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We use the SUð5Þmodel to show the presence in grand unified theories of an electroweak monopole and
a magnetic dumbbell (“meson”) made up of a monopole-antimonopole pair connected by a Z-magnetic
flux tube. The monopole is associated with the spontaneous breaking of the weak SUð2ÞL gauge symmetry
by the induced vacuum expectation value of a heavy scalar SUð2ÞL triplet with zero weak hypercharge
contained in the adjoint Higgs 24-plet. This monopole carries a Coulomb magnetic charge of ð3=4Þð2π=eÞ
as well as Z-magnetic charge, where 2π=e denotes the unit Dirac magnetic charge. Its total magnetic charge

is
ffiffiffiffiffiffiffiffi
3=8

p ð4π=eÞ, which is in agreement with the Dirac quantization condition. The monopole weighs about
700 GeV, but because of the attached Z-magnetic tube it exists, together with the antimonopole, in a
magnetic dumbbell configuration whose mass is expected to lie in the TeV range. The presence of these
topological structures in SUð5Þ and SOð10Þ and in their supersymmetric extensions provides an exciting
new avenue for testing these theories in high-energy colliders.

DOI: 10.1103/PhysRevD.103.095021

Grand unified theories based on the gauge groups SUð5Þ
[1], SOð10Þ [2], and E6 [3] all predict the existence of a
superheavy and topologically stable magnetic monopole,
which carries a single quantum (2π=e) of Dirac magnetic
charge [4] as well as color magnetic charge [5,6]. In SUð5Þ
this is the lightest monopole, but SOð10Þ and E6 may also
give rise to topologically stable intermediate-scale monop-
oles, depending on their symmetry-breaking patterns. For
instance, SOð10Þ breaking via SUð4Þc×SUð2ÞL×SUð2ÞR
[7] yields an intermediate-scale topologically stable mono-
pole carrying two units of the Dirac charge as well as color
magnetic charge [8]. Depending on its symmetry-breaking
scale, the trinification symmetry group SUð3Þc×SUð3ÞL×
SUð3ÞR can yield a topologically stable triply charged
monopole with mass in the TeV region, thus making it
potentially accessible at high-energy colliders [9].
In this paper, we display the presence of another class of

topological structures that can appear in grand unified
theories. These structures are not topologically stable,
and, as we show using the SUð5Þ example, they are
magnetic dumbbells (or “mesons”) made up of electroweak

monopole-antimonopole pairs connected by magnetic
Z-flux tubes. The magnetic dumbbell, with mass estimated
to lie in the TeV range, is closely related, it appears, to
objects of essentially the same name discussed some time
ago by Nambu [10] in the standard electroweak model.
However, there is an important difference between these
two cases, which is related to the fact that the electroweak
monopole in SUð5Þ is associated with the induced vacuum
expectation value (VEV) of a heavy SUð2ÞL triplet field
with zero weak hypercharge Y that resides in the adjoint
Higgs 24-plet. There is, of course, no corresponding
elementary SUð2ÞL triplet scalar in the standard SUð2ÞL ×
Uð1ÞY model. The electroweak monopole in SUð5Þ carries
a Dirac charge of ð3=4Þð2π=eÞ as well as Z-magnetic
charge, and it is expected to exist in a confined state
together with its antimonopole. (Monopoles carrying
Coulomb and Z-flux with the aim of confining primordial
monopoles were previously discussed in Ref. [11]. For two
basic papers on electroweak strings, see Ref. [12].)
We should emphasize that our results also apply to

extensions of the minimal SUð5Þ model that incorporate
additional matter and/or scalar fields to implement gauge
coupling unification and improve fermion mass relations,
and are compatible with the proton lifetime limits—see, for
example, Ref. [13].
It is important to clarify that the SUð5Þ model does not

predict topologically stable electroweak monopoles or
strings associated with the electroweak breaking. To this
end, we concentrate on the electroweak sector of the model,
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where the generator of Uð1ÞY is taken as 2Y so that it has
integral eigenvalues and, thus, periodicity 2π. We note
that, inside SUð5Þ, the electroweak gauge symmetry is
G ¼ SUð2ÞL ×Uð1ÞY=Z2, where Z2 is generated by the
element ð−1;−1Þ ¼ ðeiπT3

L ; eiπ2YÞ of SUð2ÞL × Uð1ÞY with
T3
L ¼ diagð1;−1Þ. Indeed, this element acts as the identity

element on the SUð2ÞL doublet with Y ¼ −1=2 and,
consequently, on all the representations of the model
including the real triplet with Y ¼ 0, as well as any other
complex triplets with integral hypercharge. The second
homotopy group of the vacuum manifold is

π2

�
G

Uð1Þem

�
¼ π1ðUð1ÞemÞG; ð1Þ

where the right-hand side consists of all the homotopically
nontrivial loops in the electromagnetic gauge groupUð1Þem
which are trivial in G. The smallest nontrivial loop in
Uð1Þem corresponds to a 2π rotation along the electric
charge generator Q ¼ ðT3

L þ 2YÞ=2, which is equivalent to
a π rotation along T3

L accompanied by a π rotation along 2Y
interpolating between (1,1) and ð−1;−1Þ in G. This is the
smallest closed loop in G and is homotopically nontrivial.
The fundamental (first homotopy) group in the right-hand
side of Eq. (1) is therefore trivial, and there are no
topologically stable electroweak monopoles. Moreover,
the fundamental group of the vacuum manifold

π1

�
G

Uð1Þem

�
¼ π0ðUð1ÞemÞG ð2Þ

is also trivial, since both G and Uð1Þem are connected, and
no stable strings appear either.
In the electroweak model, we introduce a real Higgs

triplet field T ¼ Tiσi=2 with a vanishing hypercharge Y,
where σi (i ¼ 1, 2, 3) are the three Pauli matrices. This
triplet, which resides in the SUð5Þ adjoint Higgs 24-plet,
couples to the electroweak doublet H, as displayed in the
following additional contribution to the potential energy
density:

VT ¼ 1

2
M2

T

�
Ti −

λT
MT

H†σiH

�
2

: ð3Þ

Here, MT ≫ MZ is the triplet mass, which may be as large
as the grand unification scale, and λT is a dimensionless
coupling constant of the order of unity or less. The cross
term in the above expression originates from the Higgs
couplings 5† × 24 × 5 and 5† × 242 × 5 [14] between the
SUð5Þ Higgs 24-plet and the Higgs 5-plet which contains
the electroweak doublet H. It yields a T VEV suppressed
relative to the a VEVhHi of H by a factor hHi=MT. In
Eq. (3), we have left out quartic scalar couplings such as
ðTrðT2ÞÞ2 and ðH†HÞTrðT2Þ which do not play an essential
role here.

The spontaneous breaking of the electroweak symmetry
is achieved, as usual, via the potential

VH ¼ λ

4

�
H†H −

v2D
2

�
2

; ð4Þ

which yields the following VEV for the electroweak
doublet H:

hHi ¼
 vDffiffi

2
p

0

!
; ð5Þ

where vD ≃ 246 GeV. From Eq. (3), this induces the triplet
VEV given by

hT3i ¼
λTv2D
2MT

≡ vT; ð6Þ

which breaks SUð2ÞL to its Uð1ÞL subgroup with gener-
ator T3

L ¼ diagð1;−1Þ.
Ignoring for the moment the electroweak symmetry

breaking by < H >, the breaking of SUð2ÞL by the
Higgs triplet T yields a ’t Hooft–Polyakov–type mono-
pole [15] with magnetic flux corresponding to a 2π rotation
around T3

L or, equivalently, a 4π rotation around the
customarily normalized generator T3

L=2. Reintroducing
hHi, this monopole ceases to be topologically stable and
becomes attached to a magnetic flux tube. Indeed, the
electroweak symmetry breaking leaves unbroken the electric
charge generator Q ¼ T3

L=2þ Y, where the weak hyper-
charge operator is given by Y ¼ diagð−1=3;−1=3;−1=3;
1=2; 1=2Þ in SUð5Þ. The corresponding orthogonal broken
generator is B ¼ T3

L=2 − 3Y=5.
At this stage, it is convenient to consider 5B, which has

the smallest possible integer elements and, thus, periodicity
2π. A rotation by 2π=4 along 5B leaves invariant the VEV
ofH, and, therefore, the associated tube carries Z-magnetic
flux corresponding to a 2π rotation around 5B=4. From the
relation T3

L ¼ 3Q=4þ 5B=4, we see that the monopole
with one unit of flux along T3

L (i.e., corresponding to a 2π
rotation around this generator) is attached to a Z-flux tube
with one unit of flux along 5B=4 and also has Coulomb flux
3Q=4. The magnetic charge corresponding to the Coulomb
flux of the monopole is gM ¼ ð3=4Þð2π=eÞ. A monopole
and an antimonopole are expected to pair up and form a
dumbbell connected by this flux tube.
A few remarks about the Z-magnetic flux emerging from

the electroweak monopole are in order here. The normal-
ized generator orthogonal toQ is

ffiffiffiffiffiffiffiffi
5=8

p ðTL
3 =2 − 3Y=5Þ. As

we have shown, the Z-magnetic flux in the tube corre-
sponds to a 2π rotation around ð5=4ÞðTL

3 =2 − 3Y=5Þ.
Consequently, this flux is ð2π=gÞ ffiffiffiffiffiffiffiffi

5=2
p

, where g is the
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SUð5Þ gauge coupling which, in the SUð5Þ limit, coincides
with the SUð2ÞL gauge coupling g ¼ e=

ffiffiffiffiffiffiffiffi
3=8

p
. The mag-

netic flux along the Z tube therefore takes the form
ð4π=eÞ ffiffiffiffiffiffiffiffi

3=8
p ffiffiffiffiffiffiffiffi

5=8
p

. For completeness, we should note
that the expressions above for the Coulomb and Z-magnetic
fluxes of the electroweak monopole coincide, respectively,
with the values 4π sin2 θW=e and 4π sin θW cos θW=e
found by Nambu [10] by recalling the SUð5Þ prediction
sin2 θW ¼ 3=8, where θW is the electroweak angle.
Combining appropriately these two fluxes, one obtains
the total SUð2ÞL magnetic charge 4π=g of the electroweak
monopole, in full agreement with the results found by
Nambu [10] and Vachaspati [16].
To reconfirm that the electroweak monopole accompa-

nied by a Z-magnetic flux tube provides a consistent
description, let us take the left-handed neutrino with zero
electric charge around this tube. If the neutrino is cova-
riantly transported, its wave function acquires an Aharonov-
Bohm phase given by expðiQν

ZΦZÞ, where Qν
Z is the

neutrino Z charge and ΦZ denotes the Z-magnetic flux
in the tube. Substituting Qν

Z¼ðe=sinθW cosθWÞðT3
L=2−

Qsin2θWÞ with T3
L ¼ þ1, Q ¼ 0, and requiring the wave

function to be single valued shows that the Z-magnetic flux
ΦZ is quantized in units of ð4π=eÞ sin θW cos θW , which is in
agreement with the discussion above. A related calculation
for the charged leptons and quarks also takes into account
the ordinary Coulomb magnetic flux which is carried by the
electroweak monopole. As an example, for the left-handed d
quark kept within its confinement radius ∼Λ−1

QCD (≫ M−1
Z ),

the total phase acquired by its wave function, taking into
account the Z flux and Coulomb flux Φem, is given by
ðe= sin θW cos θWÞðT3

L=2 − Qsin2θWÞΦZ þ eQΦem, with
T3
L ¼ −1 and Q ¼ −1=3. Substituting the Z flux ΦZ ¼

4π sin θW cos θW=e and requiring the wave function to be
single valued yields Φem ¼ ð4π=eÞ sin2 θW as a solution.
This is the desired value of the Coulomb magnetic flux
which appropriately combined with the Z flux of the mono-
pole yields the SUð2ÞL magnetic flux of ð4π=eÞ sin θW .
Note that the wave function of an SUð2ÞL singlet quark or
lepton acquires a zero overall phase under similar transport.
This is consistent with the fact that the electroweak
monopole is associated with the breaking of SUð2ÞL
to Uð1ÞL.
In the above discussion which is based on SUð2ÞL×

Uð1ÞY , the value of the electroweak mixing angle θW is not
predicted. The situation in grand unified theories, however,
is different, and the prediction sin2 θW ¼ 3=8 allows us to
provide the magnitude of the Z-magnetic flux.
Finally, the quark confinement that we assumed above is

not required for consistency in the presence of the electro-
weak monopole that also carries a Z-magnetic flux tube.
However, we recall from the introduction that SUð5Þ also
predicts the existence of a topologically stable monopole
that carries a Dirac charge of 2π=e as well as a screened

color magnetic field. Quark confinement in this case is
required in order for the Dirac quantization condition to be
satisfied beyond the screening radius ∼Λ−1

QCD.
Returning to Eqs. (3) and (4), we should note that, at tree

level, the VEV of H is not affected by the presence of the
Higgs triplet T. Indeed, minimization of the combined
potential V ¼ VH þ VT is achieved at

M2
T

�
Ti −

λT
MT

H†σiH

�
¼ 0; ð7Þ

and

−M2
T

�
Ti −

λT
MT

H†σiH

�
λT
MT

H†σi

þ λ

2
ðH†H − v2DÞH† ¼ 0: ð8Þ

In view of Eq. (7), Eq. (8) reduces to the standard equation
for the electroweak symmetry breaking:

λ

2

�
H†H −

v2D
2

�
¼ 0; ð9Þ

and so the presence of the triplet Ti does not affect the VEV
of the doublet H.
The ρ parameter [17] in our case is given by ρ ¼

1þ 4R2, with R¼vT=vD (see, e.g., Ref. [18]). From the
2σ upper bound ρ≲ 1.00077 [19], we find vT ≲ 3.4 GeV.
Equation (6) then implies that

MT ≳ 4.4

�
λT
0.5

�
TeV: ð10Þ

A triplet with mass in the TeV range could provide a new
source for Higgs production at high-energy colliders.
Moreover, the mixed quartic coupling involving H and
T may be helpful in preventing the quartic Higgs coupling
going to zero and, thereby, stabilize the electroweak
vacuum. It would be interesting to explore these possibil-
ities in more realistic models which, among other things,
also implement gauge coupling unification.
With the ansatz Ti ¼ vTxi=r, where xi (i ¼ 1, 2, 3) are

the spatial coordinates and r is the radial distance, the
potential in Eq. (3) is minimized for

H†σiH ¼ v2D
2

xi
r
: ð11Þ

This is achieved by taking [10]

H ¼ vDffiffiffi
2

p
 

cos θ
2

sin θ
2
eiφ

!
; ð12Þ

where 0 ≤ θ < π and 0 ≤ φ < 2π are the polar angles. It is
important to note that the formula in Eq. (12) has an
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ill-defined phase φ on the negative x3 axis where θ ¼ π.
This reflects the fact that the monopole is accompanied by a
string (Z-flux tube). (For a discussion of the stability of this
string, see Ref. [20] and papers listed therein. A careful
analysis is required to assess the string stability in the
presence of the scalar triplet. In the discussion above, we
have seen that the Z-flux tube was required by the Dirac
quantization condition. This leads us to conjecture that the
string is susceptible to breaking through a monopole-
antimonopole pair creation.)
To obtain a rough estimate of the monopole mass,

following Ref. [10], we ignore for the moment the attached
Z tube and approximate the monopole by a sphere of radius
rwithin which the gauge fields,H, and T are zero. (Being a
heavy scalar field, we expect T to approach its VEV inside
an inner core of radiusM−1

T . The energy stored in this inner
core can be ignored, which can be checked by examining
the quartic and gradient terms for the triplet T.) Outside the
sphere, all the Higgs fields lie in the vacuum, and we have a
Coulomb magnetic field corresponding to the magnetic
charge [10,16,21,22]

gM ¼ 4π

e
sin2 θW; ð13Þ

where e is the absolute value of the electron charge. The
energy of the monopole configuration is then

EM ¼ g2M
8πr

þ 4π

3
r3V0; ð14Þ

where V0, the potential energy density within the sphere, is
given by

V0 ¼
λv4D
16

¼ m2
Hv

2
D

8
ð15Þ

and mH ¼ ffiffiffiffiffiffiffi
λ=2

p
vD is the Higgs boson mass. The energy

EM is minimized at

rmin ¼
�

g2M
32π2V0

�
1=4

¼
ffiffiffi
2

e

r
sin θWðmHvDÞ−1=2

≃ 7 × 10−3 GeV−1; ð16Þ

giving the monopole mass

mM ≈
21=4g3=2M V1=4

0

3π1=2
¼ 25=2πsin3θWðmHvDÞ1=2

3e3=2

≃ 688 GeV: ð17Þ

One can calculate the Z-tube radius ρstr and tension μstr
following Ref. [10]. We find

ρstr ≃ 1.86 × 10−2 GeV−1 and μstr ≃ 2.57 × 105 GeV2:

ð18Þ

The string radius exceeds the monopole radius by a factor
of 2.5 or so. So it makes sense to consider a string segment
at least as long as its radius. The energy of the “minimal”
string segment is about 4.8 TeV, which yields a minimal
dumbbell of 5.8 TeV, after including the potential energy
from the Coulomb attraction between the monopole-
antimonopole pair.
Nambu has argued [10] that a rotating relativistic dumb-

bell with energy E and angular momentum L may yield a
Regge trajectory L ∼ α00E

2, with α00 ¼ 1=ð2πμstrÞ. Using
the relevant formulas in Ref. [10], we find that, for string
lengths bigger than the minimal length, L≳ 35 and
E≳ 7.5 TeV. The dumbbell is expected to decay through
the emission of photons, weak gauge bosons, hadrons, and
leptons with lifetime ðE=6.74Þ × 10−5 GeV−1 ≳ 7.33 ×
10−27 sec [10]. The string can also decay by monopole
pair creation with the decay rate per unit length [23]

Γstr ¼
μstr
2π

e−π
m2
M

μstr ≃ 127 GeV2: ð19Þ

The corresponding lifetime for a dumbbell with energy E is
ðE=5.13Þ×10−7GeV−1≳9.64×10−29 sec, which is shorter
than its radiative lifetime by about 2 orders of magni-
tude. (For a discussion on the evolution of dumbbells,
see Ref. [24].)
With the electroweak monopole mass estimated to be

around 700 GeV, it is plausible that highly unstable
configurations, consisting of (overlapping) monopole-
antimonopole pairs in a mass range of 1–2 TeV, may be
produced in high-energy collisions.
Although we have discussed the presence of the electro-

weak monopole and TeV-scale magnetic dumbbells in
minimal SUð5Þ, one could reasonably expect that similar
structures also appear in larger grand unified theories.
Indeed, based on our discussion, they seem to be a rather
generic feature of such theories. Consider SOð10Þ, for
instance, in which a nonzero VEV for the SUð2ÞL triplet T
will arise through the mixed quartic coupling 452×
10 × 10. Here, the 10-plet contains the standard Higgs
doublet, and the 45-plet is the adjoint Higgs field. In a more
elaborate SOð10Þ ×Uð1ÞPQ model [25], where Uð1ÞPQ
denotes the axion symmetry [26], the trilinear mixed
coupling 10 × 10 × 45 will induce a nonzero VEV for
the SUð2ÞL triplet in the 45-plet. The presence of TeV-scale
magnetic dumbbells, made up of monopole-antimonopole
pairs, thus appears to be a rather generic feature of grand
unified theories. Furthermore, the SOð10Þ breaking to the
standard model often proceeds through one or more
intermediate steps. Suppose that the low-energy group,
excluding QCD, is SUð2ÞL × SUð2ÞR ×Uð1ÞB−L. In this
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case, we could proceed to break SUð2ÞR to Uð1ÞR with an
SUð2ÞR triplet scalar, which yields a monopole carrying
Uð1ÞR charge. With the next breaking of Uð1ÞR ×Uð1ÞB−L
to Uð1ÞY , the monopole gets connected to a string (flux
tube). We, therefore, expect the appearance of new dumb-
bells, and, if the monopole mass scale for this case is
suitably large compared to the string scale, the flux tubes
can be relatively stable and less likely to break via
monopole-antimonopole pair creation. The dumbbell mass
may lie in the TeV range depending on the symmetry-
breaking scale of SUð2ÞL × SUð2ÞR ×Uð1ÞB−L.
Let us mention that our discussion carries over to the

supersymmetric extensions of the SUð5Þ and SOð10Þ
models. The induced VEV for the scalar triplet T arises
in supersymmetric SUð5Þ, for instance, via the soft super-
symmetry-breaking terms corresponding to the superpo-
tential coupling 5̄ × 24 × 5, where 5̄ and 5 contain the two
Higgs doublets. Consequently, this VEV is suppressed by
an additional factor m0=MT, where m0 denotes the soft
supersymmetry-breaking mass parameter. The electroweak
monopole is therefore also expected to be present in these
models.
In summary, we have identified in SUð5Þ the presence of

an electroweak monopole that carries a Dirac magnetic

charge of ð3=4Þð2π=eÞ and a Z-magnetic flux. Under
plausible assumptions, the monopole mass is estimated
to be around 700 GeV, and the associated Z-flux tube width
and tension are of the order ofM−1

Z and 30M2
Z, respectively.

The monopole-antimonopole pairs form dumbbells (mes-
ons) discovered some time ago by Nambu. A search for
these extended structures at the LHC and its upgrades
seems worthy of further consideration. Finally, we have
noted that analogous TeV-scale extended structures can
also appear in larger gauge symmetries such SOð10Þ.
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Note added in proof.—For another discussion of the
electroweak monopole with different conclusions, see
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