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Black hole superradiance is a powerful probe of light, weakly coupled hidden sector particles. Many
candidate particles, such as axions, generically have self-interactions that can influence the evolution of the
superradiant instability. As pointed out in [A. Gruzinov, arXiv:1604.06422.] in the context of a toy model,
much of the existing literature on spin-0 superradiance does not take into account the most important self-
interaction-induced processes. These processes lead to energy exchange between quasi-bound levels and
particle emission to infinity; for large self-couplings, superradiant growth is saturated at a quasi-equilibrium
configuration of reduced level occupation numbers. In this paper, we perform a detailed analysis of the rich
dynamics of spin-0 superradiance with self-interactions, and the resulting observational signatures. We
focus on quartic self-interactions, which dominate the evolution for most models of interest. We explore
multiple distinct regimes of parameter space introduced by a nonzero self-interaction, including the
simultaneous population of two or more bound levels; at large coupling, we confirm the basic picture of
quasiequilibrium saturation and provide evidence that the “bosenova” collapse does not occur in most of
the astrophysical parameter space. Compared to gravitational superradiance, we find that gravitational
wave “annihilation” signals and black hole spin-down are parametrically suppressed with increasing
interactions, while new gravitational wave “transition” signals can take place for moderate interactions. The
novel phenomenon of scalar wave emission is less suppressed at large couplings, and if the particle has
Standard Model interactions, then coherent, monochromatic axion wave signals from black hole
superradiance may be detectable in proposed axion dark matter experiments.
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I. INTRODUCTION

As discovered by Penrose [1], it is possible to extract
energy and angular momentum from rotating black holes.
While the Penrose thought experiments were in terms of
mechanical scattering, equivalent processes were devel-
oped by the Zeldovich group for bosonic waves [2–4].
This phenomenon, termed “superradiance,” is expected to
occur in nature and, for certain initial conditions, amplify
photon and graviton waves passing near rotating black
holes. Moreover, if there exists a new bosonic particle
with a small mass, bound states of this particle could be

exponentially amplified around astrophysical black holes,
forming very high occupation number “clouds” that could
lead to a range of observational signatures.
Black hole (BH) superradiance as a probe of new

ultralight particles was first proposed in [5], which has
given rise to an extensive literature. Superradiance of new
particles, including spin-0 [6–15], spin-1 [16–21], and
spin-2 [22,23] fields, have been investigated, with obser-
vational signatures including black hole spin-down, gravi-
tational wave emission, and modified black hole in-spiral
dynamics; see the above for further references and [14] for
a review.
Gravitational interactions are all that is necessary for BH

superradiance, which makes superradiance a unique win-
dow on new particles that are otherwise inaccessible to
experimental probes. However, many beyond-Standard-
Model particle candidates have other interactions. These
can include self-interactions, interactions with Standard
Model (SM) states, and interactions with other hidden
sector states. For some new particles, including the well-
motivated QCD axion [24–26], both self-interactions
and interactions with the SM are required by the model.
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Therefore, it is important to understand the consequences
of such interactions for the growth and behavior of super-
radiant bound states.
In this paper, we analyze in detail the consequences of a

quartic self-interaction for the superradiance phenomeno-
logy of a light scalar around astrophysical black holes. We
find that over a large range of parameter space of interest to
light axion models, the addition of a quartic coupling leads
to rich dynamics in the evolution of the superradiant
instability, and new observational consequences. These
dynamics include limiting the maximum number of par-
ticles in a bound level, populating levels inaccessible
through gravitational superradiance alone, saturation to
quasiequilibrium configurations of two or more levels,
and emission of nonrelativistic and relativistic scalar waves
to infinity. As we demonstrate, an effective quartic term is
generically the most important effect driving the evolution,
for much of the astrophysically relevant parameter space.
BH superradiance of a self-interacting scalar was first

introduced in Ref. [6], which discussed phenomena includ-
ing relativistic scalar emission, level mixing, and the
possibility of a “bosenova”—a rapid, nonperturbative col-
lapse of the cloud due to attractive self-interactions. The
bosenova process was studied numerically in Ref. [27,28],
and these resultswere used in subsequent phenomenological
investigations [29,30]. However, as we will discuss, these
previous analyses did not take into account self-interaction-
induced energy transfers between different superradiant
levels. This was pointed out (for a toy model) in [31],
which showed that these energy transfer processes, along
with scalar emission, can result in saturation to a two-level
equilibrium configuration before the cloud has had a chance
to grow large enough for a bosenova. We provide evidence
that during evolution from astrophysical initial conditions, a
“bosenova” does not occur in much of the phenomenologi-
cally relevant parameter space: scalar field values remain
small and the cloud size required for collapse is not reached.
For small enough self-couplings—including much of the

superradiance parameter space for the QCD axion—self-
interaction effects are unimportant. Superradiance proceeds
as in the purely gravitational case: a nonrelativistic bound
state of scalars is populated by extracting energy and
angular momentum from the rotating black hole, and
subsequently annihilates to gravitational radiation.
Slightly larger self-interactions result in nonrelativistic

scalar radiation to infinity. This new energy loss mecha-
nism reduces the power emitted over time in gravitational
wave “annihilation” signals. The interactions also populate
higher angular momentum levels; the simultaneous occu-
pation of several bound states can give rise to gravitational
wave “transition” signals, in which scalars emit lower
frequency gravitational waves by transitioning between two
occupied levels.
Large enough self-interactions, including those typical of

axion dark matter produced through the misalignment

mechanism, significantly reduce the occupation number
of the cloud. Instead of being limited by angular momen-
tum conservation, superradiant growth is cut off early by
self-interactions. The smaller cloud size suppresses the
peak gravitational wave signal strains. For even larger self-
couplings, the occupation of the cloud reaches quasi-
equilibrium at parametrically smaller occupation values,
as found in [31]. In this regime, the self-interactions
parametrically slow the spin-down of the BH compared
to the purely gravitational case.
Throughout, a new phenomenon of almost-monochro-

matic, nonrelativistic scalar wave emission occurs; for large
self-interactions, the signal amplitude is constant on time-
scales up to the age of the universe. If couplings to Standard
Model particles are present in addition to the self-inter-
action, then this scalar radiation may be detectable in
proposed axion dark matter experiments. For a range of
models, the self-interaction and SM interactions are con-
trolled by the same scale; consequently, the signal in Earth-
based detectors can persist for arbitrarily small occupation
numbers, as long as the classical scalar field descrip-
tion holds.
Many of our analyses in this paper use hydrogenic app-

roximations for bound states around BHs. Consequently,
they are valid for scalar Compton wavelengths bigger
than a few times the black hole light-crossing time.
Understanding the behavior of more massive scalars would
require numerical techniques. Since some of the most
dramatic superradiance signatures may occur for slightly
heavier scalars, further investigations of this kind are
strongly motivated.
We review purely gravitational superradiance of scalar

(spin-0) fields in Sec. II, and discuss the new processes
introduced by quartic (and cubic) interactions in Sec. III. In
Sec. IV, we explore in detail the evolution of the super-
radiant cloud in the presence of quartic self-interactions,
which lead to several distinct regions in mass-coupling
parameter space. In Sec. V, we discuss the maximum
amplitude reached by the axion field, and whether this is
large enough to cause nonperturbative behavior such as a
“bosenova.” We study the observable signatures of axion
superradiance in the presence of self-interactions: spin
down of astrophysical black holes (Sec. VI), gravitational
wave annihilations and transitions (Sec. VII), and axion
waves (Sec. VIII). We provide more detailed calculations
related to both self-interactions and gravitational super-
radiance in the Appendixes A–K. We conclude and com-
ment on directions for future investigations in Sec. IX.

II. SPIN-0 SUPERRADIANCE

In this section, we give a brief review of BH super-
radiance for a scalar with purely gravitational interactions.
There is a broad literature on this topic; for a review, see
[14]. We take our signature to be −þþþ, and assume
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natural units with c ¼ ℏ ¼ 1 unless otherwise indicated.
We use the convention Mpl ≡ 1=

ffiffiffiffi
G

p
throughout.

In the Kerr background, the Killing vector tangent to
the horizon, in static (Boyer-Lindquist) coordinates, is
ξ ¼ ∂t þΩH∂ϕ. Here, ΩH ¼ 1

2rg
ð a�
1þ

ffiffiffiffiffiffiffiffi
1−a2�

p Þ is the angular

velocity of the horizon and a� ¼ J=GM2 is the dimension-
less spin of the BH, where J is the BH’s angular
momentum, M is its mass, and rg ≡GM. Consequently,
a wave with frequency ω, and angular momentum m about
the BH spin axis, has energy flux ∝ ωðω −mΩHÞ across
the horizon, relative to distant observers (the energy flux is
necessarily ingoing for local observers near the horizon).
For ω < mΩH, there is energy and angular momentum
extraction from the BH, as measured at infinity.
Massive bosonic fields have quasibound states around a

BH. In a Schwarzschild background, all of these states are
unstable to decay. However, in a Kerr background, states
with ω < mΩH are unstable to growth [8,10,32,33].1

Exponential growth of these superradiant states, starting
either from a preexisting astrophysical population in the
field, or from quantum fluctuations, will occur given
enough time. If we start from the vacuum state, then
ignoring the BH interior gives effectively nonunitary
evolution of the field outside (due to the absorbing
boundary conditions at the horizon), producing a mixed
state. Interactions with external systems will generally
decohere this into an almost-coherent state, with well-
defined phase and amplitude. This process is analogous to
the growth of a large-occupation-number laser field from
quantum fluctuations [34].
The energy flux across the horizon, for a scalar field φ, is

_E∞ ∼ AHjφHj2ωðω −mΩHÞ, where jφHj is the amplitude
of the field at the horizon (in in-going coordinates, for
which φ is smooth at the horizon), and AH is the area of the
BH horizon. This flux determines the growth rate of a
quasibound state. For a scalar of mass μ ≪ r−1g , the lowest
energy states are analogous to hydrogenic bound states,
since the effect of the BH at large radii is that of a point
source with a 1=r potential. The hydrogenic level with
principal quantum number n, total angular momentum l,
and azimuthal angular momentum m (around the BH spin
axis) has frequency ω ¼ ωr þ iωi, where

ωr ≃ μ

�
1 −

α2

2n2
þOðα4Þ

�
ð1Þ

with α≡GMμ acting as the equivalent of the fine-structure
constant [12,21]. The imaginary part of the frequency is

ωi ∝ α4lþ5ðmΩH − ωrÞð1þOðαÞÞ: ð2Þ

Strictly speaking, for m ≠ 0, the leading-α form of this
expression is simply α4lþ5mΩH. However, if mΩH is also
small relative to r−1g , then the expression in Eq. (2) is
appropriate (and more generally, changes sign at the correct
ωr). The 211 (n ¼ 2, l ¼ 1, m ¼ 1) level, which has the
fastest growth rate at small α, has ωi ¼ a�

48
α8μ at leading

order in α. The “superradiance rate,” which is usually
defined as the growth rate of the occupation number, is
ΓSR ≡ 2ωi. The α4lþ5 scaling for the growth rate corre-
sponds to the field amplitude at the BH horizon—for
higher-l modes, the amplitude is suppressed by the angular
momentum barrier, leading to exponentially smaller growth
rates for higher l modes [6,8,9,21].
While the expansions above were phrased in terms of α

being small, it is actually the case that α=l is a good
expansion parameter. Whenever a level is superradiant, we
must have α < m=2, so α=l < 1=2, and the hydrogenic
approximation can be used.
If the Compton wavelength of the particle is very large,

i.e., α ≪ 1, then all of the superradiance rates are sup-
pressed by a high power of α, Γ ∝ α4lþ4μ, so are very
small. Conversely, if the Compton wavelength of the
particle is significantly smaller than the size of the BH,
i.e., α ≫ 1, then only modes with m ≫ 1 can be super-
radiant; however, these have exponentially suppressed
growth rates. Consequently, for observationally relevant
superradiance rates, the Compton wavelength of the par-
ticle should approximately match the size of the BH. For
stellar-mass black holes, MBH ∼ 10 M⊙, this corresponds
to μ ∼ 10−13–10−11 eV. While the superradiant growth
rates around such BHs are rather slow on particle physics
scales—with e-folding times a few minutes or longer—
they can still be much faster than other astrophysical
processes and timescales, allowing superradiance to occur
in realistic astrophysical environments.
Once a Kerr BH is “born,” e.g., in a binary merger or a

supernova, the superradiant bound states start growing in
amplitude. The fastest-growing level, which usually has the
minimum m satisfying the superradiance condition (except
close to the ωr ¼ mΩH threshold), is the first to extract a
significant amount of angular momentum from the BH,
spinning it down to ΩH ≃ ω=m.2 For modes with the same
m, the most tightly bound mode is often (for small m) the
one with the largest growth rate, since it has larger
amplitude at the horizon. Consequently, if ω ¼ mΩH for
that mode, then ω > mΩH for the other modes, and they are
not growing (this is not always true for m ≥ 3; see
Sec. VII).

1For complex ω, as appropriate for an unstable state, the
energy flux across the horizon is negative if jωj2

Reω < mΩH [10].

2Strictly speaking, a� asymptotes toward the ΩH ¼ ω=m
threshold, since the superradiance rate is ∝ðmΩH − ωÞ, so
vanishes at the threshold. However, we will mostly ignore this
small effect in the rest of the paper, and will refer to the BH being
spun down “to the spin threshold.”
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Since the angular momentum of an astrophysical BH is
very large,

J ¼ a�GM2 ¼ a�
M2

Mpl
2
≃ 1078a�

�
M

10 M⊙

�
2

; ð3Þ

it takes ∼ logðJ=mÞ ∼ 180 e-folds of superradiant growth to
cause Oð1Þ BH spin-down. Correspondingly, the fully
grown superradiant cloud has an extremely high occupation
number ∼Oð1ÞJ. This corresponds to an energy density
which is significantly higher than astrophysical DM den-
sities (assuming that DM is not in extremely dense clumps),
Appendix K. Consequently, the presence or absence of an
astrophysical scalar field abundance makes little difference
to its superradiant growth.
The oscillating scalar field sources gravitational wave

(GW) radiation, at a frequency ≃2μ—on a particle level,
this corresponds to scalars annihilating to gravitons in the
black hole background. The emitted power scales as
P ∝ GN2μ4α16þ4l, where N is the occupation number of
the mode [11–13]. The smallness of G, and the high power
of α, mean that this process is slow; in particular, it is
always too slow to disrupt the initial superradiant growth of
the level [11].
The superradiant growth of higher l levels will also take

place. Once lower-l modes have grown to saturation,
higher-l modes can still be superradiant, but their growth
rate is slower, so there is a parametric separation between
the growth times of successive levels. The annihilation
process generally depletes the majority of the scalar cloud
before the next level grows. Once the next level signifi-
cantly spins down the BH, the first mode now has
ω > mΩH, so is decaying with a rate comparable to its
initial growth rate, and its remaining density falls back into
the BH. Over sufficiently long times, a similar process will
repeat for the next level.
There are a number of observational signatures of purely

gravitational scalar superradiance. The first is a lack of old,
fast-spinning BHs, at masses for which the scalar would
have spun them down in the time available. There have
been ∼10 measurements of stellar-mass BH spins in x-ray
binary systems [35]; for high-spin BHs, these measure-
ments can be accurate to a few percent, and have been used
to set constraints the mass of weakly interacting scalars
[12]. LIGO observations of binary BH mergers also enable
spin measurements of the premerger BHs [15,36]. While
most of these measurements are currently too imprecise to
provide evidence for existence of a scalar [15,36,37], initial
bounds are already possible [37] (see Sec. VI for a more
detailed discussion).
Another possibility is the observation of gravitational

radiation from the scalar cloud. For stellar-mass black
holes, this radiation could potentially be observed at LIGO
[12,15,38–40]; for heavier BHs, lower-frequency observa-
tories such as LISA or atom interferometers [41] could have

sensitivity [12,38,39]. The presence of a scalar cloud
during a binary merger could also change inspiral dynam-
ics, yielding further gravitational wave signatures [42–45].
While LIGO only observes the last few periods of BBH
mergers, making such observations difficult, lower-
frequency detectors will observe many more cycles, which
will likely improve their chances of observing such effects.

III. QUARTIC SELF-INTERACTIONS

For a spin-0 particle, the simplest nongravitational
interaction is a quartic self-interaction. This is generic in
the sense that, if we expand a potential about a symmetric
minimum, then the quartic is the most important interaction
term for small amplitudes.
More specifically, a naturally small mass for a scalar

field, as required for superradiance around astrophysical
black holes, can be achieved through the breaking of a shift
symmetry at some high energy scale fa. A potential of the
form VðφÞ ¼ Λ4gðφ=faÞ can be generated from nonper-
turbative physics, so that Λ ≪ fa. For the case of a generic
potential g, expanding around the minimum of the potential
gives a mass scale μ2 ¼ g00Λ4=f2a and a self-interaction
term of order λ ¼ gð4ÞΛ4=f4a.
A well-known example is the QCD axion; given a

coupling L ⊃ φ
fa

g2s
32π2

Ga
μνG̃

a;μν of the axion φ to the QCD
pseudoscalar field strength, it acquires a potential of the
form [46]

VðφÞ ≃ −m2
πf2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4mumd

ðmu þmdÞ2
sin2ðφ=ð2faÞÞ

s
: ð4Þ

resulting in a mass μ ≃ 6 × 10−12 eV 1018 GeV
fa

, and quartic
self-interaction [46],

λ ≃ 0.3μ2=f2a ≃ 10−80
�

μ

10−12 eV

�
4

ð5Þ

For more general axionlike particles, the natural para-
metric value of the quartic coupling is

λ ∼
μ2

f2a
≃ 10−74

�
μ

10−12 eV

�
2
�
1016 GeV

fa

�
2

; ð6Þ

where we chose the nominal value of μ to be in the range of
interest for stellar-mass BHs, and fa to be around the Grand
Unification (GUT) scale, for illustration. For example, a
motivated target model is an axionlike particle which
makes up Oð1Þ of the dark matter abundance. If it is
produced in the early universe by the misalignment
mechanism, and starts out with a field value that is
∼Oð1Þfa, then the scale for which we obtain the correct
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DM abundance is fa ≃ 3 × 1014 GeVð10−12 eV=μÞ1=4
(assuming a time-independent potential, unlike the QCD
axion case). This gives a typical quartic coupling of

λ ∼ 10−71
�

μ

10−12 eV

�
5=2

: ð7Þ

We will see that even such tiny self-coupling values can
have important consequences for the dynamics and phe-
nomenology of spin-0 superradiance.
The Lagrangian for a scalar field φ with a quartic

coupling λ in a fixed background spacetime is given by

L ¼ −
1

2
ðDμφÞðDμφÞ − 1

2
μ2φ2 þ 1

4!
λφ4; ð8Þ

where Dμ is the covariant derivative and μ is the mass of φ.
This gives the equation of motion

ðD2 − μ2Þφ ¼ −
λ

6
φ3: ð9Þ

The quartic interaction strength λ can have either sign;
λ > 0 corresponds to an attractive self-interaction, as is the
case for axionlike particles, while λ < 0 is repulsive. For
future convenience, we also define an energy scale f such
that the quartic λ≡ μ2=f2; for an axionlike particle, we
expect f ∼ fa, where fa is the symmetry-breaking scale.
The states that dominate the evolution of superradiance

are generally nonrelativistic, hydrogen-like wave functions;
these have the fastest growth rates and so obtain the largest
amplitudes. Consequently, it is helpful to perform a non-
relativistic reduction, writing

φ ¼ 1ffiffiffiffiffi
2μ

p ðψe−iμt þ c:cÞ: ð10Þ

Here, the “wave function” ψ is a complex scalar field, withR
dVjψ j2 ≃ N the occupation number. The equation of

motion is

ðD2 − μ2Þψe−iμt þ c:c: ¼ −λ
12μ

ðψ3e−3iμt þ 3ψ2ψ�e−iμtÞ

þ c:c: ð11Þ

If ψ changes slowly with time, compared to μ−1, then we
can ignore the ∂2

tψ terms, and extract the e−iμt part of the
EoM to obtain the Gross-Pitaevskii equation [6],

�
i∂t þ

∇2

2μ
þ α

r

�
ψ ≃

−3
24μ2

λψ2ψ�: ð12Þ

The ψ3e−3iμt term in Eq. (11) leads to additional subdomi-
nant processes, such as the emission of relativistic φ waves,

that are not captured by Eq. (12) (see Sec. III A and
Appendix B 4).
As a visual aid for understanding the λ-induced

interactions, we can use a diagrammatic notation for the
terms of

λ

4!
φ4 ¼ λ

96μ2
ðψe−iμt þ ψ�eiμtÞ4 ð13Þ

in close analogy to Feynman diagrams. If we expand
ψ ¼ P

αiψ i in some basis fψ ig, then legs on the left-
hand side of the diagram will correspond to ψ i terms in
Eq. (13), while legs on the right-hand side will correspond
to ψ�

i terms. For example, relativistic emission sourced by
the 211 hydrogenic level corresponds to the diagram

in the sense that the relevant terms in the equation of motion
are obtained from terms involving ψ3

211 in the Lagrangian,
which source a l, m ¼ 3, 3 relativistic mode. We will make
use of these diagrams throughout this section.
The (typically tiny) values of λ introduced in Eq. (6) have

very little effect on processes involving only a few φ
quanta. In particular, if we start in a vacuum (or near-
vacuum) state, the first process of interest is the super-
radiant growth of the most unstable hydrogenic levels,
exactly as in the purely gravitational case. However, since
the occupation number N of a superradiant level can reach
exponentially large values [Eq. (3)], the large field ampli-
tude can compensate for a small self-interaction, and the
quartic term’s effects can qualitatively alter the dynamics of
superradiance. We investigate these effects below.
Higher-dimensional interactions, corresponding to

higher powers of the field, will be present in general.
However, we will see that, in much of the astrophysically
relevant parameter space, the field never reaches large
enough amplitudes for them to be important, for natural
hierarchies between the mass, quartic, and higher-order
terms (see Sec. VA). The case of an additional cubic
coupling leads to qualitatively similar dynamics as for the
quartic alone, as discussed in Sec. III D.
In the presence of a quartic interaction, three types of

perturbative processes affect the evolution of the levels
(here, perturbative is meant in the sense that dynamics can
be treated as involving approximately hydrogenic modes,
interacting on timescales long compared to their oscillation
times). These are relativistic emission of axions to infinity
(Sec. III A), nonrelativistic emission of axions to infinity
(Sec. III B), and bound-state interactions leading to energy
exchange between levels (Sec. III C). We will see in the
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following sections that the latter two processes will be most
important for determining the dynamics of the scalar cloud.

A. Relativistic scalar emission

One of the simplest kinds of process arising from the
equation of motion [Eq. (9)] is the 3 → 1 process in which
bound-state particles “annihilate” into a relativistic φ. In
terms of the nonrelativistic reduction, the relativistic mode
φ∞ is sourced by

ðD2 − μ2Þφ∞ ≃
−λ=6
ð2μÞ3=2 ψ

3e−3iμt þ c:c: ð14Þ

This can be solved via Green’s function methods, using the
solution of ðD2 − μ2Þφ ¼ 0 in the Kerr background. For
small α, when the wavelength ∼μ−1 of the emitted radiation
is much larger than the horizon scale rg, we can ignore the
near-horizon structure of the Kerr metric, and consider only
its 1=r behavior. These calculations are discussed in more
detail in Appendix B.
For radiation sourced by the 211 hydrogenic level, which

we write as 211 × 211 × 211 → ∞, the emitted power to
infinity is (see Table VII)

P ≃ 1.5 × 10−8α17μ2λ2N3
211; ð15Þ

at leading order in α. The corresponding diagram is

In principle, the emitted mode has ω < mΩH when the 211
level is superradiant, and so will extract additional energy
from the BH. However, like the SR rate of bound states, this
horizon flux is suppressed by the small overlap between the
BH and the radiation, and is consequently a subleading
effect in the small-α limit.
Equation (15) is ∼15 times larger than the estimate

in [6]. The latter effectively solved the equation ∂2φ∞ ¼
−λ=6
ð2μÞ3=2 ψ

3e−3iμt þ c:c:; that is, they approximated the emitted

radiation as being massless, and propagating on a flat-space
background.
If there is some occupation number in states other than

211, then any combination of three initial states can result
in relativistic radiation. If the bound states have orbital
angular momenta l; l0; l00, then the emitted power scales
as P ∝ α11þ2ðlþl0þl00Þμ2NN0N00, where N;N0; N00 are the
respective occupation numbers. In particular, as we will
see below, populations in multiple superradiant levels can
lead to forced oscillations in the l ¼ 0, m ¼ 0 mode.
This might lead us to wonder whether the less severe α
suppression in the

process, as compared to 211 × 211 × 211 → ∞, can com-
pensate for the smaller amplitude of the 00 mode in
comparison to 211. However, for the 211 and 322 occu-
pation numbers attained in the evolution of the cloud (see
Sec. IV), the emitted power via 211 × 211 × 211 → ∞,
Eq. (15), is suppressed by fewer powers of α, and numeri-
cally always much larger.

B. Nonrelativistic scalar emission

Emission to unbound states can also occur in the non-
relativistic regime. Suppose that we have bound oscillations
ψ jðtÞ ¼ ψ je−iω̃jt, where j labels a particular bound state,
with frequencies ω̃j;j0;j00 < 0 (i.e., the physical frequencies are
ω ¼ μþ ω̃ < μ). If ω̃j þ ω̃j0 − ω̃j00 > 0, then the ψ jψ j0ψ

�
j00

term in the equation of motion will source unbound, non-
relativistic radiation, corresponding to the diagram

Since the emitted state is also nonrelativistic, we can con-
sistently use theGross-Pitaevskii equation [Eq. (12)].Writing
ψ for the radiated wave, we want to solve

�
ω̃þ∇2

2μ
þ α

r

�
ψ ¼ −3

12μ2
λψ jψ j0ψ

�
j00 ð16Þ

(with the appropriate multiplicity factors). For each of the
different spherical harmonic components in the right-hand
side of Eq. (16), we can write a one-dimensional radial
equation for the part of Ψ with the corresponding angular
dependence. These radial equations can be nondimensional-
ized [31], showing that the power emitted in nonrelativistic
modes is given byP ∝ α4λ2NjNj0Nj00μ

2 at leading order inα,
where Nj; Nj0 ; Nj00 are the occupation numbers of the bound
modes. The constant factors can be found by numerically
solving the radial equations, as reviewed in Appendix B 3.
Considering an example which will, in many circum-

stances, be very important for the cloud’s evolution,
suppose that we have some population in the 211 and
322 modes. Taking ψ j;j0 ¼ ψ322 and ψ j00 ¼ ψ211, we have

2ω̃322 − ω̃211 ≃
α2μ
72

> 0, so emission to infinity is possible.
As reviewed in Appendix B 3, this emission is dominantly
sourced at radii r ∼ rc ≡ rg=α2, i.e., where most of the
cloud’s mass sits. Since the dominant part of the BH
potential is ∼1=r at large distances, which is spherically
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symmetric, both the bound modes and the emitted
wave will have approximately spherical harmonic
angular dependence. For this particular case, Y2

22Y
�
11 ¼ffiffiffiffiffiffiffi

5
42π2

q
Y33 −

ffiffiffiffiffiffiffiffiffiffi
5

1848π2

q
Y53, so the emitted quanta are in the

l ¼ 3, m ¼ 3 and l ¼ 5, m ¼ 3 modes. At leading order in
α, the total emitted power for the

ð17Þ

process is

P ≃ 10−8α4λ2μ2N2
322N211 ð18Þ

with the ðl; mÞ ¼ ð3; 3Þ radiation dominating the emitted
power.3 This is a factor 4 smaller than the rate given in [31],
due to the hydrogenic wave functions used in the latter
having a normalization that is a factor

ffiffiffi
2

p
too large. The

rates for processes involving different bound states are
discussed in Appendix B 3, and tabulated in Table VI.
At larger α, deviations from the nonrelativistic approxi-

mation become more important. However, at small enough
α such that 211 is still superradiant, the ψ211 and ψ322

wave functions are still well-approximated by the hydro-
genic form, except near the origin. Since the source term
ψ2
322ψ

�
211 for the nonrelativistic radiation is largest at the

characteristic radius of the bound states, a ∼ rg=α2, where
the potential is dominantly ∼1=r, we would expect the
corrections to the nonrelativistic calculation to be small.
This can be confirmed by performing a numerical compu-
tation in the Kerr background, the results of which match
the leading-order formula for the emitted power [Eq. (18)]
at the few percent level.
As well as relativistic effects, there will also be higher-

order effects of λ; for example, self-interaction-induced
distortions to the bound state wave functions, and to the
radiated wave. For φ=f ≪ 1, these effects will be small. In
much of the astrophysically relevant parameter space, this
condition holds, as we discuss in Sec. V.

C. Bound state interactions

If we have bound oscillations ψ j;j0;j00 for which ω̃ ¼
ω̃j þ ω̃j0 − ω̃j00 < 0, then the oscillation that they source is
also bound. For example, the ψ2

211ψ
�
322 term has frequency

2ω̃211 − ω̃322 ≃ − 7α2μ
36

< 0. In general, ω̃ will not be very
close to the frequency of any of the hydrogenic bound

levels (with some exceptions that we review below) so the
oscillation that they source will be forced.
Depending on the angular properties of the driving

modes, the forced oscillation may gain or lose energy
from the BH. If it loses energy to the BH, then for a forcing
term ψ jψ j0ψ

�
j00 , this corresponds to energy loss from the

ψ j;ψ j0 modes, but energy gain for the ψ j00 mode. The
example that will be the most important for us is when
ψ j;ψ j0 ¼ ψ211, and ψ j00 ¼ ψ322:

ð19Þ

The forced oscillation has m ¼ 0, so loses energy
through the BH horizon. Given some amplitude in the
211 and 322 modes, each ∼μ of energy lost from the forced
oscillation into the BH corresponds to ∼2μ loss from the
211 mode, and ∼μ gain in the 322 mode. The energy loss
rate is proportional to the squared amplitude of the forced
oscillation, which is ∝ N2

211N322. Consequently, if we have
a large initial occupation number in 211, and a small initial
occupation number in 322, then this process will lead to the
exponential growth of N322, at the expense of 211.
This picture makes intuitive sensewhen the amplitudes of

the “forcing”modes (211 and 322 in the above example) are
large. However, if we are interested in e.g., the growth of 322
from quantum fluctuations, we might worry about the
validity of treating it as a forcing for the m ¼ 0 oscillation.
Amore systematic approach (reviewed in Appendix A) is to
assume that we have some large-amplitude ψc, and treat this
as the source for only two of the “legs”, i.e., to solve

ði∂t þMÞψ ¼ −3λ
24μ2

ðψ2
cψ

� þ jψcj2ψÞ ð20Þ

(here, M represents the other terms in the nonrelativistic
Hamiltonian, including an absorbing term corresponding to
theBHhorizon)withψc acting as a parametric driving term,
rather than a simple forcing. When the amplitude of this
driving term is small, its effects can be described as
perturbations to the usual modes, “mixing” them with
others. The key point is that, if the ψ2

cψ
� term induces a

mixing with a decaying mode, then this contributes a
growing term to the original ψ mode. In our 211 × 211 →
322 × BH example, if we take ψc ¼ ψ211, then this acts as a
parametric driving, which mixes 322 with decaying modes
such as 100. This results in the same growth rate for 322 as
we would calculate from the forced oscillation picture
above. Quantitatively, the energy flux into the BH is, at
leading order in α,

P ≃ 4 × 10−7α7λ2
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

q �
μ2N2

211N322 ð21Þ

3This expression corresponds to the classical wave equation; in
the quantum case, the final state occupation number N211 should
be replaced by N211 þ 1. We use the classical expression for
brevity in the remainder of the text, though the quantum version is
important in allowing levels to grow from vacuum fluctuations.
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More generally, for ψ j;j0;j00 such that the forced oscillation
has a m ¼ 0 component, the energy flux through the BH
horizon is P ∝ α7λ2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þμ2NjNj0Nj00 .

These calculations are discussed in Appendix B 2, and
rates for different processes are tabulated in Table V. The
listed processes all correspond to forced oscillations with
m ¼ 0. Forced oscillations with larger jmj have smaller
energy fluxes into (or out of) the horizon, corresponding to
bound state interaction rates that are suppressed by higher
powers of α.
At larger α, there will be deviations from the leading

power-law behavior of Eq. (21). Since the energy lost
through the forced oscillation depends on its value at the
horizon, i.e., on the behavior at small distances, we would
expect these deviations to be relatively greater than those
for nonrelativistic radiation in the previous subsection. As
we discuss in Appendix A, the behavior is similar to that of
the 100 level’s decay rate, with the rate a factor few larger
than the leading-order value at α ∼ 0.2. While we provide
leading-α expressions in the text, the semianalytic and
numerical results from Appendix A are used for our results.
If all four legs of the interaction are almost on-shell, then

the α scaling of the energy flux can be different from that of
Eq. (21). An example, that will be of interest in Sec. IV, is

ð22Þ

Since ωr ¼ μð1 − α2=ð2n2Þ þOðα4ÞÞ, we have ω211 þ
ω311 − ω322 ¼ ω200 þOðα4Þ (whereas for 211 × 211 →
322 × BH, 2ω211 − ω322 isOðα2Þ away from the frequency
of any quasi-bound level). Consequently, the 200 forced
oscillation dominates the energy flux into the BH, and we
obtain

P≃ 3× 10−10α3λ2
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−a2�

q �
μ2N211N311N322 ð23Þ

This parametrically faster rate means that any 311 occu-
pation can be quickly depleted by this process, as we will
see in Sec. IV C 2.

D. Cubic couplings

In the above, we assumed that the self-interactions
consist of a quartic λφ4 interaction. A generic scalar can
also have a cubic term,

L ⊃ −
1

2
μ2φ2 þ g

3!
φ3 þ λ

4!
φ4: ð24Þ

If we write λ ¼ μ2=f2, then a natural value for the cubic is
g ¼ Cμ2=f, C ∼Oð1Þ. For example, if we take a cosine
potential and add a slope

VðφÞ ¼ μ2f2ð1 − cosðφ=fÞ − Cφ=fÞ; ð25Þ

then the expansion of the potential around its minimum is

Vðφ0 þ δφÞ ¼ μ2

2
δφ2 −

C
3!

μ2

f
δφ3 −

1

4!

μ2

f2
δφ4 þ… ð26Þ

to leading order in small C and δφ.
At leading order in g, the only relevant process is

relativistic 2 → 1 emission, in analogy to the relativistic
3 → 1 emission discussed in Sec. III A. For definiteness,
consider again the situation for the level with the fastest
superradiant rate, 211. The leading order cubic process is

ð27Þ

with power (see Table VII):

P ≃ 10−4α12C2ðμ4=f2ÞN2
211: ð28Þ

More generally, for radiation sourced by quasibound levels
with orbital angular momentum l and l0, the emitted power
scales as P ∝ α8þ2ðlþl0ÞC2ðμ4=f2ÞNN0. Unlike for the case
of relativistic 3 → 1 emission via a quartic coupling
(Sec. III A), the leading-α contribution can be obtained
by treating the radiation as propagating in flat space, i.e., by
solving ð∂2 − μ2Þφ∞ ¼ source.
Similarly to the discussion in Sec. III A, we can ask

whether the smaller α suppression of the

process, sourced by forced oscillations in the l ¼ 0, m ¼ 0
mode, can compensate for its smaller source amplitude
compared to 211 × 211 → ∞. For the 211 and 322
occupation numbers attained (Sec. IV), the power from
the latter process is again parametrically and numerically
larger.
In the next section, we will show that, at the very least for

large parts of parameter space, relativistic processes in
general (from cubic or quartic vertices) are less important
than quartic self-interactions between nonrelativistic states.
As well as these leading-order processes, interactions

between nonrelativistic modes are generated at order g2:

In terms of interactions between nonrelativistic
modes, these are equivalent to a quartic interaction
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λeff ¼ 5
3
g2

μ2
¼ 5C2

3
μ2

f , which is always attractive.4 It should be

noted that this is only true for nonrelativistic modes; other
processes induced at order g2, such as 3 → 1 emissions, will
not be captured by the same effective quartic. Nevertheless,
as we will discuss in Sec. IV, in many circumstances, only
processes involving nonrelativistic states are important for
the evolution of the field around the BH.
Since the most important behavior can generally be

captured by an effective quartic coupling, we will ignore
the cubic coupling for most of this paper, settingC ¼ 0. For
C ≠ 0, one can use the replacement rule

1

f2
→

1

f2eff
¼

�
1þ 5

3
C2

�
1

f2
ð29Þ

for processes involving only nonrelativistic states.

E. Summary

In “gravitational” superradiance, there are two generic
ways for bound states to gain or lose energy and thus
particle number: superradiance itself, in which the black
hole acts as an energy and angular momentum source, and
gravitational radiation, which carries energy and angular
momentum to infinity. We have seen that in the presence of
quartic self-interactions, three new classes of processes are
introduced: emission of relativistic axion waves to infinity,
emission of nonrelativistic axion waves to infinity, and
excitation of forced oscillations which typically are ab-
sorbed back into the black hole.
A nonzero cubic self-interaction can act as an additional

source of relativistic emission, as well as contributing to an
effective quartic term. We will see that, unless the cubic
coupling is tuned so as to suppress the effective quartic
coupling, or the cubic is rather large compared to its natural
value (jCj ≫ 1), relativistic emission generally does not
have an important effect on the dynamics.
The first investigation of scalar self-interactions in BH

superradiance was in Ref. [6], which carried out a very
similar analysis to ours; for example, Eq. (50) in Ref. [6]
corresponds to our Eq. (20) describing bound-state inter-
actions. However, in considering whether a perturbation
grows or shrinks, Ref. [6] focused on the energy flux
through the BH horizon, and did not take into account
energy transfer, through the parametric forcing term,
between bound states. Since the BH absorbs energy in
e.g., the 211 × 211 → 322 × BH process, the conclusion
was that interaction between modes suppresses occupation
number growth. This seems to account for the discrepancy
between our analysis and the conclusions of Ref. [6].
The processes outlined in this section create new energy

loss mechanisms for bound states, thereby typically limiting
their occupation numbers below those of gravitational

superradiance. They also create the ability to exchange
particles efficiently between bound states with different
energy and angular momentum, enabling the growth of
high angular momentum states on timescales much faster
than the growth possible through gravitational superradiance
alone. In the following section, we will discuss in detail the
new dynamics for a range of self-interaction strengths.
Finally, similarly to the emission processes discussed

above, there will also be effects that are higher order in λ. In
particular, if the amplitude of the cloud becomes too large,
then the attractive self-interactions will lead to a rapid,
nonperturbative collapse, the “bosenova” [6]. However, we
will see that, for most parts of parameter space, the leading
order in λ processes that we have described will prevent the
field from reaching such large amplitudes. We discuss such
nonperturbative behavior in more detail in Sec. V.

IV. PERTURBATIVE EVOLUTION

In this section, we study the evolution of the cloud-BH
system, when the new dynamics introduced by self-
interactions can be treated perturbatively. That is, we treat
the cloud as consisting of approximately hydrogenic levels,
interacting on timescales long compared to their oscillation
timescales. Although the processes are individually simple,
the number of them involved can make the narrative hard to
follow. Accordingly, we have collated some of the most
important information into a number of tables and figures.
Table I lists the most important processes affecting level
evolution, and gives their rates. Figure 3 is an important
guide to how our discussion is structured, showing the four
qualitatively different regimes of parameter space that we
analyze. Table II gives approximate expressions for the
boundaries of these regions, and points to their definitions
in the text. Figure 4 shows examples of the time evolution
of the cloud-BH system, drawn from the four different
regions. Table III summarizes the level occupation num-
bers, observational signatures, and characteristic timescales
associated with each region.

A. Evolution of occupation numbers

The evolution of the scalar field around the BH is driven
by the gravitational processes discussed in Sec. II—
superradiant growth or decay, and GW emission—and by
the interaction-mediated processes discussed in Sec. III. As
we have seen, when these processes can be treated pertur-
batively, they can be viewed as transferring energy to and
from the quasi-bound states of the field (which are them-
selves only slightly perturbed from their hydrogenic forms).
Putting everything together, we can write down a set of
coupled differential equations, governing the evolution of
the occupation numbers of the modes.
Schematically, if we write the occupation number of

level j as Nj (where we index the different quasibound
states by a single index j), then

4We find that the contribution of the cubic coupling to the
effective quartic is greater than the one in [31] by a factor of 5=4.
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_Nj ¼ ΓSR
j Nj þ

X
j0
ð−cΓGW

j×j0 þ ΓGW
j0→j − ΓGW

j→j0 ÞNjNj0 þ
X
j0;j00

ðΓj×k
j0×j00 − cΓj00×k

j×j0 − cΓj0×k
j×j00 − cΓ∞

j×j0×j00 ÞNjNj0Nj00 ð30Þ

where the cΓ notation encodes the appropriate multiplicity factors, and

TABLE III. Summary of important quantities in the parameter space regimes A-D (Fig 3, Table II). The second column lists the ratio of
the peak value εpeak211 attained in the corresponding region to the maximum value attained through gravitational superradiance εmax

211 . The
fourth column describes the most important observational signatures of superradiance in each regime. For regions A and B, these are BH
spindown (see Sec. VI), the emission of gravitational radiation (see Sec. VII) from 211 × 211 → GW annihilations and from 322 →
211 × GW transitions (only in region B). For regions C and D, gravitational radiation is suppressed, but nonrelativistic scalar radiation
(“AW”, for “axion waves”) from the 322 × 322 → 211 ×∞ process may be detectable, if the scalar field couples to SM states (see
Sec. VIII). The right-most column gives approximate expressions for the relevant dynamical timescales, which also correspond to
typical signal timescales of GW radiation (for A and B) and scalar radiation (for C and D). The expressions given are to leading order in
small α, and numerical coefficients are approximate; the reader should refer to the text for more precise expressions.

Coupling strength εpeak211 =ε
max
211 η ¼ ε322=ε211 Signatures Timescales

Small (IV B 2), A 1 ≃0 Spindown, GW τann ≈ 105 yrð0.1α Þ14ð10
−12 eV
μ Þ [Eq. (39)]

Moderate (IV B 3), B 1 10−5ð α
0.01Þ3 Spindown, GW τscalar ≈ 10−1 yrð0.1α Þ14ð10

−12 eV
μ Þð f

1017 GeVÞ4 [Eq. (49)]
Large (IV B 4), C ð f

fBC
Þ2 10−5ð α

0.01Þ3 Slow spindown, AW τsd ≈ 107 yrð0.01α Þ5ð10−12 eV
μ Þð0.9a� Þ

3
2ð1015 GeV

f Þ2 [Eq. (60)]
No spindown (IV B 5), D ð f

fBC
Þ2 10−5ð α

0.01Þ3 No spindown, AW τsd ≳ TBH [Eq. (63)]

εeq211 ≈
2ffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ∞κSRða�−2αr̃þÞ

p
α3κBH r̃þ

ð f
Mpl

Þ2 ¼ 2.5 × 10−1ð0.01α Þ3ða�
0.9Þ1=2ð f

1015 GeV
Þ2 [Eq. (55a)];

εeq322 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

κSRða�−2αr̃þÞ
κ∞

q
ð f
Mpl

Þ2 ¼ 6.9 × 10−6ða�
0.9Þ1=2ð f

1015 GeV
Þ2 [Eq. (55b)].

TABLE II. Approximate expressions for the boundaries between different regions in μ, f parameter space, as diagrammed in the
bottom-right panel of Fig. 3. The first column identifies the section in the text discussing the particular parameter space region, while the
third column presents the f range (for given μ) corresponding to that region, along with references to the relevant equations in the text.
The expressions given are to leading order in small α, and numerical coefficients are approximate; the reader should refer to the text for
more precise expressions.

Coupling strength Fig 3 Boundary in parameter space

Small (IV B 2) A f > fAB ≈min½3 × 1016 GeVð TBH
1010 yrÞ

1
4ð μ
10−13 eVÞ

1
4ð α
0.01Þ

11
4 ;

8 × 1018 GeVð0.01α Þ34ða�
0.9Þ

1
4� (Eqs. (41), (42)

Moderate (IV B 3) B fAB > f > fBC ≈ 2 × 1016 GeVða�ðt0Þ
0.9 Þ14 min ½ð α

0.04Þ
3
4; ð α

0.04Þ
3
2� (Eqs. (53), (54), (56)

Large (IV B 4) C fBC > f > fCD ≈ 3 × 1014 GeVð1010 yr
TBH

Þ12ð10−13 eV
μ Þ12ð0.01α Þ52ð 0.9

a�ðt0ÞÞ
3
4 (Eqs. (62)

No spindown (IV B 5) D fCD > f ≫ μ

TABLE I. Rates for the most important processes involved in the evolution of the 211 and 322 hydrogenic levels, at leading order in α.
The second column shows the rate constants appropriate for occupation numbers N211 etc, as per equations (30) and (31), while the third
column shows the rate constants for normalized occupation numbers ε211 ≡ N211=ðGM2

BHÞ etc, as per Eq. (32).
Process Rate constant (occupation numbers N) Rate constant (normalized occupation numbers ε)

211 superradiance ΓSR
211 ≃ 4 × 10−2α8ða� − 2αð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þμ γSR211 ¼ ΓSR

211

ΓGW
211×211 ≃ 10−2α12ð μ

Mpl
Þ2μ γGW211×211 ≃ 10−2α14μ

Γ322×BH
211×211 ≃ 4 × 10−7α7λ2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þμ γ322×BH211×211 ≃ 4 × 10−7α11ðMpl

f Þ4ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þμ

Γ211×∞
322×322 ≃ 10−8α4λ2μ γ211×∞322×322 ≃ 10−8α8ðMpl

f Þ4μ

322 superradiance ΓSR
322 ≃ 8 × 10−5α12ða� − αð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þμ γSR322 ¼ ΓSR

211
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(i) ΓSR
j is the growth(/decay) rate corresponding to the

mode’s flux across the BH horizon
(ii) ΓGW

j×j0 is the annihilation rate of j × j0 to gravita-
tional radiation.

(iii) ΓGW
j→j0 is the rate of transitions, via gravitational-wave

emission, from j0 to j.
(iv) Γj×k

j0×j00 is the rate of the

process, where the k leg corresponds to nonrelativ-
istic scalar emission, or to bound forced oscillation
damped by the BH. For emission to infinity, we will

sometimes write Γj00×∞
j×j0 , while for a bound forced

oscillation, we will write Γj00×BH
j×j0 .

(v) Γ∞
j×j0×j00 is the rate of the

relativistic emission process. Repeated indices will some-
times be abbreviated using an exponential (i.e.,Γ∞

j×j×j ¼ Γ∞
j3 )

For example, the evolution of the fastest-growing level is
given by

_N211 ¼ΓSR
211N211−2ΓGW

211×211N
2
211−ΓGW

211→322N211N322þ…

−2Γ322×BH
211×211N

2
211N322þΓ211×∞

322×322N211N2
322þ…

−3Γ∞
ð211Þ3N

3
211−2Γ∞

ð211Þ2×322N
2
211N322þ… ð31Þ

Some of the key rates, at leading order in α, are listed in
Table I.
While, as we observed above, λ is often extremely small,

the Nj can become extremely large. From Eq. (3), the
angular momentum of a BH is J¼a�GM2≃1078a�ð M

10M⊙
Þ2.

To spin it down by Oð1Þ, as is necessary to saturate the
superradiant instability, we need Nj to be of this order.
Consequently, it is often more convenient to work in terms
of “normalized” occupation numbers, εj≡Nj=ðGM2

BHÞ<1,
and normalized rates γ such that

_εj¼ γSRj εjþ
X
j0
ð−cγGWj×j0 þ γGWj0→j− γGWj0→jÞεjεj0

þ
X
j0;j00

ðγj×kj0×j00 −cγj
00×k
j×j0 −cγj

0×k
j×j00 −cγ∞j×j0×j00 Þεjεj0εj00 ð32Þ

Similarly, it is helpful to write λ≡ μ2=f2, as motivated
around Eq. (6). In terms of these, the scalings with α and f
of the different γ are

(i) For growth (or decay) of a bound oscillation via the
BH horizon γSRj ∝ α4lþ4

(ii) For nonrelativistic scalar emissions to infinity,
γj×∞j0×j00 ∝ α8ðMpl=fÞ4

(iii) For the absorption of energy from a forced
bound oscillation with angular momentum l
damped by the BH, γj×BHj0×j00 ∝ α11þ4lðMpl=fÞ4 (except
in the case of “resonant” processes, as discussed in
Sec. III C).

(iv) For 3-to-1 relativistic scalar emissions to infinity
γ∞j×j0×j00 ∝ α2ðlþl0þl00Þþ15

(v) For annihilation to gravitational waves γGWj×j0 ∝
α10þ2ðlþl0Þ

(vi) For transitions between bounds states with gravita-
tional wave emission, γGWj→j0 , see Sec. VII B.

In addition, a nonzero cubic interaction contributes to the
evolution equations (32) as

_εj ¼ −
X
j0
cγ∞j×j0εjεj0 þ… ð33Þ

with rate γ∞j×j0 ∝ α2ðlþl0Þþ10jCj2ðMpl=fÞ2μ.
The rates that determine the evolution in large parts

of the parameter space are listed in Table I, at leading
order in α. As discussed above, for some of these
processes, this approximation can be quite poor at α
values of interest, and for the computations involved in
producing our plots, we use more accurate numerical or
semianalytic expressions.
When all of the εj are very small, then only the γSRj are

important, and evolution proceeds as in the purely gravi-
tational case, with the fastest-growing level increasing
exponentially in amplitude. Since the εj for this level will
usually dominate exponentially over the other εj0, other levels
can only be built up (faster than their superradiance rates)
through5

where the BH leg corresponds to a bound oscillation.
If interaction processes are strong enough to significantly

5If the occupied level j is higher-frequency than some other
level j0, then transitions from j to j0 via GW emission can also
occur. However, as discussed in Sec. VII, the fastest-growing
superradiant level is also the most tightly bound superradiant
level, for l < 3. Consequently, transitions from a superradiant
level would have to be to decaying levels. Since the decay rate
through the BH horizon is generally significantly larger than the
growth rate due to GW transitions, this does not give rise to
exponential growth of j0. For example, if we consider 322 →
200þ GW transitions, the evolution equation for the 200 level is
_ε200=μ ≃ 4 × 10−6α8ε322ε200 − 0.5α5ε200, so the 200 level is still
damped even for large ε322.
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affect the evolution, then the j0 for which this growth rate is
fastest will be the next level to become important.
For small α, the fastest superradiant growth is for the

211 level, and the fastest quartic process, given a 211
amplitude, is

as discussed in Sec. III C. It turns out that, similarly to the
toy model discussed in [31], there is a large parameter space
for which only the (perturbed) 211 and 322 levels are ever
significantly populated. This regime will be the main focus
of our paper.
Situations in which 211 is the first superradiant level

generally lead to the strongest radiative signals, either in
gravitational or scalar waves. However, superradiance into
higher levels can be important for other phenomenological
signatures, such as BH spin-down. In such circumstances,
levels other than 211 and 322 will be important. For
example, if 322 is the first level to grow through super-
radiance, then 544 will generally be the next level to be
built up through self-interactions. Though we do not
investigate such scenarios in detail in this paper, they
represent an important subject for future work.

B. Two-level system

If the (suitably perturbed) 211 and 322 modes are the
only ones with significant occupation numbers, then the
relevant processes are illustrated in Fig. 1. Given this
multitude of processes, the behavior of the system seems
potentially very complicated. However, we will see that,
because the relativistic emission rates are suppressed by
high powers of α (and the gravitational radiation rates have
an additional relative suppression of ðf=MplÞ4, which will
turn out to be small when self-interactions are important),

only the two nonrelativistic processes (along with super-
radiance) are generally significant.
Assuming that 211 is the fastest-growing mode at the

start of the evolution, these give rise to fairly simple
qualitative behavior, for large enough couplings λ.
Initially, the 211 mode grows through superradiance.
Once its occupation number is large enough, the growth
rate of the 322 mode, through the 211 × 211 → 322 × BH
process, becomes significant. This stops the growth of the
211 mode. Since 322 is depleted via the 322 × 322 →
211 ×∞ process, but built up via 211 × 211 → 322 × BH
(and vice versa for 211), the 211 and 322 modes reach a
quasiequilibrium configuration, in which their occupation
numbers are almost constant. This evolution is illustrated
schematically in Fig. 2, and is the regime that was studied
in the toy model of [31].
The above picture holds for the case of large enough self-

couplings; in the opposite limit of very small self-cou-
plings, the evolution will be almost the same as the purely
gravitational case. For intermediate values of λ, there can be
more complicated behaviors. In the rest of this section, we
will make all of these statements precise, by investigating in
detail the evolution of the cloud, for different μ and f.
Figure 3, and Tables II and III, serve as guides to this
discussion. Readers more interested in the observational
effects of superradiance around astrophysical BHs can skip
ahead to Secs. VI and VII, referring back to this section
when necessary.

1. Evolution equations

As discussed above, only the processes in Table I are
generally important in the evolution of the 211=322 system.
We highlight these rates (which are presented outside the
parentheses) in the full evolution equations for the occu-
pation numbers of the 211 and 322, which are (at leading
order in α)

FIG. 1. Processes relevant to the evolution of the 211 and 322 hydrogenic modes. The first row corresponds to the interactions between
nonrelativistic modes (Sec. III B and III C) and the second corresponds to the emission of relativistic scalar radiation (Sec. III A), both
mediated by the quartic self-interaction. The third row corresponds to the emission of gravitational radiation (indicated by wavy legs),
also present in gravitational superradiance.
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_ε211
μ

¼ κSR211α
8ða� − 2αr̃þÞε211 − 2κ322×BH211×211α

11ðMpl=fÞ4r̃þε2211ε322 þ κ211×∞322×322α
8ðMpl=fÞ4ε2322ε211 − 2κGW211×211α

14ε2211

þ ð−κGW211×322α16ε211ε322 þ κGW322→211α
10ε211ε322 − 3κ∞ð211Þ3α

21ðMpl=fÞ4ε3211 − 2κ∞ð211Þ2×ð322Þα
23ðMpl=fÞ4ε2211ε322

− κ∞ð211Þ×ð322Þ2α
25ðMpl=fÞ4ε211ε2322Þ; ð34Þ

_ε322
μ

¼ κSR322α
12ða� − αr̃þÞε322 þ κ322×BH211×211α

11ðMpl=fÞ4r̃þε2211ε322 − 2κ211×∞322×322α
8ðMpl=fÞ4ε2322ε211

þ ð−2κGW322×322α18ε2322 − κGW211×322α
16ε211ε322 − κGW322→211α

10ε211ε322 − 3κ∞ð322Þ3α
27ðMpl=fÞ4ε3322

− κ∞ð211Þ2×ð322Þα
23ðMpl=fÞ4ε2211ε322 − 2κ∞ð211Þ×ð322Þ2α

25ðMpl=fÞ4ε211ε2322Þ; ð35Þ

where r̃þ ≡ rþ=rg ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
, and the κ values corre-

spond to the γ rates, with the leading α, f and a� dependence
factored out (e.g., γ322×BH211×211 ¼ κ322×BH211×211α

11ðMpl=fÞ4r̃þμ, etc).
We also need to keep track of the BH’s mass and spin, for
which

_a�
μ

¼ −κSR211α8ða� − 2αr̃þÞε211
− 2κSR322α

12ða� − αr̃þÞε322; ð36Þ

and

_M
μ2GM2

≃ −κSR211α8ða� − 2αr̃þÞε211
− κSR322α

12ða� − αr̃þÞε322
þ κ322×BH211×211α

11ðMpl=fÞ4r̃þε2211ε322: ð37Þ

A simplifying assumption at small α is to neglect the change
in the mass of the black hole; we will often use this
approximation in the text. This is equivalent to setting the
maximum 211 fractional occupation value attained through
purely gravitational evolution, εmax211 , to jΔa�j ¼ a�ðt0Þ−
4α=ð1þ 4α2Þ. At larger α, the mass of the BH changes more
significantly and εmax

211 > jΔa�j. Our expressions can still be
used, however, with the correct value of εmax

211 , for which we
derive good analytic approximations in Appendix F.

2. Small self-coupling: Gravitational superradiance

In the limit of very small coupling, f → ∞, the system
evolves under purely gravitational dynamics, as summa-
rized in Sec. II. As long as the fastest and second-fastest
growing superradiant levels have sufficiently different
growth rates, the former will grow first, and attain expo-
nentially larger occupation numbers than other modes. For

FIG. 2. Schematic illustration of the effects of a large quartic self-interaction on the growth of scalar fields around a spinning BH. The
left-hand figure shows the energy densities of the 211 (blue) and 322 (red) modes in the ðx; zÞ plane, taking the BH spin to be in the z
direction. The right-hand panel shows the evolution of the 211 (blue) and 322 (red) occupation numbers with time (where the N axis is
taken to be logarithmic). We assume that the initial BH spin is high enough that the first process to occur is superradiant growth of 211.
In the absence of self-interactions, this growth would continue until the BH was spun down to the m ¼ 1 threshold (as indicated by the
dashed blue line). When sufficiently large self-interactions are present, the 322 mode is built up from the 211 mode, via the nonlinear
pumping process described in Sec. III C. This stops the growth of 211, and the levels quickly reach a quasiequilibrium configuration, in
which the processes of 211 superradiance, 211 × 211 → 322 × BH and 322 × 322 → 211 ×∞ emission (Sec. III B) keep the 211 and
322 occupation numbers almost constant.
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most of this paper, we focus on situations where the initially
fastest-growing mode is the 211 level. This grows to
maximum size, and spins the BH down to the m ¼ 1
superradiance threshold, in a time

logGM2

ΓSR
211

≃
�

MBH

10M⊙

�
×

(
9 hour α¼ 0.4

6×103 yr
�
0.05
α

�
9
α≲0.2

ð38Þ

FIG. 3. Parameter space for superradiance of a scalar with mass μ and quartic coupling λ ¼ μ2=f2, around a BH with MBH ¼ 10 M⊙
and a� ¼ 0.9 (initially), given a total evolution time of 1010 yr. Top-left: parameter space in which the 211 level grows to saturation
through superradiance. Top-right: parameter space in which the 322 level grows faster due to self-interactions than it would have through
superradiance alone. Bottom-left: parameter space in which the BH is spun down to the threshold of 211 superradiance. For μ≳
4 × 10−12 eV (i.e., past the threshold for 211 superradiance), we show the parameter space region in which 322 superradiance is not cut
off by self-interactions, and we can be confident that the BH is spun down to the threshold of 322 superradiance. The gray hatched region
corresponds to parameter space in which levels other than 211 and 322 are expected to grow; we have not fully analyzed the behavior in
these regimes. The blue dashed line corresponds to the quartic coupling for the QCD axion. The “ALP DM” band corresponds to the
range of quartic couplings that, for an axion with a time-independent cosine potential, allow the observed DM abundance to be produced
by the early universe misalignment mechanism. The darker middle band corresponds to Oð1Þ values of the initial misalignment angle,
while the lighter bands above and below correspond to “tuned” initial values (see Sec. VI A for details). Bottom-right: parameter space
regions discussed in the text. (A) corresponds to the “small self-coupling” regime discussed in Sec. IV B 2, (B) corresponds to the
“moderate self-coupling” regime discussed in Sec. IV B 3, (C) corresponds to the “large self-coupling” regime discussed in Sec. IV B 4,
and (D) corresponds to the “lack of BH spindown” regime discussed in Sec. IV B 5. The “322 SR” region is where 322 superradiance is
not cut off by self-interactions, while the gray parameter space above this is when this does occur, and further analysis would be
required.
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for high spin (a� ¼ 0.99). On a timescale that, for small α,
is parametrically larger, the 211 level is depleted through
gravitational wave annihilations, with a decay time of

τann ≈
1

2ΓGW
211×211N211;max

≃
�

MBH

10 M⊙

�
×

(
4 hour α ¼ 0.4;

3 × 109 yr
�
0.05
α

�
15

α≲ 0.2:
ð39Þ

On even longer timescales, the fastest-growing m ¼ 2
level (i.e., 322) spins down the BH via superradiance,

logGM2

ΓSR
322

≃
�

MBH

10 M⊙

�
×

(
4 yr α ¼ 0.4;

1011 yr
�
0.05
α

�
13

α≲ 0.5:

ð40Þ

By this point, only a small fraction of the initial 211
occupation generally remains (for α large enough that

growth occurs on relevant timescales), so gravitational
wave transition signals from 322 → 211 × GW events
are small. The upper panels of Fig. 4 illustrate this
evolution, for f ≃Mpl. For BHs with long enough lifetimes,
a similar story applies to the growth of higher-m levels.
As we discuss below, the purely gravitational story

describes the evolution well if the self-interaction-induced
211 × 211 → 322 × BH process is always slow compared
to superradiant growth processes. The parameter space for
which this is true is plotted as region (A) in the bottom-right
panel of Fig. 3.

3. Moderate self-coupling: Early growth
of 322 and late equilibrium

If we decrease f, while holding other parameters fixed,
the first significant difference from purely gravitational
evolution that arises is earlier growth of the 322 level. We
label this regime, where 211 still grows to saturation, but
322 grows sooner than it would have if λ ¼ 0, the
“moderate self-coupling” regime. The upper-left panel of
Fig. 4 illustrates the evolution of the 211 and 322

FIG. 4. Left panel: fractional occupation numbers of 211 (solid lines) and 322 (dashed lines) levels, and Right panel: BH spin, as a
function of time, for a BH of mass 10 M⊙ and initial spin a� ¼ 0.9, given a scalar of mass μ ¼ 1.5 × 10−12 eV. The different colors
correspond to the different self-interaction strengths indicated in the right-hand plots (see Sec. IV for explanations of the behaviors at
different couplings).
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occupation numbers for an f value in this regime (as well as
for a larger f in the small self-coupling regime).
The parameter space for moderate self-coupling is

plotted as region (B) in the bottom right-hand panel of
Fig. 3, and corresponds to the intersection of the shaded
regions in the upper two panels. In this subsection, we
will focus on the threshold between the small self-coupling
and moderate self-coupling regimes, deferring the small-f
boundary of the moderate regime (i.e., the point at
which 211 no longer grows to saturation) to the next
subsection.
For the 211 × 211 → 322 × BH process to build up 322

within the lifetime of the BH, we need

γ322×BH211×211ðεmax
211 Þ2 ≳ logðεfinal322 =ε

initial
322 Þ

TBH
≃
logðGM2

BHÞ
TBH

ð41Þ

where εmax
211 ≈ a�ðt0Þ − athresh� ≈ a�ðt0Þ − 4=αð1þ 4α2Þ is

the occupation number of the saturated 211 level.
Parametrically, if we start from very small fluctuations
in the 322 level, and εfinal322 is not exponentially small, then
εfinal322 =ε

initial
322 ∼GM2. For this growth to be faster than 322

superradiance, we need γ322×BH211×211ðεmax
211 Þ2 ≳ γSR322.

The condition (41) is necessary for early 322 growth to
occur, but not sufficient, since annihilations to gravitational
waves may deplete 211 before 322 can grow. In order for
this not to happen, we need

γ322×BH211×211ðεmax
211 Þ2

logðεfinal322 =ε
initial
322 Þ ≳ 2γGW211×211ε

max
211 ð42Þ

Replacing the rates by their small-α expansions, this is
equivalent to

κBHr̃þðMpl=fÞ4εmax
211

log ðGM2Þ ≳ 2κGW211×211α
3: ð43Þ

The combination of the conditions (41) and (42) is
responsible for the shape of the (A)-(B) boundary in Fig. 3.
At small α, (41) is more constraining, while at larger α, (42)
takes over. The parametric form of this threshold value fAB
is given in Table II.

Evolution of levels.—Unlike in the gravitational scenario,
where the growth of 322 via superradiance is accompanied
by a rapid drop in 211 occupation, here both levels
eventually reach roughly comparable occupation numbers.
Subsequently, the joint cloud is slowly depleted by
the combination of nonrelativistic scalar emission
and damping by the BH. Other processes, including
gravitational annihilations and transitions as well as rela-
tivistic scalar emission, are small perturbations to this
overall evolution.

As discussed above, only a few rates drive the dynamics
in the regions of parameter space for which self-interactions
modify the purely gravitational scenario. These are κSR211,
κ322×BH211×211, and κ

211×∞
322×322 (and κ

SR
322, in some circumstances). To

streamline our notation, we will refer to them as κSR, κBH,
and κ∞ respectively.
In the regime of moderate self-coupling, the growth of

the 211 level occurs as in the purely gravitational case; both
the occupation number and the BH angular momentum
change “suddenly,”with almost all of the change happening
in the last few e-folds of superradiant growth. This is
illustrated in the top panels of Fig. 4. The BH spin
decreases to a� ≈ 4α=ð1þ 4α2Þ, and ε211 stays at ≈εmax

211

for a long time. In the purely gravitational scenario, the
cloud would then slowly self-annihilate to gravitational
waves until ∼200 e-folds of 322 superradiance have
passed. Here, however, the quartic process dominates,
and the 322 growth rate is higher:

_ε322
μ

≈ κBHr̃þα11ðMpl=fÞ4ðεmax
211 Þ2ε322: ð44Þ

Eventually, the 322 occupation number becomes large
enough that the quartic vertex 322 × 322 → 211 ×∞
becomes important and a quasiequilibrium is established,
roughly after time

t� ≃ GM
logðGM2Þ

κBHr̃þα12ðMpl=fÞ4ðεmax
211 Þ2

ð45Þ

has passed.
At this point, superradiance to 211 has effectively shut

down, and 322 superradiance is too slow to be significant.
Particles are leaving the combined cloud, going back to
the BH (via 211 × 211 → 322 × BH) and to infinity (via
322 × 322 → 211 ×∞). Gravitational and relativistic
scalar processes are suppressed by high powers of α.
Accordingly, the coupled dynamics of the two-level system
simplifies to

_ε211
μ

≈ −2κBHr̃þα11ðMpl=fÞ4ε2211ε322
þ κ∞α8ðMpl=fÞ4ε2322ε211; ð46aÞ

_ε322
μ

≈ κBHr̃þα11ðMpl=fÞ4ε2211ε322
− 2κ∞α8ðMpl=fÞ4ε2322ε211; ð46bÞ

a� ≈
4α

1þ 4α2
: ð46cÞ

Since there are no processes (except for the negligible
superradiance of 322) which contribute particles to the
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cloud, particles are only leaving. Accordingly, the system
has no true equilibrium occupations. However, (46) still
admits a time-independent equilibrium ratio of occupation
numbers, ε322=ε211 ¼ ηB to which the system flows,

ηB ≃
1

2

κBHα3r̃þ
κ∞

≃ 4 × 10−5
�

α

0.01

�
3

: ð47Þ

For the regime of moderate self-coupling, the scalings in
(47) are only representative at leading orders in α. A more
accurate expression is derived in Appendix D.
When the equilibrium ratio is obtained at time t�, the

occupations evolve as

ε211ðtÞ ≃
ε211ðt�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ε2211ðt�Þðt − t�Þ=τscalar
p ; ð48Þ

where

τscalar ≡ 4

3μ

κ∞

ðκBHr̃þÞ2α14
�

f
Mpl

�
4

≈ 10−1 yr

�
0.1
α

�
14
�
10−12 eV

μ

��
f

1017 GeV

�
4

;

ð49Þ

and ε322ðtÞ ¼ ε211ðtÞηB.
The joint cloud continues to deplete until the occupation

of 211 has diminished enough that the superradiance
rate of 322 outcompetes the “stimulated” emission process
322 × 322 → 211 ×∞, and the cloud starts growing again.
A large occupation builds up in 322, causing rapid 211
depletion via 211 × 211 → 322 × BH. Moreover, as super-
radiance extracts angular momentum from the BH to 322,
the BH’s spin decreases further, making 211 (and other
m ¼ 1 states) damped. This sequence of events is illus-
trated in the top panels of Fig. 4 (where the green curves
correspond to moderate self-coupling, and the blue to small
self-coupling).
In the λ ¼ 0 case, m ¼ 2 superradiance must proceed

from zero-point quantum fluctuations, or from a small pre-
existing astrophysical density. Here, superradiance gets to
act on the preexisting occupation ε322, since 322 has
already been populated by self-interaction-mediated proc-
esses. In this way, self-interactions “assist” superradiance,
sometimes leading to more rapid saturation of the m ¼ 2
instability than allowed in the purely gravitational story.
The f ¼ 5 × 1017 GeV curves in the upper panels of Fig. 4
show an example of this, with 322 spin-down occurring
after only ∼few × 106 yr, compared to almost 108 yr in the
purely gravitational case.
The above discussion summarizes the evolution of

the cloud in the moderate self-coupling regime. Before

moving on, we will discuss the effects of processes other
than 211×211→322×BH, 322×322→211×∞, and
superradiance, and review why they are (in most cases)
subdominant.

Annihilations to GWs.—An important point is that, to be in
the moderate self-coupling regime for astrophysical BH
masses, we need f ≲Mpl (as illustrated in Fig. 3). This is
evident from the form of the threshold fAB given in
Table II, fAB ¼ minðf1; f2Þ. The first term f1 comes from

the condition γ322×BH211×211ðεmax
211 Þ2 ≳ logðGM2

BHÞ
TBH

; to make f1≥Mpl,
we need to take α≳ 0.07 [for MBH ¼ Oð10 M⊙Þ]. Such
large values of α make the f2, coming from the condition
that GW annihilations are not too fast (42), much less than
Mpl. Consequently, gravitational wave emission processes
suffer a suppression ∼ðf=MplÞ4, relative to self-interaction-
mediated quartic processes. This means that, once 322 has
reached its equilibrium ratio with 211 [Eq. (47)], even
the fastest GW emission process, 211 × 211 → GW, is
generally slower than 211 × 211 → 322 × BH and 322 ×
322 → 211 ×∞ (at least until the levels have depleted
significantly).

GW transitions.—From Table IV, gravitational wave tran-
sitions 322 → 211þ GW contribute a term _ε322 ≃ −3 ×
10−6α10ε322ε211μþ � � � to the evolution equations. If we
take ε322 ¼ ηBε211 [Eq. (47)], this gives

_ε322=μ ≃ −3α13ε2211 þ 0.4α14ε3211

�
Mpl

f

�
4

þ… ð50Þ

where we have also included the 211 × 211 → 322 × BH
term for comparison. While the GW transition term is
suppressed by one less power of α, Fig. 3 illustrates that, as
α decreases, the maximum f for the moderate self-coupling
regime decreases (from Table II, fAB ∝ α11=4 for small α).
Consequently, the relative ðMpl=fÞ4 enhancement of the
quartic self-interaction terms always wins out.
Even though gravitational wave emission no longer

dominates the evolution compared to the small self-
interactions regime of gravitational superradiance, GW
annihilation signals can still be strong enough for detection
in this regime. In addition, the simultaneous occupation of
the two levels allows for the possibility of GW signals from
transitions. We explore potential signatures in more detail
in Sec. VII.

Relativistic 3 → 1 emission.—As discussed in Sec. III A,
quartic self-interactions also lead to processes emitting
relativistic scalar waves, such as 211 × 211 × 211 → ∞.
This contributes

_ε211=μ ≃ −5 × 10−9α21
�
Mpl

f

�
4

ε3211 þ… ð51Þ
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Because of the high power of α this is suppressed by, its
effect is small compared to the nonrelativistic quartic
processes.

Relativistic cubic emission.—In Sec. III D, we discussed
how, in addition to a quartic self-interaction, there may also
be a cubic interaction term, L ⊃ 1

6
C μ2

f φ
3, which can lead to

relativistic emission processes such as 211 × 211 → ∞.
This contributes

_ε211=μ ≃ −2 × 10−4α14jCj2
�
Mpl

f

�
2

ε2211 þ… ð52Þ

Compared to the quartic-induced term in Eq. (50), the
lower power of Mpl=f, and the smaller constant factor,
mean that unless jCj ≫ 1, relativistic emission from the
cubic coupling will be a subdominant effect.

4. Large self-coupling: early equilibrium and halted
extraction of angular momentum

If we further decrease f, we reach a point where 322
grows large enough, early enough, that 211 superradiance
is disrupted, and 211 does not reach its saturation value. We
call this the regime of “large self-coupling”; it corresponds
to regions (C) and (D) in the bottom-right panel of Fig. 3,
and to the bottom panels in Fig. 4.
For the 211 × 211 → 322 × BH process to disrupt 211

superradiance, we need that 2γ322×BH211×211ε211ε322 ≳ γSR211 before
ε211 has grown to its saturation value. This does not
necessarily preclude 211 reaching εmax

211 (ε211 can still grow
after that point, albeit more slowly than it would have
with λ ¼ 0), but it is necessary to have a significant
effect. Parametrically, this condition is approximately
equivalent to

γ322×BH211×211ðεmax
211 Þ2 ≳ 2 log ðGM2ÞγSR211; ð53Þ

where we neglect the dependence of the rates on the BH
spin [i.e., set a�ðtÞ ¼ a�ðt0Þ]. A more precise condition is
derived in Appendix E.
The condition (53) can be expressed as a condition on f.

211 superradiance is basically unaffected if f ≳ fthresh,
where

fthresh ≈Mpl

�
α3

2 logðGM2Þ
κBHr̃þðεmax

211 Þ2
κSRa�ðt0Þ

�
1=4

≈ 6 × 1015 GeV

�
α

0.01

�
3=4

�
a�ðt0Þ
0.9

�
1=4

: ð54Þ

The scalings in (54) are only representative when
α ≪ a�ðt0Þ. For larger values of α, rates obtained numeri-
cally, and a more precise version of (53) (Appendix E), can
be used.

As pointed out in [31], if a� is held fixed, the system
admits equilibrium occupations for which _ε211 ¼ _ε322 ¼ 0:

εeq211ða�Þ ≈
2ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ∞κSRða� − 2αr̃þÞ

p
α3κBHr̃þ

�
f
Mpl

�
2

≡
�

f
feq

�
2

εmax
211

¼ 2.5 × 10−1
�
0.01
α

�
3
�
a�
0.9

�
1=2

�
f

1015 GeV

�
2

;

ð55aÞ

εeq322ða�Þ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

κSRða� − 2αr̃þÞ
κ∞

r �
f
Mpl

�
2

¼ 6.9 × 10−6
�
a�
0.9

�
1=2

�
f

1015 GeV

�
2

; ð55bÞ

where

feq ≈Mpl

� ffiffiffi
3

p

2

α3κBHr̃þεmax
211ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κSRκ∞ða� − 2αr̃þÞ
p �1=2

≈ 2 × 1015 GeV

�
α

0.01

�
3=2

�
a�ðt0Þ
0.9

�
1=4

: ð56Þ

Note that the ratio ηeq ≡ εeq322=ε
eq
211 is

ηeq ¼ γBH

2γ∞
≈ ðηBÞsmallα; ð57Þ

according to the approximation (47) valid for small α. At
larger values of α, ηB > ηeq. See Appendix D for more
details.
We now consider what happens in the physical case,

where a� can change. If ε
eq
211 is much less than its saturation

value, then the timescale to extract an Oð1Þ fraction
of the BH’s spin is much longer than the characteristic
timescale of the processes maintaining the equilibrium.
Consequently, we expect the quasiequilibrium to be main-
tained to a good approximation, as a� undergoes a slow
descent. The equilibrium occupation numbers εeq211ða�Þ and
εeq322ða�Þ stay almost constant, with the angular momentum
extracted from the BH via 211 superradiance being emitted
to infinity via the 322 × 322 → 211 ×∞ process. This is
in contrast to the regimes of small and moderate self-
interactions, where the angular momentum lost from the
BH builds up in the cloud.
Close to the transition from moderate to large self-

interactions, there is a sliver of parameter space for which
the exponential growth of 211 is maintained for some time
and Oð1Þ of the maximum spin extraction occurs, before
getting cut short by the equilibrium. Deep inside the region
of small f, however, the spin of the BH is essentially
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unchanged at the time the equilibrium is established, and
most of the extraction of angular momentum happens
adiabatically.
Although (55) is valid at equilibrium, if α is large enough

then ε211 will “overshoot” its equilibrium value before ε322
has caught up with it. Before equilibrium, if we neglect the
dependence of γSR211 on the BH spin, ε211 ∝ expðγSR211tÞ. In
Appendix E, we derive an estimate for the value of the
exponent γSR211t at the time when 211 × 211 → 322 × BH is
comparable to SR. To a good approximation

εthresh211 ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γSR211 logðGM2Þ

γ322×BH211×211

s
≈
�

f
fthresh

�
2

εmax
211 ; ð58Þ

where we set a�ðtÞ ¼ a�ðt0Þ in both rates.
Accordingly, the evolution toward equilibrium can

happen in two qualitatively different ways. When
α≳ 0.04, fthresh < feq and εthresh211 > εeq211. In this case, the
occupation ε211 overshoots its equilibrium value and
subsequently evolves toward it from above. This is illus-
trated in the bottom-left panel of Fig. 4 (for which
α ¼ 0.11). Conversely, when α≲ 0.04, then εthresh211 <εeq211.
There is no overshoot, and ε211 evolves toward its equi-
librium occupation from below.
Given this, the boundary between the moderate self-

coupling regime, where ε211 reaches εmax
211 , and large self-

coupling, where it does not, is set by

f ≲ fBC ≡min ½fthresh; feq�: ð59Þ

To review, the evolution of the superradiant cloud, in the
regime of large self-coupling, occurs in different stages:
(1) An initial stage of exponential 211 growth, during

which ε322 is too small to significantly affect the
evolution of ε211.

(2) A “nonequilibrium” stage in which ε211 and ε322
evolve toward their equilibrium values. The time-
scale to approach the equilibrium values is at most a
logarithmic multiple of 1=γSR211, since the relevant
self-interaction processes are at least as fast as γSR211.

(3) Once ε211 and ε322 are close to their equilibrium
values, there is a long period of quasi-adiabatic
evolution. The spin-down of the BH due to spin
extraction through 211 superradiance, which changes
a� on a timescale ð _a�=a�Þ−1 ∼ ðεmax

211 =ε
eq
211Þ=γSR211,

leads to the slow evolution of the equilibrium
occupation numbers.

(4) If the BH lifetime is long enough that spin-down to
the m ¼ 1 threshold occurs, then similar behavior to
the moderate self-coupling regime will result. The
211 and 322 levels will maintain a quasiequilibrium
ratio, but with decreasing occupation numbers, as
scalars are emitted to infinity. Eventually, the occu-
pation numbers will become small enough that 322

superradiance starts to dominate, at which point the
322 occupation number starts growing again (e.g.,
the f ¼ 1015 GeV curves in the bottom-left panel
of Fig. 4).

Consequently, when f is appreciably smaller than fBC, the
first and second stages change a� by only a small amount,
and the majority of the BH’s spin-down to the m ¼ 1
threshold happens during the period of almost adiabatic,
quasiequilibrium evolution.
When the equilibrium occupations (55) are obtained, the

angular momentum of the BH decreases according to (36),
with ε211 ¼ εeq211ða�Þ (and we can ignore κSR322). The time-
scale for spindown is therefore set by

τsdða�Þ ≈
ffiffiffi
3

p

2α5μ

κBHr̃þðMpl=fÞ2ffiffiffiffiffiffi
κ∞

p ðκSRða� − 2αr̃þÞÞ3=2

≈ 107 yr

�
0.01
α

�
5
�
10−12 eV

μ

�

×

�
0.9
a�

�3
2

�
1015 GeV

f

�
2

: ð60Þ

While in (slowly varying) equilibrium, the cloud emits
nonrelativistic axion waves through the 322 × 322 →
211 ×∞ process. These could, in the presence of axion-
SM interactions, be detected by experiments on Earth. Even
though the occupation number of the cloud decreases ∝ f2

for small f, the coupling strength of axion-SM interactions
will generically scale as ∼1=f. Consequently, the inter-
action rate of the emitted radiation with a laboratory target
can be independent of f in the small-f regime. This in
contrast to gravitational wave signals, which are suppressed
at small f. We discuss this possibility more fully in
Sec. VIII.
In the previous subsection on the moderate self-coupling

regime, we discussed how interaction processes, other than
nonrelativistic quartic interactions and superradiance, are
generally subdominant in their effects on the evolution of
the cloud. Very similar calculations apply to the large self-
coupling regime; the equilibrium ratio of ε322=ε211 is the
same, with the difference being that the equilibrium
occupation numbers are suppressed, scaling ∝ f2.
This scaling only makes a difference to comparisons

between processes with different multiplicities. For anni-
hilation to GWs, the ðf=MplÞ2 scaling of the occupation
number is not enough to make up for the ðMpl=fÞ4 relative
enhancement of the quartic interaction rates, so GW
annihilation processes are even less important than they
are in the moderate self-coupling regime.
For relativistic cubic emissions, the fastest of which is

211 × 211 → ∞, we can compare the contribution to the
evolution rate to that from 211 × 211 → 322 × BH:
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_ε211=μ ≃ −2 × 10−4α14jCj2
�
Mpl

f

�
2

ε2211

− 8 × 10−7α11
�
Mpl

f

�
4

ε2211ε322

≃ ð−2 × 10−4α14jCj2 − 10−3α11Þ

×

�
Mpl

f

�
2

ðεeq211Þ2 ð61Þ

where the second equality applies for the equilibrium occu-
pation numbers (55). Consequently, if jCj≲16ð0.2=αÞ3=2,
then the effect of the cubic emission term is small compared to
that of the nonrelativistic quartic processes.
For α≳ 0.04, the equilibrium values of ε211 and ε322 are

smaller than the “overshoot” values at which self-inter-
actions first affect the evolution of 211. Consequently, if the
relativistic cubic processes are unimportant in equilibrium,
then they are always less important than the quartic
211 × 211 → 322 × BH process, whenever the latter has
a significant effect on 211 evolution.
For smaller α, the 2 → 1 process will be relatively most

important around the initial time at which 211 growth is
slowed down, since the equilibrium occupation numbers
are approached from below. Still, even without calculating
the thresholds carefully, we can see that as long as
jCj≲ 16ð0.2=0.04Þ3=2 ≃ 180, cubic emission will be insig-
nificant in that regime (since decreasing α decreases the
relative importance of cubic emission). Overall, we can see
that, unless jCj ≫ 1, relativistic emission through the cubic
coupling should always be a subdominant effect on the
evolution of the 211 level (cubic emission for higher-l
levels is suppressed by higher powers of α, so should
generally be less significant again).

5. Large self-coupling: lack of BH spindown

Since εeq211 ∝ f2, and the rate of spin extraction from
the BH is ∝ ε211, the spin-down rate for small enough
f will be so slow that the m ¼ 1 threshold spin is not
reached within the BH lifetime. The f ¼ 1012 GeV curves
in the bottom panels of Fig. 4 show an example, if we
take the BH lifetime to be <1010 yr. This affects BH
spin-down signatures of superradiance, as we discuss
in Sec. VI.
The timescale for spin extraction in the large self-

coupling regime is set by τsd [Eq. (60)]. Setting this
equal to the age TBH of the BH gives the threshold value
of f

fCD ≈ 3 × 1014 GeV

�
1010 yr
TBH

�1
2

�
10−13 eV

μ

�1
2

×

�
0.01
α

�5
2

�
0.9

a�ðt0Þ
�3

4 ð62Þ

i.e., if f ≲ fCD, then the BH does not have time to fully spin
down. The parameter space in which this is the case is
plotted as region (D) in the bottom-right panel of Fig. 3, and
is illustrated by the smallest-f curve in Fig. 9. For f ≪ fCD,
which gives TBH ≪ τsd, the amount of angular momentum
extracted is

jΔa�j ≃
TBH

τsdða�ðt0ÞÞ
: ð63Þ

C. Beyond the two-level system

So far, we have focussed on BH-cloud systems which are
dominated by the 211 and 322 hydrogenic levels. In this
subsection, we consider the effect of other levels on the
dynamics, including higher principal number n and higher
angular momentum numbers l, m. We continue to assume
that the initial conditions are such that 211 satisfies the
superradiance condition and is the first level to grow; this is
the regime of fastest black hole spindown and the largest
gravitational and scalar emission rates, and is thus the most
relevant from an observational perspective.
We find that, for α ≲ 0.2, the two-level picture discussed

so far is probably sufficient, with only 211 and 322 growing
to large occupation numbers. For α ≳ 0.2, we expect that
self-interactions would cause other levels to grow; we leave
a full analysis of this regime to future work.
Our analysis in this section focusses on perturbative

processes, assuming that evolution is well-approximated by
a combination of approximately hydrogenic levels. In
Sec. V, we investigate whether nonperturbative processes,
such as “bosenova,” could change this picture; we find that,
for α ≲ 0.2, this seems rather unlikely.

1. Growth mechanisms in the presence
of self-interactions

As discussed in Sec. IVA, if 211 is initially the only state
with appreciable occupation number, then other states j can
be built up through processes of the form

Taking j ¼ 322 gives the fastest growth rate, since the
forced oscillation damped by the BH has m ¼ 0 (maxi-
mizing the damping rate), and the overlap factors are large.
If a 322 and 211 abundance are both present, then other

states can also be built up through

However, as well as these processes building up new states,
there are also processes reducing their abundance;
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To determine whether, starting from very small fluctua-
tions, another level j will start growing, we can look at the
linear-in-εj evolution terms (i.e., ignore processes such as
the last diagram), and see whether the growth rate is
positive or negative.

2. n11 levels

For a state j with m ¼ 1, the quartic processes with j in
the final state all have forced oscillations with m ≥ 1,
which are growing rather than decaying (in the parameter
space where 211 is superradiant). Consequently, they
contribute a negative term to j’s growth rate. Hence,
growth of j can only come about through superradiance.
In the large self-coupling regime, a quasiequilibrium

for 211 and 322 can be reached with very little effect
on the BH spin, so the superradiance rates for m ¼ 1 states
are still positive. The fastest such rates are for the n11
states. The linear-order evolution of the occupation number
is set by

_εn11
εn11

¼ γSRn11 − ðγ322×BH211×n11 þ γ211×∞n11×322Þε211ε322: ð64Þ

Substituting in the equilibrium values for ε211 and ε322, we
have

_εn11
γSRn11εn11

≃ 1 −
2

3

γSR211
γSRn11

γ322×BH211×n11 þ γ211×∞n11×322

γ322×BH211×211

ð65Þ

It is useful to analyse the large-n behavior of this expres-

sion. At leading order in small α, the ratio γSR
211

γSRn11

γ322×BH
211×n11
γ322×BH
211×211

is

independent of α and a�; it exceeds 1 for n ≳ 10, and
approaches 1.27 at large n (see Appendix C 2 a and
Fig. 22). As discussed in Sec. III C, the most important
finite-α effects on the quartic BH rates arise via the horizon
flux of the associated forced oscillation. Since they are
driven by near-horizon behavior, these do not have large
effects on ratios of rates (Fig. 21). Consequently, the ratio
of analytic superradiance rates should be accurate at the
few-percent level, except close to the superradiance
boundary.
The ratio γSR

211

γSRn11

γ211×∞n11×322
γ322×BH
211×211

scales as α−3 at small α. For n large, it
approaches

2γSRn11
3γSR211

γ211×∞n11×322

γ322×BH211×211

→

�
0.29

αr̃1=3þ

�
3

; n → ∞; α ≪ 1 ð66Þ

(see Appendix C 2 a and Fig. 23).
The combination of these negative contributions means

that no n11 level with n≳ 6 gets populated, at least for

αr̃þ ≲ 0.3.6 For n ¼ 3, the process 211 × 311 → 322 × BH
is resonant, as discussed in Sec. III C; this makes it more
difficult to populate 311. However, for α ≳ 0.2, we expect
that the 411 level will grow, given enough time. This is
illustrated in Fig. 5.
Since the 411 superradiance rate is Oð10Þ smaller than

that of 211, the evolution of the 211=322 two-level system
should proceed, at first, without modifications. Therefore,
in the moderate and large self-coupling regimes we are
considering, 211 and 322 will reach their two-level
quasiequilibrium occupation numbers, as described in
Sec. IV B. After two-level quasiequilibrium is reached,
we can initially treat 211 and 322 as constant sources while
411 grows (since the BH spin-down timescale is relatively
very long). As a result, 411 grows with an “effective”
superradiance rate which is smaller than its usual super-
radiance rate,

γSR−eff411 ≡ γSR411 − ðγ322×BH211×411 þ γ211×∞411×322Þεeq211εeq322 ð67Þ

where the quasiequilibrium concentrations are given by
Eqs. (55a) and (55b).
AfterOð100Þ e-folds, the occupation number of 411 will

become comparable to those of 211 and 322, and the three
levels reach a new quasiequilibrium. The most striking
feature of this is that the equilibrium 411 occupation
number is significantly higher than the equilibrium occu-
pation numbers in the two-level 211=322 equilibrium. The
411 evolution equation is

FIG. 5. Growth rates of n11 levels once 211=322 quasiequili-
brium has been reached, relative to their superradiance rates. At
α≲ 0.2 none of the levels have positive growth rates; levels with
n≳ 10 have negative growth rates for all α, within our hydro-
genic approximation.

6If α is large enough that we are in the “overshoot” regime,
where the maximum occupation numbers are reached before the
equilibrium phase, the negative contributions to the growth rate
during the overshoot are even larger than in equilibrium.
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_ε411
ε411

≃ γSR411 − ðγ322×BH211×411 þ γ211×∞411×322Þε211ε322 − γ322×BH411×411ε322ε411

¼ γSR−eff411 − γ322×BH411×411ε322ε411

Since the numerical coefficient of the γ322×BH411×411 rate is
significantly smaller than e.g., that of γ322×BH211×411 (see
Table V), then unless γSR−eff411 is significantly smaller than
the components of Eq. (67), we need εeq411 ≫ εeq211;322 to
compensate. This is illustrated in Fig. 6, which shows the
growth of 411, and development of a new three-level
equilibrium, for α ≃ 0.22. From numerical calculations,
411 grows to be up to ∼50 times larger than the benchmark
two-level quasiequilibrium value of 211 [Eq. (55a)].
Given this enhanced occupation number, it is natural

to ask whether higher-order or nonperturbative processes
could occur, even if they do not for the two-level
system. As discussed in Sec. V, the more spread-out wave
function of the 411 level makes this unlikely. The emission
of scalar radiation will also be enhanced, as discussed in
Sec. VIII.
This three-level quasiequilibrium is unlikely to be the

full story. As we discuss in the next section, within the two-
level equilibrium, we do not expect n22 levels to grow.
However, the large value of εeq411 can change this con-
clusion. For example, the dominant processes building up
and depleting the 422 level, in the presence of equilibrium
211, 322 and 411 occupations, are

The first diagram is almost on-shell for a 400 forced
oscillation, so the 411 × 411 → 422 × BH process is
“resonant,” like the 211 × 311 → 322 × BH process dis-
cussed in Sec. III C. Consequently, its rate is suppressed by
a lower power of α. Along with the large value of ε411
relative to ε211, this means that the growth rate of 422 is
positive for the three-level equilibrium occupation num-
bers. As a result, after Oð100Þ e-folds of this new growth
time, the three-level equilibrium would be disrupted by the
growth of the 422 level.
We leave a more detailed analysis of evolution in this

large-α regime to future work (as well as the evolution
being complicated, our hydrogenic approximations are less
reliable here). It is possible that further levels will grow
after 422 does, leading to a complicated, multi-state
superradiant cloud. In particular, is possible that the cloud
could reach large enough field amplitudes that higher-order
or nonperturbative processes become important, as we
discuss in Sec. V.

3. n22 levels

n22 states grow and are depleted similarly to the 322
level, via the processes

at linear order in εn22 (the superradiance rate of n22 states is
small enough not to be important, for parameters of
interest). The linear-order growth rate is

_εn22 ¼ γn22×BH211×211

�
1 −

γ211×∞n22×322

γn22×BH211×211
η

�
ε2211εn22; ð68Þ

where η≡ ε322=ε211.
At early times, ε322=ε211 ≪ 1, and n22 is sourced in the

same way as 322. However, since the 322 growth rate is at
least Oð1Þ larger, it has an exponentially larger occupation
number than the other n22 levels by the time quasiequili-
brium is established. For example,

γ422×BH211×211

γ322×BH211×211

≃ 0.36;
γn22×BH211×211

γ322×BH211×211

∝ n−3: ð69Þ

(see Appendix C 2 a and Fig. 24 for further details). For the
quasiequilibrium abundances of 211 and 322, the negative
term in Eq. (68) dominates, reaching a value of 1.96 for
n ¼ 4 (1.69 for n → ∞),

γ211×∞n22×322

γn22×BH211×211
η≳ 1

2

κ211×∞n22×322

κ211×∞322×322

κ322×BH211×211

κn22×BH211×211
≳ 1.69: ð70Þ

Including higher order corrections to the equilibrium ratio
of 322 to 211, as well as the superradiance of 322, increases
the ratio further. Thus the time derivative of n22 becomes

FIG. 6. Example of 411 level growth after a period of 211=322
quasiequilibrium. This plot assumes a 10 M⊙ BH, with α ≃ 0.22,
and an initial BH spin of 0.9. As discussed in Sec. IV C 2, the
three levels reach a new quasiequilibrium state, in which we
expect the 422 level to grow, becoming large at later times than
those shown here.
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negative at leading order in α, independently of α, n,
and a�.

4. n33 levels

n33 states grow and are depleted by

giving

_εn33 ¼ ðγn33×BH211×322 − γ211×∞322×n33Þε211ε322εn33
≃ ðκn33×BH211×322r̃þα

11 − κ211×∞322×n33α
8Þ
�
Mpl

f

�
4

ε211ε322εn33

ð71Þ

at linear order in εn33. Due to the different α scaling, the
grow rate is negative at small enough α. Quantitatively,

�
κ211×∞322×n33

κn33×BH211×322

�
1=3

¼
�
0.31 n ¼ 4

0.5 n → ∞
ð72Þ

so at high spin, where r̃þ ≃ 1, the growth rate is always
negative for α ≲ 0.3 (see Appendix C 2 a and Fig. 25).

5. n44 levels

For n44, we have

giving

_εn44 ¼
�
γn44×BH322×322

ε322
ε211

− γ211×∞n44×322

�
ε211ε322εn44

≃ ðκn44×BH322×322r̃þα
3η − κ211×∞n44×322Þα8

�
Mpl

f

�
4

ε211ε322εn44

ð73Þ

at linear order in εn44.
With quasiequilibrium occupations for 211 and 322,

the growth of n44 states occurs when α is large
enough that

κn44×BH322×322

κ211×∞n44×322
r̃þα3η ≈

1

2

κn44×BH322×322

κ211×∞n44×322

κ322×BH211×211

κ211×∞322×322
α6r̃2þ ≳ 1; ð74Þ

or equivalently

αr̃1=3þ ≳ 0.3 ð75Þ

where the right-hand side is as large as 0.34 for n ¼ 5 (0.3
for n → ∞) (see Appendix C 2 a and Fig. 26).

6. Other levels

The n22; n33 and n44 levels considered above are the
only ones which can be built up via quartic processes where
the forced oscillation has l ¼ m ¼ 0.7 To build up other
processes via self-interactions, starting from 211 and 322,
we need to use forced oscillations with l > 0, which have a
parametrically smaller flux through the BH horizon. They
therefore stand even less chance of having positive growth
rates. For l ≥ 2, we can often rule out these processes being
relevant on astrophysical timescales, simply by estimating
the magnitude of the growth rate. For example, for l ¼ 2,
we have

γ766×BHð2;−2Þ322×322 ðεeq322Þ2 ∼ 10−2
�

α

0.3

�
19
�
M⊙

M

�
Myr−1; ð76Þ

where the superscript BHðl; mÞ indicates the angular
momentum numbers of the damped leg.
Taking an l ¼ 1 example,

_ε655 ¼ γ655×BHð1;−1Þ322×322

�
1 −

γ211×∞655×322

γ655×BHð1;−1Þ322×322

ε211
ε322

�
ε2322ε655: ð77Þ

The depletion term dominates at equilibrium as long as

αr̃1=9þ ≲
�

κ211×∞655×322

κ655×BHð1;−1Þ322×322

1

ηB

�
1=9

≈ 0.7: ð78Þ

Similar checks can be performed for other processes
involving mixing with an l ¼ 1 damped state (see
Appendix C 2 a). One finds that, for all of them, the
depletion process to infinity dominates over the pumping
process for the entire range of α for whichm ¼ 1 states can
be superradiant (α≲ 0.5).

V. NONPERTURBATIVE BEHAVIOR

So far, our analysis has assumed that the scalar field is
always well-approximated by a combination of approx-
imately hydrogenic bound states, and that quartic inter-
actions result in the slow transfer of energy to and from
these bound states. However, if the field amplitude
becomes large enough, we expect this picture to break
down. Most directly, for a generic potential, higher-order

7This is not strictly true—the Kerr potential breaks spherical
symmetry, so l is no longer a good quantum number, and e.g.,
n42 can also be build up via am ¼ 0 forced oscillation. However,
in the small-α limit, the overlaps for such processes are sup-
pressed by more powers of α.
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field interactions can become important. In addition, for
large enough amplitudes, attractive interactions would
make hydrogenic bound states unstable to collapse, in a
“bosenova” [6,27,28].
As we explored in Sec. IV, for large self-couplings, the

quartic interactions lead to the saturation of the cloud to a
quasiequilibrium configuration (for much of the parameter
space of interest), with field amplitude ∝ f. For a potential
of the form VðφÞ ∝ gðφ=fÞ, this means that the relative
importance of higher-dimensional interactions becomes
independent of f (for small enough f). As we will show
below, for small α, the maximum value of θ≡ φ=f is small,
and the quartic-driven behavior we have investigated
should be a good approximation. Similarly, for small α,
the cloud is always far from the nonperturbative “bose-
nova” regime. For α≳ 0.2, we expect levels beyond 211
and 322 to grow in the small-f regime, as discussed in the
previous section, so their behavior would need to be
analyzed to draw conclusions about nonperturbative
behavior.

A. Maximum field amplitude

When a single hydrogenic level dominates the energy
stored in the cloud, the dimensionless field amplitude θ ¼
φ=f is related to the occupation number of that level by
jθj ∝ α5=2

ffiffiffi
ε

p
Mpl=f. In the small and moderate self-

coupling regimes, where 211 reaches its saturation occupa-
tion number, jθj increases ∝ 1=f as f decreases. However,
once we are in the large-self-coupling regime, the occu-
pation numbers reached are ∝ f2, so θ becomes indepen-
dent of f.
If 211 is the dominant level, then the maximum value of

θ is attained at r ¼ 2a0 and θ ¼ π=2, with

jθmaxj ≈ α5=2
ffiffiffiffiffiffiffiffi
ε211

p �
Mpl

f

� ffiffiffiffiffiffi
1

8π

r
e−1: ð79Þ

As we decrease f, this increases until f ≃ fBC [Eq. (59)].
For α≳ 0.04, fBC ¼ fthresh and

jθmaxðfBCÞj ≈ α7=4
�
logðGM2ÞκSRa�ðt0Þ

κBH

�
1=4 e−1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
2

p
π

p
≈ 0.03

�
α

0.05

�
7=4

: ð80Þ

The scalings in (80) are only representative when
α ≪ a�ðt0Þ (see Appendix E). For α≲ 0.04, fBC ¼ feq
and the maximum value of θ is equal to its value at
equilibrium:

jθeqmaxj ≈ α

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κSRa�ðt0Þκ∞

p
κBH

�1=2
ffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffiffiffi
24

p
π

s
e−1

≈ 0.005

�
α

0.01

��
a�ðt0Þ
0.99

�
1=4

: ð81Þ

(again, these scalings are valid when α ≪ a�ðt0Þ).8
These equations suggest that, for small α, the value of jθj

never becomes large, so we would generically expect
higher-dimensional interactions to remain unimportant.
To see this more quantitatively, Fig. 7 shows the maximum
value of jθj attained during the evolution of the two-level
211=322 system, for different values of α and f. This has
the expected behavior, increasing with decreasing f for
f ≳ fBC, and reaching a constant value for smaller f (at a
given α).
As discussed in Sec. IV, we expect that, for small f and

α≳ 0.2, levels other than 211 and 322 will grow. At these
parameters, the jθmaxj values in Fig. 7 represent a lower

0.01
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0.1

0.2

0.3

0.4
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FIG. 7. Maximum value of jθj≡ jφ=fj attained during the
evolution of the two-level 211=322 system, for a BH with initial
spin a� ¼ 0.99 and initial mass 10 M⊙ (the BH mass only affects
this plot via the number of e-folds ∼ logðGM2Þ a level can grow).
The dashed orange line indicates the boundary between the
moderate and large self-coupling regimes (corresponding to fBC
as defined in Sec. IV). jθmaxj is computed by numerically solving
the evolution equations for the 211 and 322 occupation numbers.

8Although Eq. (81) is valid at equilibrium, we noted in
Sec. IV B 4 that ε211 can “overshoot” its equilibrium value as
it evolves toward equilibrium. We have determined numerically
that the overshoot estimate of Eq. (E5), or the approximation of
Eq. (58), accurately predicts εmax

211 for α≳ 0.05 with an error less
than 1%, deep in the self-interaction regime. Quantitatively, we
found numerically that there is a thin band around the dashed
boundary line of Fig. 7 [see Eq. (E7)], with a width of less than an
order of magnitude in f, where both the quasiequilibrium and the
overshoot estimates underpredict εmax

211 by ≳5%. A significant
discrepancy arises only in the region where jθmaxj reaches its
largest value and is ∼20%. These translate to a ∼2.5% and ∼10%
discrepancy in the analytically predicted jθmaxj, according to the
scaling of Eq. (79).
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bound (since the initial 211 overshoot value is still set by
211=322 dynamics). For the 411 level, which we expect to
be the first to grow after the 211=322 quasiequilibrium
(Sec. IV C 2), the maximum occupation reached is only
around twice the maximum occupation number of 211.
Consequently, the more spread-out wave function of 411
means that it does not attain a larger jθj value. However, a
more careful analysis would be required to determine jθmaxj
once other levels grow.

B. Bosenova

As well as higher-dimensional interactions becoming
important, another possible issue arising at large occupa-
tion numbers is that the cloud may undergo a sudden
collapse due to attractive self-interactions, known as a
“bosenova” [6]. Here, we estimate the occupation number
threshold for a bosenova to occur, using a variational
approach.
The wave function for the hydrogenic 211 level is

ψ211 ¼
ffiffiffiffiffiffiffiffiffi
N211

p

2
ffiffiffi
6

p a−5=20 re−r=ð2a0ÞY11ðθ;ϕÞ ð82Þ

where a0 ≡ 1=ðαμÞ is the Bohr radius. As our variational
ansatz, we will take a wave function of this form, but with a
modified radius,

ψ ¼
ffiffiffiffi
N

p

2
ffiffiffi
6

p R−5=2re−r=ð2RÞY11ðθ;ϕÞ ð83Þ

For convenience, we will define a dimension-2 wave
function ψ̃ ¼ ffiffiffi

μ
p

ψ . Then, the nonrelativistic action for
ψ̃ interacting with a gravitational field, sourced both by the
central BH and by itself, is given by

S ≃
Z

d3rdt
i
2μ

ðψ̃�∂tψ̃ − ψ̃∂tψ̃
�Þ − 1

2μ2
j∇ψ̃ j2 −Φjψ̃ j2

þ λ

16μ4
jψ̃ j4 − 1

8πG
j∇Φj2 − ρBHΦ ð84Þ

The gravitational potential Φ obeys the Poisson equation,

∇2Φ ¼ 4πGðρBH þ jψ̃ j2Þ ð85Þ

where we take ρBH ¼ Mδ3ðrÞ andM is the mass of the BH.
Using this potential, and integrating the action of Eq. (84)
over space, we obtain an effective potential for R. Ignoring
self-gravity of ψ , this is

VðR̃Þ ¼ α4Mpl
2ε

μ

�
1

8R̃2
−

1

4R̃
−

3α3εMpl
2

16384πR̃3f2

�
; ð86Þ

where R̃≡ R=a0. The first two terms correspond to
kinetic and gravitational energy, and set the radius of

small-amplitude hydrogenic levels—the last terms arises
from attractive self-interactions. The extrema of the poten-
tial VðR̃Þ are at

R̃�
extrema ¼

1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
−
9α3εMpl

2

4096πf2

s
: ð87Þ

If we decrease f, at some point these extrema will coincide,
and the potential will no longer have a stable minimum.
This leads to a bosenova, with the cloud collapsing. The
critical occupation number for this to occur is

εcrit ¼
1024πf2

9α3Mpl
2

ð88Þ

Incorporating the effects of self-gravity, this becomes

εcrit ¼
32

711α2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
75840π

�
f
MPl

�
2

þ 225α2

s
−

160

237α
ð89Þ

which reduces to Eq. (88) for small f, i.e., for small clouds.
Given this, we can ask whether the 211 occupation

number reaches εcrit during its perturbative evolution. If it
does not, then our assumption of perturbative evolution can
be self-consistent. Figure 8 shows the maximum value of
ε211=εcrit211 attained during the evolution of the two-level
211=322 system. For α small enough that other levels do
not grow (α≲ 0.2), we can see that this ratio is always
≲0.3, so we do not expect a bosenova to occur. This is in
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FIG. 8. Maximum value of ε211=εcrit211 attained during the
evolution of the two-level 211=322 system, for a BH with initial
spin a� ¼ 0.99. εcrit211 is the critical occupation number above
which a rapid collapse of the cloud (a bosenova) is expected to
occur (Sec. V B). The dashed orange line indicates the boundary
between the moderate and large self-coupling regimes (corre-
sponding to fBC as defined in Sec. IV). ε211 is computed by
numerically solving the evolution equations for the 211 and 322
occupation numbers. The plot is roughly independent of the BH
mass, within the range of astrophysical BHs.
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contrast to the conclusions of much of the existing
literature. As emphasized previously, other papers neglect
the perturbative processes that lead to energy exchange
between hydrogenic levels, causing the cloud to saturate to
a quasiequilibrium configuration before its amplitude
becomes large enough for a bosenova.
For α≳ 0.2, we expect that levels other than 211 and 322

will grow. This means that the ε=εcrit values in Fig. 8
represent a lower bound. As we discussed in the previous
subsection, the more spread-out wave function of the 411
level means that it is unlikely to get closer to the critical
occupation number than the 211 level; we leave an analysis
of the situation once other levels have grown to future work.

1. Subleading effects

As discussed in Appendix F, superradiance extracts mass
from the BH in addition to angular momentum. As such,
the cloud can actually grow to be somewhat larger than we
have assumed so far. The modified equations for purely
gravitational superradiance can be found in Appendix F.
In deriving Fig. 7 and 8 we have included the correction
coming from the change of the BH mass or, equivalently,
from the time-dependence of α. As expected, we find
that this correction can become quite large near the
superradiance boundary, as the final spin is slightly
modified (see Eq. (F10). However, for strong self-inter-
actions, where the bosenova might be relevant, there is
practically no significant correction, as the cloud does not
grow appreciably and thus does not extract a significant
amount of spin or mass from the BH.
One might also ask how the inclusion of another level,

say 322, changes the above picture. Assuming that its
fractional occupation number is small compared to our
primary level (e.g., 211), we can treat such a level as a small
perturbation and check whether our results are consistent.
In what follows we will neglect self-gravity for clarity or,
equivalently, we will work in the small f (large self-
interactions) limit, where Eq. (89) coincides with Eq. (88).
We add a contribution from 322 to our variational ansatz

ψ̃ ⊃
M1=2

c2

4a3=20

4

81
ffiffiffiffiffi
30

p
�
r
a0

�
2

exp

�
−

r
3a0

�
Y2
2ðθ;ϕÞ ð90Þ

where Mc2 is the mass of the 322 cloud. Note that we treat
322 as rigid, i.e., we do not allow its radius to change.
Following the same procedure as before, we get an effective
potential for 211 with an additional attractive term, stem-
ming from its interaction with 322

VðR̃Þ

¼ α4Mpl
2ε

μ

�
1

8R̃2
−

1

4R̃
−

3α3εMpl
2

16384πR̃3f2
−
27R̃4α3ε2Mpl

2

2πð3þ 2R̃Þ9f2
�

ð91Þ

where ε2 is the fractional occupation number of 322.
Expanding around the critical values as R̃ ¼ 1

2
þ ffiffiffiffiffi

ε2
p

δR̃
and ε¼εcritþε2δε, we find the correction δε ¼ 21=16384,
giving

ε2δε

ε
¼ 21

16384

ε2
ε
≪ 1: ð92Þ

The result is indeed small and, thus, it does not change our
conclusions about the bosenova. In particular, the correc-
tion to εcrit is positive. Since the interaction is attractive, as
seen from the potential in Eq. (91), the 322 cloud attracts
the 211 one and, since it resides at a larger radius, it
effectively dilutes it.
In Fig. 8, we compared the ε211 value attained during the

perturbative level evolution to εcrit. However, the rates of
the different processes involved in the evolution were
calculated for the unperturbed hydrogenic wave functions.
Consequently, we should ask whether self-interaction-
induced perturbations to the wave functions make a
significant difference to the rates, and so the occupation
numbers attained. From Eq. (87), we can see that if
ε211=εcrit is always small, then the corrections to the wave
functions will always be small, and our calculations should
be self-consistent. Since ε211=εcrit only becomes large for
larger α, where (as discussed previously) our perturbative
evolution calculations are already incomplete, we leave a
full analysis to future work.
In plotting jθmaxj, we have used the field defined using

Eq. (83), that is, by taking into account the corrected radius
of Eq. (87). This amounts to multiplying Eq. (79) by a
factor of ðR̃þ

extÞ−3=2 [Eq. (87)], giving

jθj ≈ α5=2
ffiffiffiffiffiffiffiffi
ε211

p �
1

R̃þ
ext

�
3=2

�
Mpl

f

� ffiffiffiffiffiffi
1

8π

r
e−1: ð93Þ

We have determined numerically that the radius change is
at most 15% and introduces at most a 25% change in the
region where jθj grows to be the largest possible, driving to
a value of ∼0.5, whereas the change is much smaller
everywhere else.
Another possible issue with our variational analysis is

that the evolution is not adiabatic during the last few e-folds
before 211 reaches its maximum occupation number. As a
result, the cloud might not trace the minimum of the
potential of Eq. (86) but rather oscillate around it, in the
manner of an “excited state.” In this case, the cloud could
overcome the barrier at R̃− [Eq. (87)] and collapse. We note
that oscillations of the radius of the peak seem consistent
with the results of Ref. [47]. The minimum of the potential
would need to be fairly close to critical for this to be an
issue, but we leave detailed investigation of this point to
future work.

BARYAKHTAR, GALANIS, LASENBY, and SIMON PHYS. REV. D 103, 095019 (2021)

095019-26



2. Comparison to simulations

While we expect our hydrogenic ansatz to be a good
approximation, properly understanding the dynamics of a
bosenova requires numerical simulations. In [27,28], the
authors numerically simulate the evolution of a self-
interacting scalar field around a high-spin Kerr BH, starting
from a hydrogenic bound state profile with θ ∼Oð1Þ. These
simulations effectively operate in the large self-coupling
regime, taking the cloud’s mass to be very small compared
to the BH. In simulations with a� ¼ 0.99 and α ¼ 0.3 [28],
they find that a 211 bound state with initial amplitude such
that jθmaxj ¼ 0.4 does not undergo a bosenova, but one with
jθmaxj ¼ 0.45 does.
Comparing these to our variational calculations, we

can convert the critical occupation number (88) to a field
amplitude, giving the leading-α expression jθcritmaxj ¼
8
ffiffi
2

p
3e α ≃ 0.42 α

0.3. This is highly compatible with the thresh-
old behavior observed in the simulations.
The simulations in [27,28] were evolved forward for

t ≃ 2000rg. This is much shorter than the timescales for any
of the perturbative processes studied in Sec. IV, including
211 superradiance, and the growth of 322 through self-
interactions. A simulation would have to be run for much
longer times to observe these effects. In particular, the fact
that a bosenova was observed for the initial state jθmaxj ¼
0.45 is not evidence that a bosenova would occur around an
astrophysical black hole. In the latter case, the true initial
conditions are at an exponentially smaller amplitude, and
according to our estimates, the maximum 211 amplitude
reached during the evolution is jθmaxj ≃ 0.3 (Fig. 7), at
which point interactions with 322 cut off its growth.

3. Repulsive self-interactions

In [31], it is claimed that if self-interactions are repulsive,
they can completely suppress the growth of 322, by
spreading out the 211 cloud and reducing the rate of the
211 × 211 → 322 × BH process. We can estimate the
effect of repulsive self-interactions by looking at how they
shift the 211 wave function radius in our variational ansatz.
This gives

R̃rep ¼
1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε211

εcrit211

r �
ð94Þ

with εcrit211 from Eq. (88). Since the perturbative evolution
processes from Sec. IV all depend on λ2, they are the same
for attractive and repulsive self-interactions. Consequently,
the maximum value of ε211 attained through perturbative
evolution should be the same. As a result, we expect that,
unless ε211=εcrit211 becomes large (which we cannot rule out
for α≳ 0.2 and small f), the effects of repulsion should
be small.

VI. BLACK HOLE SPIN-DOWN

One of the observational signatures of superradiance is
the spin-down of initially fast-spinning BHs [5,6]. In the
absence of nongravitational interactions, if a BH is bornwith
spin high enough that amode is superradiant, and themode’s
growth time ismuch shorter than the lifetime of the BH, then
a superradiant cloud will form around the BH. This spins
down the BH to the point where the mode is stable, rather
than growing. Consequently, observing a sufficiently old,
sufficiently fast-spinning BH is good evidence against the
existence of a light boson with such properties. Constraints
of this kind have been placed on spin-0 [12,48] and spin-1
[20] particles from measurements of BH spins in x-ray
binaries [35,49] (higher-spin particles have also been
considered [50,51], though such models encounter theo-
retical issues, as we discuss in the conclusions).
In contrast, if self-interactions are large, then as dis-

cussed in Sec. IV, the occupation numbers in the quasie-
quilibrium state are suppressed. Consequently, the rate of
energy and angular momentum extraction from the BH is
suppressed, and the spin-down constraints described in the
previous paragraph will not apply directly.
Instead, for small enough f, the time-averaged spin

extraction rate will be approximately set by the equilibrium
occupation number of the 211 level (at least in the case of
211 superradiance), as discussed in Sec. IV B 4. Since

εeq211 ∝ α−3 f2

M2
pl
[Eq. (55a)], the time taken to fully spin down

the BH (to the point where 211 superradiance is saturated)
scales ∝ f−2. Consequently, as reviewed in Sec. IV B 5,
there is some minimum f below which the BH is not
significantly spun down in the time available.
This behavior is illustrated, for particular initial BH

parameters, in Fig. 9. The figure shows how, for f ≲ fBC
(Table II; fBC ≃ 3 × 1016 GeV for the left-hand panel, and
≃2 × 1017 GeV for the right-hand panel), spin-down to the
m ¼ 1 superradiance threshold takes longer as f is
decreased, until it no longer occurs within the lifetime
of the BH for f ≲ fCD. The region of ðμ; fÞ parameter
space in which the BH is spun down to the m ¼ 1
superradiance threshold is shown in the bottom-left panel
of Fig. 3.
We have only performed a detailed analysis (at all f) of

situations in which 211 is the first superradiant level to
grow, and levels beyond 211 and 322 do not grow. From
Sec. IV, this corresponds to α≲ 0.2. Nevertheless, we can
be confident that, when interactions are weak enough that
superradiant growth of the 322 level is unaffected, the black
hole is spun down as in the purely gravitational case. This is
indicated in the bottom right of the lower panels in Fig. 3.
Applying this physics to observations of astrophysical

BHs, Fig. 10 shows the regions in the ðμ; fÞ plane for which
sufficient spin-down occurs, so that spin measurements
from BHs in x-ray binaries constrain an axion with that
mass and coupling. For each black hole, the solid line of the
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corresponding color indicates the region in which spin-
down would occur with high confidence, given the uncer-
tainties on the measured BH parameters. The larger shaded
regions are those in which spin-down may occur, given BH
parameter values within the confidence intervals; these
represent the regions of parameter space which may be
constrained by future, better observations of these BHs.
Given the uncertainties in our analyses when α≳ 0.2 and f
is small, the constraints in those parts of parameter space
should be treated as estimates requiring further study.
Figure 10 can be compared to Fig. 11 of [12]. The latter

assumed that the dominant effect of quartic self-interactions
was to cause periodic bosenova events when the cloud
became too large; parametrically, when

N ≳ 16π
l4

α

f2

μ2
ð95Þ

for an l; m ¼ l superradiant level, as discussed in [6]. From
the previous section, we know that, at small α and small f,
the critical occupation number for a bosenova to occur has
the same parametric scaling as the equilibrium 211 occu-
pation number, but is numerically larger, εeq211=ε

crit
211 ∼ 0.1

(Eq. (89) and Fig. 8). Consequently, we expect the time-
averaged 211 occupation number in our picture to be
parametrically the same as that assumed in [12].
Numerically, since [12] assumes that a bosenova com-
pletely destroys the cloud, which then takesOð100Þ e-folds
to be rebuilt, our time-averaged 211 occupation number is
actually slightly larger, for the same parameters, resulting
in slightly stronger spin-down constraints.
The age (or accretion timescale) of the BH limits how

small a particle mass μ can be constrained by spin-down
measurements—if μ is too small, then superradiance is not
fast enough to spin down the BH. A separate effect is that,
for small μ, the cloud is more dilute, and can be disrupted

FIG. 9. Black hole spin-down as a function of time for μ ¼ 8 × 10−13 eV (left panel) and μ ¼ 2.5 × 10−12 eV (right panel) for a range
of self-interactions strengths, and a 10 M⊙ black hole. These axion masses correspond to α ≃ 0.06 and α ≃ 0.19 respectively. The
dashed horizontal lines show the superradiance boundary for levels 211 (upper) and 322 (lower). The dashed vertical lines show the
expected spindown time in the limit of no self-interactions for levels 211 (smaller t) and 322 (larger t).

FIG. 10. Constraints on axion parameter space from black hole
spin measurements in x-ray binaries. For each black hole, the
region enclosed by the solid line of the corresponding color (see
key at top left) is the intersection of the m ¼ 1 spin-down regions
for different BH parameters (mass, spin, lifetime, binary period,
and mass of the binary companion) within the observational error
intervals. This corresponds to the parameter space region in
which we can be confident that spin-down occurs, so is con-
strained by observations of that BH. The light shaded regions of
each color are the unions of the spin-down regions for different
BH parameters and could be constrained by improved measure-
ment and analysis of these BHs. Higher axion masses could
potentially be constrained using higher-m levels; we include only
the analog of the small and moderate self-coupling regimes A and
B (for which self-interactions do not affect the extraction of
angular momentum to the level with the largest SR rate) for
m ¼ 2, where the analysis in this work applies. The “ALP DM”
band corresponds to the range of quartic couplings that allow the
observed DM abundance to be produced by the misalignment
mechanism. The darker middle band corresponds to Oð1Þ values
of the initial misalignment angle [θ ∈ ð1; π − 1Þ], while the
lighter bands above and below correspond to “tuned” initial
values [θ ∈ ð10−1; π − 10−6Þ].
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by tidal forces from the companion star [45]. These
gravitational perturbations mix superradiant levels with
decaying ones (e.g., 211 with 21 − 1), which can inhibit
their growth. We do not attempt a careful analysis of the
effects on the evolution of the cloud, but adopt the
conservative approach of not placing constraints when
the companion is closer than the maximum radius for
the resonant depletion processes identified in [45] (see
Appendix I). This sets the small-μ boundary of the con-
strained region in Fig. 10. We are able to constrain axion
masses a factor ∼2 lighter than the limits from [12], which
included an unphysical dipole gravitational potential effect
from the companion.
In most of this paper, we have taken our nominal BH

mass to beOð10 M⊙Þ. However, our analyses can be easily
rescaled to different BH masses; the most important
dimensionless parameter that changes is the ratio of the
BH lifetime to the light-crossing time. Figure 11 shows the
spin-down parameter space for a supermassive BH
(SMBH), with M ¼ 107 M⊙. This parameter space sits
at smaller μ (due to the larger BH size) and larger f (due to
the smaller TBHμ parameter) than for a stellar-mass BH.
There do exist spin measurements for some SMBHs [52–
54], and these could be used to place constraints on very-
low-mass bosons (see e.g., [30,55,56]). However, the
galactic center environments in which SMBHs live are
rather complicated, and understanding environmental
effects on the evolution of a superradiant cloud (e.g.,
due to the occasional infall of compact objects) would
be necessary to place robust constraints. We leave such an
analysis to future work, but include Fig. 11 as a guide to the
kind of region that might be constrained by these
measurements.
As well as spin measurements for BHs in x-ray binaries,

there are also spin measurements for Oð10 M⊙Þ BHs from
gravitational wave observations of binary BH mergers at
LIGO and Virgo [57–62]. The statistical uncertainty of

these measurements is generally much greater than the
estimated errors of x-ray binary spin measurements—for
most of the binary BH mergers observed so far, the spins of
the primary BHs could lie in an Oð1Þ range, and are
consistent with zero. However, there were two events in
recent observing runs for which one of the primary BHs
was measured to have high spin (significantly different
from zero); GW190412 and GW190517 [37]. The inferred
masses of these BHs were ∼30 M⊙, which is significantly
heavier than the BHs observed in x-ray binary systems.
Consequently, if one assumes that the history of the system
would have allowed a superradiant cloud to grow around
the BH, one can constrain smaller boson masses, in the
range μ ∼ 1.3 × 10−13 eV—2.7 × 10−13 eV [37].
Given that we have no reliable information about the

premerger history of these BHs, we do not include them in
Fig. 10. However, with better understanding of such
systems, gravitational wave observations of binary BH
mergers could become a valuable tool for constraining (or
providing evidence for) light bosons. In addition, while
mergers other than the two mentioned above do not provide
strong evidence regarding superradiance [36,37],9 future
data from many such mergers may provide statistical
evidence for or against superradiant BH spin-down [15,64].

A. Axion models

Understanding the parameter space in which spin-down
constraints apply is important in determining the conse-
quences for motivated particle physics models. For the
QCD axion, Fig. 10 confirms that, at least for 211 and 322
superradiance, self-interactions are small enough not to
affect spin-down constraints.
Another motivated target model is an axion with a fixed

(rather than temperature-dependent) potential. An initial
“misalignment” axion field value in the early universe will
lead to a dark matter density at late times, depending on the
axion mass, the shape of the potential, and the initial field
value. Consequently, while the mass and self-couplings of a
generic axion can vary independently, imposing that the
misalignment mechanism must generate the observed DM

FIG. 11. Parameter space for which the 211 level of a super-
massiveBH (MBH ¼ 107 M⊙), with initial spina� ¼ 0.9, spins the
BH down to saturation within an Eddington accretion timescale,
tEdd ≃ 4 × 108 yr. The “ALP DM” band is defined as in Fig. 10.

9This is in contrast to some works which claim that earlier GW
spin measurements can put constraints on BH superradiance (e.g.,
[56]). These claims appears to be based on a misinterpretation of
the spin measurements presented by the LIGO collaboration. For
example, the pre-merger spin of the primary BH in GW150914 is
given as 0.32þ0.47

−0.29 , where the errors correspond to a 90% credible
interval [63]. [56] appears to use the interpretation of spins below
0.32 − 0.29 ¼ 0.03 as being excluded at the 90% level, to place
constraints on superradiant processes that would have reduced the
spin to below this value. However, suppose (for example) that we
had a uniform prior on a� ∈ ½0; 1�, and that the measurement gave
us no information about a�. Then, [0.05, 0.95] would be a 90%
interval, and spins <0.05 would be excluded at the 90% level,
despite obtaining no new information; to set constraints a more
complete analysis is needed.
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density gives the “ALP DM” band in Fig. 10 (for a cosine
potential V ∝ cosðφ=fÞ).
The darker central part of this band corresponds to

masses and self-couplings for which a “generic,” Oð1Þ
misalignment angle, θinit ¼ ainitial=f ∈ ð1; π − 1Þ, gives the
correct dark matter density. For the same μ and θinit, but
larger f, we would obtain too large a dark matter density.
However, this can be fixed by “tuning” the initial field
value to be close to the bottom of the potential. Since
ρDM ∝ μ1=2θ2initf

2 for small θinit, the tuning required is
simply θinit ∝ 1=f. The lower edge of the band in Fig. 10
corresponds to θinit ¼ 0.1.
At smaller f, we have the opposite problem of not

producing enough DM. For a cosine-type potential, this can
be solved by tuning the initial field value to be close to the
top of the potential, so that its transition to matterlike
oscillations around the bottom of the potential is delayed.
This “large-misalignment mechanism” [65] can lead to
significant enhancements of dark matter density perturba-
tions, resulting in a range of phenomenological signatures.
In Fig. 10, the top edge of the band corresponds to θinit ¼
π − 10−6 (see Appendix K for formulas), illustrating that,
apart from the lower end of the μ range, BH spin-down
constraints still apply to such models.
As well as affecting dark matter in the early universe,

self-interactions could have effects at late times, leading to
DM-DM scattering in halos. The associated relaxation rate
is, parametrically [66,67],

Γ ∼
ρ2DM

f4μ3v2

∼ 3 × 10−26yr−1
�

ρDM
GeV cm−3

�
2
�
1011 GeV

f

�
4

×

�
10−12 eV

μ

�
3
�
10−3

v

�
2

ð96Þ

where v is the halo’s virial velocity (this should be

compared to the relaxation rate Γ ∼ ρ2DM
M4

plμ
3v6

for gravitational

interactions [68–70]). Consequently, unless DM forms very
dense structures, quartic self-interactions will not be
significant in halos, for the parameter space we have been
considering.

VII. GRAVITATIONAL WAVES

Gravitational waves emitted by the superradiant cloud are
a unique signal of ultralight bosons, turning gravitational
wave observatories into indirect particle detectors [5,6].
The superradiant cloud can grow to up to several percent
of the black hole’s mass, and sources gravitational
waves through its oscillating stress-energy tensor. These
are almost-monochromatic, coherent, and long-lasting.
Such emission occurs in two parametrically different fre-
quency ranges; higher-frequency “annihilation” signals,

with ω ≃ 2μ, and lower-frequency “transitions,” with ω ¼
ωj − ωj0 set by the frequency difference between different
bound levels.
Conceptually, annihilation signals are sourced by the

annihilation of two axions into a graviton. Consequently,
they are emitted by any level populated by a single real
scalar field. The timescale over which such emission lasts is
parametrically longer than the superradiant growth time
(Sec. IV B 2), making them promising for detection at
gravitational wave observatories. Up to thousands of
potential annihilation signals could be detectable, from
black holes in the Milky Way, at Advanced LIGO and
Virgo [12,15,38–40]. Such signals, and their detectability,
have been studied in the context of continuous wave
searches [12,15], stochastic searches [38,39,71], directed
searches for clouds around products of binary mergers
[15,72], and directed searches for clouds around BHs in
x-ray binaries [73,74]. Searches with LIGO/Virgo data are
ongoing; so far, no signals have been observed [40,75,76],
though using this nonobservation to constrain superra-
diance relies on poorly measured black hole population
properties, and may suffer from down-weighting of the
signal [40]. Searches at space-based, lower-frequency
gravitational wave detectors such as LISAwill be sensitive
to lighter axions [12,38,39], while heavier axions may be
observable with future higher-frequency detectors [77,78].
Transition signals correspond to axions dropping into a

more deeply bound level, emitting gravitational radiation at
the frequency set by the level splitting. Attaining a
significant emission rate requires both levels to have large
occupation numbers simultaneously. For the case of purely
gravitational superradiance, these circumstances only arise
for higher-l levels and for short times, leading to limited
observational prospects at current gravitational wave
observatories [12].
More specifically, for a givenm < 3, the fastest-growing

superradiant level is also the most tightly bound one,
so other modes with the samem have exponentially smaller
occupation numbers. For m ≥ 3, this is not always the
case—for example, at large a� and near-threshold α, the
growth rate of 433 becomes smaller than that of 533 and
higher levels. This can lead to multiplem ¼ 3 levels having
large occupation numbers simultaneously. Similar crossings
happen form ¼ 4 and higher levels, as illustrated in Fig. 12.
These circumstances allow gravitational wave transition

signals of nonnegligible amplitude to occur around astro-
physical BHs. Even so, compared to annihilation signals,
they offer less promising observational prospects. The total
energy released, if the occupation number of the higher
level transitions entirely to the lower one, is E ¼ ΔωN ≲
α2μN, whereas annihilations can emit the entire energy
stored in a cloud, E ∼ μN. In addition, signal durations
for transitions are typically of order a superradiance
time, compared to the parametrically longer annihilation
signals [12]. Nevertheless, transition signals could probe
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interesting parts of parameter space, providing sensitivity to
heavier axions than annihilation signals do (for a given
BH mass).
Compared to the purely gravitational behavior summa-

rized in the preceding paragraphs, the presence of self-
interactions can have a significant effect on the gravitational
wave signatures of superradiance. For annihilations, self-
interactions suppress the potential signals due to two main
effects: the gravitational wave power emitted is reduced due
to the smaller cloud size, and the new energy loss mech-
anisms via scalar radiation reduce the total energy emitted in
GWs. On the other hand, self-interactions provide a mecha-
nism to populate multiple levels simultaneously, potentially
increasing the parameter space for transition signals (though
the cloud size and scalar radiation caveats still apply). In the
rest of this section, we discuss annihilation and transition
signals and their observational prospects in more detail. We
focus on continuous wave searches for such signals, which
are well-suited to louder signals fromwithin our galaxy, and
can provide awealth of information about the detected signal
properties. Stochastic searches to look for excess power in a
narrow frequency range could potentially be performed
more (computationally) cheaply and would also be interest-
ing to study in future work.

A. Annihilations

In this subsection, we focus on the prospects for
observing annihilation signals from the 211 level, for a
range of self-couplings, at current gravitational wave
observatories. We also comment briefly on other types
of annihilation signals, including annihilation signals from
complex scalar fields.
Figure 13 illustrates the effects of self-interactions on

gravitational signatures of 211 superradiance, showing the
peak signal amplitude, signal duration and sensitivity reach

for different axion masses and self-couplings. To estimate
the projected reach, we take the design strain sensitivity of
Advanced LIGO [80], and assume all-sky semi-coherent
continuous wave (CW) search strategies, with coherent
integration times of 240 hours, and sensitivity depth
DcðfÞ ∼ 50=

ffiffiffiffiffiffi
Hz

p
. The sensitivity depth is defined by

DcðfÞ≡ ffiffiffiffiffiffiffiffiffiffiffi
ShðfÞ

p
=hc0ðfÞ, where

ffiffiffiffiffiffiffiffiffiffiffi
ShðfÞ

p
is the noise spec-

tral density and hc0ðfÞ is the strain limit at the desired
confidence level c. It allows comparisons of different
searches, independently of the data used, and depends
on the detailed search technique, coherent integration time,
total integration time, etc. [81]. The latest searches with O2
data have used coherence times of up to Tcoh ¼ 60 hrs with
Nseg ¼ 64 segments in the first analysis stage [82], and

have reached sensitivity depths of ∼30=
ffiffiffiffiffiffi
Hz

p
[83] to

∼50=
ffiffiffiffiffiffi
Hz

p
[82] for c ¼ 90% exclusion limits. Since the

CW searches assumes a constant signal amplitude over the
entire integration time, while our signals may change on
times shorter than the coherent search time, we conserva-
tively penalize our reach by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τsig=Tcoh

p
(though the

searches could be improved to take into account the time
dependence of the signal, alleviating this penalty).
While the sensitivity reach is a useful quantity for a

search targeting a specific BH, standard CW searches are
‘blind’, and look for signals from sources anywhere in the
sky. Figure 14 shows the expected number of events in such
a search at Advanced LIGO, given assumptions about
the galactic BH population, for different self-couplings.10

FIG. 12. Superradiance rates for the n33 and n44 hydrogenic bound states, computed numerically on the full Kerr background (using
the continued fraction method of [79]). The left-hand plot shows rates for a� ¼ 0.9, and right-hand plot those for a� ¼ 0.99. The red
curves correspond to the levels with smallest n; levels with larger n have cutoffs at progressively smaller α. These plots illustrate how, at
some α parameters, different hydrogenic levels can have the same superradiance rates. As discussed in Sec. VII, this can give rise to
gravitational wave transition signals.

10It should be noted that for small axion masses, where there
may be multiple long-duration signals from galactic BHs,
stochastic searches for excess power within a frequency range
may be an advantageous approach. We leave a quantitative
comparison of stochastic and CW searches to future work.
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We assume a power-law BH mass distribution,
dN=dM ∝ M−2.35, with a minimum black hole mass of
5 M⊙, and vary the maximum black hole mass from 20 to
45 M⊙ [84]. For the BH spatial distribution, we take a
combination of the disk and bulge distributions as in [40],
with a total number of 108 BHs, born at a uniform rate
throughout the age of the galaxy. We vary the BH spin
distribution, with our extreme cases having 10% and 0.2%
of BHs with initial spin a�ðt0Þ ≥ 0.9, respectively. The 10%
figure is consistent with spin measurements from x-ray
binaries [85,86], and 0.2% with models of rare high spin
BHs associated with gamma ray bursts [87,88], making
them reasonable upper and lower bounds.
The shaded bands in Fig 14 correspond to this range of

BH population assumptions. While these unknowns do
give rise to orders of magnitude uncertainty in the expected
event rate, we can see that, for particle masses just below

the spin-down threshold, even the pessimistic distributions
give a promising number of events for purely gravitational
superradiance. Conversely, the very large number of events
(at design sensitivity) predicted by the optimistic distribu-
tions means that some of this parameter space is already
ruled out by existing observations; axions with gravita-
tional interactions and mass between 3–7 × 10−13 eV
would yield more than 10 signals in current LIGO data
for all the BH mass and spin distributions considered here;
masses between 2 × 10−13–2 × 10−12 eV would yield 10 or
more signals for the most optimistic spin distribution
considered here [40]. An analysis of existing data taking
into account the reduced event rates at larger self-
interactions has not been performed and would be very
valuable.
Once we incorporate self-interactions, there are three

different parameter space regimes, with distinct behavior

FIG. 13. Upper left: peak strain from 211 × 211 → GW annihilations for an observer at 1 kpc from a 10 M⊙ BH, with initial spin 0.9.
Upper right: typical duration τpeak of peak signal, log10ðτpeak= secÞ. In the large self-interactions regime, we show the time-scale of the
overshoot regime, corresponding to the peak signal strain. Lower left: sensitivity reach in kpc to a 10 solar mass BH, for continuous
wave searches at Advanced LIGO design sensitivity [80]. Lower right: reach in kpc to a 100 solar mass BH. The dashed orange line
indicates the boundary between the moderate and large self-coupling regimes (corresponding to fBC, Sec. IV), while the dotted black
line indicates the boundary of the regime in which the 322 level grows appreciably (fAB).
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(as per Sec. IV). In the small self-coupling regime,
f > fAB, the 322 level does not grow through self-
interactions, and the dynamics proceeds as in the purely
gravitational case. Consequently, the annihilation signal
properties are independent of the self-coupling, and
existing analyses of gravitational wave signals will apply
without modification. This regime, which (for stellar mass
BHs) includes f ∼Mpl as well as QCD axion self-cou-
plings, can lead to as many as thousands of signals at
LIGO/Virgo, as shown in Fig. 14.
In the moderate self-coupling regime, fAB > f > fBC,

the growth of the 211 level is unaffected, but 322 grows
earlier than it would otherwise have done. The main effect
on the annihilation signal is through the addition of another
energy loss process for the cloud, via 322×322→ 211×∞
emission. Consequently, while the peak emission ampli-
tude is unaffected, the signal duration is reduced. This
corresponds to the parameter space region between the
orange and black dashed lines in the upper-right panel of
Fig. 13. More specifically, when 211 is primarily depleted
through gravitational waves, the signal strain as a function
of time is given by,

hGW;annðtÞ ¼ hpeak
1þ t=τann

ð97Þ

with τann defined in Eq. (39). However, due to the self-
interaction processes, there is additional energy lost from

the cloud, changing the time-evolution to that in Eq. (48),
with

hGW;annðtÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τscalar=t

p
ð98Þ

at late times, where τscalar ∝ ðf=MplÞ4, Eq. (49). For f in the
moderate self-coupling regime, τscalar can be significantly
less than τann. Given the typical assumptions on black hole
formation rates and distributions, the shortest signals that
are likely to be observable in an all-sky continuous wave
search have signal times on the order of 104 years or
more [40].
Since, for moderate self-couplings, the peak signal strain

is not affected, the sensitivity reach of gravitational wave
detectors for signals observed around the optimum time is
only moderately affected, as illustrated in the bottom panels
of Fig. 13. One effect is that, especially for lighter black
holes, the signal duration can become comparable to the
typical coherent integration times used in continuous wave
searches (e.g., [82]), which degrades the signal to noise.
For blind searches, the faster decrease of signal strain

with time leads to less chance of seeing a signal, as
illustrated in Fig. 14. The expected number of observable
signals at f ∼ 1018 GeV, which is in the moderate self-
interactions regime for μ ∼ 10−12 eV, is around an order of
magnitude lower than in the purely gravitational case. For
larger and smaller μ, this value of f falls back into the weak
self-interactions regime, so the difference is reduced. At
f ∼ 1017 GeV, which is in the moderate self-interactions
regime for the whole μ range, the signal durations are much
shorter, and the expected number of observable signals is
less than 1. As a result, such signals are unlikely to
observed with current detectors, in a blind search. In
addition, the faster time-evolution can lead to larger
frequency drifts, which could degrade search sensitivity
further (see Sec. VII C).
For strong self-couplings, f > fBC, the peak signal

amplitude drops with increasing coupling as ðf=fBCÞ2
(Fig. 13). In particular, this drop-off starts at larger f than
for the suppression of BH spin-down, since fBC > fCD.
Consequently, with current detectors, self-interactions
strong enough to avoid BH spin-down constraints
(Sec. VI) also render GWannihilation signals undetectable,
for any plausible BH spin and mass distributions. For
f ≲ fBC, i.e., f ≲ 1016 GeV for stellar-mass BHs, the
expected number of events in a blind search is ≲10−3,
while for f ≲ 1015 GeV, where signal durations become
comparable to those in the small self-interaction regime,
signals beyond 10–100 pc are unlikely to be visible at
Advanced LIGO sensitivities.
Nevertheless, it is possible that advanced future detec-

tors, such as the Cosmic Explorer [89,90] or Einstein
Telescope [91–94], may be able to probe this parameter
space. The signal strain in the quasiequilibrium regime is a
factor Oð1–5Þ below the overshoot peak shown in the left

FIG. 14. Projections for the number of observable 211 × 211 →
GW annihilation signals, using continuous wave searches at
Advanced LIGO (with design sensitivity), for a range of self-
interaction strengths (see text for details). The width of the bands
results from varying the BH spin distribution and maximum BH
mass as described in the text. The highest number of observable
signals is in the small self-interactions regime, which includes
gravitational superradiance and QCD axion parameter space.
Increasing self-interactions reduces the number of signals ex-
pected. At high masses, the signal frequency falls above the band
of typical CW searches (ν≳ 2 kHz). The darker (lighter) shaded
regions are disfavored by black hole spin down for initially
superradiating levels with m ¼ 1 (m ¼ 2) (see Sec. VI).
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panel, but the quasiequilibrium regime lasts parametrically
longer than in the moderate self-interaction regime, τsig ∝
ðfBC=fÞ2 (see Fig. 18). If smaller strains come within reach
of future detectors, the long-lasting signals would have an
increased chance of being observed in the quasiequilibrium
regime.

1. Additional annihilation channels

In addition to 211 × 211 → GW annihilations, as occur
in the purely gravitational case, the presence of the 322
level allows 211 × 322 → GW and 322 × 322 → GW
processes. These GWs will still have frequency ω ≃ 2μ,
but due to the larger angular momentum of the 322 level,
their rates are suppressed by higher powers of α, Pl;l0

GW ∝
α16þ2ðlþl0Þ, where l and l0 are the angular momentum
numbers of the two levels. These powers are significantly
smaller than the primary 211 × 211 → GW annihilation
channel, and are further suppressed by the smaller occu-
pation number of 322 at small α (Appendix D). For
example, the 322 × 322 → GW process would lead to
signals strains Oð10−4Þ weaker than the primary signal
at α ∼ 0.3. “Cross-annihilation” signals between two levels,
211 × 322 → GW, may be observable for the closest black
holes; further study would require numerical GW power
calculations which have not yet been performed for cross-
annihilation signals.

2. Annihilation signals from complex fields

In this section, and throughout the rest of this paper, we
have considered superradiance of a single, real spin-0 field.
As has been pointed out in a number of papers [95–98], for
the case of two scalar fields of degenerate masses (equiv-
alently, a single complex scalar field), there are cloud
configurations with a time-independent stress-energy ten-
sor, which consequently do not emit any gravitational
radiation. In complex field terms, these correspond to
all-particle or all-antiparticle field configurations, whereas
gravitational waves arise from particle-antiparticle annihi-
lation. This has sometimes been interpreted [99] as indicat-
ing that annihilation radiation, of the type considered in this
section, is not expected from superradiance of complex
fields.
However, as per the discussion in Sec. II, the initial

conditions for the growth of superradiant modes are either
vacuum fluctuations, or whatever preexisting astrophysical
fields are present. In the former case, we can view the
growth of the particle and antiparticle field modes as
effectively separate, and generically, they will obtain
Oð1Þ-similar occupation numbers. For preexisting astro-
physical fields, a generic expectation in many circum-
stances is forOð1Þ-similar initial conditions for particle and
antiparticle fields. Consequently, unless some mechanism
drives us to an all-particle or all-antiparticle state, we expect
that the particle and antiparticle fields generically attain

roughly comparable occupation numbers. Compared to a
real scalar field, this results in a total GW annihilation
signal energy that is only Oð1Þ smaller.

B. Transitions

For large enough self-interactions (regions B,C,D in
Fig. 3), the 322 level grows earlier than it would have done
otherwise, and both 211 and 322 can have significant
occupation numbers at the same time. This gives rise to
GW transition signals.
The transition quadrupole moment for the 322 →

211þ GW process vanishes at leading order, so its rate
is suppressed by a larger power of α than other gravitational
transition processes (such as the 644 → 544 process
considered in [6,12,15]). At leading order in α, the emitted
power, as a function of polar angle θ, is

dP
dΩ

¼ GN322N211

πr4g
α14

�
25

3658
ð1 − cos4 θÞ

þ ð27þ 28 cosð2θÞ þ 9 cosð4θÞÞ sin2 θ
223651072

�
ð99Þ

where the first term corresponds to l, m ¼ 2, 1 emission,
and the second to l, m ¼ 3, 1. This gives a total emitted
power of [6]

P ¼ 28 × 5717

3551173
GN322N211

r4g
α14: ð100Þ

The emitted radiation is at a frequency ω ¼ ω322 − ω211 ≃
5
72
α2μ. In terms of the normalized occupation numbers, it

contributes a term

_ε322 ≃ −5 × 10−6α10ε211ε322 þ… ð101Þ

to the equations of motion.
Compared to the processes discussed in Sec. IV, which

drive the evolution of the superradiant cloud, the effects of
GW transitions are always subdominant. While this does
reduce the peak signal amplitude, it also means that signal
timescales can be longer compared to the transitions in the
purely gravitational regime, which is helpful for detection.
Figure 15 shows projections for the peak signal strain,

and sensitivity reach, for transition signals from a fairly
light BH, MBH ¼ 3 M⊙. The signal durations (for a given
BH mass) are the same as those for annihilations (Fig. 13)
in the region where 322 grows, f < fAB, as the two levels
evolve together over time. Given the lower frequency
compared to annihilations, the signal strains are typically
larger (Fig. 15 left). However, transition signals only occur
in the moderate and large self-interaction regimes, where
much of the energy loss is through scalar radiation.
Furthermore, for given BH mass, the frequency decreases
∝ μ3 with decreasing μ, rapidly falling out of the sensitivity

BARYAKHTAR, GALANIS, LASENBY, and SIMON PHYS. REV. D 103, 095019 (2021)

095019-34



band of current detectors such as Advanced LIGO. For
heavier BHs, the frequency of transition signals would
always be too low for ground-based GW detectors, due to
overwhelming seismic and gravity-gradient noise.
For a narrow range of axion masses above 10−11 eV,

current detectors could potentially probe signals in the
moderate self-interaction regime (Fig. 15, right). Although
the reach is poor at small f, there is a roughly order-of-
magnitude range in f for which sensitivity to signals from
the galactic center would be possible. The signal times in
this region last on the order of minutes to hours, and the
expected number of signals in a blind search is heavily
dependent on the poorly measured black hole distribution
in the “mass gap” below 5 M⊙ [100–103] (although
evidence for compact objects in this mass range is emerging
[104–106]). Consequently, blind searches with current
detectors are unlikely to lead to observable signals.
However, future space-based detectors such as LISA

[107,108] and atom interferometer missions [41], could
have promising sensitivity to such signals. For illustration
we show the reach of the MAGIS proposal [41] in the right
panel of Fig. 15, which can achieve a reach of 10 kpc for
axions around 3 M⊙ black holes, and up to 103 kpc for
100 M⊙ black holes. Some of the more promising signals
fall in the 0.1–10 Hz range, where future proposals such
as DECIGO [109] could improve transition detection
prospects.

C. Frequency drifts

While the frequency of gravitational wave annihilation
signals is almost constant at νann ≡ 2ω=ð2πÞ ≃ 2μ=ð2πÞ
(we will use frequency rather than angular frequency in this
section, to match the GW literature), the potentially long
signal durations mean that even very small frequency drifts

can be measured. Moreover, the search algorithms
employed in continuous wave detection analyses can be
strongly affected by these small frequency drifts, so it is
important to quantify them to determine the appropriate
search strategy and sensitivity [110].
The self-energy of the cloud, from both gravity and self-

interactions, affects the frequency of the bound axions, and
therefore the frequency of the GWs emitted [12]. As the
occupation numbers of the levels evolve, the self-energy
contribution to the binding energy Δω and thus the emitted
frequency ν change over time.
The gravitational and self-interaction contributions to the

energy of axions in level 211 are, respectively, (see
Appendix G and Appendix B 1)

Δωg ≃ −0.19μα3ε211 ð102Þ

Δωλ ≃ −3.5 × 10−5μα5ε211

�
Mpl

f

�
2

; ð103Þ

where the energy is decreased (increased) in the presence of
an attractive (repulsive) self-interaction. These corrections
are always small compared to the axion mass, as well as the
energy splitting between levels (for occupation numbers
below the nonperturbative regime—see Sec. V).
As the cloud is growing through superradiance, the

frequency changes relatively rapidly as ∝ μα _α on the order
of the superradiance time due to the changing BH mass.
However this period is short, and generally does not
contribute much of the detectable signal. At late times,
the cloud size is depleted over time, and the level’s
frequency drift is positive (assuming negligible or attractive
self-interactions). This is in contrast to standard astrophysi-
cal sources of continuous gravitational radiation, such as

FIG. 15. Left panel: peak strain of the 322 → 211þ GW transition signal at 1 kpc from a BH of mass 3 M⊙, as a function of the mass
μ and self-coupling scale f of the scalar particle. Right panel: sensitivity reach for the detection of such signals, using the Advanced
LIGO detector, or with the MAGIS proposal for a future space-based atom interferometer [41]. The dashed orange and dotted black lines
are the fBC and fAB curves, respectively, as in Fig. 13.
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spinning neutron stars, and may provide a hint that a
detected signal arises from superradiance. We describe the
main contributions to these frequency drifts, at leading
order in α, below. For a more complete discussion of
frequency drifts we refer the reader to Appendix H.
At small self-interactions, the frequency drift is domi-

nated by the depletion of the gravitational self-binding
energy through annihilations, resulting in a frequency drift
of order

_νann ≃ 7 × 10−15
Hz
s

�
α

0.1

�
17
�

μ

10−12 eV

�
2

; ð104Þ

to leading order in α. Throughout the small self-interaction
regime f > fAB (see also Fig. 3), the gravitational
frequency drift dominates any contribution from the self-
interactions.
As self-interactions increase, the frequency drift from the

gravitational binding energy is increased due to the faster
depletion of the cloud from axion emission,

_νg≃10−10
Hz
s

�
1017GeV

f

�
4
�

μ

10−12 eV

�
2
�

α

0.1

�
17

; ð105Þ

and there is an additional frequency drift from the change of
self-interaction energy,

_νλ≃10−10
Hz
s

�
1017GeV

f

�
6
�

μ

10−12 eV

�
2
�

α

0.1

�
19

: ð106Þ

The latter dominates when f ≲ 8.5 × 1016 GeVðα=0.1Þ.
Finally, in the strong self-interactions regime f < fBC, the
cloud reaches a long-lived quasiequilibrium configuration,
and the dominant source of frequency drifts comes from the
slow spindown of the BH.
Gravitational wave signals from 322 → 211þ GW tran-

sitions have frequency ν322 − ν211, so the changing con-
tributions to the 211 and 322 frequencies partially cancel,
making frequency drifts a factor of a few smaller than for
annihilations, and negative in most parts of the parameter
space. Similarly to annihilations, for moderate self-
couplings, self-interactions dominate the frequency drifts
for f ≲ 1017 GeVðα=0.1Þ.
At small α, the frequency drift can be small enough so as

to be unobservable. Over a year, the minimum frequency
change that can be measured is ∼yr−1 ∼ 3 × 10−8 Hz, so if
the frequency drift is ≲yr−2 ≃ 10−15 Hz s−1, it has no
observational effect. At the other extreme, too large a
frequency drift can be problematic for the search algorithms
employed. Current LIGO/Virgo continuous wave searches
cover a range of positive to negative frequency derivatives
of e.g., 2 × 10−9 Hz=s through −1 × 10−8 Hz=s [83]. More
sensitive searches, using longer coherent integration times,
may require even smaller frequency drifts [75]. In the small
coupling regime, the drift of the signal becomes larger than

this threshold at α ∼ 0.25. In the moderate self-interactions
regime, both annihilation and transition signals have
drifts large compared to the current search range for
f ≲ 5 × 1016 GeVðα=0.1Þ17=4. However, as discussed
above, the observational prospects for GW signals at such
small f are not promising, with current-generation
experiments.

VIII. AXION WAVES

As well as emitting gravitational radiation, the cloud also
emits both relativistic (Sec. III A) and nonrelativistic
(Sec. III B) scalar waves. If the scalar φ has nongravita-
tional interactions11 with the SM, such φ radiation could be
detected in laboratory experiments. For an axionlike
particle, a natural assumption is that interactions with
the SM are suppressed by parametrically the same sym-
metry breaking scale f that sets the axion potential. If this is
the case, then we have the unusual feature that, in the large
self-coupling regime f < fBC, the signal does not decou-
ple: while the power in axion radiation decreases as the
quasiequilibrium size of the cloud decreases, this is
compensated for by the increased interaction strength from
the smaller f. In addition, the BH spin-down time increases
with decreasing f, so such signals can last for very long
times, increasing the chance of observing them.
Consequently, axion waves could be a probe of the
small-f regime, in which both GW and spin-down sig-
natures are suppressed.
Quantitatively, if we take the 211 and 322 quasiequili-

brium occupation numbers (55), then the emitted power is
dominated by nonrelativistic 322 × 322 → 211 ×∞ radi-
ation. At large distances r from the BH, this radiation has
energy density

ρrad ∼
μ

4πr2
GM2γ211×∞322×322ðεeq322Þ2εeq211

v

≃ 10−6 GeV=cm3

�
α

0.1

�
6
�
10 kpc

r

�
2

×

�
f

1016 GeV

�
2

; ð107Þ

where v ¼ α=6 is the velocity of the nonrelativistic axions
emitted. The energy density ρrad depends only on α, and not
on μ and MBH independently. For given f, the emitted
power is maximized when the superradiance rate is largest,
at high a� and α. The corresponding dimensionless
amplitude θ of the axion waves is

11If the scalar φ’s interactions with the SM are purely gravi-
tational, then its interaction rate with matter is ∝G2 ∼ 1=Mpl

4,
whereas for gravitational radiation, the interaction rate is
∝G ∼ 1=Mpl

2. Consequently, such φ radiation would be practi-
cally undetectable.
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θ ≃ 10−19
�
10−12 eV

μ

��
α

0.1

�
3
�
10 kpc

r

�
; ð108Þ

independent of f. This is in contrast to GW signals, for
which the amplitude at Earth decreases as f2 in the
quasiequilibrium regime. Relativistic axion radiation from
the 3 → 1 process (Sec. III A), and 2 → 1 cubic emission,
also have f-independent θ, but are suppressed by higher
powers of α, and are smaller than the nonrelativistic
radiation for the parameter space we are interested in.
As we discussed in Sec. IV C, for α≳ 0.2 and small f we

expect additional hydrogenic levels, other than 211 and
322, to be populated. While we have not performed a full
analysis in this regime, a example of the possible effects
can be seen from the 411 build-up studied in Sec. IV C 2,
which for α not too far above 0.2 is expected to be the first
additional level to grow. The 211, 322, and 411 levels form
a new quasiequilibrium, with the 411 level having
enhanced occupation number relative to those of the
211=322 equilibrium. Consequently, the rate of scalar
radiation during this equilibrium is enhanced; numerically,
we find that ρrad3−level ∼ 25ρrad2−level for α ≃ 0.3. While this
equilibrium will be disrupted in turn by the growth of
further levels, this illustrates that, while the parametric
behavior in f should remain the same, additional levels
may change the numerical factors affecting the scalar
radiation power. As discussed in Sec. V, if the growth of
additional levels leads to large enough field amplitudes in
the cloud, then higher-order processes or a nonperturbative
collapse of the cloud may become possible, significantly
altering the behavior.
Since the axion radiation is nonrelativistic and narrow-

bandwidth, its effects on a laboratory system are similar to
those of axion dark matter at the same mass. The masses of
interest correspond to rather low frequencies, e.g.,
10−12 eV ≃ 2π × 200 Hz. For this parameter space, the
axion-SM couplings most amenable to laboratory detection
experiments are those to nuclear spins and to photons,
which we discuss below.
Searches for axion DM via the axion-gluon coupling

Lint ∝ ðφ=fÞGμνG̃
μν have promising sensitivity reach at

low axion masses [111]. However, if an axionlike particle
has the same GG̃ coupling, but a smaller mass than the
QCD axion (or equivalently, a larger GG̃ coupling for the
same mass), then it is strongly constrained by its behavior
in dense environments such as the early universe and stellar
cores [112,113]. For superradiance-sourced signals, GG̃
couplings significantly higher than the QCD axion value
(for a given axion mass) are needed to have experimental
sensitivity, and are affected by these constraints.

A. Nucleon spin coupling

The axion coupling to fermion spins is L ⊃
gNð∂μφÞψ̄γμγ5ψ , where we generically expect gN ∼ 1=fa.

For a nonrelativistic fermion, this gives an axion-dependent
term in the fermion Hamiltonian,

H ⊃ gN σ⃗ · ð∇φþ _φ v⃗Þ ð109Þ

where σ⃗ is the fermion’s spin, and v⃗ is its velocity. We will
focus on couplings to nucleons, which for low axion
frequencies are easier to detect than couplings to electrons.
Since the 322 × 322 → 211 ×∞ axion radiation from

the BH has v ∼ α=6 (Sec. III B), while the nucleon velocity
changes associated to low-energy laboratory processes are
much smaller, the “axion wind” term Hwind ¼ gN σ⃗ ·∇φ
dominates. Due to the ∼α=6 velocity being significantly
larger than the virial velocity of DM in the galaxy, ∼10−3,
and because of the coherent nature of the emitted radiation,
an experiment searching for the axion wind coupling will
have better sensitivity to BH-sourced radiation than it
would for DM for an equivalent axion energy density.
The best-developed experimental proposal aiming to

detect the axion wind coupling is CASPEr-Wind [111],
which employs nuclear magnetic resonance (NMR) tech-
nologies. This uses a liquid xenon target, whose nuclear
spins are polarized in a strong magnetic field. The axion
wind coupling acts on the nuclei like an effective magnetic
field, Hwind ¼ gN σ⃗ ·∇φ≡ Ba · μ⃗n, where μn is the nuclear
magnetic moment and Ba is the effective axion “magnetic
field.” If this effective magnetic field oscillates at close to
the Larmor frequency of the nucleons in the external
magnetic field, then the resulting spin precession of the
nuclei is resonantly enhanced. This spin precession can
then be picked up by a sensitive magnetometer.
In Appendix J, we review the sensitivity of such

experimental setups to a monochromatic axion oscillation.
If we are uncertain about the axion mass, and want to
experimentally probe an Oð1Þ axion mass range around an
angular frequency ω0, then a signal can be detected for

B2
a ≳ few ×

ω0

μ2nNnT tot
; ð110Þ

where T tot is the total experimental running time, and Nn is
the number of aligned spins in our spin-polarized sample.12

This is a best-case sensitivity estimate, limited by the
fundamental spin-projection noise of the sample—to
achieve it, a well-shielded sample and a sufficiently
sensitive magnetometer would be required. Experiments
capable of sensing nuclear spin projection noise have been
carried out [114], and such sensitivities are a goal for the
CASPEr-Wind experimental program [111].

12This sensitivity estimate is for the detection of a single,
monochromatic signal. As mentioned in Sec. VII, in situations
where many galactic sources are emitting at any given time, it
may be more effective to perform a “stochastic” search, looking
for multiple unresolved signals within a given bandwidth. We
leave analysis of such scenarios to future work.
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A fully polarized liquid 129Xe sample has
∼1022 spins=cm3 [111], so the sensitivity limit for a
relatively small target volume is

Ba ≳ 10−20 T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν

kHz
1022

Nn

yr
T tot

s
ð111Þ

For comparison, an axion DM signal at the sensitivity
threshold estimated in [111], for these parameters, has an
effective magnetic field of ∼few × 10−20 T. The effective
magnetic field from axion radiation emitted by a super-
radiant cloud is

Ba ≃ 3 × 10−24 T × CN

�
α

0.1

�
4
�
1 kpc
r

�
; ð112Þ

for a high-spin BH, where CN ≡ gNf. Consequently, some
combination of larger experimental volumes (as planned
for CASPEr-Wind phase II [111]), larger CN, larger α and a
closer BH would enable laboratory experiments to be
sensitive to axion waves.
This is illustrated in Fig. 16, which shows projected

signal strengths for a selection of astrophysical BHs (both
nominal and observed), along with sensitivity thresholds
for different experimental configurations. While CN ∼Oð1Þ
is the ‘natural’ expectation in many models, larger values of
CN are possible. In particular, it is interesting to consider

how large a reach can be obtained in as-yet-unconstrained
parameter space, below the existing astrophysical limits of
gN ≲ ðfew × 108 GeVÞ−1 [115–118]. While much of the
axion mass range in Fig. 16 is excluded for large f by BH
spin measurements (Fig. 10), these constraints do not
apply for f ≲ 1012–1013 GeV, where the BH spin-down
is too slow. The astrophysical bounds translate into
jCN j≲ 103ðf=1012 GeVÞ; the CN ¼ 103 line in Fig. 16
illustrates that such couplings can give good detection
prospects for a wide range of BHs and axion masses.
To reflect the uncertain behavior of the superradiant

cloud at α≳ 0.2, Fig. 16 displays the signal resulting from
the radiation power during the three-level quasiequilibrium
phrase, as a shaded area above the signal from the two-level
equilibrium. The signal curves illustrate that, with larger-
volume experiments, sensitivity to astrophysical BHs may
be possible for CN ∼Oð1Þ. They also strongly motivate
detailed numerical analyses of the high-α regime, where the
strongest signals would arise.
Figure 17 displays the sensitivity reach to an optimal BH

for a given axion mass. Again, we see that for larger
experimental volumes, astrophysically relevant reaches—
in particular, to the Galactic Center ∼8 kpc away—may be
possible for fairly natural CN values.
If we are interested in the signal from a specific, known

BH, then the sensitivity reach is the most important
parameter. However, as is the case for gravitational wave
searches, many signals are expected to arise from as-yet-
unobserved BHs, and could only be detected via a “blind”,

FIG. 16. Projected detectability of nonrelativistic axion radia-
tion, assuming an axion-nucleon coupling. The signal strength is
expressed in terms of the equivalent pseudo-magnetic field felt by
nuclei. The blue dotted lines correspond to sensitivity estimates
for NMR axion-wind detection experiments [111] with the
indicated parameters. The bands correspond to signals from
three astrophysical BHs and two nominal BHs with the indicated
parameters. The widths of the bands correspond to the uncertainty
on the BH parameters (for the nominal BHs, to the distance range
indicated). The darker bands bounded by solid contours corre-
spond to the signal emitted during two-level quasiequilibrium
(Sec. IV). The lighter-shaded extensions above represent the
enhanced signal from the three-level equilibrium with 411
(Sec. IV C 2), illustrating the potential range of signals.

FIG. 17. Projected sensitivity reach (SNR ¼ 1) for the detec-
tion of nonrelativistic axion waves from a BH-cloud system at
large self-interactions, f < fBC, in a NMR-based axion-wind
detection experiment. The bands show the reach to a BH-cloud
system, ranging from a two-level quasiequilibrium with param-
eters a� ¼ 0.9 and α ¼ 0.2 (lower edge, solid), to that of
a three-level quasiequilibrium system with a� ¼ 0.99 and α ¼
αoptimalð0.99Þ ≈ 0.41 (upper edge). The reach for a BH-cloud
system with a� ¼ 0.9 and α ¼ αoptimalð0.9Þ ≈ 0.28 is also in-
dicated for a two-level equilibrium (dotted line), and a three-level
equilibrium (dashed line) system.
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all-sky search. In this situation, another important factor is
the typical duration of signals, which affects the probability
that a given BH is still emitting today. Figure 18 shows the
duration of the peak axion signal (which contributes most
of the detectable SNR) from a nominal BH, as a function
of axion mass and coupling. Lower f values lead to slower
BH spin-down, and so to longer durations of quasi-
equilibrium signal emission; this is relevant down to
f ∼ 1011–1012 GeV, below which signals can last longer
than the age of the universe.
Since, in the quasiequilibrium regime, the peak signal

strength at Earth is independent of f for fixed CN ,
decreasing f down to ∼1011 GeV increases the expected
number of events in a blind search. This is illustrated in
Fig. 19. If, rather than fixing CN , we require that gN is
below the astrophysical bounds, then as shown in Fig. 20,
there is a wide range of axion masses over which we might
expect visible signals in an all-sky search (depending on the
mass and spin distribution of astrophysical BHs). In both
the Fig. 19 and Fig. 20 projections we assume the reach to
the axion waves from the two-level equilibrium, not taking
into account the possible enhancements in power from
additional levels; on the other hand, the dynamics of
additional levels could shorten the signal lifetime at large
α values. In the blind search, an analysis similar to the
techniques employed by Continuous Waves searches at
LIGO/Virgo (Sec. VII A) would be required, to make use of
the extremely long signal coherence times while at the same
time taking into account the Doppler shifts from the many
relative motions between the experiment and the unknown
black hole positions.

Unless CN is extremely large, the effects of the axion
field on spins in the vicinity of the black hole, and the effect
of these spins on the axion field, are always small. The
largest effective magnetic field obtained in the cloud is
∼jCN j10−6T μ

10−12 eV, which would not have any significant
affect on accretion disk behavior. Similarly, the axion field
sourced by a coherent nuclear spin density, if any exists in
the accretion disk, is tiny compared to the fields of a

FIG. 18. Typical duration log10ðτsig= secÞ the axion wave signal
for a 10 M⊙ BH with initial spin 0.9. In the large self-interactions
regime, we show the time-scale corresponding to the quasiequi-
librium evolution. For f ≲ 1012 GeV the signals can last longer
than the age of the universe (note that 10 Gyr ≃ 3 × 1017 s). The
dashed orange and dotted black lines are the fBC and fAB curves,
respectively, as in Fig. 13.

FIG. 19. Number of observable signals expected in an NMR
axion wind experiment with V ¼ 10 cm3 and CN ¼ 100, with
different bands corresponding to different quartic coupling scales
f. We require observable signals to have SNR ≥ 10, given the
blind search strategy required for these events. The width of the
bands results from varying the assumed BH spin distribution and
maximum BH mass (see Sec. VII A). For a fixed CN , the number
of observable signals increases for smaller f, due to longer signal
durations, saturating at f ∼ 1011 GeV.

FIG. 20. Number of observable signals expected in an NMR
axion wind experiment with V ¼ 10 cm3, for f ¼ 1012 GeV and
different couplings to nuclear spins, as shown. We require
observable signals to have SNR ≥ 10, given the blind search
strategy required for these events. The width of the bands results
from varying the assumed BH distribution as in Fig. 19. For a
fixed self-interaction strength, the highest number of observable
signals is for the largest coupling strength to nuclei.
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superradiant cloud. For any reasonable nuclear spin
response to small magnetic field perturbations, the effect
of spin response on the dynamics of quasibound axion
levels will be extremely small, so the growth of the cloud
will not be affected. Similar considerations apply to the
propagation of scalar waves through interstellar space;
these will be undisturbed to a very good approximation.

B. Photon coupling

The axion coupling to photons is L ⊃ − gaγγ
4
φFμνF̃μν ¼

gaγγφE · B. Generically, we expect the coupling constant to
be gaγγ ¼ Cγ

αEM
2πfa

, where Cγ ∼Oð1Þ is related to the charged
matter content of the UV theory [119].
An axion oscillation sources EM fields through the

effective current density Ja¼gaγγð _φBþ∇φ×EÞ (and the
corresponding effective charge density ρa ¼ −gaγγ∇φ · B).
Axion DM, which is nonrelativistic, has j _φj ≫ j∇φj, so
detection experiments use strong magnetic fields to maxi-
mize Ja. Searches for low-frequency (∼kHz) axions have
been proposed using static background magnetic fields
[120,121], or GHz-frequency fields in superconducting
cavities [122–125].13
If they can be realized in the future, quantum-limited

meter-scale experiments could probe axion DM couplings
as small as gaγγ ∼ 10−17 GeV−1 at ∼kHz frequencies
(unfortunately, this is still far from QCD axion sensitivity).
With a monochromatic signal, as opposed to virialized
axion DM, this would correspond to a sensitivity of
gaγγ ∼ 10−18 GeV−1ð ρ

ρDM
Þ−1=2.14 For nonrelativistic emis-

sion from a superradiant cloud, we would obtain a reach of

r
kpc

≈ ð2 × 10−3ÞjCγj
�

μ

10−12 eV

��
α

0.1

�
3

; ð113Þ

Consequently, signals from an superradiant cloud via the
axion-photon coupling could only be seen for an excep-
tionally close, fast-spinning BH, and/or in models where
jCγj is large.
At the small axion masses we are interested in,

SN1987A observations constrain the axion-photon cou-
pling to be jgaγγj≲ 5 × 10−12 GeV−1 [129]. This translates
to jCγj ≲ 500ðf=1011 GeVÞ, which allows for somewhat

smaller expected blind-search event rates than the nucleon-
coupling case shown in Fig. 20.
Similarly to the case of nucleon couplings, the effects

of astrophysical EM fields on the SR cloud will be tiny
unless jCγj ≫ 1. In addition, the naive φ → γγ decay rate,

Γφ→γγ ≃
g2aγγμ3

64π , is much longer than the age of the universe
for couplings of interest. However, in some circumstances it
is possible for parametric resonance to greatly enhance the
photon emission rate [130]. Parametrically, in the limit
where gaγγ is arbitrarily small, and taking L to be the
approximate spatial extent of the axion profile, the total
decay rate into a particular mode within the ∼L3 volume is
Γ ∼ g2aγγφ2μ2L, where φ is the typical field amplitude.
Consequently, the number of photons emitted into that
mode, in the light-crossing time ∼L, is ∼ΓL∼g2aγγφ2ðμLÞ2.
This tells us that for finite gaγγ , if ΓL≳ 1, then stimulated
emission will become important; for ΓL ≫ 1, the emission
rate will be exponentially enhanced.
This parametric argument agrees with the conclusions

of [130], which analyses the growth of electromagnetic
perturbations using Floquet theory, and finds that para-
metric resonance occurs if

jgaγγμφLj≳ few: ð114Þ

Since gaγγφ ¼ Cγ α
2π θ, the left-hand side (lhs) is maximized

(for given Cγ) by maximizing θ. For an axion of mass μ, this
occurs at f ≃ fBC (for the 211 level). Using Eq. (80), we
find that for parametric resonance to occur, we need

jCγj≳ ð9 × 102Þ
�
0.1
α

�
3=4

; ð115Þ

for a�ðt0Þ ¼ 0.99. Consequently, if jCγj ≪ 103, then photon
emission will be unimportant.
It should be noted that the above is a best-case estimate,

which will only hold if the BH is in a sufficiently pristine
environment. The plasma frequency in the interstellar
medium is ωp∼10−12–10−10 eV, which is comparable to
the mass range for a superradiant axion around a stellar-
mass BH. Moreover, one expects the plasma density in the
vicinity of the BH to be greater, due to accretion [131].
Consequently, it is likely that plasma effects suppress the
parametric resonance process, even at large jCγj [132].

IX. CONCLUSIONS

In this paper, we have investigated some of the most
important consequences of scalar self-interactions for
superradiance around astrophysical BHs. As we have
showed, self-interactions can result in very rich and
complicated dynamics, and there are a number of aspects
which would benefit from further study. In particular,
we have not systematically treated situations in which
the initially fastest-growing level has m ≥ 2. While we

13Experiments using optical-frequency fields have also
been proposed [126–128], but these have significantly worse
theoretical sensitivity.

14The ideal search strategy for monochromatic signals may be
different from that for a virialized axion signal with non-
negligible bandwidth. For static-field experiments such as those
proposed in [121], an optimal search for monochromatic signals
will overcouple the amplifier even more strongly to the pickup.
However, for ∼kHz axion frequencies and practical temperatures,
optimal axion DM experiments would already be strongly over-
coupled (to the point of having almost Oð1Þ fractional sensitivity
bandwidth [121]), so there would not be a significant difference
between the monochromatic and DM search strategies.
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generally expect gravitational (and scalar) wave signatures
to be dominated by cases where 211 grows first, BH spin-
down constraints for higher-mass axions will depend on
higher-m superradiance.
In addition, even for the 211 case, our calculations have

been at the (semi-)analytic level, and may not be reliable for
large enough α. In particular, we found that for α≳ 0.2 and
small f, levels other than 211 and 322 might play an
important role in the dynamics. One route to properly
understanding the high-α regime might be to perform
numerical simulations of the (self-interacting) field equa-
tions themselves, rather than of the occupation numbers of
hydrogenic modes. Such approaches have been used to
study purely gravitational superradiance in a number of
papers [133–137]. As mentioned in Sec. V, numerical
methods were applied to a self-interacting scalar field on
the Kerr background by [27,28], but they did not evolve the
system for long enough to observe the perturbative effects
we have studied. Since the high-α regime is where
observational signatures may be the strongest, and in which
there is the possibility of phenomena such as bosenova, a
fuller treatment would be valuable.
Our analyses focussed on the simplest form of self-

interactions for a spin-0 particle; the lowest-order (renor-
malizable) potential terms. In more complicated hidden
sector models, other forms of interactions, or extra hidden
sector states, could affect the superradiance behavior.
For example, [138] discusses a model in which the QCD
axion couples to a hidden-sector photon, and there are
hidden-sector fermions which interact with this photon.
Such models illustrate that, while the minimal DM models
we considered in Figs. 10 and 11 are often still subject to
BH spin-down constraints, others may not be.
Beyond the spin-0 particle candidates we considered,

superradiance of massive vectors is also of interest. Vector
self-interactions are somewhat more complicated than
those for scalars, since renormalizable interactions
between vectors must take the form of Yang-Mills theory.
For abelian theories, “light-by-light” scattering could lead
to qualitatively similar dynamics to those discussed here,
but has to be investigated in the context of a low cutoff
and potential production of the charged particles which
give rise to the vector self-interaction. Beyond self-
interactions, a simple example of both theoretical
and phenomenological interest is a light vector interacting
with the SM via a kinetic mixing with the SM photon
(though plasma dynamics may make the behavior around
astrophysical black holes very complicated). Avector may
also have interactions with other hidden sector states—
for example, its mass may come from a Higgs mechanism,
or it may mediate interactions between hidden sector
matter. For the purely gravitational story to hold, such
states must be sufficiently heavy, and/or sufficiently
weakly coupled [20]. We leave investigations of such
scenarios to future work.

Superradiance of spin-2 particles has also been inves-
tigated in the literature [22,23]. An issue with such models
is that an effective field theory with a spin-2 particle of
mass μ, along with the massless graviton (a “bigravity”
theory), has a cutoff scale at or below Λ3 ¼ ðMPμ

2Þ1=3
[139,140]. Here, MP ∼minðMpl;ΛÞ is an effective mass
scale set by the mass scalesMpl, which suppresses massless
graviton interactions, and Λ, which suppresses massive
spin-2 interactions. At the small masses μ we are interested
in for BH superradiance, Λ3 ≲ 10 eVð μ

10−12 eVÞ2=3 is small
compared to energy scales of interest. For example, the
energy density in a fully occupied superradiant cloud is
ρ ∼ ð6 MeVÞ4ð α

0.2Þ5ð μ
10−12 eVÞ2. Consequently, it is unclear

whether there are theories for which reliable calculations
can be carried out in the regimes of interest.
Returning to the topic of spin-0 superradiance; as well as

exploring the new observational signatures that may arise
from self-interactions, our analyses clarify when self-
interactions are small enough not to affect the usual
gravitational dynamics of superradiance. As illustrated in
Figs. 10 and 11, this is important for understanding when
constraints and signatures from motivated models, such as
the QCD axion or misalignment DM, can be trusted.
As we have demonstrated, adding a simple quartic

interaction can dramatically change the dynamics of scalar
superradiance. The additional interaction inevitably
reduces the efficiency of black hole spindown as well as
the strength and timescale of gravitational wave annihila-
tion signals. Nevertheless, the new dynamics can lead to
simultaneous population of multiple levels giving rise to
gravitational wave transition signals, a narrow range of
which may be observable at LIGO/Virgo. Given that the
transition signals are at parametrically lower frequencies
corresponding to the energy splitting between different
levels, signals from scalars around stellar mass black holes
generally fall below the LIGO/Virgo sensitivity band in
frequency and present new targets for future mid-band
detectors.
Perhaps the most novel signature is the emission of

particles to infinity: a light, self-coupled axion can extract
the energy of rotating black holes and populate our galaxy
with axion waves, without the need for a cosmological
abundance or a coupling to Standard Model matter. In the
presence of such a coupling, these axion waves could be
detected in the lab. While current experiments are not yet
sensitive to this population of light axions, this mechanism
further motivates the development of light axion direct
detection experiments, as well as numerical work on self-
interactions in superradiance to better characterize the
signal from compact, semirelativistic axion clouds.
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APPENDIX A: PARAMETRIC
OSCILLATOR ANALYSIS

As discussed in Sec. III C, a useful way to analyse the
growth of bound levels is to assume that we have some
large-amplitude ψc, and to treat this as a parametric forcing
in the Gross-Pitaevskii (GP) equation [Eq. (12)], i.e., to
solve

ði∂t þMÞψ ¼ −3λ
24μ2

ðψ2
cψ

� þ jψcj2ψÞ ðA1Þ

(here, M represents the terms in the nonrelativistic
Hamiltonian, including an absorbing term corresponding
to the BH horizon). As compared to the forced oscillation
analysis in Sec. III C, we ignore back-action for only two of
the “legs” in diagrams such as Eq. (19), rather than for three
of them.
To simplify our discussion, we will take ψc ∝ ψ211 [so

we are interested in processes such as Eq. (19)]. It is helpful
to extract the time dependence corresponding to the 211
oscillation, and write ψ ¼ Ψe−iω̃ct, where ω̃c ≡ ω̃211 (for
simplicity, we will assume that ω211 is real, as it is when
211 has reached its saturation value). Then, if we take a
harmonic ansatz, Ψ ¼ Ae−iω̂t þ Beiω̂

�t, the GP equation

ði∂t þ ω̃c þMÞΨ ¼ λ̃ðΨ2
211Ψ� þ jΨ211j2ΨÞ ðA2Þ

(where λ̃≡ − 3λ
24μ2

) implies that

ðω̂þ ω̃c þMÞA ¼ λ̃ðΨ2
211B

� þ jΨ211j2AÞ ðA3Þ

and

ð−ω̂� þ ω̃c þMÞB ¼ λ̃ðΨ2
211A

� þ jΨ211j2BÞ ðA4Þ

If we take the complex conjugate of Eq. (A4), then together
with Eq. (A3), we have a linear eigenvalue problem that we
can solve for ω̂. For λ ¼ 0, the solutions correspond to
usual hydrogenic (quasibound) states.

For non-Hermitian Hamiltonians, the eigenstates are
generally nonorthogonal [141]. However, in our case, we
canwriteM ¼ MR þ iMI, and treatMI as being diagonal
in the basis ofMR eigenstates (that is, we ignore the detailed
dynamics behind the absorption, since this is outside the
regime of the nonrelativistic approximation). In this case, the
(λ ¼ 0) quasibound states Ψk are orthogonal [141], and we
will assume the normalization

R
dVΨ�

kΨj ¼ δjk.
To linear order in λ, if we start with the unperturbed

solution A ¼ Ψi, B ¼ 0, then we can write the perturbed
solution as A ¼ Ψi þ

P
k αkΨk, B ¼ P

k βkΨk (expanding
in the unperturbed basis). Using equations (A3) and (A4),

ðω̂i − ω̂kÞαk ¼ λ̃

Z
dVΨ�

kjΨ211j2Ψi ðA5Þ

ð−ω̂�
i − ω̂kÞβk ¼ λ̃

Z
dVΨ�

kΨ2
211Ψ�

i ðA6Þ

As well as these perturbations to the wave function, we are
interested in finding the perturbation to the frequency ω̂ of
the state. Writing ω̂ ¼ ω̂i þ δω̂, we have

ðω̂iþ ω̃cþMÞA¼−δω̂Aþ λ̃ðΨ2
211B

� þ jΨ211j2AÞ ðA7Þ

If we take A to be normalized so that
R
dVΨ�

i A ¼ 1 even
for nonzero λ, then this implies that

δω̂ ¼ λ̃

Z
dVΨ�

i ðΨ2
211B

� þ jΨ211j2AÞ ðA8Þ

¼ λ̃

Z
dVΨ�

i jΨ211j2Ψi ðA9Þ

− λ̃2
X
k

1

ω̂i þ ω̂�
k

����
Z

dVΨ�
kΨ2

211Ψ�
i

����2 ðA10Þ

þ λ̃2
X
k

1

ω̂i − ω̂k

����
Z

dVΨ�
kjΨ211j2Ψ�

i

����2 ðA11Þ

The second and fourth lines of this expression give
behavior similar to standard perturbation theory.
However, the −1=ðω̂�

i þ ω̂kÞ factor in the second line gives
rise to qualitatively different effects. If the Ψi mode is
decaying, but the Ψk mode is damped sufficiently strongly
that Imðω̂i þ ω̂�

kÞ > 0, then Imð −1
ω̂iþω̂�

k
Þ > 0. Consequently,

the “mixing” with the Ψk mode contributes a growing term
to the perturbed Ψi mode. In our case, the 211 parametric
forcing gives the 322 mode a “mixing” with the decaying
100 mode (and the n00modes, etc), contributing a growing
term for 322. The perturbations to the 322 wave function
correspond to the forced oscillation discussed in Sec. III C.
Using Eq. (A11), we obtain the same 322 growth rate as
calculated from the forced-oscillation picture.
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Similarly, mixing with superradiant (rather than
decaying) modes contributes a negative imaginary part
to δω̂. This is again as we’d expect from the forced
oscillation picture. Including a growing 211 occupation
number, as is appropriate when 211 is still superradiant,
leads to more complicated expressions. However, since the
superradiant growth timescale is always much longer than
the oscillation period of ψ211, we can separate these
timescales, with 322 growth at a particular time being
driven by the 211 amplitude at that time.
This kind of perturbative analysis can be applied in the

hydrogenic approximation (at leading order in α), or using
numerical wave functions for the bound states, which will
be more accurate at higher α. In Fig. 21, we plot the decay
rate of the 100 level, relative to its leading-α power-law
behavior (the n00 levels have very similar behavior). The
lower panel of the figure also shows a numerical approxi-
mation to the rate of the 211 × 211 → 322 × BH process,
computed by numerically integrating the forced equation of

motion in the Kerr background (for practical reasons, over a
restricted range in α). The close correspondence between
the behaviors of these two rates illustrates that, for the
211 × 211 → 322 × BH process, the most significant high-
α corrections come from short-distance effects that affect
the flux across the horizon; at long distances from the BH,
the forcing term, and the forced oscillation, are not strongly
affected (at the α of interest).
The parametric forcing analysis above is not specific to

black hole superradiance. In the simplest case, if we had
two oscillators, with an oscillating coupling between them,

ẍþ ω2
0x ¼ f cosð2ωctÞy ðA12Þ

ÿþ γ _yþ ω2
1y ¼ f cosð2ωctÞx ðA13Þ

then the same kind of analysis would apply. In the absence
of the damping term γ, if ω0 þ ω1 is detuned from 2ωc,
then the system is not unstable to growth. Introducing γ
leads to the exponential growth of x, as per above.
While the above analyses were at the level of classical

equations, a similar analysis could be done in terms of
quantum master equations. The most important physical
difference is that, while the classical ground state is
stationary, quantum fluctuations are amplified by the
instability, so the ground states evolves into a probability
mixture of coherent states. This is precisely analogous to
the amplification of quantum fluctuations by superradiance,
as discussed in Sec. II.
From Eq. (A6), our perturbative treatment breaks down

when

λ̃
R
dVΨ�

kΨ2
211Ψ�

i

ω̂�
i þ ω̂k

≳ 1 ðA14Þ

In terms of the physical mode frequencies, ω̂�
i þ ω̂k ¼

ω�
i þ ωk − 2Reω211. For generic hydrogenic modes, this is

Oðα2Þμ, and in this case, the lhs of Eq. (A14) is para-

metrically ∼α3
M2

pl

f2 ε211, similarly to the self-energy correc-

tions [Eq. (H1a)]. As we discuss in Sec. V, the largest value
that ε211 attains decreases as we decrease f, and the
numerical value of this quantity is always small.
In special cases, the source term for the k oscillation can

be almost on resonance, and the denominator can become
smaller. We discuss a specific example in Sec. III C
[Eq. (22)], where it is Oðα4Þμ for the 211 × 311 → 322 ×
BH process. However, in this case, the source term does not
appear to grow large enough for there to be a problem, in
most of the parameter space of interest.
It is also possible to treat emission to infinity, e.g.,

through the 322 × 322 → 211 ×∞ process discussed in
Sec. III B, in terms of a parametric forcing, with loss to
infinity acting as like a damping term.

0.05 0.10 0.20 0.50

1

2

3

4

5

0.05 0.10 0.20 0.50

1

2

3

4

5

FIG. 21. Top panel: decay rates of the n00 hydrogenic levels,
for n ¼ 1 to 5, relative to their leading-order power-law behavior
as a function of α (for a BH with a� ¼ 0.9). Bottom panel: rate of
the 211 × 211 → 322 × BH process, for a BH with a� ¼ 0.9,
relative to its leading power-law behavior Γl:o: as a function of α
(see Table V). As discussed in Sec. III C, the deviation of this rate
from its leading-order form is mostly driven by the same short-
distance effects that modify the n00 decay rates.
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APPENDIX B: PERTURBATIVE CALCULATIONS
OF FREQUENCY SHIFTS AND RATES

In this Appendix, we will provide more detailed deri-
vations of the leading-α rates for quartic self-interaction
processes involving hydrogenic levels.
Up to corrections from self-gravity, the system obeys the

classical equation of motion

ðD2 − μ2Þφ ¼ −
λ

6
φ3; ðB1Þ

where D2 ¼ DνDν and Dν is the covariant derivative of the
Kerr geometry. Expending D2 to first order in rg=r, this
becomes

� ∂2

∂t2 − ∇⃗2 þ μ2
�
φ −

2α

r
ðμþ K̂Þ ¼ λ

6
φ3: ðB2Þ

The term

K̂ ¼ 1

r
∂
∂r − 2

�
μ2 þ ∂2

∂t2
�
−
L̂2

r2
ðB3Þ

is parametrically suppressed relative to μ for nonrelativistic
components of φ, and we drop K̂ except for calculations of
relativistic emissions. Here L̂2 denotes the total angular
momentum operator: L̂2Ym

l ¼ lðlþ 1ÞYm
l for the Laplace

spherical harmonics Ym
l ðθ;φÞ.

We seek a perturbative solution in the self-interaction
parameter λ,

φ ¼ φð0Þ þ λφð1Þ þ… ðB4Þ

At zeroth order,

� ∂2

∂t2 − ∇⃗2 þ μ2 −
2αμ

r

�
φð0Þ ¼ 0: ðB5Þ

This equation admits nonrelativistic (quasi)bound states
with hydrogenic waveforms and energies which we identify
with the superradiant cloud:

φð0Þ ≡X
nlm

φð0Þ
nlm ¼

X
nlm

ffiffiffiffiffiffiffiffiffiffi
Nnlm

2μ

s
e−iωnlmtψnlm þ c:c:; ðB6Þ

up to phases, where ψnlm are the normalized hydrogenic
wave functions

R jψnlmj2d3r⃗ ¼ 1.
To avoid secular terms at the next perturbative order, we

must also introduce a perturbation series for the normal
frequencies:

ωnlm ¼ ωð0Þ
nlm þ λωð1Þ

nlm þ…; ðB7Þ

where

ωð0Þ
nlm ¼ ωn þ iΓSR

nlm; ðB8Þ

ωn ≈ μ

�
1 −

α2

2n2

�
; ðB9Þ

and ΓSR
nlm is the superradiance rate. We call the energy

corrections Δωnlm ≡ λωð1Þ
nlm

At first order in perturbation theory, this gives a driven
massive Coulomb wave equation,

� ∂2

∂t2 − ∇⃗2 þ μ2 −
2αμ

r

�
φð1Þ

¼ 1

6
ðφð0ÞÞ3 þ

X
nlm

2μωð1Þ
nlmφ

ð0Þ
nlm: ðB10Þ

Plugging (B6) into (B10), and expanding the driving term
as a sum of harmonic driving terms gives

ðφð0ÞÞ3 ∼
X
Ω
fðr⃗;ΩÞe−iΩt þ c:c:; Ω > 0: ðB11Þ

Since φð0Þ ∼ a−3=20 μ−1=2 ∼ α3=2μ, the source fðr⃗Þ ∼ ðφð0ÞÞ3
scales as ∼α9=2μ3. The physical intuition behind that
scaling is that a cloud with larger α has a smaller character-
istic size a0 and therefore larger densities, enhancing the
rate of many-body processes.
The physical nature of the process associated to each

summand depends on the value of Ω:
(1) Ω − μ > 0 corresponds to free radiation emitted in

the continuum and travelling to infinity either with
nonrelativistic or relativistic velocities,

(2) Ω − μ < 0 and Ω ≠ ωn for all n is off-resonant
driving of discrete bound modes, i.e., the production
of off-shell particles trapped in the gravitational
well.

(3) Ω ¼ ωn for some n is resonant driving, which either
corresponds to resonant (on-shell) production of
particles inside the cloud, or to a correction to the
frequencies (one-particle energies) and waveforms
(one-particle states) of the zeroth-order normal
modes.

For clarity, we focus on the source

φð0Þðr⃗; tÞ ¼
ffiffiffiffiffiffiffiffiffi
N211

2μ

s
e−iω2tψ211ðr⃗Þ

þ
ffiffiffiffiffiffiffiffiffi
N322

2μ

s
e−iω3tψ322ðr⃗Þ þ c:c: ðB12Þ

for the remainder of this Appendix. The source (B12)
represents the only two levels of the cloud relevant to the
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intra-cloud dynamics at small enough α, as argued in
Sec. IV C and Appendix C 2 a.

1. Frequency corrections

The source term includes components at the frequency
ω2 of the 211 bound state,

1

6
ðφð0ÞÞ3 ⊃ e−iω2t

ð2μÞ3=2
�
1

2
N3=2

211ðψ211Þ2ψ�
211

þ N322

ffiffiffiffiffiffiffiffiffi
N211

p
ψ322ψ

�
322ψ211

�
: ðB13Þ

This source contains components in resonance with the
normal mode ψ211e−iω2t which would drive φð1Þ to very
large amplitudes, preventing a perturbative treatment. The

frequency correction ωð1Þ
211 is therefore determined by

demanding that those resonant components be exactly
cancelled:

ωð1Þ
211 ¼ −

1

4μ2

Z �
N211

2
jψ211j4 þ N322jψ322j2jψ211j2

�
d3r⃗:

ðB14Þ

The two terms in Eq. (B14) correspond to self-energy
corrections of the level 211 from its interaction with itself
and with 322, respectively. The integral can be computed
analytically by using the explicit form of the hydrogenic
waveforms ψ211 and ψ322.
Since bound state wave functions scale as ψnlm ∝

1=a−3=20 ∝ ðαμÞ3=2 and only depend on r⃗ through r=a0,

the frequency correction scales with α as ωð1Þ
nlm ∼ α3μ. A

denser cloud gives larger frequency corrections.
We calculated the integral of Eq. (B14) and the equiv-

alent for ωð1Þ
322 and we found the corrections:

Δω211 ≃ −λα3μð1.2 × 10−4N211 þ 3.5 × 10−5N322Þ

¼ −α5μ
�
Mpl

f

�
2

ð1.2 × 10−4ε211 þ 3.5 × 10−5ε322Þ

ðB15Þ

Δω322 ≃ −λα3μð3.5 × 10−5N211 þ 1.4 × 10−5N322Þ

¼ −α5μ
�
Mpl

f

�
2

ð3.5 × 10−5ε211 þ 1.4 × 10−5ε322Þ

ðB16Þ

2. l = 0 damped-driven oscillation

When Ω − μ < μ and Ω ≠ ωn for any n, the source
generates a forced bound oscillation which is damped by
the BH. For example, when the cloud consists of particles
in the 211 and 322 levels (B12), the frequency of the forced

oscillation is ωind ¼ 2ω2 − ω3 ¼ μð1 − 7α2=36Þ < μ, so
the oscillation is bound.
The bound state φð1Þ ⊃ e−iωindtΨð1Þðr⃗Þ þ c:c: satisfies the

time-independent equation for the complex field Ψð1Þ,

�
k2ind − ∇⃗2 −

2αμ

r

�
Ψð1Þðr⃗Þ ¼ 1

2

N211

ffiffiffiffiffiffiffiffiffi
N322

p
ð2μÞ3=2 ðψ211Þ2ψ�

322;

ðB17Þ

where k2ind ¼ μ2 − ω2
ind ≈ ð7=18Þα2μ2.

We expand Ψð1Þðr⃗Þ in the complete basis of the hydro-
genic differential operator −∇2 − 2αμ=r,

Ψð1Þðr⃗Þ ¼
X
nlm

cnlmψnlm þ
X
lm

Z
dkcðkÞψklm; ðB18Þ

where the eigenfunctions nlm of the discrete spectrum
satisfy

�
−∇2 −

2αμ

r

�
ψnlm ¼ −k2nψnlm; k2n ¼

α2μ2

n2
; ðB19Þ

with n a positive integer, and eigenfunctions klm of the
continuous spectrum obey

�
−∇2 −

2αμ

r

�
ψklm ¼ k2ψklm;

k
αμ

∈ ð0;þ∞Þ: ðB20Þ

Moreover, the eigenfunctions obey orthonormality
conditions:

Z
d3r⃗ψ�

nlmψn0l0m0 ¼ δn;n0δm;m0δl;l0 ; ðB21aÞ

Z
d3r⃗ψ�

klmψk0l0m0 ¼ 2πδðk0 − kÞδm;m0δl;l0 ; ðB21bÞ

Z
d3r⃗ψ�

klmψnl0m0 ¼ 0: ðB21cÞ

Explicitly, the states of the discrete spectrum are the usual
bound hydrogenic wave functions,

ψnlmðr; θ;φÞ ¼ RnlðrÞYm
l ðθ;φÞ; ðB22Þ

with the radial part

RnlðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

2

na0

�
3 ðn − l − 1Þ!
2nðnþ lÞ!

s

× exp

	
−r
na0


�
2r
na0

�
l
L2lþ1
n−l−1

	
2r
na0



; ðB23Þ
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where L2lþ1
n−l−1ðxÞ is the generalized Laguerre polynomial of

degree n − l − 1.
The states of the continuous spectrum are stationary

Coulomb waves [142],15

ψklmðr; θ;φÞ ¼ RklðrÞYm
l ðθ;ϕÞ ðB24Þ

with the radial part

RklðrÞ ¼
2keπ=ð2ka0ÞjΓðlþ 1 − i=ðka0ÞÞj

ð2lþ 1Þ!
× ð2krÞle−ikr1F1ði=ðka0Þ þ lþ 1; 2lþ 2; 2ikrÞ;

ðB25Þ

where 1F1 is the confluent hypergeometric function of the
first kind.
To obtain the coefficients cnlm, we put (B18) in (B17)

and integrate both sides against ψ�
n0l0m0 . We can then use the

Hermiticity of ð−∇2 − 2αμ=rÞ (which in this case amounts
to integrating by parts, so that −∇2 − 2αμ=r acts on ψ�

n0l0m0),
along with (B19) and (B21) to find

cnlm ¼ 1

k2ind − k2n

×
Z

1

2

N211

ffiffiffiffiffiffiffiffiffi
N322

p
ð2μÞ3=2 ðψ211Þ2ψ�

322ψ
�
nlmd

3r⃗: ðB26Þ

Similarly, the values of the transform cðkÞ are obtained by
integrating both sides of (B17) against ψk0l0m0 . The analogue
procedure then yields

cðkÞ ¼ 1

2π

1

k2ind þ k2

×
Z

1

2

N211

ffiffiffiffiffiffiffiffiffi
N322

p
ð2μÞ3=2 ðψ211Þ2ψ�

322ψ
�
klmd

3r⃗: ðB27Þ

It is appropriate to do these integrals in units of the Bohr
radius a0 ¼ ðαμÞ−1 to reconstitute the dependence on α.
The prefactors of kind, kn and k are naturally in units of a−10 ,

while bound state wave functions are in units of a−3=20 and
continuum wave functions are in units of a−10 . The cnlm’s
then have dimension a−10 μ−3=2 and cðkÞ has units of

a−1=20 μ3=2. The amplitude of the induced oscillation φð1Þ

therefore has units of a−5=20 μ−3=2 ¼ α5=2μ.
These overlap integrals are nonvanishing for l ¼ 0, 2, 4

and m ¼ 0. For l > 0 however, the angular momentum
barrier suppresses the field amplitude at the horizon, and
therefore the corresponding rates of absorption are smaller.

This in turn leads to a smaller induced growth rate, as
discussed previously. We therefore focus on l ¼ m ¼ 0 and
ignore the l ¼ 2, 4 terms.
For l ¼ 0 states, the power absorbed at the horizon in

terms of complex field Ψð1Þ goes as the square of the norm
at the origin:

Pabs ≈ 4α2
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

q �
λ2jΨð0Þð1Þj2: ðB28Þ

In terms of particles in the cloud carrying energy ≈μ, this
contributes

_Nc ⊃ −ΓdampN2
211N322; ðB29Þ

with

Γdamp ¼
Pabs

μN2
211N322

: ðB30Þ

3. Nonrelativistic emission

Generally, the source term ðφð0ÞÞ3 will generate some
driving terms oscillating at the frequency ωNRE

r ¼
ωn þ ωn0 − ωn00 . When ωNRE

r > μ, the driven oscillation
is free. These free emissions are nonrelativistic because
ωNRE
r ≈ μþOðα2Þ for the constituents of the superradiant

cloud. The superscript NRE (“nonrelativistic emissions”)
will be suppressed will be suppressed for the remainder of
this section.
Generically, we seek to solve

� ∂2

∂t2 − ∇⃗2 þ μ2 −
2αμ

r

�
φr ¼ e−iωrtfðr⃗Þ þ c:c:; ðB31Þ

where e−iωrtfðr⃗Þ is a localized source of radiation with
harmonic time-dependence, and φr ⊂ φð1Þ is the radiation
part of the field. The time-averaged differential power per
solid angle that such a source emits in the radiation zone at
infinity in the direction ðθk⃗;φk⃗Þ is

dhPi
dΩ

ðθk⃗;φk⃗Þ ¼ 2
ωrjk⃗j
ð4πÞ2 λ

2jf̃ðk⃗Þj2; ðB32Þ

where k⃗ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωrÞ2 − μ2

p
Þr̂ is the momentum at spatial

infinity, r̂ is a radial unit vector pointing in the direction
ðθk;φkÞ and f̃ðk⃗Þ is the “Coulomb” transform

f̃ðk⃗Þ ¼
X
lm

Ym
l ðθk;φkÞ

Z
d3r⃗ð4πÞð−iÞlfðr⃗Þψ

�
klmðr⃗Þ
2k

:

ðB33Þ

This is analogous to the usual Fourier transform that one
would compute for the emission rate in flat spacetime, with

15this is appropriate in the hydrogenic approximation, where
we take into account the Newtonian 1=r gravitational potential.
Corrections from the full Kerr potential will be higher order in α.
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the regular spherical Bessel functions having been replaced
by the appropriate regular Coulomb waves.
For nonrelativistic emissions, k ∼Oða−10 Þ. It was noted

earlier that fðr⃗Þ ∼ α9=2μ3. Furthermore, since it is a product
of hydrogenic wave functions, fðr⃗Þ depends on r⃗ only
through the combination r⃗=a0. On the other hand,
ψklmðr⃗Þ=2k is dimensionless and depends on r⃗ only through
the combination kr ∼ r=a0, for nonrelativistic k. Therefore,
all the dependence of (B33) on α can be extracted
by evaluating the intgeral in units of the Bohr radius
a0 ¼ ðαμÞ−1. Thus f̃ðk⃗Þ ∼ α3=2 and dhPi=dΩ ∼ λ2α4μ2.
The total radiated power is determined by integrating

(B32) over solid angles:

PNRE
r ¼

Z
dΩ

dhPi
dΩ

ðB34Þ

In terms of particles in the cloud, and particles radiated to
infinity with energy ωr ≈ μ, we have

_Nc ⊃ −ΓNRE
r NnlmNn0l0m0Nn”l”m”; ðB35Þ

with the rate

ΓNRE
r ¼ PNRE

r

μNnlmNn0l0m0Nn”l”m”
: ðB36Þ

A particularly important process is 211×211→322×∞.
This is sourced by

1

6
ðφð0ÞÞ3 ⊃ e−ið2ω3−ω2Þt

×
1

2

N322

ffiffiffiffiffiffiffiffiffi
N211

p
ð2μÞ3=2 ðψ322Þ2ψ�

211 þ c:c: ðB37Þ

By substituting

fðr⃗Þ → 1

2

N322

ffiffiffiffiffiffiffiffiffi
N211

p
ð2μÞ3=2 ðψ322Þ2ψ�

211 ðB38Þ

in the above, we obtain the rate in Table II.

4. Relativistic emission

The source term ðφð0ÞÞ3 will also contain terms oscillat-
ing at the frequency ωRE

r ¼ωnþωn00 þωn000. When ωRE
r > μ,

the driven oscillation is free. These free emissions are
relativistic because ωr ≈ 3μþOðα2Þ for the constituents
of the superradiant cloud. Cubic self-interactions would
also generate relativistic emissions through ðφð0ÞÞ2 in the
equations of motion. In this case ωRE

r ≈ 2μþ α2.
For the remainder of this section, the superscript RE

(“relativistic emissions”) will be suppressed. As is the

case for nonrelativistic emissions, the radiated power is
controlled by the integral (B33) which projects the source
onto the Coulomb scattering state with outgoing momen-
tum k⃗. The source fðr⃗Þ is a product of hydrogenic wave
functions,

fðr⃗Þ≃ −λ=6
ð2μÞ3=2N

3=2
211ψ

3
211

¼ λ

768π
ffiffiffiffiffi
70

p α3=2a−30 ðr=a0Þ3e−3r=ð2a0ÞY33N
3=2
211 ðB39Þ

For nonrelativistic emission, k ∼ a−10 so we need to use the
full form of the Coulomb scattering state. In contrast, for
relativistic emission, k ∼ μ ∼ α−1a−10 , so ka0 ∼ α−1 is a
large parameter. As a result, we can expand the radial part
of the Coulomb wave function around its flat-space,
spherical Bessel function form.
It turns out that the contributions to f̃ðk⃗Þ from the sphe-

rical Bessel function, and from the leading-α correction, are
at the same order in α. This effectively occurs due to the
contribution from the spherical Bessel function suffering a
“cancellation,” making it higher-order in α than a naive
guess based on the behavior of fðr⃗Þ near the origin would
have indicated. The integral against the leading-α correc-
tion term does not suffer this kind of cancellation, making
the contributions from both of the same order. This is why
our result for the emitted power [Eq. (15)] has the same α
dependence as that derived in [6] using a flat-space
approximation, but has a larger constant factor ([6] also
treats emission as light-like, taking ω2

r ¼ k2 rather than
ω2 ¼ k2 þ μ2).
Higher-order corrections, and effects from working in

the full Kerr metric instead of just a 1=r potential, all
contribute to the emitted power at higher order in α.

APPENDIX C: MIXING BEYOND 211 AND 322

1. Selection rules for mixing with damped states

As explained in Appendix A, in the presence of
a quartic self-coupling λ, one can view a background
SR cloud φcðr⃗; tÞ ∼ e−iμtψ211ðtÞ þ e−iμtψ322ðtÞ þ c:c as
providing a time-dependent mixing potential Vmixing ∼
λe−i2μtðψ211ðtÞ2 þ ψ211ðtÞψ322ðtÞ þ ψ322ðtÞ2Þ between
states. In particular, if the mixing matrix element
hψn0l0m0 jVmixingjψ�

nlmi between a superradiant state ψnlm

and a decaying state ψn0l0m0 is nonvanishing, then a forced
oscillation ∝ ψn0l0m0 is sustained and a growth instability is
induced for ψnlm.
We are therefore interested in the selection rules when

Vmixing ∼ ψ2
211 ∼ Y2

2, Vmixing ∼ψ211ψ322∼Y3
3, and Vmixing ∼

ψ2
322 ∼ Y4

4. In each case, Vmixing ∼ Ym00
l00 can be viewed as

an element of an irreducible tensor operator representation
of the rotation group with angular momentum numbers
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ðl00; m00Þ.16 Considering further that, ψ�
nlm ∝ Y−m

l , then
by the Wigner-Eckart theorem hψn0l0m0 jVmixingjψ�

nlmi ∝
ðl; l00;−m;m00jl0m0Þ, where ðj1; j2; m1; m2jJ;MÞ≡
hj1; j2; m1; m2jj1; j2; J;Mi is the Clebsch-Gordon (CG)
coefficient for the addition of two irreducible angular
momentum representations j1 and j2. Furthermore, since
the parity of a spherical harmonic Ym

l is ð−1Þl, inserting
parity transformations inside the matrix element yields
hψn0l0m0 jYm00

l00 jψ�
nlmi ¼ ð−1Þlþl0þl00 hψn0l0m0 jYm00

l00 jψ�
nlmi.

From this we get the selection rules for an induced
growth instability to develop:
(1) Mixing with a damped state: m0 ≤ 0,
(2) CG coefficient: m00 ¼ m0 þm,
(3) CG coefficient: jl − l00j ≤ l0 ≤ lþ l00,
(4) Invariance under parity: lþ l0 þ l00 ¼ even.

The first rule assumes that the spin in the BH is such that
m ≥ 1 states are SR.

2. Dependence of rates on the quantum numbers

a. Dependence of rates on overtone number n

The sources components ψ211 and ψ322 are peaked
within a few Bohr radii, while hydrogenic wave functions
in general are peaked further and further away from the
origin as the quantum numbers are taken to be larger and
larger. Thus, the interaction of a level nlm with a
combination of 211 and 322 will depend on the behavior
of Rnl near the a0:

Rnlðr ∼ a0Þ

∼
�

2

ðnr þ lþ 1Þa0

�
3=2

�
1

2ðnr þ lþ 1Þ
�

1=2

×

�ðnr þ 2lþ 1Þ!
nr!

�
1=2 1

ð2lþ 1Þ!
�

2r
ðnr þ lþ 1Þa0

�
l
;

ðC1Þ

where nr ¼ n − l − 1 is the radial quantum number. If
nr → ∞, while l is held fixed,

Rnlðr ∼ a0Þ ∼
�

1

nra0

�
3=2

∼
�

1

na0

�
3=2

: ðC2Þ

Thus, any overlap integral with Rnl decreases as
∼n−3=2r ∼ n−3=2. This is simply saying that as nr is taken
larger, the characteristic volume of the driving wave
function ψnlm gets larger as ∼ðna0Þ3, and so the driving
is uniformly diluted by that same factor. A forced

oscillation with a ψnl component as a source term therefore
suffers the same suppression.
Rates (whether emission rates or rates of absorption into

the BH) depend on the square of the forced oscillation and
therefore behave as ∝ n−3 in the limit of large n. This
means that ratios of emissions and absorption processes
become independent of n.
The discussion in Sec. IV C relied on the behavior of

various ratios of rates at large n. To assess how fast the
relevant ratios converge to the expected scaling in n, we
plot them for the first 200n (Figs. 22, 23, 24, 25, 26).

b. Mixing with l0 = 0 damped states

The analysis of levels that can grow from 211 and 322
mixing with an l0 ¼ 0 forced oscillation is done in the main
text (IV C).

FIG. 22. Behavior of the first term in the ratio in (65) as n → ∞.
As discussed in the paragraph below (65), and as expected from
C 2 a, the ratio rapidly becomes independent of n and is
>1 for n≳ 10.

FIG. 23. Behavior of the ratio in (66) as n → ∞. As expected
from C 2 a, the ratio rapidly becomes independent of n.

16Strictly speaking, since the Kerr metric breaks spherical
symmetry, l is not a good quantum number (thoughm is, since we
still have axial symmetry). However, since the metric terms
that break spherical symmetry are suppressed at large r=rg, they
lead to effects that are suppressed by more powers of α in the
hydrogenic limit.
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c. Mixing with l0 > 0 damped states

We give an exhaustive list of the possible processes
involving mixing with l0 ¼ 1 and l0 ¼ 2 damped states.

For l0 ¼ 1,

γ655×BHð1;−1Þ322×322 ðεeq322Þ2 ∼ 105
�

α

0.3

�
15
�
M⊙

M

�
Myr−1; ðC3aÞ

γ654×BHð1;0Þ322×322 ðεeq322Þ2 ∼ 104
�

α

0.3

�
16
�
M⊙

M

�
Myr−1; ðC3bÞ

γ543×BHð1;0Þ211×322 εeq211ε
eq
322 ∼ 106

�
α

0.3

�
13
�
M⊙

M

�
Myr−1; ðC3cÞ

γ432×BHð1;0Þ211×211 ðεeq211Þ2 ∼ 107
�

α

0.3

�
10
�
M⊙

M

�
Myr−1: ðC3dÞ

For l0 ¼ 2,

γ766×BHð2;−2Þ322×322 ðεeq322Þ2 ∼ 10−2
�

α

0.3

�
19
�
M⊙

M

�
Myr−1; ðC4aÞ

γ765×BHð2;−1Þ322×322 ðεeq322Þ2 ∼ 10−3
�

α

0.3

�
19
�
M⊙

M

�
Myr−1; ðC4bÞ

γ764×BHð2;0Þ322×322 ðεeq322Þ2 ∼ 10−4
�

α

0.3

�
20
�
M⊙

M

�
Myr−1; ðC4cÞ

γ653×BHð2;0Þ211×322 εeq322ε
eq
211 ∼ 10−3

�
α

0.3

�
17
�
M⊙

M

�
Myr−1; ðC4dÞ

γ542×BHð2;0Þ211×211 ðεeq211Þ2 ∼ 10−4
�

α

0.3

�
14
�
M⊙

M

�
Myr−1: ðC4eÞ

Clearly, rates for processes involving l0 ≥ 2 are too small to
be relevant on astrophysical timescales. Rates from mixing
with l0 ¼ 1 states however can become quite large for
α ¼ Oð0.1Þ, but, similarly to processes with l0 ¼ 0, they
should be compared to depletion processes of the form
nlm × 322 → 211 ×∞.
First,

_ε655¼ γ655×BHð1;−1Þ322×322

�
1−

γ211×∞655×322

γ655×BHð1;−1Þ322×322

ε211
ε322

�
ε2322ε655: ðC5Þ

The depletion term dominates as long as

αr̃1=9þ ≲
�

κ211×∞655×322

κ655×BHð1;−1Þ322×322

2κ211×∞322×322

κ322×BHð0;0Þ211×211

�
1=9

≈ 0.7: ðC6Þ

Next,

_ε654 ¼ γ654×BHð1;0Þ322×322

�
1 −

γ211×∞654×322

γ654×BHð1;0Þ322×322

ε211
ε322

�
ε2322ε654: ðC7Þ

The depletion term dominates as long as

(n
/
20

0)
3
κ

n
2
2
×

B
H

2
1
1
×

2
1
1
/κ

2
0
0
,2

,2
×

B
H

2
1
1
×

2
1
1

FIG. 24. Behavior of the growth ratio 211 × 211 → n22 × BH
normalized to its value at n ¼ 200. As stated in (69), the ratio
scales as n−3.

(κ
2
1
1
×
∞

3
2
2
×

n
3
3
/
κ

n
3
3
×

B
H

2
1
1
×

3
2
2
)1

/
3

FIG. 25. Behavior of the ratio in (72) as n → ∞. As expected
from C 2 a, the ratio rapidly becomes independent of n.
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2
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1
×

2
1
1
/
κ

2
1
1
×
∞

3
2
2
×

3
2
2
)(

κ
n
4
4
×

B
H

3
2
2
×

3
2
2
/
κ

2
1
1
×
∞

3
2
2
×

n
4
4
)) −

1
/
6

FIG. 26. Behavior of the ratio in (74). As expected from C 2 a,
the ratio rapidly becomes independent of n.
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αr̃1=10þ ≲
�

κ211×∞654×322

κ654×BHð1;0Þ322×322

2κ211×∞322×322

κ322×BHð0;0Þ211×211

�
1=10

≈ 0.7: ðC8Þ

Next,

_ε543 ¼ γ543×BHð1;0Þ211×322

�
1 −

γ211×∞543×322

γ543×BHð1;−1Þ211×322

�
ε322ε211ε543: ðC9Þ

The depletion term dominates as long as

αr̃1=7þ ≲
�

κ211×∞543×322

κ543×BHð1;0Þ211×322

�
1=7

≈ 1: ðC10Þ

Finally,

_ε432 ¼ γ432×BHð1;0Þ211×211

�
1 −

γ211×∞432×322

γ432×BHð1;0Þ211×211

ε322
ε211

�
ε322ε211ε432:

ðC11Þ

The depletion term dominates as long as

α≲
�

κ211×∞432×322

κ432×BHð1;0Þ211×211

1

2

κ322×BHð0;0Þ211×211

κ211×∞322×322

�1=4

≈ 1: ðC12Þ

Since 211 SR stops for α ≥ 0.5, we conclude that the net
growth rate of all four levels (and their radial overtones) is
negative over the whole range of relevant parameter space.

APPENDIX D: EQUILIBRIUM RATIO FOR
MODERATE SELF-INTERACTIONS

We derive a more precise formula for the value of the
time-independent equilibrium ratio by the system of equa-
tions (46). In terms of the γ rates,

_ε211 ¼ γ211×∞322×322ε211ε
2
322 − 2γ322×BH211×211ε

2
211ε322; ðD1aÞ

_ε322 ¼ −2γ211×∞322×322ε211ε
2
322 þ γ322×BH211×211ε

2
211ε322: ðD1bÞ

Therefore,

1

ε211ε322

d
dt

�
ε322
ε211

�

¼ γ322×BH211×211 þ 2ðγ322×BH211×211 − γ211×∞322×322Þ
�
ε322
ε211

�

− γ211×∞322×322

�
ε322
ε211

�
2

: ðD2Þ

The zeros of the right-hand side are

ηB ¼ 1

γ211×∞322×322

�
γ322×BH211×211 − γ211×∞322×322

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ322×BH211×211Þ2 − γ322×BH211×211γ

211×∞
322×322 þ ðγ211×∞322×322Þ2

q �
:

ðD3Þ

Since the right-hand side is an inverted parabola, the “þ”
solution is dynamically stable (attractive), while the “−”
solution is unstable. Parametrically, γ322×BH211×211 ∝ α11 and
γ211×∞322×322 ∝ α8. Therefore at small α, γ322×BH211×211 < γ211×∞322×322,
and so the “−” root is negative. Moreover, the “þ” root is

ðηBÞsmallα ≈
1

2

γ322×BH211×211

γ211×∞322×322
¼ εeq322

εeq211
: ðD4Þ

TABLE IV. Rates for gravitational processes involved in the
evolution of the scalar cloud.

Process Rate [γ=μ, Eq. (32)]

ΓSR
211 4 × 10−2α8ða� − 2αð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
ÞÞ

ΓSR
322 8 × 10−5α12ða� − αð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
ÞÞ

ΓSR
433 2 × 10−8α16ða� − 2

3
αð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
ÞÞ

ΓSR
544 2 × 10−12α20ða� − 1

2
αð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
ÞÞ

ΓGW;ann
211

1 × 10−2α14

ΓGW;ann
322

3 × 10−8α18

ΓGW;tr
322→211

5 × 10−6α10

TABLE V. Rates for quartic processes involving nonrelativistic
bound states.

Process Rate [γ=μ, Eq. (32)]

Γ322×BH
211×211 4.3 × 10−7α11ðMpl

f Þ4ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þ

Γ422×BH
211×211 1.5 × 10−7α11ðMpl

f Þ4ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þ

Γ322×BH
211×411 2.5 × 10−8α11ðMpl

f Þ4ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þ

Γ322×BH
411×411 9.8 × 10−11α11ðMpl

f Þ4ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þ

Γ433×BH
211×322 9.1 × 10−8α11ðMpl

f Þ4ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þ

Γ544×BH
322×322 1.9 × 10−9α11ðMpl

f Þ4ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þ

Γ544×BH
211×433 1.1 × 10−9α11ðMpl

f Þ4ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þ

Γ655×BH
322×433 2.8 × 10−10α11ðMpl

f Þ4ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þ

Γ655×BH
211×544 3.6 × 10−12α11ðMpl

f Þ4ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þ

Γ766×BH
433×433 2.1 × 10−10α11ðMpl

f Þ4ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þ

Γ877×BH
433×544 5.2 × 10−12α11ðMpl

f Þ4ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þ

Γ988×BH
544×544 1.6 × 10−12α11ðMpl

f Þ4ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þ

Γ1099×BH
544×655 5.6 × 10−13α11ðMpl

f Þ4ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þ

Γ433×200
211×422 1.1 × 10−9α7ðMpl

f Þ4ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
Þ
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APPENDIX E: BOUNDARY OF THE REGIME
OF EARLY EQUILIBRIUM

We derive a more precise formula for the value of f=Mpl
such that the SR growth of 211 is halted beforeOð1Þ of the
spin is extracted. At early times, if we neglect the
dependence of γSR211 on the BH spin a�,

ε211ðtÞ ≈
1

GM2
eγ

SR
211

t: ðE1Þ

We use this into

_ε322 ¼ γ322×BH211×211ε
2
211ε322; ðE2Þ

where we neglect the dependence of γ322×BH211×211 on a�.
Therefore

ε322ðtÞ ≈
1

GM2
exp

	
γ322×BH211×211

2γSR211

1

G2M4
ðe2γSR211t − 1Þ



: ðE3Þ

The condition for SR to be impeded is that

γSR211 ≃ 2γ322×BH211×211ε211ðtÞε322ðtÞ: ðE4Þ

Using the approximations (E1) and (E3), one finds that (E4)
is satisfied at the time teq such that

γSR211teq ≈
1þ 4β log β − 2βWð1

2
βe1=2βÞ

4β
; ðE5Þ

where

β≡G2M4
γSR211

2γ322×BH211×211

; ðE6Þ

and WðzÞ is the product logarithm (sometimes called the
Lambert W function).
When γSR211t ≃ logðGM2Δa�Þ, then SR has happened

completely. So, in order for (E4) to be obtained before
SR has run its course, we must have

1þ 4β log β − 2βWð1
2
βe1=2βÞ

4β
≲ log ðGM2εmax

211 Þ: ðE7Þ

(E7) implicitly defines fthresh. Note that since M ≫ Mpl,
β ≫ 1 for much of parameter space. One can then approxi-
mateWðzÞwith the leading terms of its expansion around a
large argument: WðzÞ → log z − logðlog zÞ as z → þ∞. In
this approximation, the left-hand side of (E7) becomes
≈ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β log β

p
, and the condition for SR to be halted early

simplifies to

2γSR211 logðGM2Þ ≲ γ322×BH211×211ðεmax
211 Þ2: ðE8Þ

APPENDIX F: CLOUD MASS

Here we calculate the mass of the cloud in the case
f → ∞, i.e., in the purely gravitational case. We will do the
computation for the 211 level for clarity, but it is straight-
forward to generalize the formalism to any nlm level. To
simplify notation, we drop the level subscripts for the rest
of our discussion here. The cloud parameters are referring
to 211, unless stated otherwise.
Since the BH loses <0.1% of its mass due to SR, we

usually treat its mass to be constant, or, equivalent, that
α is just a parameter. In the case of self-interactions, in
particular, the cloud tends to grow to a smaller occupation

TABLE VI. Rates for quartic processes leading to nonrelativ-
istic emission.

Process Rate [γ=μ, Eq. (32)]

Γ100×∞
211×211 1.3 × 10−7α8ðMpl

f Þ4
Γ100×∞
211×322 8.5 × 10−9α8ðMpl

f Þ4
Γ100×∞
322×322 1.1 × 10−10α8ðMpl

f Þ4
Γ211×∞
322×411 3.8 × 10−9α8ðMpl

f Þ4
Γ211×∞
322×322 1.1 × 10−8α8ðMpl

f Þ4
Γ211×∞
322×433 2.6 × 10−9α8ðMpl

f Þ4
Γ211×∞
433×433 9.2 × 10−11α8ðMpl

f Þ4
Γ211×∞
322×544 6.1 × 10−11α8ðMpl

f Þ4
Γ211×∞
433×544 1.9 × 10−11α8ðMpl

f Þ4
Γ211×∞
544×544 4.2 × 10−13α8ðMpl

f Þ4
Γ322×∞
544×544 4.4 × 10−11α8ðMpl

f Þ4
Γ322×∞
433×544 7.8 × 10−10α8ðMpl

f Þ4
Γ21−1×∞
322×322 2.3 × 10−10α8ðMpl

f Þ4
Γ211×∞
655×322 7.3 × 10−13α8ðMpl

f Þ4
Γ211×∞
655×433 4.6 × 10−13α8ðMpl

f Þ4
Γ211×∞
655×544 6.9 × 10−14α8ðMpl

f Þ4
Γ211×∞
655×655 1.1 × 10−15α8ðMpl

f Þ4
Γ322×∞
655×433 3.7 × 10−11α8ðMpl

f Þ4
Γ322×∞
655×544 1.6 × 10−11α8ðMpl

f Þ4
Γ322×∞
655×655 6.2 × 10−13α8ðMpl

f Þ4
Γ433×∞
766×766 5.6 × 10−13α8ðMpl

f Þ4

TABLE VII. Rates for self-interaction induced relativistic
emission processes.

Process Rate [γ=μ, Eq. (32)]

Γ2→1
211 ðcubicÞ 1.9 × 10−4α14jCj2ðMpl

f Þ2
Γ3→1
211 5 × 10−9α21ðMpl

f Þ4
Γ3→1
322 6 × 10−14α27ðMpl

f Þ4
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number, which strengthens this assumption. A further
simplification comes from setting ω ≃ μ. By noting that
ε ¼ − _a� in this regime, we get that εmax ¼ Δa�. The final
a� can be found by setting the SR rate equal to zero.
Eventually, the maximum occupation number one gets is

εmax ¼ a�ð0Þ −
4α

1þ 4α2
: ðF1Þ

In general, the equations we need to solve are

_N ¼ γSRN ðF2aÞ

_M ¼ −ω211γSRN ðF2bÞ

_J ¼ −γSRN ðF2cÞ

a� ≡ J
GM2

ðF2dÞ

where

ω211 ¼ μ

�
1 −

α2

8

�
: ðF2eÞ

We define the ε with respect to the initial BH mass Mi,
i.e., ε ¼ N=GðMiÞ2 and Eqs. (F2) become:

_ε ¼ γSRε ðF3Þ

_α ¼ −α2i

�
1 −

α2

8

�
_ε ðF4Þ

_a� ¼ −
_α

α

	
2a� −

1

αð1 − α2=8Þ



ðF5Þ

where αi ¼ αðt ¼ 0Þ, given by the initial BH mass. The
usual treatment is to expand these equations for small α,
which is equivalent to neglecting terms of order OðαÞ. This
reduces Eq. (F4) to _α ¼ 0. However, the expansion in
Eq. (F5) has to be taken more carefully because the
denominator is also small in this limit. By substituting
Eq. (F4) it becomes evident that the first term is of order
OðαÞ, whereas the second is independent of α. Therefore,
we can neglect the former, which gives the standard
result _a� ¼ −_ε.
Equation (F4) has the following solution

α ¼ −2
ffiffiffi
2

p
tanh

	
1

4

� ffiffiffi
2

p
α2i ε − 4arctanh

	
αi

2
ffiffiffi
2

p

�


: ðF6Þ

Now, Eq. (F5) can also be solved analytically. The result is

a� ¼
1

α2

	
a0α2i − 2

ffiffiffi
2

p
arctanh

�
2

ffiffiffi
2

p ðα − αiÞ
−8þ ααi

�

: ðF7Þ

The final spin of the BH is that which saturates the SR
condition ω −mΩH is

afin� ¼ −
8ð−8αfin þ α3finÞ

16þ 64α2fin − 16α4fin þ α6fin
; ðF8Þ

where the “fin” superscript denotes final quantities, after
the 211 cloud has been saturated and the BH has spun
down.
Now we can use Eqs. (F6), (F7) and (F8) to numerically

solve for εmax, the final occupation number of the cloud.
The mass of the cloud is then Mc ¼ εmaxGðMiÞ2ω.
By neglecting the α2 term in Eq. (F2e), i.e., by

approximating ω ≃ μ, we can get a simpler analytic result
for the final BH mass. In this case, the equivalents of
Eqs. (F6), (F7) are

α ¼ αið1 − αiεÞ ðF9Þ

a� ¼
a0 − ε

ð1 − αiεÞ2
ðF10Þ

which can be used along with Eq. (F8), truncated toOðα2Þ,
to give the final occupation number of the cloud. We find
that

εmax ¼
1 − 8α2i þ 8α3i a0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16α2i þ 32a0α3i − 16a20α

4
i

p
8ð−α3i þ a0α4i Þ

ðF11Þ

where a0 ¼ a�ðt ¼ 0Þ.
In Fig. 27 we plot the ratio of the final cloud mass over

the initial BH mass. We solve numerically Eq. (F8) with

FIG. 27. Ratio of the final mass of the cloud to the initial
BH mass. We plot points from the numerical evolution of
Eqs. (F3)–(F5), the full analytic result of Eqs. (F6)–(F8), as well
as the _α ¼ 0 approximation of Eq. (F1) and the ω211 ≃ μ; _α ≠ 0
approximation of (F11). The cloud can grow to have a mass of
up to 7% of the initial BH mass. This plot assumes an initial spin
a�ðt0Þ ¼ 0.9.
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respect to εmax and compare it to the numerical evolution of
Eqs. (F3)–(F5). We also plot the results of Eq. (F1) and
Eq. (F11) for comparison. We find that the mass of the
cloud can grow up to 7% of the initial BH mass.

APPENDIX G: SELF-GRAVITY
ENERGY CORRECTIONS

The Poisson equation for the gravitational potential
sourced by the cloud is

∇2ΦSG ¼ 4πGμjψ j2 ðG1Þ

where ψ is the wave function of the cloud, i.e.,

ψðrÞ ¼
X
nlm

ffiffiffiffiffiffiffiffiffiffi
Nnlm

p
ψnlm ðG2Þ

where Nnlm are the occupation numbers of the levels and
ψnlm the hydrogenic wave functions. Treating ΦSG as a
small perturbation, the energy correction of the ðn; l; mÞ
level is

Δωnlm ¼ hnlmjμΦSGjnlmi

¼ −Gμ2
Z

jψnlmðrÞj2
Z jψðr0Þj2

jr − r0j d
3r0d3r ðG3Þ

Expanding 1=jr − r0j in spherical harmonics we get

1

jr − r0j ¼ 4π
X∞
l0¼0

Xl0
m0¼−l0

1

2l0 þ 1

rl
0
<

rl
0þ1
>

Ym0�
l0 ðθ0;ϕ0ÞYm0

l0 ðθ;ϕÞ;

ðG4Þ

where r<ð>Þ is the smallest (largest) of r and r0. We can
perform the integration over θ and ϕ, since ψnlm ∝ Ym

l . By
the selection rules of the spherical harmonics we can write

Ym
l Y

m�
l ¼

Xl

k¼0

ck;lmY0
2k; ck;lm ¼

Z
jYm

l j2Y0�
2kdΩ: ðG5Þ

Therefore, the integral over θ and ϕ selects m0 ¼ 0 and
l0 ¼ 2k, giving

Δωnlm ¼ −4πGμ2
Xl

k¼0

ck;lm
4kþ 1

Z
RnlðrÞr2

×
Z

jψðr0Þj2 r2k<
r2kþ1
>

Y0�
2kðθ0;ϕ0Þd3r0dr ðG6Þ

where Rnl are the hydrogenic radial wave functions.
We will now make the simplifying assumption that the
ψ given by Eq. (G2) is a sum of levels such that
ðn; l; mÞ ¼ ðlþ 1; l; lÞ, which is the case treated in this
work. Since jψ j2 is integrated against Y0

2k, only the terms

consisting of products of complex conjugates will survive.
Thus, we can substitute the integrand as follows:

jψðr0ÞjY0�
2kðθ0;ϕ0Þ

→
X
l0¼0

jN1=2
l0þ1;l0;l0Rl0þ1;l0 ðr0Þj2jYl0

l0 ðθ0;ϕ0Þj2Y0�
2kðθ0;ϕ0Þ: ðG7Þ

Then the integral over θ0 and ϕ0 is just ck;l0l0 , as defined in
Eq. (G5). Note that this integral is nonzero only for l0 > k.
Thus, we can rewrite the sum

P
l0¼0 →

P
l0¼k. The coef-

ficients ck;l0l0 have a simple analytic form

ck;l0l0 ¼ ð−1Þk 2l
0 þ 1ffiffiffiffiffiffi
4π

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
4kþ 1

p ð2l0Þ!ð2kÞ!ðl0 þ kÞ!
ðk!Þ2ð2l0 þ 2kþ 1Þ!ðl0 − kÞ! ;

for k < l0: ðG8Þ

The energy corrections are then

Δωnlm ¼ −4πGμ2
Xl

k¼0

ck;lm
4kþ 1

X
l0¼k

Nl0þ1;l0;l0ck;l0;l0Ikl
0

nl ðG9Þ

where the last quantity is the radial integral given by

Ikl
0

nl ¼
Z

R2
nlðrÞ

Z
R2
l0þ1;l0 ðr0Þ

r2k<
r2kþ1
>

r02r2dr0dr; ðG10Þ

which can be calculated analytically. Assuming a simulta-
neous occupation of just 211 and 322, the corrections are

Δω211 ≃ −
α3μ

GM2
ð0.19N211 þ 0.11N322Þ ðG11Þ

Δω322 ≃ −
α3μ

GM2
ð0.11N211 þ 0.09N322Þ ðG12Þ

APPENDIX H: FREQUENCY DRIFTS

The corrections to the energy of the 211 and 322 levels
from self-interactions and self-gravity were calculated in
Appendixes B 1 and G respectively. The angular frequency
of a particle occupying 211 or 322 is

ω211 ¼ μ

�
1 −

α2

8

�
− μα5

�
Mpl

f

�
2

ðκλ1ε211 þ κλ2ε322Þ

− μα3ðκgr1 ε211 þ κgr2 ε322Þ; ðH1aÞ

ω322 ¼ μ

�
1 −

α2

36

�
− μα5

�
Mpl

f

�
2

ðκλ3ε211 þ κλ4ε322Þ

− μα3ðκgr3 ε211 þ κgr4 ε322Þ; ðH1bÞ
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where α¼μMMpl
−2 and κλ1 ¼ 1.2 × 10−4, κλ2 ¼ 3.5 × 10−5,

κgr1 ¼ 0.19, κgr2 ¼ 0.11, κλ3 ¼ 3.5 × 10−5, κλ4 ¼ 1.4 × 10−5,
κgr3 ¼ 0.11 and κgr4 ¼ 0.09 are numerical coefficients.
In what follows, we define the frequency ν as

ν≡ ω

2π
: ðH2Þ

So the frequency drifts _ν are given by,

_ν211 ¼ −
μα2

2π

	
1

4

_α

α
þ α2

�
Mpl

f

�
2

× ½αðκλ1 _ε211 þ κλ2 _ε322Þ þ 5ðκλ1ε211 þ κλ2ε322Þ _α�

þ þ½αðκgr1 _ε211 þ κgr2 _ε322Þ þ 3ðκgr1 ε211 þ κgr2 ε322Þ _α�



ðH3aÞ

_ν322 ¼ −
μα2

2π

	
1

18

_α

α
þ α2

�
Mpl

f

�
2

× ½αðκλ3 _ε211 þ κλ4 _ε322Þ þ 5ðκλ3ε211 þ κλ4ε322Þ _α�

þ þ½αðκgr3 _ε211 þ κgr4 _ε322Þ þ 3ðκgr3 ε211 þ κgr4 ε322Þ _α�



ðH3bÞ

to leading order in α for every term.
The mass of the BH evolves according to (37), which can

be written equivalently as an equation for α as

_α ≃ −α2ðγSR211ε211 þ γSR322ε322 − γ322×BH211×211ε
2
211ε322Þ: ðH4Þ

As a result, the last terms in the second and third row of
Eqs. (H3a) and (H3b) are parametrically suppressed by an
additional power of α and εi compared to the respective first
term and thus will be neglected in what follows. In addition,
all drifts are given to leading order in α and are the
maximum possible for each individual regime.
In what follows we calculate the frequency drifts of the

GWs coming from annihilations of two 211 particles and
from transitions from 322 to 211. These are given by the
relations _νann ≡ 2_ν211 and _νtr ≡ _ν322 − _ν211 We separate the
sources of frequency drifts in the following categories:
(1) Due to the change of the mass of the BH, given by

the first terms of (H3a) and (H3b), denoted as να.
(2) Due to the change in the self-interaction energy,

given by the second term of (H3a) and (H3b),
denoted as νλ.

(3) Due to the change in the self-gravitational energy,
given by the third term of (H3a) and (H3b), denoted
as νgr.

In the regime of small self-interactions we treat the
depletion due to gravitational radiation (annihilations and

transitions) separately for points 2 and 3 above, and we
denote by the superscript “GW”.
We also note that there is an additional source of

frequency drift coming from the change of the radial
velocity of the BH to the observer, but for isolated black
holes it is _νDoppler < 10−19 Hz=s [40], which is negligible.
For reference, LIGO/Virgo continuous wave searches

currently cover a range of positive to negative frequency
derivatives of [83]

2 × 10−9 Hz=s through − 1 × 10−8 Hz=s: ðH5Þ

All drift calculations carried out here are to leading
approximation in α [which is accurate only for α ≪ a�ð0Þ]
but the formalism includes in principle all higher-order
corrections. At higher α the calculations can be carried out
numerically using the full expressions and the numerical
rates, but at α ≳ 0.2 the approximation of the two-level
system essentially breaks down. We have verified that,
for our purposes, the leading order approximation gives
accurate results.

1. Small self-coupling

Here we revisit the frequency drifts from purely gravi-
tational interactions, i.e., f → ∞ as described in [12],
which corresponds to region (A) of Fig. 3. There is a clear
separation of times when different levels grow, so whenever
a higher level gets populated, the lower ones have already
fallen back into the BH, as their SR rates have become
negative. In what follows, we will consider only 211, from
which comes the stronger signal.
The interesting region for signatures is when the BH has

spun down, the level has saturated and slowly gets depleted
by radiating GWs. The only source of a frequency drift then
comes from the gravitational self-energy of the cloud, given
by the last line of Eqs. (H3a) and (H3b). In particular, the
last term is exactly zero, since _α ¼ 0.
The 211 cloud obeys the equation _ε211¼

−2γGW211×211α14ε2211. The maximum drift comes about when
ε211 ¼ εmax

211 ≃ Δa� (for a better estimate, see Appendix F),
when SR shuts just off. For a�ð0Þ ¼ 0.9 we find the drifts
to be

_νλ;GWann ≃4×10−22
Hz
sec

�
α

0.075

�
19
�

μ

10−12 eV

�
2
�
1019GeV

f

�
2

ðH6Þ

_νgr;GWann ≃ 8 × 10−17
Hz
sec

�
α

0.075

�
17
�

μ

10−12 eV

�
2

ðH7Þ

In the small self-interactions regime, the drift coming
from self-interactions is always subdominant to that of self-
gravity in the parameter space of interest.

BARYAKHTAR, GALANIS, LASENBY, and SIMON PHYS. REV. D 103, 095019 (2021)

095019-54



The drift can become larger than the range LIGO/Virgo
cover [Eq. (H5)] only for α around 0.27, taking higher order
α contributions into account.

2. Moderate self-coupling

Here we are interested in the region where both levels are
occupied and they drift away slowly, which corresponds
to region (B) of Fig. 3. In this regime 211 reaches its
maximum occupationΔa� and we can use Eq. (47) to relate
the ε322 to ε211. Note that even though the BH has spun
down due to the growth of 211, _α ≠ 0, since particles fall
back into the BH, as described by the last term of Eq. (H4).
The resulting frequency drifts are as follows:
Due to the change of the BH mass:

_ναann ≃ −10−11
Hz
sec

�
1017 GeV

f

�
4
�

μ

10−12 eV

�
2
�

α

0.075

�
17

ðH8aÞ

_ναtr ≃ 3× 10−12
Hz
sec

�
1017 GeV

f

�
4
�

μ

10−12 eV

�
2
�

α

0.075

�
17

ðH8bÞ

The negative sign in Eq. (H8) comes from the fact that
the SR rates are zero, so the BH is actually gaining mass by
the depletion of 211, from the last term of Eq. (H4).
Due to self-interactions:

_νλann≃6×10−13
Hz
sec

�
1017 GeV

f

�
6
�

μ

10−12 eV

�
2
�

α

0.075

�
19

ðH9aÞ

_νλtr≃−2×10−13
Hz
sec

�
1017 GeV

f

�
6
�

μ

10−12 eV

�
2
�

α

0.075

�
19

ðH9bÞ

Due to self-gravity:

_νgrann ≃ 10−11
Hz
sec

�
1017 GeV

f

�
4
�

μ

10−12 eV

�
2
�

α

0.075

�
17

ðH10aÞ

_νgrtr ≃−2×10−12
Hz
sec

�
1017GeV

f

�
4
�

μ

10−12 eV

�
2
�

α

0.075

�
17

ðH10bÞ

These are calculated for a�ð0Þ ¼ 0.9. Note that α scalings
of Eqs. (H8) and (H10) are the same, which comes from
the fact that SR has shut off and the scalings in both _α and _εi
of Eqs. (H4) and of (H3) are set by the same term, i.e.,
γ322×BH211×211ε

2
211ε322. This is why the numerical coefficients of

both the annihilation and transition drifts are very close. In
particular, for the annihilation drift we find more precisely
that

_ναannþ _νgrann

≃1.4×10−12
Hz
sec

�
1017 GeV

f

�
4
�

μ

10−12 eV

�
2
�

α

0.075

�
17

ðH11Þ

Within the moderate self-interactions regime, we find
that self-interactions are the dominant source of frequency
drift for f ≲ 8.5 × 1016ðα=0.1Þ GeV. The drift can become
larger than the range LIGO/Virgo cover [Eq. (H5)] for
f ≲ 5.6 × 1016ðα=0.1Þ17=4 GeV. In Fig. 28 we plot the
full annihilation frequency drift stemming from Eq. (H3) in
this regime.
Analogously, for transitions, self-interactions are the dom-

inant source of frequencydrift forf ≲ 1017ðα=0.1Þ GeV.The
drift can become larger than the range LIGO/Virgo cover
[Eq. (H5)] for f ≲ 4 × 1016ðα=0.1Þ17=4 GeV. In Fig. 29 we
plot the full annihilation frequency drift stemming from
Eqs. (H3a) and (H3b), in this regime.

3. Large self-coupling

We are interested in the part of the evolution where the
levels have reached their equilibrium values, given by
Eqs. (55a) and (55b), which corresponds to region (C) in
Fig. 3. These are slowly drifting because of the slow spin-
down of the BH and the change of its mass. Neglecting
the SR of ε322, which is subdominant, the spin evolves
according to

–19

–15

–11
–9

–5

FIG. 28. Frequency drift contours for annihilations of axions to
GWs, given by twice the quantity in Eq. (H3a), in the moderate
self-coupling regime. The gray shaded region above the dashed
black contour is where the drift due to self-interactions [second
line of Eq. (H3a)] dominates. The red contour corresponds to the
largest positive drift covered by LIGO/Virgo continuous
searches, taken here to be 2 × 10−9 Hz=s [83].
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_a� ¼ −γSR211ε
eq
211; ðH12Þ

and its mass changes according to Eq. (H4). By plugging in
the equilibrium values of Eq. (55) we get

_α ¼ −
2α2γSR211
3

ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γSR211γ

211×∞
322×322

p
γ322×BH211×211

: ðH13Þ

Then, the equilibrium values evolve according to

_ε ¼ _εeq ¼ ∂εeq
∂a� _a� þ

∂εeq
∂α _α: ðH14Þ

The second term of Eq. (H14) gives a subdominant
contribution and is further suppressed by another power of
α compared to the first term. The signal is maximum at the
beginning when a� ≃ a�ð0Þ. The resulting drifts are
given below.
Due to the change of the BH mass:

_ναann≃2×10−13
Hz
sec

�
f

1015 GeV

�
2
�

μ

10−12 eV

�
2
�

α

0.075

�
8

ðH15aÞ

_ναtr≃−6×10−14
Hz
sec

�
f

1015 GeV

�
2
�

μ

10−12 eV

�
2
�

α

0.075

�
8

ðH15bÞ

Due to self-interactions:

_νλann≃3×10−13
Hz
sec

�
f

1015 GeV

�
2
�

μ

10−12 eV

�
2
�

α

0.075

�
7

ðH16aÞ

_νλtr ≃ −10−13
Hz
sec

�
f

1015 GeV

�
2
�

μ

10−12 eV

�
2
�

α

0.075

�
7

ðH16bÞ

Due to the self-gravity:

_νgrann≃5×10−16
Hz
sec

�
f

1015 GeV

�
4
�

μ

10−12 eV

�
2
�

α

0.075

�
5

ðH17aÞ

_νgrtr ≃ −10−16
Hz
sec

�
f

1015 GeV

�
4
�

μ

10−12 eV

�
2
�

α

0.075

�
5

ðH17bÞ

These are calculated for a�ð0Þ ¼ 0.9 as well.
In the large self-interactions regime, for α ≳ 0.1 the

change of the mass of the BH is the dominant source
of frequency drift for annihilations. For α≲ 0.1 self-
interactions are dominant. The drift can become larger
than the range LIGO/Virgo cover [Eq. (H5)] for f ≳
3 × 1016ðα=0.1Þ−4 GeV, which is relevant above α ≃ 0.1.
Analogously for transitions, for α≳ 0.13, the change

of the mass of the BH dominates and for α≲ 0.13
self-interactions are dominant. The drift can become
larger than the range LIGO/Virgo cover [Eq. (H5)] for
f ≳ 2.5 × 1016ðα=0.15Þ−4 GeV, which is relevant above
α ≃ 0.13.

APPENDIX I: PERTURBATIONS
FROM BH COMPANION

When the primary BH has a companion, the perturbation
in the gravitational potential induces mixing of different
levels. In particular, SR levels can mix with non-SR ones,
resulting in the depletion of the cloud. According to [45],
the perturbation δVgr mixes the levels ψ i and ψ j accord-
ing to

hψ jjδVcjψ ii¼−
αMc

M

X
l≥2

X
jmj≤l

4π

2lþ1

Ym�
l ðθc;ϕcÞ
Rlþ1
c

Ir̄IΩ ðI1Þ

where the subscriptMc is the mass of the companion, θc, ϕc
its angular coordinates and Rc its distance from the primary
BH of mass M, whereas the constant α ¼ GμM. We have
also defined

–19

–15

–11
–8

–5

FIG. 29. Frequency drift contours for GWs sourced by axion
transitions from 322 to 211, given by the difference of Eq. (H3a)
and Eq. (H3b), in the moderate self-coupling regime. The gray
shaded region above the black contour (solid and dashed) is
where the drift due to self-interactions [second line of Eqs. (H3)]
dominates. The frequency drift is negative to the right (i.e., to the
large-α side) of the solid black line. Note that here we are plotting
the absolute value of the frequency drift. The red contour
corresponds to the largest negative drift covered by LIGO/Virgo
continuous searches, taken here to be −1 × 10−8 Hz=s [83].
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Ir ≡
Z

∞

0

drr2þlRnjljðrÞRniliðrÞ; ðI2Þ

IΩ ≡
Z

dΩYmj�
lj

ðθ;ϕÞYmi
li
ðθ;ϕÞYm

l ðθ;ϕÞ ðI3Þ

where Rnl is the radial part of the hydrogenic wave function
and Yl

m are the spherical harmonics.
Note that the first sum in Eq. (I1) starts from l ¼ 2,

which demonstrates the fact that the first nonzero correction
from gravity comes from the quadrupole term, as expected
from the equivalence principle.17

We are interested in the mixing of the 211 level with non-
SR levels of the BH, which can lead, in principle, to the
depletion of our cloud. The dominant contribution comes
from n ¼ 2; l ¼ 1; m ¼ −1, and it is largest when the
companion lies on the plane perpendicular to the spin of
the primary BH, i.e., when θc ¼ π=2.
The horizon flux becomes positive, i.e., more axions fall

back into the BH than are extracted due to SR [12], when����Γ
j
dump

Γi

����
1=2���� hψ jjδVcjψ ii

Δωji

���� > 1 ðI4Þ

where “dump” denotes the non-SR level that mixes with the
SR one, Γ are the superradiance rates, and Δωji is the
difference of the energies between the two levels, which are
given by [45]

ωnlm ¼ μ

�
1 −

α2

2n2
−

α4

8n4
þ ð2l − 3nþ 1Þα4

n4ðlþ 1=2Þ

þ 2a�mα5

n3lðlþ 1=2Þðlþ 1Þ
�

ðI5Þ

The physical quantities measured for BH binaries are the
BH masses, their spins and the orbital period. We assume
that the companion is far away (which is where Eq. (I1) is
valid), so we relate the distance to the orbital period using
Kepler’s 3rd Law: R3=T2 ¼ GðM þMcÞ=ð4π2Þ, where
T is the orbital period. Then, the condition (I4) becomes
parametrically:

Mc

M
144π2

ffiffiffi
3

p

a�α7ð1þ Mc
M ÞðμTÞ2 ≳ 1 ðI6Þ

where we have omitted an Oð1Þ factor in the α region of
interest.
The cloud may also be depleted by resonances that can

occur when the period of the companion hits the energy
difference between two levels, as shown in [45]. To
estimate when this happens, we can compare the period
to the energy splitting of the two mixing levels. As the
companion spirals closer to the primary BH, its orbital

period increases. When it crosses the value Δω−1
ji , we

expect that the cloud will be significantly depleted. A more
careful analysis can be found in [45]. The condition,
therefore, is

1

6
a�α5μT ≃ 1: ðI7Þ

In deriving the BH spin bounds in Sec. VI, we take into
account both Eqs. (I6) and (I7).

APPENDIX J: AXION WIND
SENSITIVITY PROJECTIONS

As discussed in Sec. VIII A, given an axion coupling to
nucleon spins, an axion oscillationφðtÞ ¼ φ0 cosωtwill act
on nuclei as an effective magnetic field BaðtÞ ¼ Ba cosωt.
For nuclei which are spin-polarized in an external magnetic
field, with Larmor frequency ω0 ≃ ω, a transverse Ba will
induce a transverse magnetic moment

μa ≃ μ2nNnBa
ω0

ω2 − ω2
0 þ iωγ

ðJ1Þ

where μn is the nuclear magnetic moment, Nn is the total
number of nuclei, and γ is the damping rate (in terms of the
spin coherence time T2, γ ¼ 2=T2 [114]).
In the absence of an axion forcing, the fluctuation

spectrum for the transverse magnetic momentum is

Sμμ ≃
μ2nNn

γ

1

1þ T2
2ðω − ω0Þ2

ðJ2Þ

which is related to the response function [Eq. (J1)] by the
fluctuation-dissipation relation [114].
If we read out the transverse magnetic moment using

a sufficiently sensitive magnetometer (e.g., a SQUID
[111,114]), then it is possible to detect fluctuations as
small as the quantum fluctuations from Eq. (J2). With a
sensor that is bounded by the standard quantum limit
[143,144], this is possible over a bandwidth ∼1=T2.
Consequently, for an integration time of T ≳ T2, we need

μ2a
Sμμ=T

≃
1

2
μ2nNnB2

aTT2 ≳ few ðJ3Þ

in order to reliably detect an axion signal.
To cover an Oð1Þ axion mass range, we need to operate

in ∼ω0T2 different resonant configurations (we will not be
careful about constant factors). Consequently, if our total
experimental time is T tot, the time we spend in each
configuration is T ∼ T tot=ðω0T2Þ, and our sensitivity
limit is18

17In [12] it was incorrectly assumed that the leading order
contribution came from a dipole term. See [45] for an explanation.

18If T ≪ T2, then Eq. (J3) will not apply, since the response
signal will not have time to ring up fully (equivalently, we cannot
resolve the bandwidth of the response function). For the exper-
imental parameters of interest, we will not be in this regime.
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B2
a ≳ few ×

ω0

μ2nNnT tot
ðJ4Þ

Note that, while this naive form does not depend on T2,
the signal amplitude from Eq. (J1) is ∝ T2; consequently,
achieving a sensitive enough magnetometer may be easier
for larger T2. As discussed in Sec. VIII A, the CASPEr-
Wind project aims to achieve spin-noise-limited sensitiv-
ities at frequencies in the kHz–30 kHz range [111].

APPENDIX K: DARK MATTER ABUNDANCE

In Sec. VI A, we reviewed models in which an axion
dark matter abundance is generated via the early universe
misalignment mechanism. For attractive potentials, if the
initial value of the axion field is tuned close to the top of its
potential, then the generated dark matter abundance can be
enhanced through the “large-misalignment mechanism”
[65]. In this Appendix, we give formulas for the DM
density obtained in this way.
For a general cosine potential of the form VðφÞ ¼

m2f2½1 − cosðφ=fÞ�, the enhanced final density for a large
initial misalignment is given by

ρ

ρπ=2
≃ 0.2½toscμ þ 4 log toscμ �2 ðK1Þ

toscμ ≡ log

	
1

π − jθ0j
21=4π1=2

Γð5=4Þ



ðK2Þ

where ρπ=2 is the final density when the initial amplitude of
the field is θ0 ¼ ϕ0=f ¼ π=2, and toscμ marks the onset of
the oscillation in units of μ.
Fixing the final density to be the observed DM abun-

dance today, we arrive at the relation [65]

fDM
mpl

≃
31=2

25=4C1=2
π=2

�
ρ

ρπ=2

�
−1=2

�
Heq

μ

�
1=4

ðK3Þ

where Cπ=2 ≃ 1.15, Heq is the Hubble parameter at matter-
radiation equality and mpl is the reduced Planck mass. We
plot Eq. (K3) for different initial misalignments in Fig. 30,
as a function of α ¼ GMμ, for a 10 M⊙ BH.
Somewhat separately, we can compare the energy

density in a superradiant cloud to the DM energy density.

The energy density of the cloud is ρc ∼ θ2f2μ2, up to an
Oð1Þ prefactor, which can be found to be

ρc ¼
1

2
_φ2 þ 1

2
ð∇φÞ2 þ 1

2
μ2 þ 1

4!

μ2

f2
φ4

∼
�
1þ α2

2ðR̃þÞ2 þ
θ2

4!

�
θ2ðfμÞ2 ðK4Þ

where R̃þ is given by Eq. (87). We estimate it to be

ρc ∼ 2 × 1028
GeV
cm3

�
μ

10−12 eV

�
2
�

f
1016 GeV

�
2
�

θ

0.04

�
2

∼ 2 × 1028
GeV
cm3

�
M

10 M⊙

�
−2
�

α

0.07

�
2

× ×

�
f

1016 GeV

�
2
�

θ

0.04

�
2

ðK5Þ

Even for the smallest f and α we show in our plots, this
density is far larger than astrophysical DM densities. For
example, in the SMBH parameter space shown in
Fig. 11, ρc ≳ 1014 GeV cm−3.
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