative spacetime
structures [3], and spacetime foam [4] as well as nontrivial
spacetime topologies [5] and Hořava-Lifshitz gravity [6]
predict violations of Lorentz invariance. Planck-scale
physics is presently not testable by direct means, but the
low-energy fingerprints of Lorentz violation could show up
in feasible experiments performed at much lower energies.
To be able to translate the absence of signals for Lorentz
violation into constraints on meaningful physical quan-
tities, the Standard-Model extension (SME) was con-
structed [7,8] as an effective field theory framework that
parametrizes deviations from Lorentz symmetry. Searches
for CPT violation are sometimes considered as more
important than searches for Lorentz violation. Since
CPT violation implies Lorentz violation in effective field
theory according to a theorem by Greenberg [9], the SME
automatically comprises all CPT-violating operators.
The SME can be decomposed into a nongravitational

[7,10–12] and a gravitational part [8,13], where each of

them on its own consists of a minimal and a nonminimal
sector. The minimal SME incorporates Lorentz-violating
field operators of mass dimensions 3 and 4, whereas the
nonminimal SME comprises all higher-dimensional oper-
ators. The nonminimal contributions for photons, neutrinos,
and Dirac fermions without gravity are neatly classified in
[10,11] where [12] provides a more general classification
that respects the gauge structure of the Standard Model
(SM). The most recent work [13] clarifies various aspects of
Lorentz and diffeomorphism violation in gravity and intro-
duces a method to construct operators of arbitrary mass
dimension that are invariant under general coordinate trans-
formations. Besides, a (3þ 1) decomposition of the minimal
SME gravity sector was performed in [14] and turned out to
be useful for studies of Lorentz violation in cosmology. At
large, investigations of Lorentz violation in gravity can be
intricate, which is why linearized gravity is taken as the base
of a series of papers such as [15,16].
One of the great successes of the SME over the past two

decades is the large number of tight constraints on both
minimal and nonminimal Lorentz violation in the non-
gravitational part [17]. Lorentz violation in the gravity
sector has also been constrained, but most of these bounds
are significantly weaker than those of the nongravitational
SME. The reason is undoubtedly that gravitational experi-
ments of high precision are more challenging to perform in
comparison to experiments that are insensitive to gravity.
After all, the experimental value of Newton’s constant has
the largest experimental uncertainty in comparison to the
remaining constants of nature.
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Therefore, Lorentz violation may well hide in the gravi-
tational sector and may have remained unnoticed, so far.
Also, there are certain types of Lorentz violation that cannot
be observed in Minkowski spacetime even if they are
enormous, as they can be removed from the Lagrange
density by a redefinition of the physical fields. However,
such a redefinition loses its validity in the presence of
gravity, whereupon the enormous value would be suppressed
by the weakness of the gravitational interaction [18].
Earthbound experiments searching for deviations from

the laws of General Relativity include tests of the weak
equivalence principle performed with test masses of differ-
ent materials in drop-tower experiments as well as torsion
pendulum and gravimeter experiments. Furthermore,
space-born experiments such as Gravity Probe B or laser
ranging experiments can set bounds on violations of local
Lorentz invariance in gravity (see [19] for a compilation of
such tests). Lorentz violation in the gravity sector can also
be constrained via the absence of gravitational vacuum
Cherenkov radiation that would imply energy losses of
ultrahigh-energetic particles by the emission of gravitons
[20]. The announcement of the direct detection of gravi-
tational waves in 2016 [21] opened another window for
searches for Lorentz violation in gravity, as the latter would
modify the emission and propagation properties of gravi-
tational waves [16,22].
Earth-based experiments in the gravitational sector

involve extended test masses that are beyond the field-theory
description of the SME. Hence, to test local Lorentz
invariance in gravity, it is desirable work with an SME-
equivalent that parametrizes Lorentz violation for classical,
relativistic, pointlike particles. An algorithm that provides
such a description was proposed in [23] and since then it has
been applied to various sets of Lorentz-violating operators
[24–29]. Some of these classical Lagrangians are known to
be connected to Finsler structures [30] that give rise to Finsler
geometries. Finsler geometry is less restrictive than
Riemannian geometry [31,32], as it does not necessarily
rely on quadratic path length functionals [33–35].
Further studies in this realm involve the reverse process

from a Lagrangian back to the Hamiltonian of a field theory
[36], methods of removing singularities of Finsler spaces
[37] according to Hironaka’s theorem [38], applications
within classical mechanics and electrostatics [39] as well as
investigations of field theories based on pseudo-Finsler
spaces [40]. Results on Finsler structures that occur for
Lorentz-violating photons in the eikonal limit are also
available [41].
To complete the picture, a systematic treatment of the

spin-nondegenerate fermion operators is still missing.
Although results for nonminimal spin-nondegenerate oper-
ators at first order in Lorentz violation are already available
[27], nothing is known about the structure of higher-order
contributions. This gap shall be closed with the current
article.

Our paper is organized as follows. Section II gives a
summary on the most important characteristics of the
modified Dirac fermion sector of the nonminimal SME
that will be of importance in the subsequent analysis.
Section III summarizes the procedure of how to map a field
theory to the description of a classical, relativistic, pointlike
particle in terms of a Lagrangian. In Sec. IV some
intermediate results are obtained that allow us to determine
the perturbative expansions of the Lagrangians considered.
An application of the method in Sec. V provides the
covariant Lagrangian for dimension-5 b and H coefficients
at second order in Lorentz violation. Finally, all findings are
concluded on in Sec. VI. The appendix presents worthwhile
computational details that are of lesser interest to be shown
in the main body of the paper. Natural units will be used
with ℏ ¼ c ¼ 1 unless otherwise stated.

II. DIRAC FIELD THEORY MODIFIED BY SPIN-
NONDEGENERATE OPERATORS

The Dirac fermion sector of the SME describes modified
spin-1=2 fermions that are subject to Lorentz violation. Its
nonminimal version including the full spectrum of possible
Lorentz-violating operators was constructed in [11] and it
has the form

L ¼ 1

2
ψ̄ði∂ −mψ14 þ Q̂Þψ þ H:c:; ð1Þ

where ψ is a Dirac spinor field, ψ̄ ≡ ψ†γ0 the Dirac-
conjugated field, mψ the fermion mass, and 14 the identity
matrix in spinor space. All fields are defined in Minkowski
spacetime with metric ημν of signature ðþ;−;−;−Þ.
Furthermore, ∂ ≡ γμ∂μ with the standard Dirac matrices
satisfying the Clifford algebra fγμ; γνg ¼ 2ημν14.
The operator Q̂ comprises all contributions that are in

accordance with the spinor structure of Dirac theory. It
consists of a spin-degenerate part that involves the oper-
ators âμ, ĉμ, ê, f̂, and m̂. Spin-degenerate Lorentz violation
does not lift the twofold degeneracy of the fermion
dispersion relation, i.e., the energy-momentum dependence
for spin-up fermions is the same as that for spin-down
fermions. Apart from these operators, Q̂ contains a spin-
nondegenerate part including the operators b̂μ, d̂μ, Ĥμν, and
ĝμν. Dirac fermions that interact with background fields of
these types have propagation properties dependent on their
spin projection. In other words, the dispersion relation of
spin-up fermions differs from that for spin-down fermions.
Each of these operators mentioned can be decomposed into
a sum of controlling coefficients contracted with a certain
number of four-derivatives that successively increases by 2.
The mass dimension d of these controlling coefficients
depends on the number of four-derivatives that occur in the
operator. Coefficients of negative mass dimensions are
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contained in the nonminimal SME and the corresponding
operators are power-counting nonrenormalizable.
In general, the structure of the spin-nondegenerate

operators is way more involved than that of the spin-
degenerate ones, which is a property that will also become
evident in the forthcoming sections of the paper. The
underlying reason is their dependence on the spin projec-
tion, which is absent for the spin-degenerate operators. For
example, the complicated structure of the spin-nondegen-
erate operators shows up in their dispersion relations, the
spinor solutions of the modified Dirac equation [11,42,43]
as well as the plethora of different behaviors in unusual
particle physics processes such as vacuum Cherenkov
radiation [44].

III. CLASSICAL KINEMATICS

To evaluate data from experimental tests of local Lorentz
invariance in gravity, it is desirable to have a framework
parametrizing Lorentz violation for classical, pointlike
particles. First of all, gravity is dominant for macroscopic
test bodies, whereupon their behavior is dominated by the
laws of classical physics. Second, with the law of motion of
a pointlike particle at hand, at least the translational
behavior of a macroscopic object consisting of these
particles is obtained from integrations over suitable mass
distributions.
The SME itself is based on field theory and does not

describe Lorentz violation for classical particles. Therefore,
the modified Dirac fermion sector of Eq. (1) must be
mapped suitably to the Lagrangian L ¼ LðuÞ of a relativ-
istic pointlike particle moving with four-velocity uμ. A
reasonable map was constructed around ten years ago in
[23] and it is governed by a set of five ordinary, nonlinear
equations:

DðpÞ ¼ 0; ð2aÞ

∂p0

∂pi
¼ −

ui

u0
; i ∈ f1; 2; 3g; ð2bÞ

L ¼ −pμuμ: ð2cÞ

Equation (2a) is the dispersion equation of the modified
Dirac theory in Eq. (1). The latter depends on the four-
momentum pμ and follows from the requirement that the
modified Dirac equation have nontrivial spinor solutions.
Equations (2b) say that the centroid of a wave packet
constructed from plane-wave solutions of the modified
Dirac equation moves with a group velocity equal to the
three-velocity u=u0 of the corresponding classical particle.
The minus sign on the right-hand side takes into account
the different positions of the spatial index i on both sides of
the equations. Finally, the Euler equation (2c) holds for a
Lagrangian L that is positively homogeneous of degree 1:
LðλuÞ ¼ λLðuÞ for λ > 0 (see [35]). The latter property is

appealing for physical reasons, as it implies an action that is
invariant with respect to reparametrizations of the classical
trajectory.
The four-momentum in the dispersion equation is

interpreted as the canonical momentum connected to the
Lagrangian via

pμ ¼ −
∂L
∂uμ : ð3Þ

The five equations (2) depend on the four-momentum
components, the four-velocity components, and the
classical Lagrangian to be determined. They should allow
us to express the four-momentum completely in terms of
the four-velocity and to state the Lagrangian as a function
of the four-velocity. However, what is expected to work in
theory, is challenging in practice, since the equations are
both nonlinear and coupled. Over the past decade, different
techniques were applied to successfully obtain Lagrangians
for various sets of controlling coefficients. The first
Lagrangians were derived in [23] probably by directly
manipulating the system of equations. By doing so, the
authors obtained Lagrangians for both the spin-degenerate
and the spin-nondegenerate fermion sector of the minimal
SME. Further results followed in [24].
It was soon realized that classical Lagrangians in the

context of the nonminimal SME were more challenging to
derive. Nonminimal operators come with additional powers
of four-momentum components increasing the nonlinearity
of Eqs. (2). It seemed that Lagrangians exact in Lorentz
violation may be highly nontransparent and too unwieldy to
be used in applications [25]. Therefore, the focus changed
to obtaining such Lagrangians at first order in Lorentz
violation only. This was done to simplify computations, but
such results were also thought to be sufficient from a
practical viewpoint, as Lorentz violation (at least in
Minkowski spacetime) is already tightly constrained [17].
The first Lagrangians of the nonminimal SME at leading

order in Lorentz violation were derived in [26] by solving
Eqs. (2) with the help of Gröbner bases. Due to the
complexity of spin-nondegenerate operators, the latter
analysis only involved classical Lagrangians for spin-
degenerate operators. Round about two years later, these
findings were complemented in [27] by including spin-
nondegenerate operators, which provided the full classical-
particle equivalent to the SME at leading order in Lorentz
violation. The experience on the form of such Lagrangians
gained in the years before greatly contributed to obtaining
these results. Finally, a powerful method to derive pertur-
bative series of Lagrangians in the Lorentz-violating
coefficients was presented in [28] and applied to a modified
scalar field theory to obtain such series to third order in
Lorentz violation. A subsequent analysis [29] led to
equivalent results for the spin-degenerate operators of
the nonminimal Dirac fermion sector. So far, an analogous
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investigation for the spin-nondegenerate operators has not
been carried out.
The intention of the current paper is to establish ties to the

spin-nondegenerate operators.Wewill restrict the analysis to
controlling coefficients bðdÞμα1…αðd−3Þ , dðdÞμα1…αðd−3Þ that are
totally symmetric and HðdÞμνα1…αðd−3Þ , gðdÞμνα1…αðd−3Þ that are
antisymmetric in the first two indices and totally symmetric
in the remaining ones. Similar assumptions were taken to
obtain perturbative series of Lagrangians for the spin-
degenerate operators in [29]. These restrictions are minor
in comparison to how they simplify the computations. In
many cases the coefficients with the described symmetries
are dominant, whereas the others are suppressed (compare to
the leading-order results of [27,28] that only involve the
totally symmetric sets of coefficients).
The perturbative method first proposed in [28] and

applied to the spin-degenerate fermion operators in [29]
shall now be adopted suitably such that it can lead to
perturbative series of Lagrangians for the spin-nondegen-
erate operators b̂μ, d̂μ, Ĥμν, and ĝμν. To avoid couplings
between different types of coefficients or coefficients of
different mass dimensions, we only consider a particular
coefficient type and a fixed mass dimension at a time. The
crucial difference to the spin-degenerate operators is that
the dispersion equation (even for the minimal framework)
is no longer quadratic in the four-momentum, but quartic, at
least. For b̂μ and Ĥμν they can be cast into the form

jp2 − bðdÞμ⋄ðbðdÞÞμ⋄ −m2
ψ j ¼ 2ϒb; ð4aÞ

jp2 þ 2X̂ −m2
ψ j ¼ 2ϒH; ð4bÞ

with the valuable observer Lorentz scalars

ϒb ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbðdÞ⋄Þ2 − bðdÞμ⋄ðbðdÞÞμ⋄p2

q
; ð4cÞ

ϒH ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2X̂p2 −HðdÞν⋄ðHðdÞÞν⋄ − Ŷ2

q
; ð4dÞ

X̂ ≡ 1

4
HðdÞμν⋄ðHðdÞÞμν⋄; ð4eÞ

Ŷ ≡ 1

4
HðdÞμν⋄ðH̃ðdÞÞμν⋄; ð4fÞ

and the dual of Ĥμν in momentum space:

H̃ðdÞμν⋄ ≡ 1

2
εμνϱσðHðdÞÞϱσ⋄: ð4gÞ

Here, εμνϱσ is the totally antisymmetric Levi-Civita symbol
in four spacetime dimensions with ε0123 ¼ 1. We employ
the ⋄ notation that was introduced in [29] for convenience.
It indicates coefficients suitably contracted with four-
momenta (as opposed to four-velocities).
Comparing Eqs. (4a) and (4b) with each other, it is

evident that they share certain similarities, but there are also
crucial differences. The observer scalar Ŷ is nonzero only
when there is at least one nonzero purely spatial component
operator Ĥij and a nonzero mixed one Ĥ0i. If Ŷ ¼ 0, we
can directly identify

ðbðdÞ⋄Þ2 ↔ −HðdÞν⋄ðHðdÞÞν⋄; ð5aÞ

bðdÞμ⋄ðbðdÞÞμ⋄ ↔ −2X̂; ð5bÞ

which reveals that there is a certain correspondence
between these operators at the level of the dispersion
equation.

IV. BASIC RESULTS FOR PERTURBATIVE
EXPANSION

The procedure to obtain a perturbative expansion for a
classical Lagrangian starts with a computation of the
implicit derivative of the dispersion equation with respect
to pμ and to use Eq. (2b). A contraction of the result with
the spatial momentum components pj and a subsequent
application of Eq. (2c) as well as taking into account the
general form of b̂μ, d̂μ, Ĥμν, and ĝμν for a fixed mass
dimension d implies the following four-velocities as
functions of the four-momentum:

uμjb ¼ −L
�ϒb½pμ − ðd − 3ÞbðdÞμν⋄ðbðdÞÞν⋄� þ bðdÞν⋄ðbðdÞÞν⋄pμ − bðdÞ⋄bðdÞμ⋄ þ ðd − 3Þ½bðdÞμν⋄ðbðdÞÞν⋄p2 − bðdÞ⋄bðdÞμ⋄�

�ϒb½p2 − ðd − 3ÞbðdÞρ⋄ðbðdÞÞρ⋄� − ðd − 2Þϒ2
b

;

ð6aÞ

uμjH ¼ −L
�ϒH½pμ þ 2ðd − 3ÞX̂μ� − 2X̂pμ −HðdÞμν⋄ðHðdÞÞν⋄ þ ðd − 3Þð−2X̂μp2 − pνHðdÞνϱμ⋄ðHðdÞÞϱ⋄ þ 2ŶŶμÞ

�ϒH½p2 þ 2ðd − 3ÞX̂� − ðd − 2Þϒ2
H þ ðd − 4ÞŶ2

; ð6bÞ

where, for convenience, we additionally defined the useful observer four-vectors

X̂ϱ ≡ 1

4
HðdÞμνϱ⋄ðĤðdÞÞμν⋄; ð7aÞ
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Ŷϱ ≡ 1

4
HðdÞμνϱ⋄ðH̃ðdÞÞμν⋄: ð7bÞ

Calculational details on how to obtain these results explic-
itly are relegated to Appendix A. Analogous results for d̂μ
and ĝμν follow from Eqs. (6) via the replacements bðdÞμ⋄ ↦
dðdþ1Þμ⋄ andHðdÞμν⋄ ↦ gðdþ1Þμν⋄, respectively, and suitable
adaptations of the mass dimension d. However, in contrast
to results at first order in Lorentz violation (cf. [27]), it is not
possible to perform the replacements b̂μ ↦ −Âμ and Ĥμν ↦

−T̂ μν with the pseudoscalar and two-tensor operators Âμ

and T̂ μν, respectively, of Eq. (7) in [11]. Such replacements
would induce couplings between different types of coef-
ficients and Eqs. (6) are not valid for such scenarios.
Contracting a four-velocity of Eqs. (6) with uμ and using

Eq. (2c) again provides quadratic equations in the corre-
sponding Lagrangians, such as for the case of spin-
degenerate operators [28,29]. This finding is interesting,
since the dispersion equations for the spin-nondegenerate
operators are quartic at least (as mentioned before). For
example, for the case of b̂μ we obtain

0 ¼ ζ�b L
2
b þ ψ�

b Lb − u2; ð8aÞ

with the coefficients

ζ�b ¼ ðΞ�
b Þ−1

�
�ϒb þ bðdÞμ⋄ðbðdÞÞμ⋄

�
; ð8bÞ

ψ�
b ¼ ðΞ�

b Þ−1fðd − 3Þð∓ ϒb − bðdÞν⋄ðbðdÞÞν⋄ −m2
ψÞ

× bðdÞϱσ⋄uϱðbðdÞÞσ⋄
þbðdÞ⋄½bðdÞν⋄uν þ ðd − 3ÞbðdÞκλ⋄uκpλ�g; ð8cÞ

and the denominator

Ξ�
b ¼ �ϒb½m2

ψ − ðd − 4ÞbðdÞκ⋄ðbðdÞÞκ⋄� − ðd − 4Þϒ2
b:

ð8dÞ

Note that we reformulated the denominator in the latter
formulas via Eq. (4a) to eliminate four-momentum compo-
nents. This procedure has turned out to reduce computation
time. Equation (8a) can be solved for the Lagrangian at the
cost that it still partially depends on the four-momentum. In
total, there are four solutions: two for particles and two for
antiparticles. These solutions are very powerful, since they
permit us to compute Lagrangians as perturbative series in
the controlling coefficients.
The procedure is iterative and for particles it starts with

the standard result LðdÞ
0 ¼ −mψ ū with ū≡ ffiffiffiffiffi

u2
p

. The latter
is obtained from Eq. (8) in the limit of vanishing Lorentz
violation. It is linked to a zeroth-order canonical momen-

tum via ðp0Þμ ≡ −∂LðdÞ
0 =∂uμ. Inserting this four-

momentum into an appropriate particle solution and keep-
ing all contributions linear in Lorentz violation implies a

first-order Lagrangian LðdÞ
1 and another canonical momen-

tum ðp1Þμ valid at first order in Lorentz violation. This

iteration can be continued successively to arrive at LðdÞ
qþ1

valid at (qþ 1)-th order based on the previous iterative

results LðdÞ
q and ðpqÞμ ≡ −∂LðdÞ

q =∂uμ. The corresponding
Lagrangians for antiparticles follow from the results for
particles via the substitution mψ ↦ −mψ . In this case, the

iterative procedure starts by inserting LðdÞ
0 ¼ mψ ū into an

antiparticle solution of Eq. (8a).

V. SECOND-ORDER CLASSICAL LAGRANGIANS

Experience showed that such perturbative computations
to third order in Lorentz violation are feasible for spin-
degenerate operators—independently of their mass dimen-
sions [29]. The situation was quickly revealed to be very
different for the spin-nondegenerate cases. First of all,
applying the perturbative algorithm described before may
require significantly more computation time for these
operators. Secondly, while covariant expressions were
obtained by a straightforward generalization of particular
cases of spin-degenerate coefficients, it turned out to be
exceedingly more challenging to accomplish the same for
spin-nondegenerate operators.
Considering the controlling coefficients ðKðdÞÞα1α2… of a

Lorentz-violating operator of mass dimension d, we intro-
duce the following dimensionless tensors of rank l via
contractions of the latter with suitable numbers of four-
velocities:

ðK̃ðdÞÞα1…αl
≡md−4

ψ ðKðdÞÞα1…αlαlþ1αlþ2…

× ûαlþ1 ûαlþ2…; ð9Þ

where we employ ûα ≡ uα=ū. These tensors play an
essential role in the construction of covariant forms of
Lagrangians. A crucial observation made both in case of the
scalar field theory in [28] and for the spin-degenerate
fermion operators of the SME [29] is that the tensors that
may occur in the Lagrangians have a maximum rank of 2—
independently of the mass dimension of the operator. The
same seems to hold true for the dimension-5 b coefficients.
The situation is slightly different for the dimension-5 H
coefficients, as the latter are antisymmetric in the first two
indices, whereupon a Hð5Þ

μνϱσ fully contracted with four-
velocities is identical to zero: H̃ð5Þ ¼ 0. Therefore, tensors
of rank 3 at the maximum will be necessary to construct
covariant Lagrangians for Ĥμν.
In what follows, we will present covariant classical

Lagrangians for the dimension-5 b and H coefficients at
second order in Lorentz violation. Results will only be given
for particles. Appendix B provides details on the computa-
tional procedure. For the b coefficients we obtained
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Lð5Þ�
2;b ¼ L0

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb̃ð5ÞÞ2 − ðb̃ð5ÞÞαðb̃ð5ÞÞα

q

− 2ðb̃ð5ÞÞ4 − 6ðb̃ð5ÞÞ2ðb̃ð5ÞÞαðb̃ð5ÞÞα þ 6ðb̃ð5ÞÞðb̃ð5ÞÞαðb̃ð5ÞÞαβðb̃ð5ÞÞβ − 2ðb̃ð5ÞÞαðb̃ð5ÞÞαβðb̃ð5ÞÞγβðb̃ð5ÞÞγ
ðb̃ð5ÞÞ2 − ðb̃ð5ÞÞαðb̃ð5ÞÞα

�
: ð10Þ

The latter Lagrangian holds for a totally symmetric choice of

bð5Þμνϱ, which corresponds to 20 independent coefficients. The
situation is more complicated for the H coefficients. First of
all, a slight problem may arise with the notation originally
chosen in [28] that we wanted to take over for consistency.
Some results may be expressed more conveniently in terms

of the dual ofHðdÞ
μνα1…αðd−3Þ , which wewill denote by a tilde as

usual:

ðH̃ðdÞÞμνα1…αðd−3Þ ≡
1

2
εμνϱσðHðdÞÞϱσα1…αðd−3Þ : ð11Þ

Note that suitable dimensionless contractions of the dual
with ûμ are now denoted by a double tilde:

ð ˜̃HðdÞÞα1…αl
≡md−4

ψ ðH̃ðdÞÞα1…αlαlþ1αlþ2…

× ûαlþ1 ûαlþ2…: ð12Þ

Thus, the latter does not correspond to the dual of the dual in
this paper. As a first step, we focus on the minimal

dimension-3 coefficients Hð3Þ
μν . The Lagrangian for the full

set of six independent coefficients has been unknown, so far.
Exact results were obtained for the sectors of mixed

coefficients Hð3Þ
0i and the purely spacelike ones Hð3Þ

ij sepa-
rately. As long as these two sectors do not couple to each
other, it holds that Ỹð3Þ ≡ 1

4
ðHð3ÞÞμνðH̃ð3ÞÞμν ¼ 0. The

Lagrangian for these cases can be found, e.g., in Eq. (15)
of [23].
Now, for Ỹð3Þ ≠ 0, the algorithm above is employed to

obtain a perturbative form of the Lagrangian whose
covariantization is much less involved than for the dimen-
sion-5 b coefficients. The outcome at third order in Lorentz
violation reads

Lð3Þ�
3;H ¼ L0

�
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð ˜̃Hð3ÞÞαð ˜̃Hð3ÞÞα

q
−

ðỸð3ÞÞ2
2ð ˜̃Hð3ÞÞαð ˜̃Hð3ÞÞα

∓ ðỸð3ÞÞ2ð ˜̃Hð3ÞÞαð ˜̃Hð3ÞÞαβð ˜̃Hð3ÞÞβγð ˜̃Hð3ÞÞγ
2½−ð ˜̃Hð3ÞÞαð ˜̃Hð3ÞÞα�5=2

�
: ð13Þ

It is clear that the terms of second and third order must be
directly proportional to the quantity Ỹð3Þ such that for

Ỹð3Þ ¼ 0 the already known Lagrangian in Eq. (15) of [23]
is reproduced.
A covariant Lagrangian was also obtained successfully

for the dimension-5 H coefficients at second order in
Lorentz violation. One possibility of writing it up is as
follows:

Lð5Þ�
2;H ¼ L0

�
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð ˜̃Hð5ÞÞαð ˜̃Hð5ÞÞα

q

þ δLð2Þ − δLð2Þ
c

ð ˜̃Hð5ÞÞαð ˜̃Hð5ÞÞα
�
; ð14aÞ

δLð2Þ ¼ 2ðSð5Þ1 − Sð5Þ5 − Sð5Þ6 þ Sð5Þ7 þ Sð5Þ8 Þ

− 4Sð5Þ2 þ Sð5Þ3 −
1

2
Sð5Þ4 ; ð14bÞ

δLð2Þ
c ¼ 1

2
ðỸð5ÞÞ2 þ 2ðSð5Þ7 þ Sð5Þ8 þ Sð5Þ9 Þ; ð14cÞ

with the observer Lorentz scalars expressed in terms of

tensors formed from the coefficientsHð5Þ
μνϱσ (instead of those

of the dual operator):

Sð5Þ1 ¼ ½ðH̃ð5ÞÞαðH̃ð5ÞÞα�2; ð15aÞ

Sð5Þ2 ¼ ðH̃ð5ÞÞαðH̃ð5ÞÞαX̃ð5Þ; ð15bÞ

Sð5Þ3 ¼ ðH̃ð5ÞÞαðH̃ð5ÞÞαβðH̃ð5ÞÞγδβðH̃ð5ÞÞγδ; ð15cÞ

Sð5Þ4 ¼ ðH̃ð5ÞÞαβγðH̃ð5ÞÞαβðH̃ð5ÞÞδϵγðH̃ð5ÞÞδϵ; ð15dÞ

Sð5Þ5 ¼ ûαðH̃ð5ÞÞβðH̃ð5ÞÞαβγðH̃ð5ÞÞδϵðH̃ð5ÞÞδϵγ; ð15eÞ

Sð5Þ6 ¼ ûαðH̃ð5ÞÞβðH̃ð5ÞÞαβγûδðH̃ð5ÞÞϵðH̃ð5ÞÞδϵγ; ð15fÞ

Sð5Þ7 ¼ ðH̃ð5ÞÞαðH̃ð5ÞÞαûβðH̃ð5ÞÞβγδðH̃ð5ÞÞγδ; ð15gÞ

Sð5Þ8 ¼ ðH̃ð5ÞÞαðH̃ð5ÞÞβûγðH̃ð5ÞÞγδαðH̃ð5ÞÞβδ; ð15hÞ

Sð5Þ9 ¼ ðH̃ð5ÞÞαûβðH̃ð5ÞÞβαγðH̃ð5ÞÞδðH̃ð5ÞÞγδ; ð15iÞ
X̃ð5Þ ¼ 1

4
ðH̃ð5ÞÞαβðH̃ð5ÞÞαβ; ð15jÞ
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Ỹð5Þ ¼ 1

4
ðH̃ð5ÞÞμνð ˜̃Hð5ÞÞμν: ð15kÞ

The latter Lagrangian is valid for a Hð5Þ
μνϱσ symmetric in

its last two indices. The quantities X̃ð5Þ, Ỹð5Þ correspond to

X̂, Ŷ of Eq. (4e). The form of Lð5Þ�
2;H is obviously much more

involved than that of Lð5Þ�
2;b .

Several remarks are in order with respect to Eqs. (10),
(14). First, for bð5Þμνϱ ¼ 0 and Hð5Þ

μνϱσ ¼ 0 we obtain the
standard result L0, as expected. Second, the term at first
order in Lorentz violation for b̂μ corresponds to that
obtained earlier in [27] when d ¼ 5 is inserted. For Ĥμν

this is clear, as explained in Appendix B 1. Third, the first-
order contributions come with distinct signs, which indi-
cates the spin-nondegenerate nature of b̂μ, Ĥμν. In contrast,
the second-order terms come with a single sign only. In
general, modified dispersion relations for spin-nondegen-
erate operators exhibit an analogous behavior. The degen-
eracy of the fermion energy with respect to the spin
projection is lifted by such operators, which means that,
e.g., b̂μ couples differently to fermions of spin-up in
comparison to fermions of spin-down. This different
coupling manifests itself via distinct signs in front of
contributions that contain odd powers of the Lorentz-
violating background. The same is the case when an
expression formed of even powers of controlling coeffi-
cients occurs inside a square root. The distinct coupling
does not play a role, though, for all contributions involving
even powers of controlling coefficients.
Fourth, the first-order terms in Lorentz violation are

smooth, even when the argument inside the square root
vanishes. However, the same does not hold for the second-
order term. The denominator can vanish for certain con-
figurations of the controlling coefficients and the four-
velocity components, which means that these contributions
become singular in these cases (as long as the numerators
do not vanish, as well). Hence, for the perturbative
expansion to make sense, sufficiently large regions around
such singularities in parameter space must be disregarded.
Fifth, as the first-order terms contain square roots, their first
partial derivatives with respect to the controlling coeffi-
cients are not smooth when the expression under the square
root vanishes. In particular, the latter holds for bð5Þμνϱ ¼ 0 and

Hð5Þ
μνϱσ ¼ 0, respectively. For the second-order contribution

it is the second partial derivatives with respect to the
controlling coefficients that are not smooth for certain
configurations such as for vanishing controlling coeffi-
cients. In general, singularities of classical Lagrangians for
spin-nondegenerate operators are attributed to the fact that
particle spin, which plays a crucial role for these operators,
is a quantum property that cannot be described consistently
in the setting of classical physics.
Singularities are known to occur also in the case of the

minimal b coefficients. Considering the corresponding

Wick-rotated Lagrangian as an algebraic variety, it was
explicitly demonstrated that this variety can be desingu-
larized [37] in accordance with Hironaka’s theorem [38].
Finding a suitable desingularization procedure for the cases
studied here may be interesting, but is beyond the scope of
the paper.
The second-order term for Ĥμν can be decomposed into

two contributions. It holds that δLð2Þ
c ¼ 0 as long as the

mixed component operators Ĥ0i or the purely spacelike
ones Ĥij only are considered. When both types of operators

are nonzero, δLð2Þ
c ≠ 0, in general, and must be taken into

account. Thus, δLð2Þ
c describes the coupling between the

mixed sector and the purely spacelike sector of the
dimension-5 H coefficients. In contrast to Ỹð3Þ for
d ¼ 3, Ỹð5Þ is not sufficient to include all controlling
coefficients coupling the two sectors with each other, but

additional Lorentz scalars Sð5Þ7 …Sð5Þ9 are indispensable.
We also see that 2 is the maximum rank of observer

tensors that occur in Lð5Þ�
2;H such as for the dimension-5 b

coefficients and the spin-degenerate operators. Third-rank
tensors ðH̃ð5ÞÞαβγ play a role, indeed, but their first or
second index is always contracted with another ûμ. Note the
antisymmetry in the first two indices, which prohibits us to
express such contractions in terms of ðH̃ð5ÞÞαβ.
Finally, to demonstrate that Eqs. (6a), (6b) can be

adopted to the d and g coefficients, we obtained the result
for the classical Lagrangian of the minimal, symmetric d
coefficients in Eq. (C1) of Appendix C. There are some
similarities of the latter Lagrangian with Eq. (10), but
additional structures occur. Thus, the Lagrangian for the
dimension-4 d coefficients at this level is already more
involved than that of the dimension-5 b coefficients. This
finding clarifies why it has been that challenging to find
classical Lagrangians for the minimal d coefficients as
opposed to the minimal b coefficients whose exact result
was already determined in the very first paper [23] on
classical particle propagation in the SME.

VI. CONCLUSIONS AND OUTLOOK

In this article we have studied the propagation of
classical, relativistic, pointlike particles in the presence
of Lorentz-violating operators of the spin-nondegenerate,
nonminimal SME fermion sector. In particular, we applied
the algorithm introduced in [28] to the operators b̂μ and Ĥμν

to obtain a quadratic equation in the Lagrangian that can be
solved perturbatively in Lorentz violation. By doing so, we
were able to derive covariant Lagrangians at second order
in Lorentz violation for the totally symmetric dimension-5
b coefficients and the dimension-5 H coefficients sym-
metric in the last two indices. The computations were
involved, but the results obtained demonstrate their
feasibility.
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It was surprising to find the following generic behavior
for b̂μ:

Lð5Þ�
2;b ¼ L0

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gramðb̃; ûÞ

q

þ fð5Þb ðb̃4; b̃2ðb̃ · b̃Þ; b̃ðb̃ · b̃ · b̃Þ; b̃ · b̃ · b̃ · b̃Þ
gramðb̃; ûÞ

�
;

ð16Þ

where we dropped the mass dimension from b̃ for conven-
ience and introduced an intuitive short-hand notation for
scalar and matrix products, e.g., b̃ · b̃ · b̃≡ b̃αb̃

αβb̃β, etc.
Furthermore, we employed the Gram determinant
gramðb̃; ûÞ≡ b̃ · b̃ − b̃2 (see the first paper of Ref. [30])

and fð5Þb is a function characteristic for the dimension-5 b
coefficients. It is expected that the behavior for a general

mass dimension d is analogous with fð5Þb replaced by fðdÞb .
The parameters of the linear combination of Lorentz scalars
contained in fðdÞ supposedly depend on the mass dimension
d, but the overall structure of the function does probably not

change. Note that fð3Þb ¼ 0 such that Eq. (12) of [23], which
is exact for d ¼ 3, can be reproduced.
Now, the generic form of the Lagrangian for Ĥμν reads

Lð5Þ�
2;H ¼ L0

�
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gramð ˜̃H; ûÞ

q

−
fð5ÞH ððH̃ · H̃Þ2; ðH̃ · H̃ÞX̃;…Þ

gramð ˜̃H; ûÞ

�
; ð17Þ

where we again dropped the mass dimension from H̃, ˜̃H for
brevity. Such as before, an intuitive short-hand notation for
scalar and matrix products is used as well as the Gram

determinant gramð ˜̃H; ûÞ≡ ˜̃H · ˜̃H. Furthermore, fð5ÞH is
another function valid for the dimension-5H coefficients
that involves various Lorentz scalars formed from H̃ and û.
It is again reasonable to assume that the generic form of the

function fðdÞH is analogous to that of fð5ÞH , but that the
parameters of the linear combinations of Lorentz scalars
depend on the mass dimension.
The results of this paper show that perturbative compu-

tations of classical Lagrangians for spin-nondegenerate
operators are, in principle, viable despite of them being
challenging. Subsets of coefficients that imply simple
special cases from Eqs. (10), (14) do not seem to exist.
Computations for the d and g coefficients were not
performed explicitly (except for the case of the minimal
d coefficients considered in Appendix C). However, the
basic results stated in Eqs. (6a), (6b) are expected to be
taken over conveniently to the case of d̂μ and ĝμν,
respectively, simply by adapting the mass dimension and

the number of indices [as described in the paragraph below
Eq. (7)]. The results presented here may be of interest for
mathematicians alike, as they pose the base for constructing
Finsler structures beyond those investigated in, e.g.,
[28,30]. It could also be worthwhile to study cases of
Lorentz-invariant operators of the SM effective field theory
(see, e.g., Table V in [12] and Table XX in [13] in
Minkowski spacetime).
Further questions that can still be tackled in the context

of classical Lagrangians are as follows: (i) What are the
results for controlling coefficients that are not totally
symmetric? (ii) How do the parameters of fðdÞb;H depend
on the mass dimension d? (iii) What is the form of higher-
order contributions in Lorentz violation for spin-nonde-
generate Lorentz violation? (iv) How to treat cases with
different types of coefficients coupled to each other?
However, these problems are rather specific and are
probably of lesser interest to the scientific community
working on Lorentz violation. Therefore, our conclusion is
that with the results of the current paper the problem of
classical Lagrangians describing pointlike particles subject
to Lorentz violation parametrized by the SME can be
considered as solved around 10 years after it was proposed
originally in [23]. A compilation of the Lagrangians
obtained in [23,24,27–29] forms a framework to para-
metrize Lorentz violation for classical pointlike particles.
The latter could be coined the “point-particle Standard-
Model extension.” This framework may play a valuable
role for theories that lie beyond the hexagon presented in
Fig. 2 of the recent paper [13].
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APPENDIX A: COMPUTATION OF FOUR-
VELOCITIES

Here we demonstrate explicitly how to derive the four-
velocities given in Eq. (6). The derivations make extensive
use of Eqs. (2) as well as of the property that objects like
bðdÞ⋄, HðdÞ⋄, etc. are positively homogeneous of a certain
degree in the four-momentum.

1. Operator b̂μ
The dispersion equation for the operator b̂μ reads

0 ¼ ½p2 − bðdÞμ⋄ðbðdÞÞμ⋄ −m2
ψ �2

þ 4bðdÞμ⋄ðbðdÞÞμ⋄p2 − 4ðbðdÞ⋄Þ2: ðA1Þ
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Its implicit derivative is given by

0 ¼ ½p2 − bðdÞμ⋄ðbðdÞÞμ⋄ −m2
ψ �

×

�
p0

∂p0

∂pj
þ pj − bðdÞμ⋄

∂ðbðdÞÞμ⋄
∂pj

�

þ 2bðdÞμ⋄ðbðdÞÞμ⋄
�
p0

∂p0

∂pj
þ pj

�

þ 2bðdÞμ⋄
∂ðbðdÞÞμ⋄

∂pj
p2 − 2bðdÞ⋄ ∂b

ðdÞ⋄
∂pj

: ðA2Þ

Using Eq. (2b) results in

0 ¼ ½p2 − bðdÞμ⋄ðbðdÞÞμ⋄ −m2
ψ �

×

�
p0uj − u0pj þ u0bðdÞμ⋄

∂ðbðdÞÞμ⋄
∂pj

�

þ 2bðdÞμ⋄ðbðdÞÞμ⋄½p0uj − u0pj�

− 2u0bðdÞμ⋄
∂ðbðdÞÞμ⋄

∂pj
p2 þ 2u0bðdÞ⋄ ∂b

ðdÞ⋄
∂pj

: ðA3Þ

A contraction of the latter derivative with pj in conjunction
with

pj
∂ðbðdÞÞμ⋄

∂pj
¼ðd−3Þ

�
ðbðdÞÞμ⋄−

p ·u
u0

ðbðdÞÞμ0⋄
�
; ðA4aÞ

pj
∂bðdÞ⋄
∂pj

¼ðd−2Þ
�
bðdÞ⋄−p ·u

u0
ðbðdÞÞ0⋄

�
; ðA4bÞ

as well as Eq. (2c) implies:

0 ¼ ½p2 − bðdÞμ⋄ðbðdÞÞμ⋄ −m2
ψ �½p0ð−p0u0 − LÞ − u0pjpj

þðd − 3ÞbðdÞμ⋄ðu0ðbðdÞÞμ⋄ þ LðbðdÞÞ0μ⋄Þ�
þ 2bðdÞμ⋄ðbðdÞÞμ⋄½p0ð−p0u0 − LÞ − u0pjpj�
− 2ðd − 3ÞbðdÞμ⋄ðu0ðbðdÞÞμ⋄ þ LðbðdÞÞ0μ⋄Þp2

þ 2ðd − 2Þ½ðbðdÞ⋄Þ2u0 þ LbðdÞ⋄ðbðdÞÞ0⋄�; ðA5Þ

which can be solved for u0. A covariantization (carried out
in a proper-time parametrization where uμ is a four-
vector) provides Eq. (6a). A crosscheck is the validity
of L ¼ −pμuμ.

2. Operator Ĥμν

The dispersion equation has the form

0 ¼ ðp2 −m2
ψ þ 2X̂Þ2 − 8X̂p2

þ 4HðdÞν⋄ðHðdÞÞν⋄ þ 4Ŷ2; ðA6Þ

with X̂ and Ŷ defined in Eq. (4e). Its derivative with respect
to pj is given by

0 ¼ ðp2 −m2
ψ þ 2X̂Þ

�
p0

∂p0

∂pj
þ pj þ ∂X̂

∂pj

�

− 2
∂X̂
∂pj

p2 − 4X̂

�
p0

∂p0

∂pj
þ pj

�

þ 2HðdÞν⋄ ∂ðHðdÞÞν⋄
∂pj

þ 2Ŷ
∂Ŷ
∂pj

; ðA7aÞ

with

∂X̂
∂pj

¼ 1

2

∂ðHðdÞÞμν⋄
∂pj

HðdÞμν⋄; ðA7bÞ

∂Ŷ
∂pj

¼ 1

4

�∂ðHðdÞÞμν⋄
∂pj

H̃ðdÞμν⋄þðĤðdÞÞμν⋄
∂ðH̃ðdÞÞμν⋄

∂pj

�
:

ðA7cÞ

Inserting Eq. (2b) leads to

0 ¼ ðp2 −m2
ψ þ 2X̂Þ

�
p0uj − u0pj − u0

∂X̂
∂pj

�

þ 2u0
∂X̂
∂pj

p2 − 4X̂ðp0uj − u0pjÞ

− 2u0HðdÞν⋄ ∂ðHðdÞÞν⋄
∂pj

− 2u0Ŷ
∂Ŷ
∂pj

: ðA8Þ

Multiplication of the latter with pj gives

0 ¼ ðp2 −m2
ψ þ 2X̂Þ½p0ð−p0u0 − LÞ − u0pjpj

−2ðd − 3Þðu0X̂ þ LX̂0Þ� þ 4ðd − 3Þðu0X̂ þ LX̂0Þp2

− 4X̂½p0ð−p0u0 − LÞ − u0pjpj�
− 2ðd − 2Þu0HðdÞν⋄ðHðdÞÞν⋄
þ L½2ðd − 3ÞpνHðdÞνϱ0⋄ðHðdÞÞϱ⋄þ2HðdÞ0ν⋄ðHðdÞÞν⋄�
− 4ðd − 3ÞŶðu0Ŷ þ LŶ0Þ; ðA9Þ

where we employed

pj
∂HðdÞμ⋄
∂pj

¼ −
p · u
u0

½ðd − 3ÞHðdÞμν0⋄pν þHðdÞμ0⋄�

þ ðd − 2ÞHðdÞμ⋄; ðA10aÞ

pj
∂HðdÞμν⋄
∂pj

¼ ðd − 3Þ
�
HðdÞμν⋄ − p · u

u0
HðdÞμν0⋄

�
; ðA10bÞ
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pj
∂X̂
∂pj

¼ 1

2
pj

∂ðHðdÞÞμν⋄
∂pj

HðdÞμν⋄

¼ d − 3

2

�
ðHðdÞÞμν⋄ −

p · u
u0

ðHðdÞÞμν0⋄
�
HðdÞμν⋄

¼ 2ðd − 3Þ
�
X̂ −

p · u
u0

X̂0

�
; ðA10cÞ

pj
∂Ŷ
∂pj

¼ 1

4

�
pj

ðHðdÞÞμν⋄
∂pj

H̃μν⋄ þ ðHðdÞÞμν⋄pj
∂H̃μν⋄
∂pj

�

¼ d− 3

4

��
ðHðdÞÞμν⋄ −

p · u
u0

ðHðdÞÞμν0⋄ÞH̃ðdÞμν⋄

þðHðdÞÞμν⋄
�
HðdÞμν⋄ −p · u

u0
H̃ðdÞμν0⋄

��

¼ d− 3

2

�
ðHðdÞÞμν⋄H̃ðdÞμν⋄−p · u

u0
ðHðdÞÞμν0⋄H̃ðdÞμν⋄

�

¼ 2ðd− 3Þ
�
Ŷ −

p · u
u0

Ŷ0

�
; ðA10dÞ

as well as Eq. (2c) and the dispersion equation (4b). Here,
X̂0 and Ŷ0 are the zeroth components of the vector-valued
quantities defined in Eq. (7). Note that Eq. (A10) has a
slightly different form compared to the other relations that
follow from the homogeneity of the expressions consid-
ered. The reason is that HðdÞμν⋄ is antisymmetric in the first
two indices and completely symmetric in the remaining
indices only. Finally, Eq. (A9) can be solved for u0.
Covariantization results in the four-velocity of Eq. (6b).

APPENDIX B: COVARIANTIZATION OF
SPECIFIC LAGRANGIANS

The algorithm described in Sec. IV is usually applied for
a certain set of controlling coefficients that are chosen to be
the same. For example, considering the isotropic part of the
operator b̂ð5Þμ that is characterized by the single dimension-

less coefficient x≡mψb
ð5Þ
000 we obtain the following

Lagrangian at third order in Lorentz violation:

L�
b;3 ¼ L0ð1� ξð1Þb xþ ξð2Þb x2 � ξð3Þb x3 þ…Þ; ðB1aÞ

ξð1Þb ¼ u20juj
ðu2Þ3=2 ; ðB1bÞ

ξð2Þb ¼ −2
u20u

4

ðu2Þ3 ; ðB1cÞ

ξð3Þb ¼ 4
u20juj5ðu20 þ u2Þ

ðu2Þ9=2 ; ðB1dÞ

where u is the spatial part of uμ. Note that this result only
holds in a single observer frame where all controlling

coefficients bð5Þμνϱ vanish except of bð5Þ000. Analogous results
follow for other sets of coefficients. However, it is highly
desirable to join all these results to obtain a Lagrangian in
covariant form.
It has turned out a formidable task to covariantize the

findings that are valid in particular observer frames only.
The reason for this is connected to a hitherto unexpected
covariant form of the spin-nondegenerate Lagrangians at
second order in Lorentz violation. In fact, the covariant
second-order contribution was found to be the ratio of an
expression at fourth order and an expression at second
order in Lorentz violation. Thus, already at second order,
suitable observer scalars at fourth order must be taken into
account to construct a covariant expression, which renders
computations much more challenging than for the spin-
degenerate cases. By obtaining a certain number of addi-
tional Lagrangians in particular observer frames, we
observed that the second-order terms in the denominator
correspond to the radicand of the square root that occurs in
the contributions at first order in Lorentz violation.
Therefore, these terms are of the generic form

ξð2Þb ¼ fð5Þb ððb̃ð5ÞÞ4;…Þ
ðb̃ð5ÞÞ2 − ðb̃ð5ÞÞαðb̃ð5ÞÞα

; ðB2aÞ

for the b coefficients and

ξð2ÞH ¼ fð5ÞH ððH̃ð5ÞÞαðH̃ð5ÞÞα;…Þ
ð ˜̃Hð5ÞÞαð ˜̃Hð5ÞÞα

; ðB2bÞ

for the H coefficients. The functions fð5Þb and fð5ÞH corre-
spond to linear combinations of observer scalars formed
from four copies of the controlling coefficients suitably
contracted with four-velocities.
Fortunately, there are certain tools available that turned

out to be of great use for constructing observer scalars from
a given set of tensors. One of these is the Mathematica
package xTras that is an extension of the package xTensor
[45]. The latter allows us to define tensors on a manifold
endowed with a certain metric that can be interpreted as the
Minkowski metric in this case. For the case of the operator

b̂ð5Þμ we define the second-rank tensor b̃ð5Þμν ≡ bð5Þμνϱuϱ that is

assumed to be symmetric in its indices. For Ĥð5Þ
μν we define

the third-rank tensor H̃ð5Þ
μνϱ ≡Hð5Þ

μνϱσuσ that is taken as
antisymmetric in the first two indices. xTras provides
the command AllContractions that is applied on a
direct product of four objects b̃ð5Þμν (and H̃ð5Þμνϱ) and a
suitable number of four-velocities to form all possible
observer scalars. There are 20 possibilities for the case of
the dimension-5 b coefficients and 280 for the H coeffi-
cients, respectively.
For each specific observer frame these Lorentz scalars

are computed and a generic linear combination is formed
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that is inserted into Eqs. (B2) where these are then mapped
to the second-order terms obtained via the perturbative
algorithm [such as Eq. (B1c)]. Repeating this procedure for
a sufficient number of reference frames, leads to a linear
system of equations in the parameters of the generic linear
combination. It turned out that the majority of parameters
remain free and these are set equal to zero, whereas a very
restricted set of parameters have nonzero values. The
nonzero parameters for b̂ð5Þμ are f2;−6; 6;−2g and they
are multiplied with the Lorentz scalars found in the second-
order term of Eq. (10). The number of nonzero parameters

is higher for Ĥð5Þ
μν , which is not a surprise, as the overall

number of coefficients is much higher. They can be read off
the second-order term in Eq. (14) where they are linked to
the Lorentz scalars of Eq. (15).

1. Peculiarity for Ĥμν in initial algorithmic step

A peculiarity arises in the first step of the perturbative
method applied to Ĥμν. Inserting ðp0Þμ ¼ mψ ûμ into the
quadratic equation for L, the latter has the following form at
first order in the controlling coefficients:

0 ¼ ð1þ υ�Þ
�

L
mψ

�
2

þ υ�
ffiffiffiffiffi
u2

p L
mψ

− u2; ðB3aÞ

υ� ¼ 2X̃ðdÞ þ ðd − 2Þð ˜̃HðdÞÞαð ˜̃HðdÞÞα

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð ˜̃HðdÞÞαð ˜̃HðdÞÞα

q : ðB3bÞ

By solving this quadratic equation, one obtains the
standard result L0 ¼ −mψ ū for particles instead of a
first-order Lagrangian such as for b̂μ. Thus, without already
knowing the first-order Lagrangian, the perturbative algo-
rithm does not seem to work. Fortunately, first-order results

for Ĥμν are already available from the Ansatz-based method
of Ref. [27]. So we had to employ the findings from the
latter paper to obtain the second-order Lagrangian of
Eq. (14). Whether or not a physical reason is attributed
to this peculiar cancelation at first order in Lorentz
violation remains unknown at this moment.

APPENDIX C: MINIMAL d COEFFICIENTS

For demonstration purposes, we employed the adopted
Eq. (6a) to obtain a Lagrangian for the minimal d
coefficients at second order in Lorentz violation:

Lð�Þ
2;d ¼ L0

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd̃ð4ÞÞ2 − ðd̃ð4ÞÞαðd̃ð4ÞÞα

q

−
fð4Þd

ðd̃ð4ÞÞ2 − ðd̃ð4ÞÞαðd̃ð4ÞÞα
�
; ðC1aÞ

fð4Þd ¼ 1

2
½ðd̃ð4ÞÞ4 − 3ðd̃ð4ÞÞ2ðd̃ð4ÞÞαðd̃ð4ÞÞα

þ 4ðd̃ð4ÞÞðd̃ð4ÞÞαðd̃ð4ÞÞαβðd̃ð4ÞÞβ
− ½ðd̃ð4ÞÞαðd̃ð4ÞÞα�2
− ðd̃ð4ÞÞαðd̃ð4ÞÞαβðd̃ð4ÞÞβγðd̃ð4ÞÞγ�: ðC1bÞ

The involved structure of the second-order contribution
is evident, which explains why it has been challenging to
compute any exact results for d in closed form—even for
the minimal coefficients. Note that the Lagrangians for
subsets of the minimal d coefficients found in the first two
papers of [24] cannot be compared to Eq. (C1). These are
valid for sets of coefficients that are not totally symmetric.
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