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Electroweakly interacting massive particles (EWIMPs), in other words, new massive particles that are
charged under the electroweak interaction of the Standard Model (SM), are often predicted in various new
physics models. EWIMPs are probed at hadron collider experiments not only by observing their direct
productions but also by measuring their quantum effects on Drell-Yan processes for SM lepton pair
productions. Such effects are known to be enhanced especially when the dilepton invariant mass of the final
state is close to the EWIMP threshold, namely twice the EWIMP mass. In such a mass region, however, we
have to carefully take nonperturbative effects into account, because the EWIMPs become nonrelativistic
and the prediction may be significantly affected by, e.g., bound states of the EWIMPs caused by the
electroweak interaction. We study such nonperturbative effects using the nonrelativistic effective field
theory of the EWIMPs, and found that those indeed affect the differential cross section of the Drell-Yan
processes significantly, though the effects are smeared due to the finite energy resolution of the lepton
measurement at the Large Hadron Collider experiment.
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I. INTRODUCTION

Many new physics models predict electroweakly inter-
acting massive particles (EWIMPs), namely new massive
particles that are charged under the SUð2ÞL × Uð1ÞY gauge
interaction of the standard model (SM). One example is the
extension of the Higgs sector, where new scalar particles
carrying various SUð2ÞL × Uð1ÞY charges are usually
introduced. Another example is the supersymmetry or
extra-dimension scenario, where many copies of the SM
particles are predicted in general.
The EWIMP is also known to become a good candidate

for dark matter [1–3]. Then, the electroweak interaction
plays an essential role in the freeze-out mechanism, which
leads to the dark matter abundance, Ωh2 ∼ 0.1, naturally.
Concrete examples of the EWIMP dark matter are as
follows: In the minimal dark matter model [1], a large
electroweak charge automatically stabilizes the EWIMP to
live long enough as dark matter without imposing any
ad hoc symmetry. On the other hand, many new physics
models concerning the electroweak symmetry breaking
also predict the EWIMP dark matter. For instance, many
supersymmetric standard models predict the Higgsino

(doublet quasi-Dirac fermion) or wino (triplet Majorana
fermion) as the lightest supersymmetric particle, namely
dark matter. In particular, the wino dark matter is known
to be the most well motivated: The dark matter is the
prediction of the anomaly mediation [4,5], where this
framework attracts great attention after the discovery of
the Higgs boson and it stimulates various model building
[6–12] as well as phenomenological studies of the wino
dark matter [13–19].
The search of the EWIMP is therefore the most impor-

tant task of collider experiments. The conventional search
strategy strongly relies on how the EWIMP decays,
especially, the Q-value. Generally, if the mass difference
between the EWIMP and daughter particle(s) is smaller, the
decay products are less energetic and the sensitivity of the
collider search gets weaker. In the case of the EWIMP dark
matter, mass differences among components in the SUð2ÞL
multiplet are small [2,20–23], and accordingly the EWIMP
dark matter becomes a tough target at hadron collider
experiments, regardless of their large production cross
sections. To probe the EWIMP dark matter, we need
special signatures such as a disappearing charged track
[24–32] or soft track [33] which originates in a meta-stable
charged EWIMP component. Improved detection of such
exotic signatures is thus essential for the discovery of the
EWIMP and is now intensively being studied in many
literature.
We have proposed a new strategy of the EWIMP search

at high-energy colliders which does not rely on the decay of
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the EWIMP. This method utilizes the indirect effect of
EWIMP to SM processes [34–36]. As the EWIMP has an
electroweak charge by its definition, it gives quantum
corrections to the self-energies of electroweak gauge
bosons. We are therefore able to observe the indirect
signature from the precision measurement of appropriate
SM processes, such as difermion productions. As this
method does not assume the decay of the EWIMP, it is
also possible to provide the most conservative constraint
on the EWIMP. For hadron colliders, Drell-Yan processes,
pp → Wðγ=ZÞX → lν̄ðll̄ÞX, give the most sensitive
probe. There are several studies along this line for the
Large Hadron Collider (LHC) and future hadron collider
experiments [37–39].
Previous studies have discussed the one-loop effect of

this correction. The strongest signature of the EWIMP in
the Drell-Yan processes appears, when the invariant mass
of the final state lepton pair is around the twice of the
EWIMP mass, mll ≃ 2MEWIMP. In this threshold region,
however, the virtual EWIMP is almost on-shell and non-
relativistic, and the one-loop analysis is no longer vali-
dated. For instance, two-loop diagram has a mass-threshold
singularity, and nonperturbative bound-states [40,41] and
Sommerfeld effects become rather significant. We compute
self-consistent higher order corrections of the EWIMP in
this article, and discuss its impact on the collider studies.

II. EWIMP OBLIQUE CORRECTION
TO DRELL-YAN PROCESSES

In this article, we focus on quantum corrections from
electroweakly interacting massive particles (EWIMPs) on
Drell-Yan processes for standard model (SM) lepton pair
productions at hadron collider experiments such as Large
Hadron Collider (LHC). The most important correction
comes from the so-called oblique correction to self-ener-
gies of electroweak gauge bosons shown below:

The oblique correction is expressed by a filled circle
above, and parametrized by ΔΠμν as follows:

ΔΠμν
VV 0 ¼ q2ΠVV 0 ðq2Þgμν þ ΣVV 0 ðq2Þqμqν; ð1Þ

where V, V 0 denote γ, Z, W bosons, and qμ is the
momentum of the propagating electroweak gauge bosons.
Since external fermion masses are negligibly small, we
ignore the ΣVV 0 part hereafter.

Matrix elements of the Drell-Yan processes for SM
lepton pair productions (the neutral and charged current
cases, respectively) at leading order calculation are given
by following formulas:

MNeutral
LO ½qðpÞq̄ðp0Þ → l−ðkÞlþðk0Þ�

¼
X
V¼γ;Z

½v̄ðq;p0ÞγμΓV
q uðq;pÞ�½ūðl; kÞγμΓV

lvðl; k0Þ�
ŝ −m2

V
;

ð2Þ

MCharged
LO ½uðpÞd̄ðp0Þ → lþðkÞνðk0Þ�

¼ g2

2

½v̄Lðd;p0ÞγμuLðu;pÞ�½ūLðl; kÞγμvLðν; k0Þ�
ŝ −m2

W
; ð3Þ

where ŝ is the center-of-mass energy squared at each parton-
level process, while ΓZ

f ¼gZðvf−afγ5Þ and Γγ
f¼eQf,

where gZ ≡ ðg2 þ g02Þ1=2 and e≡ gg0=ðg2 þ g02Þ1=2 with
g and g0 being SUð2ÞL and Uð1ÞY gauge couplings,
respectively. The electric charge of the fermion “f” is
denoted by Qf, while vf ¼ T3

f=2 −Qf sin2 θW and af ¼
T3
f=2 with T3

f being the weak-charge of f, and
sin θW ≡ g0=gZ. The matrix elements discussed above are
corrected by EWIMPs, and those are given by

MNeutral
EWIMP½qðpÞq̄ðp0Þ→l−ðkÞlþðk0Þ�

¼
X
V;V 0

½v̄ðq;p0ÞγμΓV
q uðq;pÞ�ŝΠVV 0 ðŝÞ½ūðl;kÞγμΓV 0

l vðl;k0Þ�
ðŝ−m2

VÞðŝ−m2
V 0 Þ ;

ð4Þ

MCharged
EWIMP½uðpÞd̄ðp0Þ → lþðkÞνðk0Þ�

¼ g2

2

½v̄Lðd;p0ÞγμuLðu;pÞ�ŝΠWWðŝÞ½ūLðl; kÞγμvLðν; k0Þ�
ðŝ −m2

WÞ2
:

ð5Þ

Since the interference between the SM matrix element
(LO matrix element), MLO, and those of EWIMP loop
contributions, MEWIMP, give the largest correction to the
Drell-Yan processes, the correction is roughly given by the
aforementioned EWIMP oblique correction as follows:

jMSM þMEWIMPj2 − jMSMj2
jMSMj2

∼ 2Re½ΠVVðŝÞ�; ð6Þ

with V being W� for the charged current case, and W3,
namely the neutral component of the weak gauge boson
multiplet, for the neutral current case when the EWIMP
does not carry a hypercharge. In the following two sections,
we discuss the EWIMP correction to the self-energies of
the electroweak gauge bosons at one-loop, two-loop and
nonperturbative orders. We focus on the case of the
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winolike particle (SUð2ÞL triplet Majorana fermion) in this
article to make our discussion concrete.

III. PERTURBATIVE CORRECTIONS

We consider the SUð2ÞL triplet Majorana fermion χ
throughout this paper as the simplest example of the
EWIMP. The corresponding new physics Lagrangian is
then simply given as follows:

L ¼ LSM þ iχ†Dμσ
μχ −

Mχ

2
ðχTϵχ − χ†ϵχ�Þ; ð7Þ

where LSM is the SM Lagrangian,Mχ is the EWIMP mass,
and Dμ ≡ ∂μ − igTaWa

μ is the covariant derivative acting
on the EWIMP with g, Ta, Wa

μ being gauge coupling,
generator, gauge boson field of the SUð2ÞL interaction,
respectively. The EWIMP field χ is composed of three
Weyl fermions,

χ ≡ ðχþ; χ0; χ−ÞT: ð8Þ

With neutral and charged components of the EWIMP
field, the leading perturbative correction to the self-energies
of the electroweak gauge bosons is obtained by calculating
one-loop diagrams,

and EWIMP oblique correction to the electroweak gauge
bosons up to one-loop level is given by

ΠWWðq2Þ ¼ Π1-loopðq2=m2
χÞ; ð9Þ

Πγγðq2Þ ¼ sin2θWΠ1-loopðq2=m2
χÞ; ð10Þ

ΠγZðq2Þ ¼ sin θW cos θWΠ1-loopðq2=m2
χÞ; ð11Þ

ΠZZðq2Þ ¼ cos2 θWΠ1-loopðq2=m2
χÞ; ð12Þ

where mχ ¼ mχ� ¼ mχ0 being physical masses of the
charged and neutral components of the EWIMP. Here,
we neglect the small mass difference between χ� and χ0.
The function Π1-loopðx2Þ is expressed by a simple integra-
tion-form, as addressed in many past literature such as
Ref. [35]:

Π1-loopðx2Þ≡ g2

2π2

Z
1

0

dyyð1 − yÞ ln½1 − yð1 − yÞx2 − i0þ�:

ð13Þ

Here, we take the dimensional regularization to regularize
one-loop integrals and fix the renormalization condition for
gauge boson kinetic terms so that the correction vanishes
at q2 ¼ 0.
The real part of the leading perturbative correction,

Re½Π1-loopðx2Þ�, has a cusp structure at the threshold
(x ¼ 2) as seen in Fig. 1, and it takes the value of
−2g2=ð9π2Þ there. Hence, dilepton production cross sec-
tions of the Drell-Yan processes are reduced at the thresh-
old region, namely the cross sections have a negative
bump structure at mll ≃ 2mχ with mll being the dilepton
invariant mass. It thus allows us to search for the EWIMP
by measuring mll distribution precisely. It should however
be noted that the EWIMP becomes nonrelativistic at the
threshold region, and usual perturbative expansion is not
guaranteed to work to compute the oblique correction due
to the threshold singularity. In the next section, we will
discuss nonperturbative contributions to the correction
using the nonrelativistic (NR) Lagrangian method.
Before going to this discussion, on the other hand, we
also discuss the next-leading perturbative correction to the
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FIG. 1. Real and imaginary parts of the leading perturbative correction to the self-energy of the electroweak gauge bosons,Π1-loopðx2Þ,
obtained by calculating the one-loop diagrams in the text.
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correction in the rest of this section, for it enables us to smoothly match the result from the NR Lagrangian method with the
one from the perturbative method between in- and outside the threshold region.
The next-leading perturbative correction to the self-energies of the electroweak gauge bosons is obtained by calculating

two-loop diagrams in which EWIMP and electroweak gauge bosons are propagating in the loops. Among various diagrams,
those relevant to our discussion are

where first and fourth diagrams become dominant at the threshold region, and those are also taken into account in the NR
Lagrangian discussed in the next section. On the other hand, we also have to take the other diagrams (the second, third, fifth,
and sixth ones) into account to evaluate the next-leading perturbative correction, as these contributions remove the infrared
singularity caused by the dominant diagrams. In addition to the above diagrams, there are other two-loop diagrams which
originate in the non-Abelian nature of the SUð2ÞL interaction. Since those are expected to contribute to the matching
between the perturbative correction and the nonperturbative correction (obtained by the NR Lagrangian) subdominantly, we
do not include those in our analysis.
Among various contributions to the next-leading perturbative correction in the above diagrams, those including a

massless photon-exchange have already been computed analytically [42],

Π0
2-loop;γðx2Þ≡ −

g2α
4π2

�
18 − 13β2

24
þ βð5 − 3β2Þ

8
ln ð−pÞ − ð1 − βÞð33 − 39β − 17β2 þ 7β3Þ

96
½ln ð−pÞ�2

×
βð−3þ β2Þ

3
½2 ln ð1 − pÞ ln ð−pÞ þ ln ð−pÞ ln ð1þ pÞ þ Li2ð−pÞ þ 2Li2ðpÞ�

þ ð3 − β2Þð1þ β2Þ
12

½2 ln ð1 − pÞ½ln ð−pÞ�2 þ ½ln ð−pÞ�2 ln ð1þ pÞ

þ 4 ln ð−pÞLi2ð−pÞ þ 8 ln ð−pÞLi2ðpÞ − 6Li3ð−pÞ − 12Li3ðpÞ − 3ζ3�
�
; ð14Þ

where α is the fine structure constant, Li2 and Li3 are the di-
and tri-logarithms, respectively, while β≡ ½1 − 4=ðx2þ
i0þÞ�1=2, p≡ ð1 − βÞ=ð1þ βÞ and ζ3 ≃ 1.2020569 with
ζx being the Zeta function. The superscript “0” appearing at
Π0

2-loop;γ means that this is the correction to the self-energy
of the neutral weak gauge bosons (Z and γ). We will use the
expression Π�

2-loop to denote the next-leading perturbative
correction to the self-energy of the charged weak gauge
boson (W�). Other contributions including a massive gauge
boson-exchange, Π0

2-loop;Z and Π�
2-loop;W , in the above two-

loop diagrams are numerically evaluated using the codes
TSIL [43] and TARCER [44].
To evaluate the next-leading perturbative corrections, we

take the dimensional regularization to regularize the two-
loop integrals and fix the same renormalization condition as
those of the leading one for kinetic terms (two-point
functions) of the electroweak gauge bosons. On the other
hand, we also have to fix renormalization conditions at one-
loop level for kinetic terms (two-point functions) of neutral
and charged components of the EWIMP filed, and vertices
(three-point functions) of neutral and charged current

interactions of the field. The conditions we adopted are
as follows:

Gχ�ðpÞ ¼ i=ð=p −mχÞ when p2 ¼ m2
χ ; ð15Þ

Γχþχ−W3ðp1; p2Þ ¼ −ig when p2
1 ¼ p2

2 ¼ m2
χ ; ð16Þ

for the next-leading perturbative correction to the self-
energy of the neutral electroweak gauge bosons. Here, GðpÞ
is the propagator (two-point function) of the EWIMP field,
while Γðp1; p2Þ is the vertex (three-point function) involv-
ing two EWIMP fields. On the other hand, the conditions
for calculating the correction to the self-energy of the
charged weak gauge boson are given by

Gχ0ðpÞ ¼ i=ð=p −mχÞ when p2 ¼ m2
χ ; ð17Þ

Gχ�ðpÞ ¼ i=ð=p −mχÞ when p2 ¼ m2
χ ; ð18Þ

Γχ0χ�W∓ðp1; p2Þ ¼ −ig when p2
1 ¼ p2

2 ¼ m2
χ : ð19Þ
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It means that we take on-shell normalization conditions for
the EWIMP, because it makes the convergence of the
perturbative expansion proper even at the threshold region.
With these corrections, EWIMP oblique correction to the
electroweak gauge bosons up to two-loop level is give by

ΠWWðq2Þ ¼ Π1-loopðq2=m2
χÞ þ Π�

2-loop;Wðq2=m2
χÞ; ð20Þ

Πγγðq2Þ ¼ sin2 θW ½Π1-loopðq2=m2
χÞ þ Π0

2-loopðq2=m2
χÞ�;

ð21Þ

ΠγZðq2Þ¼ sinθW cosθW ½Π1-loopðq2=m2
χÞþΠ0

2-loopðq2=m2
χÞ�;
ð22Þ

ΠZZðq2Þ ¼ cos2 θW ½Π1-loopðq2=m2
χÞ þ Π0

2-loopðq2=m2
χÞ�;

ð23Þ

Π0
2-loopðx2Þ≡ Π0

2-loop;γðx2Þ þ Π0
2-loop;Zðx2Þ: ð24Þ

The next-leading perturbative corrections, namely
Π0

2-loopðx2Þ and Π�
2-loop;Wðx2Þ, are depicted in Fig. 2 for

the cases of mχ ¼ 1 TeV and 5 TeV. Real parts of the
corrections have a negative bump structure at the threshold
region as for the leading one, Π1-loop, shown in Fig. 1. In
particular, the next-leading perturbative correction, Π0

2-loop,
has a singular structure, as also can be seen from the
analytical form of the next-leading perturbative corrections
at the threshold region:

Π0
2-loopðx2Þ≃

g2

8π

�
α ln ð−2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x− 2þ i0þ

p
Þ

þ αZ ln

�
−2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x− 2þ i0þ

p
þmZ

mχ

�
þ const:

�
;

ð25Þ

Π�
2-loop;Wðx2Þ ≃

g2

8π

�
αW ln

�
−2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − 2þ i0þ

p
þmW

mχ

�

þ const:

�
; ð26Þ

where αZ ¼ α cos2 θW=sin2 θW , αW ¼ α=sin2 θW , and mZ,
mW are the Z,W boson masses, respectively, with θW being
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FIG. 2. Real and imaginary parts of the next-leading perturbative correction to the self-energies of the neutral and charged electroweak
gauge bosons, Π0

2-loopðx2Þ and Π�
2-loopðx2Þ≡ Π�

2-loop;Wðx2Þ, obtained by calculating the two-loop diagrams in the text, for the cases of
mχ ¼ 1 TeV and 5 TeV. The leading perturbative correction to the self-energies is also shown in each panel for comparison purposes.

NONPERTURBATIVE EFFECTS ON ELECTROWEAKLY … PHYS. REV. D 103, 095017 (2021)

095017-5



the Weinberg angle. The next-leading perturbative correc-
tion is thus seen to be unphysically enhanced due to the
threshold singularity, but it is cured by nonperturbative
corrections, as we will discuss in the next section using NR
Lagrangian method of the EWIMP.

IV. NONPERTURBATIVE CORRECTIONS

Due to the threshold singularity seen in the previous
section, the nonperturbative effect must be taken into

account to properly calculate the EWIMP oblique correc-
tion. Such a effect, which is sometimes called the
Sommerfeld effect [13,14], originates in the attractive force
caused by exchanging electroweak gauge bosons between
two EWIMPs. The effect becomes sizable when the
EWIMP becomes nonrelativistic and causes, e.g.,
EWIMP bound states. Taking the effect into account is
equivalent to resumming leading nonrelativistic contribu-
tions of the following ladder diagrams.

On the other hand, instead of resumming the contributions explicitly, the nonperturbative effect can be evaluated using the
nonrelativistic (NR) Lagrangian of the EWIMP, where the effect of the force is obtained by solving the Schrödinger
equation for the two-body state of the EWIMPs.
The NR Lagrangian describes the two body states which are composed of the neutral and/or charged components of the

EWIMP, and it is derived from the original Lagrangian in Eq. (7) as

L2-body ¼
Z

d3rϕi†
0 ðr⃗; xÞ

�
i∂0 þ

∇2
x

4mχ
þ ∇2

r

mχ
þ αþ αZe−mZjr⃗j

jr⃗j
�
ϕi
0ðr⃗; xÞ

þ
Z

d3rϕi†
�ðr⃗; xÞ

�
i∂0 þ

∇2
x

4mχ
þ ∇2

r

mχ
þ αWe−mW jr⃗j

jr⃗j
�
ϕi
�ðr⃗; xÞ

− g½e2imχx0ϕi†
0 ð0⃗; xÞW3

i ðxÞ þ e2imχx0ϕi†
þð0⃗; xÞWþ

i ðxÞ þ e2imχx0ϕi†
− ð0⃗; xÞW−

i ðxÞ þ H:c:�; ð27Þ

where ϕi
aðr⃗; xÞ is the field describing the two-body state

composed of χþ, χ− (a ¼ 0), and χ0, χ� (a ¼ �), with r⃗
and x being the (spatially) relative and barycentric coor-
dinates of the constituent particles, respectively, while the
superscript i ¼ 1, 2, 3 is the spin index of the fields. Using
the above NR Lagrangian, the oblique correction to the
electroweak gauge bosons is obtained as

ΠWWðq2Þ ¼ Π�
NRðq2=m2

χÞ
≡ g2G�ð0⃗; 0⃗; q2=m2

χÞ=ð2m2
χÞ þ Z�

NR; ð28Þ

Πγγðq2Þ ¼ sin2 θWΠ0
NRðq2=m2

χÞ
≡ sin2 θW ½g2G0ð0⃗; 0⃗; q2=m2

χÞ=ð2m2
χÞ þ Z0

NR�;
ð29Þ

ΠγZðq2Þ ¼ sin θW cos θWΠ0
NRðq2=m2

χÞ; ð30Þ

ΠZZðq2Þ ¼ cos2 θWΠ0
NRðq2=m2

χÞ; ð31Þ

where Π0
NRðx2Þ and Π�

NRðx2Þ, or to be more precise, Green

functions G0ð0⃗; 0⃗; x2Þ and G�ð0⃗; 0⃗; x2Þ are obtained by
solving the following Schrödinger equations derived by the
NR Lagrangian:

�∇2
r

mχ
þ αþ αZe−mZjr⃗j

jr⃗j þ ðx− 2Þmχ

�
G0ðr⃗; r⃗0;x2Þ ¼ δðr⃗− r⃗0Þ;

ð32Þ

�∇2
r

mχ
þ αWe−mW jr⃗j

jr⃗j þ ðx − 2Þmχ

�
G�ðr⃗; r⃗0; x2Þ ¼ δðr⃗ − r⃗0Þ:

ð33Þ

Please refer, e.g., Ref. [14] for more details about the
construction of the NR lagrangian and the derivation of
the Schrödinger equations for the Green functions. On the
other hand, Z0

NR and Z�
NR appearing in the functions

Π0
NRðx2Þ and Π�

NRðx2Þ are constants that do not depend
on q2, and those are related to the renormalization for
kinetic terms (two-point functions) of the electroweak
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gauge bosons. Here, it is worth emphasizing that the oblique
correction evaluated by the above NR Lagrangian is valid
at the threshold region, namely jx − 2j ≪ 1, while the
perturbative calculation of the correction discussed in the
previous section is reliable at jx − 2j ≫ α2W ∼ 10−3 due to
the threshold singularity. Moreover, the NR correction is
significantly affected by EWIMP bound states at x ≤ 2. We
therefore fix the constants Z0

NR and Z�
NR using the following

matching conditions,

Π0=�
NR ðx2Þ ¼ Π1-loopðx2Þ þ Π0=�

2-loopðx2Þ at x ∼ 2.01; ð34Þ

and use the result of the NR Lagrangian at x≲ 2.01 in order
to evaluate the oblique correction, while use that of the
perturbative calculation at x≳ 2.01 in the region above the
threshold, x ≥ 2. In the region below the threshold, x ≤ 2, on
the other hand, we use the result of perturbative calculation at
x ≤ x0, with x0 being the point where both the results of the
NR Lagrangian and perturbative calculations coincide at the

region below that the lowest-energy bound state (lowest-
energy resonance) is located. We use the result of the NR
Lagrangian at x0 ≤ x ≤ 2.1

Real parts of the nonperturbative corrections, namely
Re½Π0

NRðx2Þ� and Re½Π�
NRðx2Þ�, at the threshold region are

shown in Fig. 3. As seen in the right panels, the corrections,
in particular the one for the neutral electroweak gauge
bosons Re½Π0

NRðx2Þ�, are not seen to be diverged anymore,2

unlike the perturbative correction Re½Π0
2-loopðx2Þ� discussed

in the previous section. In order to see this fact more
explicitly, we show the values of Re½Π0

NRð22Þ� and
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FIG. 3. Real parts of the nonperturbative corrections to the self-energies of the neutral and charged electroweak gauge bosons,
Π0

NRðx2Þ and Π�
NRðx2Þ, are depicted for the cases of mχ ¼ 1 TeV and 5 TeV. For comparison purposes, the real parts of the

perturbative corrections, Π0
Perðx2Þ≡ Π1-loopðx2Þ þ Π0

2-loopðx2Þ and Π�
Perðx2Þ≡ Π1-loopðx2Þ þ Π�

2-loopðx2Þ, to the self-energies are also
shown in each panel. Here, we adopt the matching condition (34) within x ¼ 2.001–2.1, and widths of the lines correspond to the
uncertainty (The uncertainty is larger for mχ ¼ 1 TeV compared to that for mχ ¼ 5 TeV. This is because the mismatch of NR and
perturbative calculations is larger for a lighter EWIMP, namely the true potential between EWIMPs becomes more different from the
Yukawa potential when the EWIMP is not very much heavier than the weak gauge boson).

1We have confirmed numerically that x0 is uniquely deter-
mined, namely the procedure to switch the result of the NR
Lagrangian and that of the perturbative calculation at x ¼ x0
works well for all the mass mχ of interests.

2We discuss the behavior of the function Π0
NRðx2Þ at the

threshold region by taking the limit x → 2 from above, because
the function is not continuous at x ≤ 2 due to the divergence
caused by infinitely many bound states.
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Re½Π�
NRð22Þ� in Fig. 4 as functions of mχ . It is seen that the

value of Re½Π0
NRð22Þ� never diverges at any mass

of mχ . On the other hand, the value of Re½Π�
NRð22Þ�

diverges at the specific mass of the EWIMP, namely
mχ ∼ 4 TeV. This is due to the so-called zero-energy
resonance, where the binding energy of the bound state
becomes zero at this specific mass because of the nature
of the Yukawa potential. The bound state is thus located
exactly on the threshold and it makes the value of
Re½Π�

NRð22Þ� diverged.
It is seen in the left panels of Fig. 3 that the non-

perturbative corrections, Re½Π0
NRðx2Þ� and Re½Π�

NRðx2Þ�,
are significantly different from the perturbative ones,
Re½Π0

Perðx2Þ� and Re½Π�
Perðx2Þ�, at x ≤ 2. This is due to

EWIMP bound states caused by the electroweak interac-
tion. With E0=�

n being the binding energy of the nth bound
state in Π0=�

NR ðx2Þ, the correction can be written as

Π0=�
NR ðx2Þ ¼ Π0=�

Reg ðx2Þ þ
X
n

ðg0=�n Þ2
x2 − ðx0=�n Þ2 þ 2iγ0=�n

; ð35Þ

where Π0=�
Reg ðx2Þ is the nonsingular part of the correction

that is obtained by subtracting singular parts (poles repre-
senting the bound states) from the correction, while
x0n ≡ 2 − E0

n=mχ , x�n ≡ 2 − E�
n =mχ , and γ0n ≡ Γ0

n=mχ , γ�n ≡
Γ�
n =mχ with Γ0

n and Γ�
n being decay widths of nth bound

states appearing in the functions Π0
NRðx2Þ and Π�

NRðx2Þ,
respectively. Residues of the poles are depicted by ðg0=�n Þ2,
where g0=�n represent couplings (strength of interactions)
between the bound states and the electroweak gauge
bosons. As a result, the nonperturbative corrections,
Re½Π0

NRðx2Þ� and Re½Π�
NRðx2Þ�, behaves at x ≤ 2 as those

seen in the left panels of Fig. 3. Here, it is worth notifying

that infinitely many bound states contribute to Π0
NRðx2Þ due

to the nature of Coulomb potential, while a finite number of
bound states contributes to Π�

NRðx2Þ because only Yukawa
potential exists in the two-body system composed of χ0

and χ�. In fact, the number of bound states is zero when
mχ ¼ 1 TeV, while it becomes one when mχ ¼ 5 TeV, as
seen in the bottom-left panel of Fig. 3.
The values of g0=�n and x0=�n are obtained numerically

from the function Π0=�
NR ðx2Þ as shown in Fig. 5, where the

binding energy 2 − x0=�n and residue ðg0=�n Þ2 are depicted
forΠ0

NRðx2Þ andΠ�
NRðx2Þ as functions ofmχ . It is seen from

the bottom panels that the bound state exists when
mχ ≳ 4 TeV, meaning that the so-called zero-energy bound
state appears when mχ ≃ 4 TeV, as we deduced in Fig. 4.
On the other hand, as seen in the top panels, bound states
always exist with irrespective to the EWIMP mass mχ . In
fact, not only the first and second bound states shown in the
panels but also infinitely many higher ones exist. Because
high enough bound states are governed almost solely by the
Coulomb part of the potential, their binding energies are
estimated to be 2 − x0n ≃ α2=ð4n2Þ. On the other hand,
because the residues are written as ðg0=�n Þ2¼2g2jΨ0=�

n ð0⃗Þj2
in general with Ψ0=�

n ðx⃗Þ being the wave function (normal-
ized by mχ) describing the nth bound state, the residues of
the high enough bound states can also be estimated as
ðg0nÞ2 ≃ g2α3=ð4πn3Þ.
Finally, the decay width of the bound state denoted by

γ0=�n in Eq. (35) is written as follows:

γ0=�n ≃
g2

48π
ðg0=�n Þ2þNF

g2

48π
ðg0=�n Þ2¼25g2

48π
ðg0=�n Þ2; ð36Þ

when the EWIMP is enough heavier than SM particles.
The first term is the contribution from decays into
electroweak gauge bosons and Higgs boson, while the
second term is from decays into SM fermions with
NF ¼ 6þ 3 × 6 being the number of the left-handed
fermions (leptons and quarks). As seen in the above
formula, the decay width is contributed from various
annihilation processes between constituent particles of
the bound states. On the other hand, there is another
contribution from the decay of the constituent particle χ�,
however it is negligibly small compared to those from the
annihilation, so that we do not include such a contribution
in the decay width of γ0=�n .

V. EWIMP SIGNALS AT HADRON COLLIDERS

We are now at the position to discuss EWIMP signals at
hadron collider experiments based on the result obtained
in the previous sections. The effect of the EWIMP on the
Drell-Yan processes for SM lepton pair productions are
already discussed in some details in Sec. II. In order to

2 4 6 8 10

16

14

12

10

8

FIG. 4. The values of the corrections Re½Π0
NRð22Þ� and

Re½Π�
NRð22Þ� as a function of the EWIMP mass mχ , respectively.

Here, we adopt the matching condition in Eq. (34) at x ¼ 2.01 to
depict the lines.
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evaluate realistic signals at hadron collider experiments,
however, we also have to take into account the effect of
the finite energy resolution for the lepton measurement.
Then, the differential cross section at a certain invariant mass
of the final state lepton pair is obtained by the following
formulas:

dσNeutral=ChargedSM

dmll
∝
Z

dδjMNeutral=Charged
LO ðmll þ δÞj2fðδ; σÞ;

ð37Þ

dσNeutral=ChargedBSM

dmll
∝
Z

dδjMNeutral=Charged
LO ðmll þ δÞ

þMNeutral=Charged
EWIMP ðmll þ δÞj2fðδ; σÞ;

ð38Þ

where fðδ; σÞ is the smearing function representing the
finite energy resolution with δ and σ being the fluctuation
around mll and the size of the energy resolution, respec-
tively. We adopt the Gauss distribution function for
fðδ; σÞ ¼ exp½−δ2=ð2σ2Þ�=ð2πσ2Þ1=2. Since the energy

resolution of the lepton measurement is currently compa-
rable to or less than 1% [45], we set σ to be 0.1%, namely
σ ¼ 10−3mll, as an optimistic expectation for future hadron
(and high-energy lepton) colliders.
As we have discussed in the previous section, the matrix

element MEWIMP has a divergent property originating in
the bound states of the EWIMP. The divergence is
regularized by the decay widths of the bound states
discussed in the previous section and further smeared
by the energy resolution function fðδ; σÞ in the calculation
of the cross sections. In order to see the effect of the
EWIMP quantitatively, we show the difference between the
differential cross sections with and without EWIMP con-
tributions in Fig. 6 as a function of the lepton invariant
mass mll for mχ ¼ 1, 3.8 and 5 TeV. As can be seen in
all the panels, the two-loop effect gives a certain contri-
bution to the differential cross sections, while the NR effect
alters the cross sections slightly in the threshold region. In
particular, the effect becomes almost invisible when the
EWIMP becomes very heavy, as seen in the bottom panels.
When the EWIMP mass is around the one predicting the
zero-energy resonance, namely mχ ≃ 4 TeV, the NR effect
becomes visible as seen in the middle-right panel, though it
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FIG. 5. Binding energies 2 − x0=�n (left panels) and residues g0=�n (right panels) are depicted for n ¼ 1; 2 in the case of Π0
NRðx2Þ and

n ¼ 1 in the case of Π�
NRðx2Þ as functions of the EWIMP mass mχ .
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is still not large enough to detect the effect at the current
collider experiment. These results are mainly due to the
small electroweak charge of the EWIMP that we are
discussing in this article as well as the energy resolution
for the lepton measurement. If we think about a EWIMP
having a larger electroweak charge and/or future collider
experiments having a better energy resolution, the NR
effect is expected to be more visible, as we briefly
discussed in the next section.

VI. SUMMARY AND DISCUSSION

Effects of the EWIMP on Drell-Yan processes for SM
lepton productions have been studied in this article. We have
estimated one-loop, leading two-loop and nonperturbative
contributions to the self-energies of electroweak gauge
bosons, and performed the self-consistent matching of those
contributions at the threshold region, q2 ≃ 4M2

EWIMP. Then,
we have found that the nonperturbative contribution alters
the self-energies, thus the differential cross sections of the
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FIG. 6. The difference between the differential cross sections with and without EWIMP corrections, ðdσBSM − dσSMÞ=dσSM for
Drell-Yan processes pp → γ=ZX → ll̄X (left column) and pp → WX → lν̄X (right column) are shown as a function of mll for mχ is
1 (top row), 3.8 (middle row), and 5 TeV (bottom low). The energy resolution for the lepton measurement is assumed to be 0.1%.
For comparison purposes, the differences obtained by the one-loop calculation (dotted line) and the perturbative calculation, namely
one-loop + 2-loop calculation (dashed line) are also shown in each panel.
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Drell-Yan processes significantly, though the contribution
from Sommerfeld effects and EWIMP bound states is
smeared due to the finite energy resolution for the lepton
measurement at the current LHC experiment and does not
have a significant impact on the indirect EWIMP detection.
On the other hand, we have also found that the higher-order
perturbative contribution (the two-loop one) comes with
α2 logðMEWIMP=mZ;WÞ instead of α2=π2 at the threshold
region, while the size of the contribution becomes as small as
α2=π2 outside the region as expected from the naive loop
factor counting. In the triplet EWIMP case, the size of the
contribution is ∼10% of the one-loop contribution in the
threshold region, and it gives an important impact for
the discovery potential and the measurement of the
EWIMP quantum number at current and future hadron
collider experiments.
Though we have focused on the triplet Majorana fermion

(wino) in this article, our result can be straightforwardly
applied to more generic EWIMPs. For the n-tuplet case,
the higher-order contribution is expected to be ∼α2½ðn5 −
6n3 þ nÞ=48� logðMEWIMP=mZ;WÞ [46], while the one-loop
contribution is ∼½ðn3 − nÞ=12�α=ð4πÞ. It means that, for n
larger than four, the higher-order contribution becomes

compatible or larger than the one-loop contribution in the
threshold region, and thus the inclusion of the higher-order
contribution becomes mandatory for the indirect EWIMP
detection at high-energy collider experiments. Moreover,
when n is larger, the potential acting EWIMPs becomes
deeper and the mass predicting the (first) zero-energy
resonance is lighter, and it is then expected to make the
nonperturbative contribution such as the Sommerfeld and
bound state effects more visible. We remain the study of
such higher-order as well as nonperturbative contributions
for generic EWIMP cases and of their impacts on collider
signals as a future work.
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