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We perform a comprehensive study of the homogeneous finite modular group A% which is the double
covering of As. The integral weight and level 5 modular forms have been constructed up to weight 6 and
they are decomposed into the irreducible representations of A%. Then we perform a systematical analysis of
the AL modular models for lepton masses and mixing. The phenomenologically viable models with
minimal number of free parameters and the results of fit are presented. We find out 15 models with 9 real
free parameters which can accommodate the experimental data of lepton sector. After including generalized
CP symmetry, 9 viable models with 7 free parameters are found out. We apply AL modular symmetry to the
quark sector, and a quark-lepton unification model is given. The framework of modular invariance is
extended to include the rational weight modular forms of level 5. The ring of modular forms at level 5 can
be generated by two algebraically independent weight 1/5 modular forms denoted by F () and F,(7). We
give the expressions of the rational weight modular forms of level 5 up to weight 3 and arrange them into
the irreducible multiplets of finite metaplectic group I's & A% x Zs. A neutrino mass model with s
modular symmetry is presented, and the phenomenological predictions of the model are analyzed

numerically.
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I. INTRODUCTION

The quark masses and charged lepton masses as well as
the neutrino mass squared differences have been precisely
measured, yet we still do not know the exact value of the
lightest neutrino mass while it is constrained by the
cosmology data and the direct neutrino mass measurement
experiments through beta decay. From the smallest neutrino
mass of order of a fraction of an eV to the top quark mass
being 173 GeV, the range of fermion masses span over at
least 12 orders of magnitudes. In addition, the quark and
charged lepton masses exhibit a hierarchical pattern:
mg/my > my/m; > m,/m, mg/my,=~m,/m. > m./m,.
Moreover, the quark and lepton mixing angles also span
several orders of magnitudes, the quark mixing angles are
small, while the lepton sector has two large mixing angles
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01, 0,3 and one small mixing angle 6,3 which is of the
same order of magnitude as the quark Cabibbo mixing
angle [1]. It is one of the greatest challenges in particle
physics to understand the observed flavor structure of
quarks and leptons from first principle in terms of few
underlying parameters. In the Standard Model, the fermion
masses and mixing matrices arise from the Yukawa
interactions with Higgs. The flavor dependence of the
Yukawa couplings is the origin of the fermion masses and
the mixing matrices.

Several different scenarios have been proposed to under-
stand quark and lepton masses and mixing angles as well as
CP phases. In view that the symmetry principles have
proven very successful in physics, one resorts to flavor
symmetry to constrain the Yukawa interaction so that the
fermion mass spectra and mixing matrices could be
explained. In the last twenty years, the non-Abelian discrete
flavor symmetry has been widely studied, and it is found
particularly suitable to reproduce the large lepton mixing
angles, see [2—-8] for review. The flavor symmetry should
be broken in a nontrivial way in discrete flavor symmetry
models, and the vacuum expectation values (VEVs) of the
flavons are frequently required to be oriented along certain
directions in generation space. It is technically quite tricky
to dynamically realize the desired vacuum alignment, thus
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the traditional flavor models appear complicated. Although
the flavor symmetry can constrain the mixing angles and
CP violation phases, one generally cannot make quantita-
tive predictions for fermion masses whose observed values
are usually reproduced by tuning the available parameters.

Recently modular invariance as flavor symmetry has
been proposed to address the flavor puzzle [9]. In this new
framework, the Yukawa couplings transform nontrivially
under the modular symmetry and they are modular forms
which are holomorphic function of the complex modulus z.
In the simplest modular symmetry model, the vacuum
expectation value of z is the unique source of flavor
symmetry breaking such that the vacuum alignment prob-
lem is simplified. Models with modular flavor symmetry
can be quite predictive, and the neutrino masses and mixing
parameters can be predicted in terms of few input param-
eters. The superpotential is completely fixed by modular
symmetry in the limit of unbroken supersymmetry, how-
ever the Kihler potential is less constrained. Thus the
predictive power of this framework could be reduced [10]
by additional parameters in the general Kéhler potential.
This drawback can be overcome by incorporating the
traditional flavor symmetry. Both group representations
and modular weights of matter fields would be severely
constrained in this new scheme, consequently the structure
of the Kihler potential and superpotential becomes much
more restrictive [11-15].

The inhomogeneous finite modular group I'y for N = 2
[16-19], N =3[9,16,17,20-41], N=4[33,42-49], N =5
[47,50,51], and N = 7 [52] have been studied to construct
models for neutrino masses and mixing, and the weights of
the modular forms have to be even integers. The modular
forms of general integral weights have been discussed in
[53], and the finite modular group is enhanced to the
homogeneous finite modular group I'), which is the double
covering of I'y. Some flavor models based on I} = 7"
[53,54], I, = 8 [55,56], and I'; = AL [57] have been
proposed. Recently the modular invariance framework
has been further extended to include rational weight
modular forms [58]. It was found that the modular group
should be extended to its metaplectic cover group, and the
rational weight modular forms can be arranged into
irreducible multiplets of the finite metaplectic group I'y
[58]. Furthermore, modular symmetry can be combined
with generalized CP symmetry, and the consistency con-
ditions between these two symmetries require 7 — —z* up
to a modular transformation under the action of CP [59].
A comprehensive analysis about flavor symmetry, CP
symmetry and modular invariance in string theory has
been given in [60,61]. From a top-down perspective, typical
compactifications of extra dimensions give rise to low
energy effective theories depending on several moduli. The
modular invariant supersymmetric theories with single
modulus has been extended to automorphic supersymmet-
ric theory where several moduli can occur [62]. As an

example, the so-called Siegel forms were investigated in
detail, the direct product of multiple modular symmetry
[44,46] is now embedded in this Siegel modular symmetry
as a special case in which the moduli space is factorized
into several independent tori.

The phenomenology of modular symmetry has been
extensively discussed in the literature. Besides the fermion
masses and flavor mixing, the modular symmetry has been
applied to dark matter models [25,30] and leptogenesis
[32,48,63]. The modular symmetry could naturally produce
texture zeroes of fermion if odd weight modular forms are
taken into account [54]. The modular symmetry has been
implemented in SU(5) grand unification theory [18,22].
The dynamics of modular symmetry could potentially be
tested at present and future neutrino oscillation experiments
[39]. There are many papers on inhomogeneous finite
modular groups I'y, but the homogeneous finite modular
groups I are less studied. In this work, we shall perform a
comprehensive analysis of I'; = A% which is double cover-
ing of As group. The traditional flavor symmetry A{ has
been studied in the literature [64—66] and it was sponta-
neously broken by the VEVs of some flavons. In the
present work, no flavon other than the modulus 7 is
introduced. We construct the weight 1 modular forms of
level 5 by two methods: the first one is from two weight 1/5
modular forms F(z) and F,(7), and the second one is by
the Klein forms. These two methods give the same results
for the weight 1 modular forms which can be arranged into
a sextet of A%, and the tensor products of weight 1 modular
forms give modular forms of higher weight. According to
the representations and weights of matter fields, a system-
atical classification of lepton model with Af modular
symmetry is performed. The neutrino masses are assumed
to arise from effective Weinberg operator or type-I seesaw
mechanism, both models with two right-handed neutrinos
and three right-handed neutrinos are considered. We aim to
find out all A; modular models with minimal number of
free parameters in this work. We numerically scan over the
parameter space of each model, and find that 25 (including
15 models with 9 free parameters and 10 models with 10
parameters) models can explain the experimental data in
lepton sector, as shown in Table IV. We incorporate in
the generalized CP symmetry to further improve the
predictive power of the models, all the coupling constants
are constrained to be real in our working basis, and we find
that 19 out of 25 models can be compatible with exper-
imental data. Furthermore, we extend the A’5 modular
symmetry to quark sector, and give a typical model which
can explain the experimental data of both quarks and
leptons simultaneously.

Rational weight modular forms can be defined at level 5,
and they can be arranged into irreducible representations of
the 5-fold metaplectic cover group I's which is isomorphic
to A§ x Zs. We find that the two weight 1/5 modular forms

F(7) and F,(7) furnish a doublet Y;’? () of T's. All integral
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weight modular forms of level 5 can be obtained from the

tensor products of ¥ (z) with the Clebsch-Gordan (CG)

coefficient of I's, nevertheless it is not necessary to examine
the constraints relating redundant higher weight modular
multiplets in this manner. Furthermore, we present a
concrete model with rational weight modular forms.

The remainder of the paper is organized as follows. In
Sec. I, we briefly introduce the relevant concepts of modular
symmetry and modular groups, the integral weight and level
5 modular forms are constructed and they are decomposed
into irreducible multiplets of A%. In Sec. III, we discuss the
generalized CP symmetry compatible with AL modular
symmetry. In Sec. IV, we perform a systematical classifica-
tion of AZ modular lepton models, the phenomenologically
viable models with minimal number of free parameters and
the numerical results of the fit are presented. In Sec. V, we
extend the A5 modular symmetry to explain the quark masses
and CKM mixing matrix, and a quark-lepton unified model is
presented. The rational weight modular forms at level 5 are
considered in Sec. VI, and they are arranged into irreducible
multiplets of I's. Then a benchmark lepton model involving
rational weight modular forms is presented. Section VII is
devoted to our conclusion and discussions. The group theory
of A5 and the CG coefficients in our working basis are
presented in the Appendix A. We give another approach of
constructing modular forms of weight 1 and level 5 from
Klein forms in Appendix B. We prove two identities between
theta constants and Klein forms in Appendix C. The
expressions of linearly independent higher integral weight
modular forms with k = 4, 5, 6 and higher rational weight
modular forms with r = 6/5,7/5,...,14/5,3 are given in
Appendix D.

II. MODULAR SYMMETRY AND MODULAR
FORMS OF LEVEL 5

The two-dimensional special linear group I' = SL(2, Z)
over the integers acts on the upper half complex plane by
the linear fractional transformation

b a b
TI—)]/TZ&, y—( ), (1)

where a, b, ¢, d are integers fulfilling ad — bc = 1, and 7 is
the complex modulus with Im(z) > 0. If ¢ # 0 then —d/¢
maps to oo and co maps to a/c, and if ¢ = 0 then co maps
to co. Since y and —y induce the same linear fractional
transformation, the group of transformations in Eq. (1) is
isomorphic to the projective special linear group
['=PSL(2,Z) = SL(2,Z)/{1,-1I}, which is the quotient
of SL(2,Z) by its center {I,—I} with I being 2-dimen-
sional identity matrix. I" and T" are usually called homo-
geneous and inhomogeneous modular groups respectively.
The group I" has infinite elements and it can be generated
by two matrices

S G e

The matrices S and T are often referred to as modular
inversion and translation respectively,

1
S: T~ ——,
T

T: 7+~ 7+1. (3)

We check immediately that in I we have the relations

S=_1, St=(STP =1 ST=TS (4
and also (T'S)* = I which is equivalent to (ST)* = I. The
corresponding relations in ' are S? = (ST)* = 1. The
homogeneous modular group I' has a series of infinite

normal subgroups I'(N) (N = 1,2,3,...) defined as,

b
) € SL(2,7),
d

( Z>:<<l) (1)) <m°dN>}, (5)

which is called the principal congruence subgroup of level
N.Wehave " = I'(1) and the element 7" belongs to ['(N),
ie, TN €I'(N). For N=1 and N =2, we can define
[(N) =T(N)/{I,—I}. When N >2, we have ['(N) =
I'(N) because the element —/ doesn’t belong to I'(N).
The homogeneous finite modular group I'y, and inhomo-
geneous finite modular group I'y can be obtained from the
modular groups " and T as the quotient groups I'y =
[/T(N) and Ty = I'/T(N). Therefore we have T, =T,
and Ty is isomorphic to the quotient group I'y /{1, —I} for
N > 2. The finite modular groups I}, and I'y can also be
obtained by imposing an additional condition 7V = 1, so
that tl}eir defining relations in terms of the generators S and
T are

I §4=(STP =1V =1,
Ty: $2=(STP =1V =1,

S2T = TS2, N <S5,
N <S5. (6)

Note that additional relations are necessary in order to
render the groups Iy and Iy finite for N > 5 [67]. For N
taking small values, I'y and I'), are isomorphic to permu-
tation groups and their double covering groups,
FQ :F/ZES?,, F3 EA4, Fg ET’, F4§S4, FZ‘E :1, FS =
As and I'; = AL which will be studied in the present work.

Modular forms of integral weight k£ and level N are
holomorphic functions f(z) satisfying the modular trans-
formation property,

'"The homogeneous finite modular group Iy can also be
equivalently presented as S> =R, (ST)*=R>=T" =1,RT =TR.
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flyr) =

Modular forms of weight k and level N span a linear space
of finite dimension. It is always possible to choose a basis
in this space such that a set of modular forms f;(r) are

(cz+d)f(r).  yeI). (7)

arranged into weight £ modular form multiplet Y, £k> () =
(f1(2), f2(2),...)T in the irreducible representation r of the
homogeneous finite modular group I'y. Under the full

modular group I', the modular multiplet Yﬁk) (7) transforms
as [53]
r @ e 1) = (e + )o@, ®)

where y denotes a representative element in 'y, (c7 + d)*
is the automorphy factor of y with modular weight k. If the
finite modular group is I'y, the modular weight k should be
even. It is sufficient to require that Eq. (8) holds for y equal
to the generators S and 7',

ri(=1/2) = (=)o (Y (2),
YW+ 1) = p(T)YP (2). 9)
Applying Eq. (8) to y = S? = R, we have
r(e) = (1o (R (2),

which implies

1, even k

. 11
-1, odd k& (1

pulk) = (-1 = {

Hence the odd and even weight modular forms furnish
irreducible representations of Iy, in which the element R =
S? is represented by —1 and +1 respectively.

A. Integral weight modular forms of level 5

The linear space of weight k and level 5 modular forms
has dimension 5k + 1, and it can be explicitly constructed
in terms of the Dedekind eta function and Klein forms, as
shown in Eq. (B1). In the following, we proceed to
construct integral weight modular forms of level 5 by
using weight 1/5 modular forms. It has been proved that
the linear space of modular form of weight 1/5 and level 5
is spanned by two algebraically independent modular
functions F(z) and F,(7) with [68]

- 611y(57) 05 1,(57)
_xi (53 _3z1 (55:3)
FI(T) — e710 10°2. , Z(T) = e10 10°2 ,
n(z)*? n(z)*?
(12)
where 6, ,»(7) is the theta constant and 7(z) is the

Dedekind eta function, see Sec. VI for more details about
the definitions and properties of these two special func-
tions. The transformation rules of F(z) and F,(z) under
the modular generators S and T are

Fy ()=o) 3¢t /f%(ﬁ[wf) LREL FE-SE k),

s Vs i |1 ) — T 1) e®F, (1
Fy(1)—(~7)' e’ 1/\@¢[F1( )= dFy (7). Fa(1) Fy(1),

with ¢ = (1 ++/5)/2. The modular space of level 5 can be
generated by F(z) and F,(z), and each modular form of
integral weight k and level 5 can be written as a polynomial
of degree 5k in F,(z) and F,(7):

ZCFZ

Because F(7) and F,(z) are algebraically independent, all
terms in above polynomial are linearly independent, and
obviously the number of independent terms matches with
the correct dimension 5k + 1. Without loss of generality,
we can choose a set of basis vectors of the weight 1
modular space as

V3% (7). (14)

Fi(2)F3(2).

(13)

|
Solving the decomposition equation of modular forms in
Eq. (9), we find that these six modular functions can be
organized into a six dimensional representation 6 of
I'; = AL. In the representation basis collected in Table XI,
the sextet modular form is given by

F} +2F5 %

1(7)
2F; - F3 Y, (1)

v (x) = ik || B (16)
5V2FiF; Y4(7)
—5V2F2F3 Y5(7)
5F\F} Ye(7)

The same result is obtained in Sec. VI, where the weight 1
modular forms are constructed from the tensor product of
weight 1/5 modular forms by using the CG coefficient of
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I's. Here I's is the 5-fold metaplectic covering of As, and
more details are explained in Sec. VI. The g-expansion of
Y;(7) is given by Eq. (99).

The higher weight modular forms can be constructed
from tensor products of Y4. For example, there are 11
independent weight 2 modular forms of level 5, which can
be decomposed into two triplets and a quintet transforming
in the 3, 3’ and 5 irreducible representations of A%. Without
loss of generality we can choose the weight 2 modular
forms as

“2(Y, Yy + Y, Ys—Y3Yy)
V2(Y3-2Y,Y5) .
—V2(Y;+2Y,Ye)
2(YY,+Y3Y6)
Y Ye—2Y,Y, |,
—2(Y3Y,+Y,Ys)

2 1) (1
v =g v, =

(2) _ ry(D) (D) _
Y3’ _(YG Y6 )3/1;_

—VB(r3 4 13)
2(YZ+Y Y3+ Y, Y5 +V2Y,Ye)
2 1 1
Y9 =5 = | 2034V YY)

2(Y24V2Y3Y4—V2Y Y5)
2(Y3—V2Y3Y5+ (Y, —Y)Ye)
(17)

We check that the g-expansions of ¥ g2), Y (,2) and Y. éz) are
identical with those of the weight 2 modular forms of level
5 reached in Refs. [50,51] up to some irrelevant overall
constants. From the Kronecker product 6 ® 6 =1, @
3l.s 7] 32,5 7] 3/15 5] 3/25 5] 45 @ 4a @ 5l.s 5] 52,a @ 53,3’

we know that the contraction Y, él)Yél) can give rise to two

additional weight two triplet modular forms (Y, él)Y él))325

TABLE L.

and (Yél)Y ‘(51))3’2.5' From the g-expansion we see that they

2)

are proportional to Yg and Yg%) respectively:

D1 1) (1 3.0
v, ==, =39 )

N W

which implies

2Y? +3Y,Y, = 2Y3 = 3Y3Ys — Y, Y5 =0,
3Y2 4 4Y,Y;5 —2Y,Y5 —4V2Y,Y6 =0,
3Y2 + 4V2Y5Y5 4+ 2(Y, 4 2Y,)Y =0,
2Y2 4+ 3Y,Y, —2Y2 + 4Y, Y5+ 7Y3Ys =0,
2V2Y2 + (4Y, —TY,)Y, + 3Ys5Y = 0,

2V2Y2 4 (7Y, + 4Y,)Ys +3Y3Y, = 0. (19)
Moreover we find the modular forms Y;(z) (i = 1,...,6)
satisfy the following constraints,

2Y2 4 2(Y, = 2Y,)Y3 — V2V, Y4 = 0,
V2Y3 = (3Y, + Y5)Y, = YsYs =0,
V2Y2 4 (Y, = 3Y,)Ys — Y3V, =0,
V2Y2 = \V2(Y| +2Y,)Yg + Y3Ys5 = 0. (20)
Hence the contraction (YY), is vanishing, ie.,
(Y6Y6)s, = 0. (21)

The linear space of modular forms of weight k = 3 and
level 5 has dimension 5k + 1 =16, and they can be
decomposed into a quartet and two sextets transforming
as 4 and 6 under A,

Summary of integral weight modular forms of level N = 5 up to weight 6, the subscript r denote the

transformation property under homogeneous finite modular group SL(2, Zs) = AL.

Modular weight k

Modular forms Yﬁk)

k=1
k=2
k=3
k=4
k=5
k=6

vy
vy vy vy
G) y3)
Y4/ ’ Y61 ’ Y6II
4 v@) @) @) v@) L4
O, Yy

(5) y(5) v (5 v(5) (5
(6) (})/2 <)>/2 ’( e ’< );é[ ’(YES)]’(Y)m” ) y(6)
6 6 6 6) (6 6 6) (6 6
Yl ’ Y31 ’ y311’ YS’I’ Y3’II’ Y41 ’ y411* YSI ’ YSII
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_\/_Y3 3/

@)
—2Y, Y4
YY) = o

(1) y(2)
v =YYy

)y
—2Y5YY)

—\/_YG 3,

-y 31
Y2Y31+

YyY
Y3 YIYZ 3 31

)s,

V2Y5 Y3,3 -

2)

3.2
(2)
32

+Y,Y
—Y3Y

~V2Y,Y§ 33
\/§Y6Y32
—V2Y,Y¥ 32

Y.Y5)

—3Y,Y

YsY$ +V2Y,Y5)
@

\/_Y6 3/2+\/_Y5 3/

2)
32

2)
3.3

2)

+YeY

+ (31, +Y2)Y

\/_Y4 3/2+\/7Y'3 3/

V2V, YY) =YYy
VY YE + VB(Y6Y ) = V2YSYE) = V2Y Y S+ YaY )
V2V Y G + VB(Y6Y ) = V2YSYE) + V2, ) — YaY )
ve) = (yOyP)y, = VA Y - Yo+ Var gl - 2v2rsr g ’ )
3 V2V Y+ VB(YsYE) + (Y, = Y)Y )
VRYSYE) = V(Y Y + YY) - YY)
VB(V2YSYE) + (Y, + Vo) YE)) - 2V2YYE,
|
where Yf) — (YgZE’ Y;(;zz)’ Yg 3))T, Yg%) — (Y:(;%.)l’ Y;%,)z’ Y?%)T If we perform a CP transformation, followed by a modular

and Y& = (Ygl),Yé»%,Yég,Yg’i,Y(;s))T are denoted, and

similar notations are adopted for the modular forms in this
work. The explicit expressions of the higher weight
modular forms are given in Appendix D. The structure
of modular forms at level 5 is summarized in Table I up to
weight 6.

III. COMBINING GENERALIZED CP WITH A
MODULAR SYMMETRY

It has been established that the modular symmetry group
SL(2,Z) can be consistently combined with the general-
ized CP symmetry such that SL(2,7Z) is enhanced to
GL(2,Z) [59], and the CP transformation is represented by

the matrix
- ( )

The CP transformation has to act on the complex modulus
7 as [59,60,69-71]

1
0

0

i 23)

cP (24)

- 7.

transformation and subsequently an inverse CP transfor-
mation, we end up with

cP r, ar +bc7>— atr—>b

—T* = s 25
T ct” +d —ct+d ulr)e (25)
where

a —

u(y) = < J ) =6y e SL(2,Z). (26)

Obviously we have u(S) = S~ and u(T) = T~'. Therefore

the generalized CP transformation corresponds to an
automorphism u(y) of the modular group. A second CP
transformation CP, for the automorphism u(S) = —S~!
and u(T) = —T~! can possibly be defined if the level N is
even [56]. Obviously CP, is not allowed in the context of
N =5 which is an odd number. For a generic chiral
supermultiplets ¢, its transformation properties are char-
acterized by k and p,, where —k is the modular weight of ¢
and p, is an irreducible representation of the homogeneous
finite modular group I'),. Under a modular transformation
7, the multiplet ¢(x) transforms according to
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9(x) = (ct+ d)*pe(r)p(x). (27)

The action of generalized CP symmetry on the multiplet
@ is

o(x) 5 X, 9 (xp), (28)

where xp = (1, — X ), a bar denotes the Hermitian conjugate
superfield, and X, is a unitary matrix that acts on flavor
space. Now we consider the same transformation chain in
Eq. (25),

0(x) 2> X,  (xp) > (0 + d) ™ Xupi(v) @ (xp)
P (—er+ d)* Xepi ()X (). (29)

Consistency between the modular and CP transformations
requires that the resulting transformation should be equiv-
alent to the modular transformation u(y), i.e., CPoyoCP~! =
u(y). One can read out the transformation of ¢(x) under
u(y) as,

o) L (—ct + Ao (u))e(x).  (30)

Comparing Eq. (29) with Eq. (30), we reach the consistency
condition [59],

Xepr(N)Xe' = pe(uly)). (31)
|

For each irreducible representation r of I'y, the above
consistency condition fixes the generalized CP transforma-
tion X, up to an overall phase. It is sufficient to require that
Eq. (31) holds for y equal to S and T,

Xepi ()X =pl(S),  Xepi(T)X7' = pl(T). (32)
In our chosen representation basis in Table XI at level
N =5, both generators S and T are represented by sym-
metric matrices in all irreducible representations of
Aj. Therefore the CP transformation X, is exactly the
canonical CP,

X, =1. (33)

Under the action of CP, the modular forms of weight 1 and
level 5 transform as

cP

v (e) = v (=) = [¥{ (o). (34)

All the CG coefficients in our working basis are real, con-
sequently the identity Y k) (7) P, y® (—t*) =Y, ) (7)]* is
satisfied for any integral weight modular forms Y, Ek) (7) at
level 5, and CP invariance would enforce all coupling
constants to be real. Once CP invariance is incorporated
in, the symmetry of the theory would be enhanced. As a
result, the homogeneous finite modular group A5 would be

enlarged to the CP extended finite modular group I's defined
by [11]

[t S =T =0TP=¢>=1, S’T =TS?, €SE! =851, ETE =T (35)

IV. SYSTEMATICAL CLASSIFICATION OF MINIMAL LEPTON MODELS
BASED ON A; MODULAR SYMMETRY

In this section, we shall perform a systematical classification of all minimal lepton mass models with the A% modular
symmetry. We shall adopt the bottom-up approach of modular invariance in [9]. We let ®@; to denote a set of chiral
superfields, it transforms under the modular transformation in the following way,

a b
, ®; — (ct+d)Fip,(y) Py, Y= <c d) € SL(2,2), (36)

where —k; is the modular weight of @;, and p;(y) is the unitary representation of the representative element y in I'y. There
are no restrictions on the possible value of k; since the supermultiplets @, are not modular forms. In the present work, the
Kihler potential is taken to be the minimal form [9],

K@, ¢ ;7. 7) = —hA2log(—it + %) + Y (=it +i%) 7|2, (37)
1

which gives rise to the kinetic terms for both the scalar and fermionic components of the supermultiplets ®; and the
modulus superfield z. The superpotential YW(®;, 7) can be expanded in power series of the involved supermultiplets @,
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W(®;.7) ZYII 1,0, @ (38)
where Y; ; is a modular multiplet of weight ky and it transforms in the presentation py of I'y,
atr+b k
Ty = oY) = Y(yr) = (et + )Y py(r)Y (1) (39)
ct+d

Modular invariance entails that each term of the super-
potential should be invariant under the action of I'}, and its
modular weight should be vanishing, i.e.,

ky=k; +-+k,, pr®p,®...Qp, 51  (40)
In the following, we shall perform a comprehensive and
systematical study of possible quark and lepton models
with the AL modular symmetry. We shall utilize the
advantage of the modular symmetry and no flavon fields
other than 7 is introduced. We assign the Higgs doublets H,,
and H, to two singlets 1 and their modular weights kg, 5,
are vanishing.

A. Charged lepton sector

We assume the three generations of left-handed lepton
doublets L = (L, L,, L3)" transform as a triplet 3 or 3,
and the right-handed charged leptons Ef , ; are assigned to
the direct product 1 1@ 1,2® 1, 2’ & 1 or a triplet 3,
3'. The modular weights of L and EY , ; are denoted as k;,
and kE‘lpzﬁ respectively. For each representation assignment,

there are in principle infinite possible weight assignments
for the fields, and the number of the independent couplings
in the superpotential )V, of the charged lepton mass terms
generally increases with the weight of the involved modular
forms. We consider modular forms up to weight 6 in the
present work, the numbers of possible models in the
charged lepton sector are shown in Table II. Due to
limitation of space we will list the models for which W,
contains at most four independent terms in the following.

@) pr =3, pe

1,23

In this case, the three right-handed charged
leptons are distinguished from each other by their

TABLE II.

different modular weights. For the weight assign-
ments fulfilling kE(]»” + k; =2, 4, 6, the modular

invariant superpotential is of the form

Ci: W, =a(YPESLH,), + p(YSESLH,),

6 C C
+y (YO ESLH,), + 8(Y S ESLH,),.
(41)

The charged lepton mass matrix can be straightfor-
wardly read out and its explicit form is listed in the
supplementary file [72].

(1) pr =3, pe:

123
For the lowest weight assignment k E,

Ltk =2,
4, 6, the charged lepton superpotentlal reads as

Cii: W, = a(Yy)

+7(

ESLH,), + (Y b EQLHd)

o

6
Y ESLH,), + 6(Y'S),ESLH,),.

(42)

For both models Ci and C¥, the phases of @, 3, y can
be absorbed into the right-handed charged leptons
and they can be taken to be real while the parameter
0 is generally complex.
(iii) pp =3, PE;, = 2, PE; = 1

The first two generations of the right-handed
charged leptons are assigned to a doublet of Af
and we denote Ef, = (EY, E). There are six possible
values of modular weights for which up to four
terms are involved in the charged lepton Yukawa
couplings, and accordingly the superpotential is of
the following form

The number (in bracket) of possible charged lepton models for different representation assignment of L and EY , ; under the

finite modular group A% up to weight 6 modular forms. We don’t count the cases which give degenerate charged lepton masses. We also
list the number (without bracket) of models which contain up to four independent terms in the charged lepton superpotential W,.

Ci Cii Ciii Civ Ccv C?Jf Cvii Cviii Cix Ccx
oL 3 3 3 3 3 3 3 3 3 3
PEe 1161 16161 261 21 2601 2d1 3 3 3 3
# of models 1 1 6 8 8 6 2 3 3 2
(Total number) (1) (1) (6) ) M) (6) (3) 3) (3) 3)

095013-8



FERMION MASSES AND MIXING FROM THE DOUBLE COVER ... PHYS. REV. D 103, 095013 (2021)

Cit: W, = a(Yy EyLH,), + p(YSESLH,) . for kg +k;, = 3.2,

Cii: W, = a(YY EGLH,), + BV ESLH,),.  for kg +k, = 3.4,

Cii: W, = a(YS EGLH,), + B(YS EGLH,), +y(YS ESLH ), for kg +kp = 5.2,

it W, = a(Y EGLH ), + BV EGLH,), +y(YSVESLH,) . for kg, +k, = 5.4,

Cit: W, = a(Yy EGLH,), + pOYS) ESLH,), + y(YS)ESLH,),.  for kg, + k; = 3.6,

Cit: W, = a(Yy ELH,), + P(YS EGLH,), +y(Yy) ESLH,), + 8(Ys) ESLH,),.  for kg +k; = 5.6
(43)

(iv) pr =3, PE; =2, PE; =1
Similar to the previous case, the charged lepton Yukawa coupling can also take eight possible forms,

CP: W, = a(Y{ EGLH ), + (Y ESLH,),.  for kg, +k;, = 1.2,

CY: W, = a(Y{ EGLH ), + p(YSESLH,),.  for kg, +k;, = 1.4,

CP: W, = a(Yg) EGLH )y + (Y ERLH,), + y(YS ESLH,),.  for kg, +k, = 3.2,

Cils W, = a(Yg) EGLH )y + (YU ERLH,), +y(YSVESLH,),.  for kg, +k;, = 3.4,

Cl: W, = a(Yy EGLH ) + BYS) ESLH,), +y(Yy) ESLH,),.  for kg, +k, = 1.6,

Clts W = a(Y§) ELH ), + BYGIESLH )y + (Y EGLH ), +8(YS ESLH, )y, for kg, +k =5.2,

CY: W, = a(Yg) EGLH )y + P(Y G EGLH,), + y(Ys) ESLH )y + 8(Ys) ESLH,),.  for kg + k= 3.6,

Ci's W = a(Y§) EGLH,), + BYGIESLH ), + 7 (Y EGLHY), + 8(YS ESLH,), . for kg, +k, =5.4
(44)

™ pL =3 pp =2, ppc =1
Dependlng on the welghts of lepton fields, we find that the charged lepton superpotential can be

Ci: W, = a(Y{ EGLH,), + BOYS ESLH,),.  for kg +k, = 1.2,

Cy: W, = a(YYEGLH,), + B(YY ESLH,) . for kg +k, = 1.4,

Cy: W, = a(Y§)EGLH,), + B(Yg ELH,), +y(Yy ESLH,),.  for kg +k; = 3.2,

Cy: W, = a(Yy ELH,), + (Y ESLH )y +7(Yy ESLH,) . for kg +kp = 3.4,

Co: W, = a(Y EjLH,), + (YY) ESLH,), + (V) ESLH,) . for kg, +kp = 1.6,

Co: W, = a(Y§) EGLH,), + B(Yg EGLH,), +7(Ya, ESLH,), + 6(YS ESLH,),. for kg, +k, =5.2,

Cy: W, = a(Yg ELH,), + (Ve ESLH,), +7(Yy) ESLH,), + 8(Yy) ESLH,),.  for kg, +k;, = 3.6,

Cy: W, = a(Y B LH,), + BV ESLH )y +v(Ye, ESLH,), + 8(Yy ESLH,) . for kg, +kp =5.4.
(45)
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i) pp =3 pp =2, ppc =1
In the same fashion as previous cases, we can read out the superpotential for charged lepton masses as follows,

(vii)

(viii)

(ix)

Cl': W, = a(YQ EGLH,), + p(YS ESLH,), . for kg, +k;, = 3.2,

Cy: W, = a(YS ESLH,), + B(YYESLH,),,  for kes -+ = 3,4,

cy: W, = a(YS ESLH,), + B(YS ESLH,), + y(Y§,>ECLHd) . for kg +ky =52,

Clit W, = a(YY EGLH ), + POYSEGLH,), + y(YS ESLH,) . for ke +k, = 5.4,

CYi: W, = a(YQ EGLH ), + PYy ESLH,), +y(Yy ) ESLH,),.  for kg, +k;, = 3.6,

Cois W, = a(Yy EGLH,), + B(Yy EGLH,), + y(Yy ESLH ), + 8(Yy) ESLH,) . for kg, +k; =5.6.

For the cases C'5"""""", both  and 3 can be taken as real parameters, while for the cases C5 /2"

(46)

345 »thephases of a and

y are unphyswal, but the parameter f is complex. For the cases Cgi’”i , C;”'”, a and y are real parameters, f and § are

complex parameters. For the cases Cyg’, @ and & are real parameters, f and y are complex parameters.

pL =3, ppc =3
The superpotential for the charged lepton masses are given by

clii: W, = a(YPECLH,), + B(YS'ECLH,),.  for kye + k; =2

Cy's W, = a(¥y E“LH,)y + pOYS"E“LH )y + y(Ys) E°LH )y + (Vs E°LH )y for ke + ky = 4.

pL=3, ppc =13
There are three possible forms of the superpotential in this case,
cuit: W, = a(YPECLH,),, for kg + k= 2.
Ciit: W, = a(YSECLH,), + B(YS)ECLH,), + y(YS)ELH,),, for kp +k, = 4.
Cyi: W, = (qu)ECLHd)l +ﬁ(Y411ECLHd) + J’(Yg)ECLHd)l + 5(Y$)1ECLH¢1)17 for kg +k, = 6.
pr =3, pp =3
In this case, the charged lepton superpotential can take three possible forms,
Clx W = ( ( )ECLHd)l, for kE" + kL — 2
Civ: W, = a(YS ECLH,), + B(YS ECLH,), + y(YS) ECLH,),.  for ke + k, = 4.
ci: W,

x) pr=3,pp =3

Similar to previous case, we find that the charged lepton superpotential can be

Ci: W, =a(YYELH,), + B(YS'ELH,),, for ky +k, =2
Ci: W, = a(V\WWELH,), + B(YYELH,), +y(YS) E°LH,), + S(YSECLH,),, for kg +k;, = 4.

C 6 c (4 6 C
a(YSECLH,), + BV ECLH ), +y(YSESLH,), + 8(YS)ELH,),. for kg +k, = 6.

(47)

(48)

(49)

(50)

In the above four cases, the left-handed lepton L as well as the right-handed charged lepton fileds E¢ are assigned to a
triplet of A, there is only one freedom to absorb the complex phase. As a result, only the parameter a can be taken as

real and all other parameters should be complex.
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TABLE III.  The number (in bracket) of possible neutrino models for different representation assignments of L and N¢ under the finite
modular group A% up to weight 6 modular forms, where the case without modular forms is not counted. We also list the number (without
bracket) of models which contain up to three independent terms in the neutrino superpotential W,.

Si Sii Siii Siv Ti Tii Tiii Tiv Wi Wii
oL 3 3 3 3 3 3 3 3 3 3
PN 3 3 3 3 2 2 2 2/ - -
# of models 3 2 2 3 5 5 5 5 3 3
(Total number) (15) 12) 12) 15) 6) ) ) 6) 3) 3)
B. Neutrino sector cases with at most three independent terms in the

In this work, neutrinos are assumed to be Majorana superpotential.

particles. Their masses can arise from the type I seesaw
mechanism. We consider seesaw models with two and three 1. Seesaw models with three right-handed neutrinos
right-handed neutrinos. The Weinberg operator can also
induce the effective neutrino masses, where the right-
handed neutrinos are absent. The numbers of possible
neutrino model are listed in Table III for different assign-
ments of lepton doublets L and right-handed neutrinos N¢.
We are concerned with the phenomenological viable

If the three right-handed neutrinos are assigned to As
singlets or the direct sum 2() @ 1, at least four terms would
be involved so that the resulting models are not so
predictive. Hence we assign the three right-handed neu-
trinos as well as lepton doublets L to a triplet 3 or 3’ of As.

models with the smallest number of free parameters, ®) pr =3, py-=3 .

and consequently in the following we give the explicit We find three possible values of the modular
form of the neutrino superpotential for the cases that only weights kye and kg (e kL).: (1.-1).(0,2),
two or three independent terms are present. For the models (1.1), for which the superpotential of the seesaw
without right-handed neutrinos, similarly we consider the Lagrangian has two or three modular invariant terms.

St W, = g(N°LH,); + A(YINN©),,  for kye = 1.k, = —1,

Sii W, =g (YWNLH,), + g(YPNLH,), + A(N°N),, for kye = 0.k =2,

SiiW, = gi(YOINLH,), + (YD NLH,), + A(YPNN©),, for kye = 1,k; = 1. (51)
For the model S!, the light neutrino mass matrix only depends on the complex modulus and an overall scale factor

g*v%/A, while it also depends on another complex parameter g,/g; for S and S;. The predicted Dirac and Majorana
neutrino mass matrices are given in the auxiliary file [72].

(i) pp =3, pye =3
For this kind of representation assignment, the neutrino superpotential can take the following two simple forms
Si: W, = g(Y§)NLH, ) + A(N°N),.  for kye = 0.k, =2,
Sit W, = g(YONLH,), + A(YPNN),, for kye = 1k, = 1. (52)
(i) p, =3, pye =3
Similar to the previous case, the superpotential for neutrino masses can also take two possible forms
Si: W, = g(Y§NCLH,); + A(NN€)y,  for kye =0,k =2,
Sis W, = g(YONLH,), + AYPNN),.  for kye = 1.k, = 1. (53)

Although the superpotentials in Eq. (52) and Eq. (53) appear the same, using the CG coefficient to expand the
contractions, we find that they give rise to different terms and neutrino mass matrices. For the neutrino models S}",
the effective light neutrino mass matrices are completely determined by the modulus z up to the overall scale

factor g>v2/A.
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(iv) pp =3, pye =3
The neutrino superpotential in this case can be
Siv: W, = g(N°LH,); + A(YSINN©),,  for kye = 1.k, = —
St W, = g1 (Y$'NLH,), + >(Y$'NLH,), + A(NN¢),, for kye = 0,k =2,
St W, = g (YPNLH,), + go(YS'NLH,), + A(YPNNC),, for kye = 1,k = 1. (54)

2. Seesaw models with two right-handed neutrinos

If the two right-handed neutrinos are assigned to A% singlets distinguished by modular weights, generally more modular

invariant terms are involved. As a consequence, we assume that the two right-handed neutrinos transform as a doublet 2 or
2’ under AL
@) pL=3,pye=2
We find that only five sets of values of the modular weights k; and k. such that there are two or three independent
terms in the neutrino superpotential.

Ti: W, = g(Y$NLH,), + A(YYNNC),,  for ky = 1,k, =2,
Ti: W, = g(Y$NLH,), + A(Y(4)N”N“)l, for ky = 2,k; = 1,
Ti: W, = gi(YS'NLH,), + 6o (YSNLH,), + A(YSINNY),,  for ky = 1,k = 4,
Ti: W, = i (YS'NLH,), + (YY) NLH,), + A(YSINNC),,  for ky =2,k = 3,
Ti: W, = g(Y{NLH,), + A (YS) NN, + Ay (YSINN©),,  for ky =3,k = 0. (55)
The light neutrino mass matrix is fixed by modulus z and an overall mass scale for T1 »» and it depends on a third
complex parameter g,/g, for T, and A,/A; for T respectively.
(i) pr =3, pye =2
Analogously we also find five possible cases as follow,
Ti: W, = g(YS)NLH,), + A(YSNNY),,  for kye = 1,k =0,
Ti: W, = g(Y{NLH,), + A(YYINeN©),,  for kye = 2.k, = —
Ti: W, = g\(YS)NCLH,), + go(YoyN°LH,), + A(YSNN©),,  for kye = 1,k; =2,
Ti: W, = g,(YS)NLH,), + g( 6HNCLH )y + A(YSINN), for kye =2,k = 1,
Ti: W, = g(Y{INCLH,), + A (YSINNO), + Ay (YS) NENC),, for kye = 3,k = 2. (56)

(i) pp =3, pye =2
The neutrino superpotential in this case can be
Tii: W, = g(YSINLH,), + A(YNNC),,  for kye = 1,k =0,
Tii: W, = g(Y{'NLH,), + A(YSINeNY),,  for kye = 2.k, = —1,
Tii: W, = g(Y§)NLH,), + g2 (YsyN°LH,)), + A(YSINNY),,  for kye = 1,k; =2,
T{:W, = gl(Yg)N”LHu)l + 92( 6IINCLH h +A(Y:(;4)NCNC)17 for kye =2,k =1,
i W, = g(YSONLH,), + Ay (Y NNO), + Ay (YSINN©),,  for kye = 3,k = —2. (57)
(iv) pr =3, py- =2

The modular weight k; and ky. can also take five values: (ky<, k;) = (1,2),(2,1),(1,4),(2,3), (3,0), and the
superpotential for neutrino masses are given by
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TV: W, =g

T W, = g(Y$NLH,), + A(YyNeN),,
TV: W, =g

Ti": W, = g, (Y NLH,), + g> (Y

T W, = g(Y$NCLH,), + Ay (Y NeNe

(YOINCLH,), + go(YS'NCLH,), + A(YSNeN©),,
INCLH,), + A(Yy N°N°),,
)y + A (Y NeN©Y

(YQ'NLH,), + A(YS'NNe),,  for kye = 1,k =2,

for kye =2,k; =1,

for kye = 1,k;, = 4,

for kye = 2,k; = 3,

for kyc = 3,k; = 0. (58)

The explicit forms of the Dirac neutrino mass matrix and the right-handed Majorana neutrino mass matrix are given

in the supplementary file [72].

3. Models without right-handed neutrino

The light neutrino masses are described by the effective Weinberg operator in this scenario. For the triplet assignment of
the left-handed leptons p; ~ 3,3 under A’S, there are two classes of neutrino models.

i) pr=3

We find that only three allowed values of the modular weights k; such that at most three independent terms are

present in the superpotential of neutrino masses.

. 1
Wit w, =+ — (YPL2H?),, for k, =1,
1
. 1 1 1
Wit W, =—W\WL2H2), + — (YO L2H2), + — (Y L2H2),,  for k; =2,
Ay A As
. 1 1 1
Wi: W, =— Y1202, + — (YO L2H2), + — (Y L2H2),, for k; = 3. (59)
Ay Ay Ay

The light neutrino mass matrix is fixed by modulus 7 and an overall scale factor v/A; for W', and it depends on
another two complex parameters A;/A, and A,/A; for W§’3.

(i) pp =3

Analogously we also find three possible cases as follow,

1

Wit W, = — (YPL2H?),, fork, =1,
1

1 1 1

Wit W, = — (VW L2H), +— (Vg LHY), + — (Y L2H),, for ky =2,
Ay Ay Ay

) 1 1 1

Wit W, = —(V\OL2H2), + — (YO L2H2), + — (YS)L2H2),,  for k, = 3. (60)

A Ay As

The explicit form of the effective neutrino mass
matrix can be straightforwardly read out and it is
given in the supplementary file [72].

C. Numerical results for lepton masses and mixing

Combining the possible constructions of charged lepton
sector listed in Table II with those of neutrino sector in
Table III, we can obtain 720 possible lepton models with
small number of free parameters based on the homo-
geneous finite modular group A%. These 720 lepton models
are named as L1, ..., L7, which can be found in Table 3 of
the Supplemental Material [72]. In order to determine
which models are compatible with the current experiment,

we perform a conventional y? analysis to search for the
optimal values of the input parameters and quantitatively
evaluate how well a model can accommodate the exper-
imental data. In order to facilitate the numerical analysis,
we divide the input parameters of each model into
dimensionless parameters and overall mass scales. The
dimensionless parameters include the ratios of the coupling
constants and the VEV of the complex modulus z. As in
Ref. [9], we shall not resort to certain modulus stabilization
mechanism to dynamically select the value of the modulus
7, and it is freely varied to match the experimental data. The
overall mass scales of the charged lepton and neutrino mass
scales determine the magnitudes of the charged lepton
masses and the absolute scale of neutrino masses, and their
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values can be fixed by the precisely measured electron
mass and the neutrino mass squared difference Am3,.
Therefore we construct the x> function based on the
neutrino mixing angles 6;,, 63, 0,3 and the mass ratios
m,/m,, m,/m,, Am3,/Am3, (Am3, /Am3,) for NO (I0)
neutrino mass ordering. Since the leptonic Dirac CP phase
8%p is not accurately measured and the indication of a
preferred value of 6’CP from global data fit is quite weak,

|

sin®0;, = 0.30475912,
2
Ams3,

Sbp/m = 1.094475-1399 0 oV

sin?6,;5 = 0.0221979:00062.

=17.

we did not include the contribution of &L, in the y?
function.

The experimental data of the neutrino oscillation param-
eters are taken from NuFIT v5.0 with Super-Kamiokanda
atmospheric data [73]. For the normal ordering (NO)
neutrino masses, the best fit values and the 1o ranges of
the three mixing angles, Dirac CP phase, and neutrino mass
squared differences are as follows

sin’0,3 = 0.5737091°,

For the inverted ordering (IO) mass spectrum, values of the oscillation parameters are given by

sin%0;, = 0.30470913,

Sep/m = 1.5667 1647,

sin’0)3 = 0.02238” 050663

40+021 Ams, — 0.517+0:026 (61)
—-0.20° 10—3 CV2 —0.028°
sin’0,3 = 0.57570918,
Ams,
=T4250%,  Joar = ~2A98I00. (62)

TABLE IV. The models that can accommodate the experimental data at 3¢ level for normal ordering neutrino masses. The details of
these models can be found in the Supplemental Material [72], which provides the complete results for all AL modular lepton models with
small number of free parameters. We have listed the number of real free parameters involved in each model in the second column. The
constructions in the charged lepton and neutrino sectors are given in the third column. After generalized CP (gCP) is incorporated in
these models, two more free parameters would be reduced and most of them can still accommodate the 36 experimental data, which will
be marked with “v” in the last column, otherwise it will be marked with “X”.

Models #P Combinations (PEesPLsPNe) ke kr ke With gCP
L, 10 ci.si 191@1.3,3) 0,2, 4 2 0 v
Ly 10 st 1016 1.3.3) 1,3,5 1 1 v
Loy 10 Cii S 1e161,3.3) 0,2,4 2 0 v
Lio 10 Cii, s 1e161,3.3) 1,35 1 1 v
L) 9 Cii. S 2@ 1.3.3) 3,0 2 0 v
Les 9 Civ, S} (2 1,3,3) 6,3 -1 1 v
Loy 9 ci. s 2 ®1.3,3) 4,7 -1 1 X
L6 9 cu. S (27®1,3,3) 6,5 -1 1 X
Lo, 9 LSy 2®1.3.3) 1,0 2 0 v
Los 9 LS 2@1,3.3) 2,1 I i v
Lo 9 Cy. Sy 2@1.3.3) 1,2 2 0 v
Li0o 9 Cy, S¥ 261,3,3) 2,3 1 1 v
Lios 9 CL, SY 261,3.3) 0,5 1 1 X
Liog 9 Cg,S’i"" 261,3,3) 6,3 -1 1 v
L3 9 cy. st 2e1.3.3) 4,7 -1 1 v
Lus 9 L. s 201.3.3) 6,5 -1 1 v
Ly 9 Cyi, Sy 2e13.3) 3,0 2 0 X
Loos 10 Ci. T} 1e191.3.2) ~2,0,2 4 | v
Loos 10 Ci,Ti 1e1e1.32) 0,24 2 1 v
Looo 10 Cl. T 10161,3,2) 1,3,5 | 2 v
Lo1o 10 Ci, Tk 1e1e1,3,2) 4,6, 8 -2 3 v
Lots 10 ci i 19101.3.2) 0,2, 4 2 1 v
Lot 10 i, i 10161.3.2) 1,3,5 1 2 v
Lato 9 Civ T 2 ®1.3,2) 5, 4 ) 3 X
Lesa 9 cs, ng 2e13.-) 21 3 - X
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The ratios of the charged lepton masses are taken from Ref. [74],

m,/m, = 0.004737 £ 0.000040,

We have used the well-known package T™inuit developed by
CERN to search for the global minimum of the y? function.
The absolute values of all dimensionless parameters are
assumed to be uniformly distributed in the range of [0, 107],
their phases freely vary between 0 and 2z, and the VEV of
modulus 7 is restricted in the fundamental domain
D ={z||z7| = 1,-0.5 < Re(r) £0.5, Im(z) > 0}.

We numerically diagonalize the charged lepton and
neutrino mass matrices, and scan over the parameter space
of each lepton model for both NO and 10. We find that 25
NO (49 1I0) models with up to 10 parameters can
accommodate the experimental data at 3o level, all the
fitting results of the 720 models are summarized in our
Supplemental Material [72], and we label the models which
are compatible with the experimental data at the 3¢ level or
better with a star “x”. In the main text, we have summarized
the 25 NO models in Table IV. It can be seen that there are

|

C12€13

U= | =s12¢23 — C12813503€"cr

i6
S12823 — C12813C3€ 77

where ¢;; = cos 0;;, s;; = sin8;;, 6¢p is Dirac CP violation
phase, and a,;, az; are called Majorana CP phases. In the
models with two right-handed neutrinos, the lightest
neutrino would be massless such that there is only one
Majorana phase.” Then the phase matrix diag(1, ¢, e/2")
should be replaced by diag(1,e#/?,1), where ¢ is the
Majorana CP phase. Our numerical scan shows that almost
all mixing angles for these 25 lepton models are predicted
to fall within the 1o ranges, except that sin®#,; for the
models Ly, Los, L10s L10ss L10ss L1135 L1185 L208s Lesas
and sin?#,, for the models L35, L5 are beyond the
lo region but within 3¢ region. It is notable that the
Dirac CP phase ocp is close to 1.5z in the models
Eg, 522, E7] s [:94, £99, 5105, £|34, and £213. Because the
modular forms satisfy the identity Yﬁk)(—r*) = [Y(rk)(r)]*,
therefore both neutrino and charged lepton mass matrices
which are functions of modular forms and coupling
constants, would become their complex conjugate under
the transformation 7 — —7*, g; — g;. Hence the pair of
input parameters {—7*, g/} and {z,g;} lead to the same
predictions for lepton mixing angles while the overall
signs of CP violating phases are reversed. Therefore the

*For example, the phase a3; is unphysical in the case of
ms = 0.

is
C12Co3 — 8128138237

i6
—C12823 — S12513C3€ "

m,/m, = 0.05857 + 0.00047. (63)

|

15 phenomenologically viable models with 9 real free
parameters including Re(r) and Im(z), while the other 10
models use 10 free parameters to describe the experimental
data. We see that the right-handed charged leptons trans-
formas2 @ 1 or2’ @ 1 for the minimal models with 9 free
parameters. Notice that the homogeneous finite modular
group was studied in the preprint [57] which appeared on
the arXiv during the final preparations of this article, and an
example model corresponding to our model £,,q with 10
parameters was constructed.

We have displayed the fit results of the 25 NO models
in Tables V—VII, where we have presented the best
fit values of the input parameters and the corresponding
predictions for neutrino masses, mixing angles and CP
violating phases. Here we adopt the convention for
lepton mixing angles and CP phases in the standard
parametrization [1],

S12€13 s13€""0cr
. AR
C135723 dlag(l,e’z ,612 ), (64)
C13C23

|
numerical results in Tables V—VII should come in pair
with opposite CP phases.

The right-handed charged leptons are usually assumed to
transform as singlets under the finite modular group, such
that at least one free parameter is introduced for each
generation of charged leptons and hierarchical charged
lepton masses can be accommodated. If both left-handed
leptons L and right-handed charged leptons E° are assigned
to be irreducible triplets of the finite modular group, all the
coupling constants in VV, are generally relevant to the three
charged lepton masses and thus some fine-tuning is
necessary to reproduce the observed hierarchical masses.
Indeed we notice that the models for triplet assignments
L, E° ~ 3,3 cannot accommodate the experimental data of
lepton masses and mixing angles with less than eleven free
parameters if neutrino mass spectrum is normal ordering.
Nevertheless we are lucky enough to find a viable model
Ls46 with 10 parameters which can fit the experimental
data well for inverted ordering neutrino masses. The
representation assignment of the lepton fields are
L~3,E°~3 N°~2 and the structure of the charged
lepton and neutrino sectors are given by C4' and T
respectively. By scanning the parameter space of this
model, we identify the best fit point of the input parameters
as follow:
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TABLE V. The best fit values of the free parameters and the corresponding predictions for lepton mixing parameters and neutrino
masses for the phenomenologically viable lepton models £,, L3, L9, L9, L2035 L208> L2095 L£213, and L,14. Here we only show the
results for NO neutrino masses, similar results can be obtained for I0.

Model L, Ly Ly Lo Loz Loog L109 Lo13 L4
Re(7) —0.4301 0.01635 —0.4744 —0.2201 0.1301 -0.1617  —0.4154 —0.2126 —0.4533
Im(7) 1.5662 1.1309 1.5138 1.0857 1.0105 1.0261 1.3825 1.1659 1.0272
pla 15.3310 16.4102 10.6903 17.0830 20.2623 15.2426 6.1506 310.8679 4.2487
v/a 7.7360 30.0197 31.3607 174.0123 148.5829 34.0370 24.7109 16.1121 51.1912
|6/ 36.8022 167.6753 6.9087 49.3413 250.3694  141.1909  28.6349 5.3042 3.5954
arg(5/a)/x 0.5159 —0.6076 1.9128 —0.04841 1.9887 -0.7929 —0.5655 —0.05895  0.06108
oy 0.2085 0.4039 0.1511 0.1871 0.8829 0.1324 0.8124 1.3425 0.1275
arg(gr/g1)/ 7 0.9580 -0.8764 1.8735 0.6548 0.4599 0.01922 0.5882 —0.6071 —0.9575
avy/MeV 0.2999 0.07157 1.0088 0.1832 0.04549 0.06238 0.3007 0.1732 0.6087
(G312 /A)/meV 0.6347 6.4174 2.6552 13.2093 0.003466 0.3803 0.3326 0.03614 30.5547
sin’ 0,5 0.02219 0.02219 0.02219 0.02219 0.02219 0.02222 0.02219 0.02219 0.02219
sin® 6, 0.3040 0.3040 0.3040 0.3040 0.3040 0.3304 0.3040 0.3040 0.3040
sin? 0,5 0.5730 0.5730 0.5730 0.5730 0.5730 0.5268 0.5730 0.5730 0.5730
Scp/m 1.9530 1.1723 1.5987 1.2714 1.0917 1.8661 1.0537 1.5926 1.8659
ay /mor ¢p/n 0.9819 1.9604 0.5319 1.8453 0.8918 1.8616 1.6567 0.1986 0.8342
ay /n 0.2069 1.5915 0.3322 0.7125 - - - - -
my/meV 1.5466 2.6701 29.4704 8.5857 0 0 0 0 0
m,/meV 8.7517 9.0183 30.7035 12.1620 8.6139 8.6139 8.6139 8.6139 8.6139
msz/meV 50.1937 50.2408 58.1852 50.8989 50.1699 50.0286 50.1698 50.1698 50.1704
> im;/meV 60.4920 61.9292 118.3591 71.6466 58.7838 58.6426 58.7838 58.7838 58.7843
mg/meV 8.9611 9.2216 30.7638 12.3135 8.8266 8.9211 8.8266 8.8266 8.8267
mgp/meV 1.3783 3.8458 19.8973 10.0743 1.5008 3.2825 3.4644 2.4001 2.5732
(7) = —0.499466 + 3.22253i, B/a = 0.207601¢0-00419297i y/a = 0.18780070918

5/a = 0.0310921¢*79438, avg = 0.130959 MeV, gv2/A = 65.6432 meV. (65)

The corresponding predictions for masses and mixing parameters are determined to be
sin?6,; = 0.02238, sin?6;, = 0.3040, sin?6,; = 0.5750, Ocp = 1.4826r,
ay; = 1.5621x, az; = 0.43287, m,/m, = 0.004737, m,/m, = 0.05857,
m; = 49.2324 meV, m, = 49.9803 meV, my = 0 meV,
> m;=992126 meV,  my; =48.9043 meV,  my; = 39.1869 meV, (66)
i

TABLE VL

The best fit values of the free parameters and the corresponding predictions for lepton mixing parameters and neutrino

masses for the phenomenologically viable lepton models L,5, Log, Los, Log, Li9o> Lioss L134> L2190, and L3, Here we only show the
results for NO spectrum, similar results can be obtained for 0.

Model Ly Loy Los Loy Lioo L34

Re(7) —0.4910 0.3839 -0.4778 0.4747 —0.4668 0.4990
Im(7) 1.1953 2.4844 1.1283 2.5061 0.8867 0.8858
|5/ al 1.4037 0.2154 0.2309 0.2183 0.01022 0.3598
v/a 0.00786 0.001115 0.1315 0.0002241 0.00013 0.01207
arg(f/a)/n 0.9985 0.06929 1.0002 1.9289 0.01887 1.0296
|92/ g1l 0.1863 0.1603 0.2239 0.1582 0.1734 0.09765
arg(g./g1)/x 2.0000 0.6789 1.5045 1.3016 0.0618 0.6328
avy/MeV 6.3649 84.0053 137.6646 83.5208 89.8671 7.6514

(Table continued)
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TABLE V1. (Continued)

Model Ly Lo, Los Log L100 L34
(g%v%//\)/meV 2.4388 3.5208 19.4457 3.5300 63.2376 4.6820
sin” 6,3 0.02218 0.02255 0.02219 0.02208 0.02214 0.02222
sin® @, 0.3049 0.2975 0.3040 0.3003 0.3036 0.3031
sin’ 0,5 0.5139 0.5687 0.5730 0.5768 0.5261 0.5806
Scp/m 1.3747 1.3886 1.8457 1.4930 1.9651 1.5105
a /7 1.4775 0.2152 0.6612 0.2212 1.3186 0.6445
a3 /@ 0.6216 0.9762 0.5052 1.3185 0.3786 1.4878
my/meV 30.5138 53.9796 279151 52.7775 72.9690 103.2841
m,/meV 31.7063 54.6626 29.2139 53.4758 73.4756 103.6427
ms3/meV 58.7318 73.9091 57.4135 72.2129 88.5617 114.8190
> m;/meV 120.9519 182.5514 114.5425 178.4662 235.0063 321.7459
mg/meV 31.7657 54.7069 29.2773 53.4873 73.5001 103.6605
mgp/meV 23.4781 51.9764 16.0374 50.2940 41.6132 64.6318
Model L 105 Model 5210 Model £3 10
Re(7) 0.4962 Re(7) —-0.1451 Re(7) —-0.1214
Im(7) 0.9177 Im(7) 1.3560 Im(7) 1.3386
Ba 0.2504 Bla 6.9431 1B/al 0.6978
r/al 0.1404 v/a 43.2744 v/a 53.2957
arg(y/a)/n 1.2437 x 107 |6/al 48.3050 arg(f/a)/x 1.0011
lga/ 91| 0.2464 arg(5/a)/x 0.2958 Ao/ A | 0.4808
arg(g./g1) /= 0.5020 [Ay/ A 1.5523 arg(Ay/Ay) /7 0.04589
avg/MeV 81.9172 arg(Ay/A\y)/m 0.09099 avy/MeV 3.6866
(G312 /A)/meV 31.1447 avy/MeV 0.2300 (Pv2/A;)/meV 53.3074
sin? 63 0.02266 (g?v2/Ay)/meV 486.6774 sin? 0,5 0.02219
sin2 0, 03036 sin2 05 0.02219 sin 6, 0.3040
sin® 6y, 0.5898 sin 6, 0.3040 sin® 6y, 0.5729
Sep/ 1.4790 sin? 0,3 0.5730 Sep) T 1.6779
/7 1.9410 Scp/m 1.0114 Q/x 0.02598
az /@ 0.9605 ¢/ 1.9742 my/meV 0

m; /meV 71.9302 my/meV 0 m,/meV 8.6139
m, /meV 72.4442 m, /meV 8.6139 my /meV 50.1703
s /meV 87.5970 s,/ meV 50.1696 S, m;/meV 58.7842
>im;/meV 231.9714 > m;/meV 58.7835 mg/meV 8.8266
my/meV 72.4748 mg/meV 8.8266 mgp/meV 2.3928

which are in the experimentally preferred 3¢ ranges. It is
remarkable that the light neutrino mass matrix only
depends on the complex modulus 7 besides the overall
scale gv2/A, and the parameters in the charged lepton
superpotential are almost of the same order of magnitude to
reproduce the hierarchical masses of charged leptons.
Furthermore, we notice that the predictions for the CP
phases dcp, a1 and a3 (¢p for m; = 0) scatter in wide
ranges. The future long baseline neutrino experiments
|

DUNE and Hyper-Kamiokande, if running in both neutrino
and antineutrino modes, will allow for a measurement
of the Dirac CP phase with a certain precision and have
thus the potential to rule out some of our model. The
Majorana phase could be probed or at least constrained by
neutrinoless double beta decay (Ovff}) experiments. The
dependence of the Ovpf decay amplitude on the mixing
parameters enter through the effective Majorana neutrino
mass mg with

m/;ﬁ = |m1 COS2 912 COS2 913 =+ my Sin2 912 COS2 913€ia21 =+ ms Sin2 9136‘i<a31_250’) |, (67)

which involves all mixing parameters except 03. If the lightest neutrino is massless, mg; takes a simpler form,
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TABLE VIIL

The best fit values of the free parameters and the corresponding predictions for lepton mixing parameters and neutrino

masses for the phenomenologically viable lepton models Lgg, L71, L6, L10g> L1135 L1183, and Lgs4. We only show the results for NO

neutrino masses, similar results can be obtained for I10.

Model Les L7 L6 Liog Li13 Li1g Model Less
Re(7) 0.4294 -0.261 0.4294 —0.1348 —0.2062 —0.1348 Re(7) 0.0007672
Im(7) 0.9908 1.1280 0.9908 1.3023 0.9786 1.3023 Im(7) 1.0033
|/ al 0.5076 0.3257 0.5075 5.2661 0.2303 5.2670 pla 1.5040
ly/al 0.7506 1.8503 0.7504 4.4250 1.8075 4.4257 [A /A 0.0005601
é/a 0.009538 1.8444 0.0004353 0.01518 2.4523 0.004519  |A,/As5] 0.0007015
arg(f/a)/n —0.9523 0.9492 —0.9525 1.8857 1.0011 1.8858 arg(A/N\y) /7 0.9717
arg(y/a)/x -0.951 —0.1346 -0.9512 1.8899 0.00007229 1.8899 arg(A/A3) /7 —-0.1754
avy,/MeV 13.6924 5.3249 13.6953 5.8555 6.9077 5.8545 avy/MeV 29.9295
(#v2/A)/meV  452.8878  318.7155 452.9001 310.6406 299.6404 310.6424  (v2/A,)/meV 89.3207
sin’ 0,5 0.0222 0.02213 0.0222 0.0222 0.02265 0.0222 sin’ 0,5 0.02211
sin® 0}, 0.3057 0.3086 0.3057 0.3072 0.2906 0.3072 sin® 0, 0.303
sin” 0,5 0.5731 0.5738 0.573 0.5324 0.5525 0.5324 sin’ 0,5 0.5191
Scp/m 1.0015 1.5379 1.0016 1.0370 1.0001 1.0369 Scp/m 1.7986
) /n 1.1130 1.4056 1.1130 1.1604 0.9998 1.1604 ) /n 0.1196
a3 /@ 0.4217 0.212 0.4219 0.5879 1.9994 0.5879 ay /n 0.221
my /meV 14.8481 10.9731 14.8485 11.7901 8.7593 11.7902 my/meV 159.9097
m,/meV 17.1658 13.9502 17.1662 14.6016 12.2852 14.6017 m,/meV 160.1415
msz/meV 52.2585 51.3274 52.2591 51.8982 51.3966 51.8987 msz/meV 167.5600
> im;/meV 84.2725 76.2507 84.2737 78.2899 72.4411 78.2906 > im;/meV 487.6113
mg/meV 17.2737 14.0865 17.2741 14.7647 12.4857 14.7648 mg/meV 160.1515
mgp/meV 5.6017 6.8406 5.6022 4.2079 3.7470 4.2073 mgg/meV 153.1525
P { |mzsin2912C052913ei¢ + m3sin2913e_i25“’|, my = O, (68)
w |m;cos?0,,c08%0,3 + m,sin®0,c0s205e?|, ms = 0.

The most stringent bound on the effective Majorana
neutrino mass is mg < (61 ~165) meV from Kam-
LAND-Zen [75]. We see that these viable models predict
mps < 80 meV  except the model Lgs, which gives
mps = 153.1525 meV. All these values of the effective
Majorana neutrino mass mg are below the upper bound of
|

|
KamLAND-Zen. In the two right-handed neutrino models,
mgg 1s determined to be few meV and it is far below the
sensitivity of future Ovf3f experiments. It is well-known that
neutrino masses can be directly probed by kinematic studies
of weak-interaction processes such as f decay of tritium, and
the effective neutrino mass measured in beta decay is

_ 2 2 2 2 ¢in2 2 2 oin2
my = \/m1 cos” By, cos” 013 + mj sin” 0, cos” O3 + mj sin” 6,3, (69)

which is independent of CP phases. The latest bound on m
is mg < 1.1 eV at 90% confidence level from KATRIN
[76], and the sensitivity on m is expected to be improved
by one order of magnitude down to 0.2 eV. We see that the
KATRIN bound my < 1.1 eV is safely fulfilled in all these
25 models.

D. Lepton models with gCP

As shown in Sec. III, the generalized CP symmetry
enforces all coupling constants to be real in our working
basis. In other words, CP invariance requires the phases of
coupling constants are equal to O or z. Thus the VEV of

complex modulus 7 would be the unique source of all CP
violating phases. As a consequence, the free parameters
of the 25 lepton models in Table IV are reduced by two
after incorporating CP invariance. We find that only 6
models are excluded by the experimental data after gCP
symmetry is imposed, and the remaining 19 models
were still in good agreement with the experiments. The
minimal models with gCP and Aj modular symmetry are
L. Les, Loas Los. Log, L1oo: L1og: L113, and Ly1g which
use 7 real free parameters to describe the 12 observables
including 3 charged lepton masses, 3 light neutrino masses,
3 lepton mixing angles and 3CP violation phases. The
right-handed charged leptons transform as the direct sum of
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doublet and singlet of A% in all these minimal models. The
numerical results are summarized in Tables VIII and IX, we
see that the current bounds on both m and m; are satisfied
as well.

In the models Lgg, Li0g, L113, and Ly;g, the charged
lepton mass matrix depends on four coupling constants a,
p, v, and 6 while the light neutrino mass matrix only
depends on the modulus 7 up to the overall scale ¢g?v2/A
such that the neutrino mass ratios are completely

TABLE VIIIL.

determined by the value of z. For the models L,,, Lo4,
Los, Log, and L, the charged lepton mass hierarchies rely
on cancellation of the comparable a and f terms, this is a
new feature in comparison with other modular models in
the literature. It is notable that the VEVs of 7 are very close
to the CP conserved points Re(z) = £1/2 in these models,
and departure from Re(z) = £1/2 leads to nontrivial CP
violating phases. As regards the description of charged
lepton masses, the model £,, is superior to the others, since

The best fit values of the free parameters and the corresponding predictions for lepton mixing parameters and neutrino

masses for the phenomenologically viable lepton models £,, L3, Lo, L9, L3, Logs Los, Logs L100> L203> L2085 L2095 L210> L213, and Ly 14
after CP invariance is incorporated. We only show the results for NO neutrino masses, similar results can be obtained for IO.

Model L, Ls Ly Ly Lo Loog Lo L3 om
Re(7) —-0.2138 —0.3522 0.1065 —-0.3594 0.1243 0.1652 —-0.4151 —0.2433 —-0.4476
Im(7) 1.7278 1.1894 1.5264 0.9641 0.9922 0.9863 1.3481 1.2336 1.0189
pla 10.9859 15.6084 29.5919 12.9879 19.7339 13.9606 6.3027 233.8248 5.4382
v/a 17.4072 41.1052 418.1776  183.8761 144.6948 33.5498 63.8737 13.5794 69.6730
o/a 31.2268 =74.7463  202.3009 35.4668 245.0666 —118.8148  55.8680 3.9524 5.9153
9/ 91 —0.5546 0.2770 —-0.1202 —-0.1693 3.7779 0.1298 2.7708 —-5.4091 —-0.1275
avy/MeV 0.4969 0.1067 0.2396 0.1714 0.04456 0.06268 0.2220 0.2418 0.4664
(gfvft/A)/meV 0.2144 24.9728 2.2785 27.6420 0.0003282 0.3518 0.02329  0.002565 30.2048
sin? 013 0.02219 0.02219 0.02219 0.02219 0.02228 0.02222 0.02219 0.02219 0.02219
sin” 0, 0.3040 0.3040 0.3040 0.3040 0.3004 0.3311 0.3040 0.3040 0.3040
sin? 03 0.5730 0.5730 0.5730 0.5730 0.5783 0.5277 0.5730 0.5730 0.5730
Scp/m 1.7651 1.5038 1.5499 1.4679 1.0000 2.0000 1.4054 1.2309 1.7173
ay/mor ¢p/n 1.2072 1.6230 1.8248 1.8967 2.0000 0. 1.0998 0.3718 0.9520
a3 /@ 1.1691 0.7682 0.05413 1.7955 - - - - -
my/meV 3.5140 79171 17.7241 21.1711 0 0 0 0 0
m,/meV 9.3031 11.6996 19.7064 22.8564 8.6139 8.6139 8.6139 8.6139 8.6139
msz/meV 50.2927 50.7906 53.2085 54.4539 50.1720 50.0307 50.1699 50.1699 50.1701
> im;/meV 63.1098 70.4073 90.6391 98.4814 58.7859 58.6446 58.7838 58.7839 58.7840
mﬁ/meV 9.5004 11.8570 19.8003 22.9374 8.8248 8.9242 8.8266 8.8266 8.8266
mﬂﬂ/meV 2.7678 8.5148 16.1483 19.8234 3.6479 3.9003 3.6433 1.6898 3.1280
Model Loy Loy Los Log Lioo Model Loy
Re(7) -0.491 0.4671 —0.4682 0.4672 0.4601 Re(7) 0.1167
Im(z) 1.1952 2.7528 0.8847 2.7493 0.8900 Im(7) 1.3753
Bla —1.4038 —0.2449 0.01109 —-0.2178 0.005634 pla 6.4493
v/a 0.00786 0.0005718 0.008922 0.0001079 0.0001036 v/a 62.2329
9/ g1 0.1863 0.1428 0.1713 0.1428 -0.1709 o/a 65.1171
avy/MeV 6.3631 157.9035 89.2429 167.4996 92.0670 Ao /Ay 1.6840
(g%vﬁ/A)/meV 2.4392 7.9148 66.7014 7.8966 58.9994 avy/MeV 0.2222
sin” 0,5 0.0222 0.02214 0.02218 0.02215 0.02216 (gzvf,/Al )/meV 531.2511
sin? 01, 0.3045 0.3039 0.3045 0.304 0.3043 sin? 013 0.02219
sin? 63 0.5139 0.4716 0.5336 0.4751 0.5239 sin? 0> 0.3040
Scp/ 1.3742 1.4922 1.7430 1.4925 1.4035 sin? 03 0.5730
/7 1.4774 1.9757 0.7991 1.9765 1.6386 Scp/m 1.7314
a1 /@ 0.6209 0.9833 1.6663 0.9839 0.7474 ¢/ 0.9433
my/meV 30.5220 96.4660 75.2809 96.2227 64.9946 my/meV 0
m,/meV 31.7142 96.8498 75.7721 96.6074 65.5629 m,/meV 8.6139
msz/meV 58.7392 108.7335 90.4731 108.5176 82.1105 msz/meV 50.1698
>im;/meV 120.9755 302.0493 241.5261 301.3477 212.6681 >im;/meV 58.7837
mﬁ/meV 31.7741 96.8683 75.7967 96.6261 65.5910 mﬁ/meV 8.8266
m/,ﬂ/meV 23.4883 96.7927 37.5455 96.5544 57.1477 mﬂﬂ/meV 3.0747
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TABLE IX. The best fit values of the free parameters and the corresponding predictions for lepton mixing parameters and neutrino
masses for the phenomenologically viable lepton models Leg, L1053, £113 and L5 after CP invariance is incorporated. We only show the
results for NO neutrino masses, similar results can be obtained for I0O.

Model Les L8 Li13 Liis
Re(7) —0.4473 —0.1018 0.2062 —0.1019
Im(7) 0.9923 1.3295 0.9785 1.3295
pla —0.4859 6.7614 -0.2299 6.7613
v/a -0.7149 5.6934 1.8047 5.6933
S/a 0.01136 0.01965 2.4496 0.005307
avy/MeV 14.4960 4.5445 6.9183 4.5446
(gzvﬁ//\)/me\/ 448.6740 315.4090 299.5957 315.4089
sin® 6,5 0.02238 0.02218 0.02261 0.02218
sin® 6, 0.3238 0.3051 0.2903 0.3051
sin? 0,3 0.5918 0.5264 0.5521 0.5264
dcp/m 1.2289 1.2707 1.0000 1.2707
a /7 1.0148 1.2751 1.0000 1.2751
a3 /x 1.7057 0.5202 0.0000 0.5202
m;/meV 14.7337 12.1497 8.7568 12.1496
m,/meV 17.0670 14.8934 12.2834 14.8934
ms3/meV 51.3132 52.0157 51.3632 52.0157
> m;/meV 83.1140 79.0588 72.4033 79.0588
m/,/meV 17.1650 15.0495 12.4761 15.0495
mﬂﬁ/meV 3.6797 7.3807 3.7492 7.3807

the best fit value of the input parameter #/a = —1.4038 is
of order one. Moreover, the model £,, predicts the neutrino
mass sum » ;_, m; = 120.9755 meV and the Dirac CP
phase 6.-p around 1.5z. These predictions can be tested in
future neutrino experiments.

In the following, we take the model £,, as an example
for illustration. The charged lepton mass term depends on
three couplings «, f and y while the neutrino superpotential
depends on two coupling constants g; and g, besides the
flavor scale A. Moreover, a, y and g; can be taken real by
field redefinition while the parameters f and g, are
generically complex parameters without gCP and they
become real once gCP is imposed. We use the parameter
scan tool MultiNest [77,78] to efficiently explore the param-
eter space, and we use a )(2 function defined as usual to
serve as a test-statistic for the goodness-of-fit. The charged
lepton masses, neutrino mass squared differences and the
neutrino mixing angles are required to lie in 3¢ regions.
The correlations among input parameters and observables
are plotted in Figure 1, where the green points and red
points are for the scenarios without gCP and with gCP
respectively. Obviously the allowed regions of the input

|

m,/m, = (1.9286 & 0.6017) x 1073,
my/m, = (5.0523 £ 0.6191) x 102,
m, = 87.4555 GeV,

67, = 0.22736 + 0.00073,

parameters are reduced considerably after considering gCP,
and accordingly the predictions for observables shrink to
quite small regions.

V. UNIFIED DESCRIPTION OF ALL FERMIONS

As shown in previous section, one can construct pre-
dictive lepton models based on the homogeneous finite
modular group A%. In this section, we shall apply A§ to
explain the quark masses and CKM mixing matrix.
Analogous to what we have done for charged lepton sector
in Sec. IVA, we can systematically analyze the possible
quark models with AZ modular symmetry. We find that the
measured quark masses and CKM mixing matrix can be
explained in terms of a few free parameters if quark fields
are embedded in doublet and singlet representations of A%.
We have made a systematic classification of quark models
for this kind of quark arrangement and generalize the
strategy of numerical analysis for leptons to the quark
sector. The values of quark masses and CKM parameters
are taken from [74],

m./m, = (2.8213 £ 0.1195) x 1073,
mg/my;, = (1.8241 £ 0.1005) x 102,
my, = 0.9682 GeV,

6%, = 0.00349 £ 0.00013,

5¢p/m = 0.3845 £+ 0.0173,
04, = 0.04015 £ 0.00064, (70)
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FIG. 1. The predicted correlations among the input free parameters, neutrino mixing angles and CP violating phases in the lepton
model £,, with (red) and without (green) gCP symmetry.

which are calculated at the GUT scale with tanf = 10 and  to give a unified description of quark and lepton in a single
the SUSY breaking scale Mgysy = 10 TeV. Intheend, we  model. The crucial point is whether there exist common
find four models out of 892 possibilities can describe the  values of 7 for which the experimental data of both quarks
experimental data of quarks with 11 free parameters  and leptons can be reproduced. It is remarkable that we
including Re(7) and Im(z). A systematic classification  really find a quark-lepton unification model: the lepton
of the quark models as well as the numerical results are  sector is the model £, and the quark sector is Q3 which can
included in the Supplemental Material [72]. be found in the supplementary material [72]. In the model

Furthermore, we combine the 25 viable lepton models Q3, the quark fields and the Higgs fields transform under
collected in Table IV with the two candidate quark models =~ modular symmetry as follows,

|

po=2®1  py=pp=2®01  py =pu =1,
kQ3 — kQD - 5 — _kUi) - 3 — —kUg — _kDCD - 1 — —kDg, kH“ — kHd — 0, (71)

where we denote Qp = (Qy, 0,)", U, = (U5, U5)", D§, = (D§, D5)”, and the modular weight k, is a general integer.
Thus the modular invariant superpotentials of quark sector are given by

Wu = au(Y_g,%) U]SQDHu)l +ﬂu(Y§§) UgQDHu)l + 7u(U§Q3Hu)1’
Wy = as(V\D40pH ), + Ba(YS DGO H ), + 1a(YS DSQpH ), + 84(DSQ3Hy);. (72)
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The phases of a,, B,, y.» @4, and y, are unphysical and they can be absorbed by quark fields, nevertheless the phases
of f; and 6, can not be removed by field redefinition. The corresponding up and down quark masses matrices can be
written as

~V2a,¥y, a0 V2B B — a0
M= ary,  Vaaxy, 0 |ve  My=|a¥+pxy V2BYY, 0 | (73)
5 5 5 5
“BY5h  BYS T 1Y) ra¥sy 8

Notice that both (13) and (23) entries of M, and M, vanish exactly. This model uses 15 real dimensionless parameters to
describe the mixing angles, CP violation phases and the masses ratios of both quarks and leptons. The 4 overall scale factors
avy, g,v2/ A, a,v, and a,v, give the absolute masses scale of the charged leptons, neutrinos, up quarks and down quarks.

By scanning the parameter space of the complete model, we identify the best fit point of the input parameters,

(7) = —0.499996 + 0.894402i,
92/g1 = 0381811 B, /a, = 32.6296,
va/og = 1.7462, 8y/a, = 1.9895¢%44631,

a,v, = 0.03432 GeV, ayzv; = 0.00243 GeV.

pB/a = 24.5400,
Yu /o, = 11.1981,
avy, = 0.04361 MeV,

y/a = 654.9320, 5/a = 100.8429¢43652
Balag = 6.32290-00068
g1v2/A = 1.0895 meV,
(74)

The corresponding predictions for masses and mixing parameters of quarks and leptons are determined to be

sin29!, = 0.02231,

@y = 1.3593x,

m; = 77.2709 meV,
> m; =247.1921 meV,

sin20!, = 03019,
az = 0476271',

6, = 0.003498,
my,/m. = 0.00021,

09, = 0.22764,
m./m, = 0.00282,

which are in the experimentally preferred 3¢ ranges. It is
interesting to note that the common value of 7 is very close
to the fixed point 7y = €>*/3 which preserves a Z3!
residual symmetry.

VI. EXTENSION TO RATIONAL WEIGHT
MODULAR FORMS AT LEVEL 5

The modular weights could be rational numbers, as
shown in the string construction [11,79,80]. It is interesting
to study the fractional weight modular forms from the
bottom-up modular invariance approach. To discuss
rational weight modular forms, it is convenient to consider
the metaplectic cover of the modular group SL(2, Z) [58].
For the concerned case, we should consider the 5-fold
covering of SL(2,7Z) and it is denoted as T with

P {7 — (rplrlr ( Z) €sL(2.2).

$(y.7)° = (ct+ d)} (76)

sin?0h, = 0.4570,
m,/m, = 0.00474,
m, = 77.7495 meV,

my = T77.7755 meV,

64, = 0.04023,

51CP =1.1671x,
m,/m, = 0.05857,
my = 92.1717 meV,

my = 48.9783 meV,

5L, = 69.1740°,

my/m, = 0.03457,  m,/m, = 0.01769, (75)

|
The action of 7 on 7 is the same as that of y, i.e., 7 7 = yr.
The group multiplication of T" is defined as

(r1:91(r1,7)(r2: 2(r2, 7)) = (1172, D1 (11, 727) P2 (72, 7))
(77)

where ¢ = ¢,(ct+d)'°, ¢, =e(ct+d)'5 and
€12 € {l,ws,w?, w}, wt}. The principal branch of the
quintic root is chosen here. Obviously each element
y € SL(2,Z) corresponds to five element 7 = (7, w}(cz +
d)'/?) of the metaplectic group T' with w5 = ¢>*/> and
j=0,1,2, 3, 4. The group [" can be generated by

(8 e ()
(78)

where (—7)!'/3 denotes the principal branch of quintic root,
possessing positive real part. It follows that
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$? =R, R0 =1, (ST =1, (79)

(3 2))

Therefore the elements S and S 7 are of orders 20 and 3
respectively while T is of infinite order. Obviously the

element R generates the center of I's. The metaplectic
principal congruence subgroup at level 5 is defined as

with

0(5) = {h = (h,vs(h)J,/5(h.2)|h €T(5)}, (81)

where Jy/5(h, ) = (ct +d)'/%, vs(h) is the multiplier of
the weight 1/5 modular forms® for ['(5), and the identity
v2(h) = 1 is fulfilled for all 2 € I'(5). The explicit expres-
sion of vs(h) has been given in [58,68], it is too lengthy to
present here. It is obvious that I'(5) is isomorphic to I'(5),
and it is a normal subgroup of I". In particular, the element
7° belongs to I'(5). Taking the group quotient, we can
obtain the finite metaplectic group I's = T'/T'(5) = A% x Z;s
which can be obtained by imposing another condition
T35 = 1. Thus the generator relations of I's are

ST =7 =1,

~p
>}

RT =

—

82)

The group ID of I's in GAP system is [600, 54], and it is
isomorphic to the direct product of A; and Zs, ie.,
I ~ AL x Zs. Hence it is more convenient to choose
another set of generators S, 7 and U which obey the
relations

S2=R, (STP=T°=R*=1, U =1,

US=SU, UT=TU. (83)
Notice that the generators S and T generate a A§ subgroup,

and U generates a Z5 subgroup. The generators S, 7', and U
are related to S, T as follows

wo () )t
e (1))
(S

The weight 1/5 modular forms for I'(5) are holomorphic
functions satisfying f(y7) = vs(y)(ct + d)'/> f(z) for y € T'(5).

S

and vice versa

S=uU-?s, T = UT, R=UR. (85
The irreducible representations of I's can be obtained from
the tensor products of the irreducible representations of A%
and Zé’ where the superscript U denotes the generator of the
Zs subgroup. The irreducible representations of Af are
summarized in Table XI, and Abelian subgroup Z¥ has five
one-dimensional irreducible representations and the gen-
erator U is represented by a)g with j =0, 1,2, 3, 4. We shall

denote the irreducible representation of I's as r/ which is
the tensor product of the A% irreducible representation r

with the Zé’ representation wé. The generators S, T and U
are represented by

v pu(S) = pe(S),  pu(T) = pe(T),

where p, is the representation matrix of the A irreducible
representation r as shown in Appendix A. The Kronecker
products of I's can be easily obtained from those of Al
given in Eq. (A12) by including an extra index j for each A
representation. For instance, we have 2° ® 3* = 22 @ 42,
and the corresponding Clebsch-Gordan coefficients
remains the same as those of A%, which are listed in the
Appendix A.

It has been shown that the modular forms of weight k/5
(k: non-negative integers) can be constructed for the
principal congruence subgroup I'(5) [68], and a multiplier
vs(y) is necessary so that v(y)(ct + d)¥/3 is the correct
automorphy factor satisfying the cocycle relation. The
graded ring of modular forms of weight k/5 at level 5
can be generated by two algebraically independent weight
1/5 modular forms [68]:

M((5)) = Clf1(2), f2(7)], (87)
with
0 1(57) 0z 1(57)
fl (T) ’(1(:)3/5 ’ fZ(T) - ’(7(1_;3/5 (88)

Notice that the theta constant is defined as [68]

g(m’,m”) (T) _ ZeZm’[%(mﬂn’)21+(m+m’)m”]’ (89)

mezZ

and () is the well-known Dedekind eta function given in
Eq. (B2). Hence the linear space of the modular forms of
weight k/5 and level 5 has dimension k + 1, and the linear
independent basis vectors are k + 1 polynomials of f; and
f> with degree k. Under the action of the generators S and T’
of the modular group, f; and f, transform as [68]
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N

f1(5)— /11

_1> wR(=c)1/5 % (@ = w3)f1(2) + (0 = w5)fo(0)].

(
£ (=1) = 0302 03 = () + (05 = o)1)

[EO—=fGE+1)=f10),  frd)—far+1) = wsfs(). (90)

Analogous to the half-integral weight modular forms [58], the modular forms of weight » = k/5 and level 5 can be arranged
into different irreducible representations Y g) (7) of the finite metaplectic group I's. The modular multiplet Yi? (7) transform
under T's = T'/T(5) as

YV (72) = % (r. 0)pw (7)Y (2), (91)

where 7 stands for a representative element of I's. Applying Eq. (91) to the element 7 = U, we find that the constraint
5r+ j = 0(mod5) should be fulfilled. In the group representation basis chosen above, the two weight 1/5 modular forms
can be arranged into a I's doublet 2* as follows,

W _ (@ i i
Yyi(r) = o Fi@)=efi(z),  Fa(r) = eT0fa(a). (92)
Fy()
The g-series expressions of F(z) and F,(r) are given by
F ( ) 3/5 _ q1/40 5m +m /2, F ( ) 3/5 _ q9/40 Sm +3m)/2’ (93)

: L
with ¢ = €. Using the transformation rules in Eq. (90), we find that Y;§> (7) really transforms in the two-dimensional
representation 24 of I,

S 1 1 5
vy (=7 (‘ ‘) = i(=0) P (S)V31 (),
1 T (L 5
Y;Z) (T) Y(5> (’L’ + ]) — a)gp24 (T) Y;SB (T)» (94)

and it is invariant under the generator U. Using the Clebsch-Gordan coefficients of I's, we can construct the higher rational

weight modular forms through the tensor products of Y;i) (7). At weight r = 2/5, we have

V2F\F,
s AN (95)
3 24 T2t /3 T ’
V2 »

where an overall constant — \/Z is multiplied to make the resulting expression relatively simple. Note that another contraction
® Y(%)

(Y o Vi )13 = 0 because of the antisymmetric Clebsch-Gordan coefficients. In exactly the same fashion, other rational
weight modular forms can be obtained, and we present linearly independent rational weight modular forms up to weight 1:

F
1 2 —V3F3F
r=3/5: Y4,2——7§(y(é>Y;?)4,2: \/? iF (96)
F\F3
P
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V6FF3
2F|F;3
G _1,.,0,0 4
r=4/5:Yg =-(aYp)a=| Fi | 97)
Fi
—2F3F,
F} +2F3
2FS _ F3
4
oy woe, _ | OFiF
r=1:Yy =-(Y Y1) = SVIRE (98)
~5V2F3F3
5F\F}
From Eqgs. (93), (B2), we can read out the g-expansion of the Y é})) as follow,
1+5¢+10g° = 5¢* +5¢° + - -
2+45g+10g* + 5¢* +5¢° + - --
5¢'"°(142q +2¢* + ¢* +2¢* +2¢° + - --
Yy () = ( gt (99)

5V2¢*5(1+ g+
—5vV24°° (1 +
5¢*°5(1—q+

which is exactly identical with the g-expansion expressions

+a 2+ 4+
¢+q+qt -+ )
2¢% +2¢°-2q4" +---)

of weight 1 modular form obtained from the Dedekind eta

function and Klein forms in Eq. (B10). Furthermore, comparing Eq. (98) with Eq. (BS), we find that theta constants and the

Klein forms are closely related as follows

.....

Fz(T)’

ei(r) =F(r).  exr) =Fi(r)
ey(7) = Fi(z)F3(1),

Because the two weight 1/5 modular forms F,(z)
and F,(zr) are algebraically independent, the use of
Fi(r) and F,(z) considerably simplifies the process of
finding linearly independent modular multiplets, and it
is not necessary to examine the constraints relating
redundant higher weight multiplets when constructing
modular forms in terms of F(zr) and F,(z). For
instance, it is easy to check that the constraints Eqgs. (19),
(20) for the weight 1 modular forms are now trivially
fulfilled.

0950

es(r) =

(100)

Fy(z).  e(r) = Fi(0)F3(2).

F\(0)F}(t).  es(r) = F3(2). (101)

A. A lepton model with rational weight
modular forms at level 5

All A5 modular models, in particular the phenomeno-
logically viable models discussed in sections IV and V, can
be reproduced from the I's modular symmetry if the
modular weights of both matter fields and modular forms
are integral. Obviously the metaplectic covering group I's
has more richer structure of modular forms which can be
utilized to explain the flavor structure of lepton and quark
in the bottom-up modular invariance approach. In a similar
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fashion as we have done for the A5 modular symmetry, one  Jepton L are assumed to transform as a triplet 3° under I's,
can systematically classif}l the modular invariant lepton and the right-handed charged leptons E§.2,3 are assigned to be
quark models based on I's. As an example, we present a T singlets 12, 14, and 1* respectively. Three right-handed
benchmark lepton model which involves rational weight  peutrinos are introduced, and they transform as a triplet 3'°.
modular forms at level 5. We summarize the modular transformation properties and

In this model, the neutrino masses arises from the type-I ~ weights assignment for the lepton and Higgs superfields as
seesaw mechanism. The three generations of left-handed follow,4

|

PL= 3, PE,, = retel PNe = 30, PH, = PH; = 1°,

7 1 9
kpe ==, kpe=—=, kg —=-,
Bs BET0s 575

Thus we can read out the following modular invariant superpotential for charged leptons and neutrinos,

kye =1,  ky, =ky, =0. (102)

u

2 12
W, = a(YQ ESLH,) o + BV S ESLH,) o + v (Y ESLH,) 5,

8 8
W, = g1(YINLH,) o + 92 (YS NCLH,) o + A(YS NNE) . (103)

Hence the charged lepton and neutrino mass matrices are given by

2 2 2
aYgo?l “Ygog aY;O?z 2Y§)?1 —\/§Y§3?4 —\/ng?g,
2 2 2
M= | Y, PYSy Y, (e My=A| =BG, VEYE,  -vg .
L 2 L _AYD _y® @)
VY_E,@’)] YY;,%; J/Y;é’)z \/§Y50,3 Y50.1 vey 505
8 8 8 8 8
VagYy, Vag vy, v ord Vagyl vl
8 8 8 8 8 8
Mp = | —V2g;Y ffz)_3 +9 Y(Sz)A =91 YE{;)’Q -V2g, Yész>’3 9 Y‘(,Sz)A -V2g Y;‘Z)’S, Uy (104)

8 8 8 8 8 8
—V2g,Y ffz),z + o Y(Sz>.3 91Yg52),1 -V2g, Y;’i’z -91Y 5{52)3 -V2¢, Y;‘Z)A

The parameters a, f, y, and g; can be taken real by redefining the unphysical phases of fields. Thus we have only two
complex parameters 7 and g, left. The charged lepton masses can be reproduced by adjusting the parameters «, 5, and y. The
light neutrino mass matrix m, = —M5My' M, depends on a single complex parameter g,/g; and an overall scale g% v2/A
besides the complex modulus z. Hence this model effectively depends on 8 free real parameters at low energy. Numerically
scanning over the parameter space, we find a good agreement between the model predictions and experimental data can be
achieved for the following values of the input parameters

(r) = —0.16639 + 1.09859i,  p/a =0.11310,  y/a = 0.000268,

2
9/g1 = 0.17295 + 0.24924i,  av, = 639.62166 MeV, LV

= 35.71373 meV. (105)

Accordingly the predictions for the lepton mixing parameters and neutrino masses are given by

sin?@;, = 0.30398, sin?@,3 = 0.02219, sin?@,; = 0.57297, Scp = 1.4454x,
ay; = 0.7135x, az; = 1.1178x, m,/m, = 0.00473, m,/m, = 0.05857,
my = 4.3331 meV, nmy, = 9.6424 meV, m3 = 50.3562 meV,
my = 9.8328 meV, mgp = 3.5926 meV, (106)

*Note that in order to ensure the consistency of the theory [58], the original modular transformation Eq. (36) should be adjusted to
metaplectic modular transformation: 7 — 7z, ®; — ¢~ (y,7)p;(7)®;, where ¢(y,7)° = ct+d, 7 = (v, ¢(y,7)) €T and —k; is the
modular weight of superfield ®;.
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which are compatible with the experimental data at 1o level
[73]. The mass ordering is normal, and the Planck bound
>;m; < 120 meV [81] is fulfilled. The effective masses
my in beta decay and myg in neutrinoless double beta decay
are very tiny and consequently they are outside the reach of
the next generation experiments. We comprehensively scan
over the parameter space of this model, and all lepton
masses and mixing angles are required to lie in 3o regions
[73]. Some interesting correlations between the input
parameters and observables are shown in Fig. 2. It can

be seen that the three CP violating phases d¢p, ay; and a3,
are strongly correlated with each other. Moreover, the
allowed range of the lightest neutrino mass m; is
[3.61 meV, 6.75 meV] in this model.

VII. CONCLUSION

The inhomogeneous finite modular groups I'y together
with even weight modular forms have been extensively
studied in bottom-up flavor model building, while the
homogeneous finite modular groups Iy, are less discussed.
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FIG. 2. The predicted correlations among the input parameters, neutrino mixing angles and CP violating phases in the lepton model

with rational weight modular forms at level 5.
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Generally I'y is isomorphic to the quotient of I'y, modulo
Z, subgroup generated by R = S%, or we say Iy is the
double covering of I'y. The transformation of the general
integral weight modular forms can be described by
unitary representations of I'y. In the present work, we
perform a comprehensive study of the homogeneous finite
modular group I'; = A% at level 5. The vacuum alignment
problem of traditional A flavor symmetry models [64—66]
would be simplified considerably, and the flavor sym-
metry is spontaneously broken by the vacuum expectation
value of 7.

The integral weight modular forms of level 5 can be
written as a polynomial > %, c;Fi(z)F3¥(7), where
Fi(r) and F,(r) are two algebraically independent
weight 1/5 modular forms and they are expressed in
terms of theta constants and Dedekind eta function.
Hence the linear space of modular forms of weight k
and level 5 has dimension 5k -+ 1. One can also
construct level 5 modular forms with Klein form and
Dedekind eta function. We find that both construction
methods give the same results by using the identities
Eq. (100) between theta constants and Klein form. There
are six linearly independent lowest weight 1 and level 5
modular forms, and they can be arranged into a six
dimensional representation of Af. Moreover, we explic-
itly give the expressions of A; multiplets of modular
forms up to weight 6.

It is known that the generalized CP symmetry can be
consistently combined with modular symmetry, and the
complex modulus 7 is required to transform as 7 — —7*
up to a modular transformation under the action of
generalized CP. Accordingly the modular generators S
and T are mapped to their inverse S~ and T~! respectively
under CP, and we find that it is a class-inverting
automorphism of A; so that the corresponding CP
symmetry is indeed physically well defined in the
context of A; modular symmetry. In our representation
basis, both S and 7 are represented by symmetric
matrices in all irreducible representations of A%, there-
fore the CP transformation for r — —z* is the canonical
one X, = 1. Moreover all CG coefficients are real in our
basis, consequently invariance under generalized CP
symmetry requires all coupling constants real. As a
consequence, the vacuum expectation value of  would
be the unique source of both modular and CP symmetry
breaking if generalized CP symmetry is imposed on the
A% modular models.

According the representation assignments for the
lepton fields, we systematically classify the lepton
models based on A modular symmetry. The left-handed
lepton doublets are assigned to a triplet of A%, the right-
handed charged leptons transform as singlets or the
direct sum of a doublet and a singlet under AL. The
neutrino masses are generated by the type I seesaw
mechanism, and both scenarios with two and three right-

handed neutrinos are considered. We aim to find out all
Ay modular models with minimal number of free
parameters in this work. Numerically minimizing the
x* function for each model, we find out 15 phenom-
enologically viable models with 9 real free parameters
and 10 viable models with 10 real free parameters
including the real and imaginary parts of 7z, and the
results of fit are listed in Tables V—VII. For all these 25
models, two more free parameters would be reduced by
imposing CP invariance. We find 9 model with 7 free
parameters and 10 models with 8 free parameters can
accommodate the experimental data in lepton sector, as
shown in Table VIII and Table IX. Moreover, we use the
A% modular symmetry to understand the quark masses
and CKM mixing matrix, and a quark-lepton unification
model is presented.

Furthermore, we extend the framework to include
rational weight modular forms at level 5, and the modular
group SL(2, Z) should be extended to its 5-fold metaplectic
covering group. Rational weight modular forms of level 5
transform in representations of the finite metaplectic group
['s = AL x Zs. We find that the two weight 1/5 modular
forms F,(z) and F,(z) furnish a doublet 2* of I's with

Y;%) (7) = (F(7), F5(z))T. The ring of modular forms of

level 5 is constructed through the tensor products of Y;%) (),
and remarkably it is unnecessary to consider the constraints
among high weight modular forms in this way because
F(7) and F,(7) and algebraically independent and they are
the minimal set of functions to construct the modular space
of level 5. Finally we provide a concrete lepton model
based on I's, the predictions for lepton masses, mixing
angles and CP violating phases are studied numerically,
and strong correlations between mixing parameters
are found.

At lower levels N = 2, 3, 4, the homogeneous (inho-
mogeneous) finite modular groups I'y, (I'y) only have
one-dimensional, two-dimensional and three-dimensional
irreducible representations. Nevertheless, F’5 o A’5 at
level 5 have four-dimensional, five-dimensional and six-
dimensional irreducible representations besides the singlet,
doublet and triplet representations, and the contractions
among doublets and triplets can give rise to quartet, quintet
and sextet such as 2®3 =24, 223 =24,
23 =2®3=6, 33=1,03,05, IRI =
1,03, d 5 and 3 ® 3 =4 @ 5. Hence level 5 opens
up new model building possibilities not available for the
levels 2, 3, 4, as shown in the paper. The three right-handed
charged leptons are usually assigned to be singlets of the
finite modular group such that one can tune the couplings
of each charged lepton to easily reproduce the hierarchical
charged lepton masses. As shown in Table IV, we can see
that the right-handed charged leptons prefer to transform as
2®1 or 2’ @1 under AL in the minimal lepton models
which can explain data, this is a notable feature of Ag-
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modular symmetry with respect to other modular invariant
models of levels N = 2, 3, 4.

In summary, we have performed a comprehensive
and systematical analysis of the homogeneous finite
modular groups I'; = A% and its metaplectic cover I's =
A% x Zs in the present work. The integral modular forms
at level N =5 are expressed as polynomials of the
weight 1/5 modular forms F;(z) and F,(z), this con-
struction naturally bypasses the need to look for con-
straints relating redundant higher weight multiplets. The
possible lepton and quark models are classified accord-
ing to the representation assignments of the matter fields
under the AL modular group. For the first time, we
consider the generalized CP symmetry in the context of
AL. We find out all the minimal A{ modular models
which can explain the experimental data of lepton
masses and mixing angles with/without CP symmetries.
Furthermore, we construct a complete model for quarks
and leptons based on A5 modular symmetry in which the
observed masses and mixing patterns of both quarks and
leptons can be reproduced for a common value of
modulus 7. Motivated by the fact that some fields with
fractional weights are required to be present in con-
struction of string theory [11,79,80], we consider the
modular forms of weight £/5 in the modular invariance
approach, and a benchmark lepton model is constructed.
The finite metaplectic group I's has five singlet repre-
sentations denoted as 1/ with j = 0, 1, 2, 3, 4, thus it is
more convenient to realize the quark and charged lepton
mass hierarchies by assigning the right-handed matter
fields to singlets of I's, see the model in Sec. VIA.

In the present work, we have taken the approach of
bottom-up flavor model building, it will be interesting to
see how the modular symmetries A§ and ['s together
with the rational weight modular forms can be naturally
derived in the top-down approach from string theory.
Because both representations and modular weights of

|

U? =V =R, (V2UV3UV-IUVUV!) =

matter fields and modular forms are not subject to any
constraint in the current bottom-up approach, there are
many possibilities for model constructions. We expect
this drawback could be overcome from top-down per-
spective such as the eclectic flavor scheme [11-15] and
thus the framework of modular invariance becomes
more constrained and predictive.
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APPENDIX A: GROUP THEORY OF Aj

As shown in [53], the double covering of the icosahedral
group As can be generated by three generators S, T and R
which obey the rules,

S2=R, T°=(ST?=R*=1, RT=TR, (Al)
or equivalently
§*=T°=(ST)} =1, S’T =TS  (A2)

There are several different presentations for the group A% in
the literature. In the Shirai basis [64,82], all group elements
can be expressed in terms of the order four generator U and
the order ten generator V which satisfy the following
multiplication rules,

The generators S and T can be related to the Shirai generators U and V by

S=U, T=V?

and vice versa U = S,

In the presentation of Threlfall [83], A% is also generated by two generators a and b with

a* = b = (ab)* =

which are related to the modular generators S and 7 by

S = ab,

T =b"'R and vice versa a = ST !,

1 [or (UV-H2U)? = 1], R?=1. (A3)
V=T72R (A4)

R, R=1, (AS)
b =TR. (A6)

We would like to introduce another presentation as simple as Threlfall’s, the two generators P and Q obey the

relations
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PP=05=(PQP =R, R =1, (A7)

which are related to S and 7 by
S=P, T=QR, andviceversa P=3S, Q=TR. (A8)

The presentation described in the work of Cummins and Patera [84], involves three generators A, , 3 satisfying
A} =A3 =A3 =R, (A1A)3 = (A1A3)? = (AA5) =R, R*=1, (A9)
which are related to the modular generators as follows,
S=A,, T = A|AATL, and vice versa A, = TST2, A, =S, Ay = ST2ST?S.  (A10)

The group AL has 120 elements which is twice as many elements as As, and all the elements can be divided into the 9
conjugacy classes as follows:

1¢; = {1},
1C, = {R} = (1Cy) - R,
20C; = {ST,TS,S3T*, T*S3, T>ST*, T*S*T?, T3ST?, T3 S*T, T*ST?, TS°T?,
T?ST3S, T3ST?S, ST>ST?, ST3ST?, S T3ST, TSTS°, S*°T*ST*,
T4ST?S3, ST*>ST*S, TST3ST},
30C, = {S,SR, T>ST?, T>ST*R, T3ST?, T3ST*R, T*ST, T*STR, TST*, TST*R,
ST>ST,ST*>STR, TST*S, TST>SR, ST?*ST?S, ST>ST?>SR, ST*>ST>S, ST*>ST*SR,
T>ST3ST?, T>ST3ST?R, T3ST?ST, T3ST3STR, TST?ST3, TST?ST R,
ST*>ST3ST,ST>ST3STR, TST?>ST*S, TST3ST?>SR, T*>ST3ST?S, T>*ST?*ST*SR},
12Cs = {T,T*, T3S, ST?, S3T?, T*S?, T*>ST, TST?, S3TS, TS’T, T*S*T*, T*S3T3},
12CL = {12, T3, S*T?S, S*T3S, T>ST?S, ST*ST?, T3ST3S, ST*ST?, T*ST> ST,
TST3ST?, T3ST?>ST*, T*ST>ST>},
20C, = {STR, TSR, S’T*R, T*S*R, T*>ST*R, T*>S*T?R, T>ST?R, T>S*TR, T*ST*R,
TS3T?R, T>ST?SR, T3ST*SR, ST*ST?R, ST?ST?R, S*T>STR, TST>S°R,
S3T2ST*R, T*ST?S*R, ST*>ST?>SR, TST3STR} = (20C;) - R,
12Cy = {TR,T*R, T>SR, ST?R, S’T?>R, T*>SR, T>*STR, TST?R, S’°TSR, TS*TR,
T3S3T*R, T*S*T3R} = (12Cs) - R,
12C, = {T*R, TR, S’T*SR, S’T3SR, T>ST*SR, ST*>ST?R, T>ST3SR, ST3ST’R,
T>ST3STR, TST3ST*R, T3ST*ST*R, T*ST?ST?R} = (12C%) - R, (A1)

|
where the number in front denotes the number inequivalent irreducible representations. In addition to
of group elements contained in this class, and the the five inequivalent irreducible representations 1, 3, 3, 4,
subscript “n” of the notation C,, is the order of the class. 5 of the A5 group, A§ has four inequivalent representa-
The number of conjugacy classes is the same as the  tions2,2’,4' and 6. The explicit forms of the generators S,
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TABLE X. Character table of A%, where ¢ = (1 + \/5) /2 is the golden ratio and G stands for the representative

element of each conjugacy class.

Classes 1C, 1C, 20C5 30C, 12Cs 125 12¢t 20C, 12Cyo
G 1 R ST S T 72 S3T RT T2R
1 1 1 1 1 1 1 1 1 1
2 2 -2 -1 0 — # 1 ) _%
/ _ _ 1 — _1
2 2 2 1 0 ; qls 1 5 1
3/ 3 3 0 -1 ¢1 -3 0 1 -1
3 3 3 0 -1 -1 o 0 -1
4 4 4 0 -1 -1 1 -1 -1
4 4 —4 1 0 -1 -1 -1 1 1
5 5 5 -1 1 0 0 -1 0 0
6 6 -6 0 0 1 1 0 -1 -1

T, and R in each of the irreducible representations
are summarized in Table XI. In the single-valued
representations 1, 3, 3, 4 and 5, the generator R is
represented by the identity matrix /, and the elements
of A% are described by the same matrices which
represent the elements in As, consequently the group
Aj can not be distinguished from the group A5 with these

representations. The generator R is —/ in the double-
valued representations 2, 2/, 4, and 6. Then one can easily
read out the character table of the group AL shown in
Table X.

From the character table, one can straightforwardly
calculate the multiplication rules of the irreducible repre-
sentations as follows,

22=1,®3, 202=4 203=204, 203=203=6,
204=206, 204=305  205=205=406,
26=3@4=30405. 272 =1,03, 23 =204,
2®4=206, 24 =305 2Q6=3Q4=30405,
33=1,93,®5. 303=405 304=20406¢,

35=3Q5=303 0405,
IRI=1,03,®5,.
14=1,03, 03,04, O 5,
45=303 ®4D5 @5,

IR4=1,03,030405,,
416=30304,04,05 65,

I4=200406,
44 =406, D 6,.

46=202 04, 04,06, 6,,
YR5=20204 @6, ®6,,

36=204 @ 6; D O,,

IR6=204 D6, D6,

505=1, 03,03, 04 D4, D55 D 5,5,

56=202 04, d4,d6, D6, d 63,
6®6:1a®3l,s @325 @3/15 @3/25 @45 @421@51,5 @52.36953,3’

(A12)

where the subscripts s and a denote symmetric and antisymmetric combinations respectively. For the product
decomposition 3® 6 =2' @ 4 D 6, D 6,, 6; and 6, refer to the two sextet representations appearing in the tensor
products of 3 and 6, and similar notations are adopted for other tensor products. We now list the Clebsch-Gordan
coefficients which are quite useful in model construction. we use a; to indicate the elements of the first representation of the
product and f; to indicate those of the second representation.
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197 -
1, =wp —aip, a1p
4— ap,
—a, b
o p
—f —ap,
3= ( ﬁa2ﬁ2 )
_\/Ealﬂl
2@3=-26a4
2= (fazﬁ% —alﬂl) —afs
wpi + V2B, —f
—\/_a1ﬁ3 6 — a3
4 — \/5(11/31 + afs A
afr — \/Eazﬂl —af)
\/5012/32 —a1p,
204-206
2 — < 2P3 +a1ﬁ4) \/_a2ﬂ2 + \/_a1ﬂ3
a1fr — afh 3= afy —V3a,b4
—V3apy — a1
a1 f3 — af V2a,3 = V28,
—(lzﬂﬁz - 0"16/7’3 V3 + aify
_ A3 — a1Pg 5= 2003
6 V2 2aify
\/zalﬁl \ﬁalﬁz —af
opfy + a1 py
2Q5=-4®6 2R6=30405
20yB4 + a1 s s — a1 fs
_ | V2w + V3aps 3= (azﬂs —af )
\/Eazﬂl - \/galﬂz aZﬂl + alﬁ3
O fy =201 P3
2,03 — a1 fy \/_azﬁs -1
mfy —2a1P4 4— | @b +aifr+afs
_ 20,05 — oy af — azﬁz a1 B
\/5052/75 - \/§a1ﬂ1 ~fs - 2051/54
V3apy +V2ap, V3afs 4+ V3a,ps
2, — a1 p3 —fazﬁs — 20 P¢
S=| a1y + afs =21
af +2mp —a1f3
\/_alﬂ4 2033
2®2 =1, 3]
12[ = (lzﬂl - (11/}2 (12/}1 + alﬁZ
3§ = ( _\/ialﬁl )
\/z(lzﬁz
7836 ey =204
Wfy — a1 f3 a1pi + V2,
o fr + a1 B3 V2a, 55 — ary
6 — —V2a,, \/_(llﬁl -
—\/zalﬂz 30{2,63
\/i(lzﬁ'; —\/v(llﬂz
\/50:2[}1 \/_aZﬂl =+ alﬂ3
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P®4-264 74 =385
2 - ( alﬂl a2ﬂ3 \/Zdzﬂl - \/5011,34
apfs — alﬂz 3= < a1y — V3ap; >
apfs — \/§01ﬂ2
V2, —\2a,p — V2,84
—\/_051ﬂ4 —2m,,
V2, 5= —\V3apy — wps
afpy — axps a1fr +V3aps
alﬂz + arfy —2a,53
2a1ﬁ3
2@5=406 R6=30405|
V3ayps = V2a, 8, V2a,3 + V20,
& — =201, — afy 3= (alﬂl +afp + \/§a2ﬂ4>
2005 — a1 3 api + V2 Bs — arps
V2B + V3,
3a185s — oy,

3yf, + aifs
Vo6a, B + 25
\/5“1/”2 - 2\/5(12/7’4
2V2a, 55 + V2,5
\/gazfﬁ —2a,p4

By + V2P
\/_azﬁz —afs
\/60‘1/36 - \/gazﬂs
3., — ) — \/iazﬂ4
5= 20,3 — Zﬁazﬁs
20y — 2\/5051,34
V2a,Bs = 3o — anfa

apfs — \/_alﬂl
( V2a, 85 + as )

BR®3=-1,83,85
Iy =a1f) + a3fr + af3
afz — azf
3. = (alﬁz —af) )
a3 — a1 fs
2a10) — a3fr — aafps
—\/gazﬂl - \/§“1/52
\/gazﬂz

\/6a3ﬁ3
_\/§a3ﬂl - \/galﬁS

9}
»
Il

V2,1 + a3 5
4 — _\/éalﬂZ — a3 f
—fy — \/501/%
V2a3; + a3
\/galﬂl
ap — V236,
S=1| ap- \/E(X3ﬁ3
a1fy — V2ap,
af — \/5112/13

Be4=3 0405
( V231 — V2,4 )

asfy + V2,1, — arfy
Wfy + V2,15 — a3y
afy — \/§a3ﬁ2
4 — —\/zazﬁl —a1p
afs + V23
\/iazﬂ3 -y
\/60‘2/74 - \/60‘3/31
2V2a,4) + 2a3,
5= | 3w + mpfy — V21
V2a,B3 = 3mpy — asps
=25 - 2\/§a1ﬂ4

B4=2040¢

2 — (%ﬂ.@ + V2015, — V3 )
Wpy +V3afs — V2,55

3oy, — \/60‘3,32
4 — (‘2\/§a3ﬁ3 —Voap; — alﬁz)

a1fy + V63 — 2v2m, 8,
V65 + 3a, B4
2\/5052,54 - \/§a3ﬁ1
—2\/50‘3/31 - \/5052/))4
6 = \/6053,32 =21
Py + V60, > — 3z
V3arpy + Vbai B + azfs
V6arp5 — 20,54
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Be5=303 0405
(ﬁ%ﬁz +V3afs — 20, )
3=

afy + V3ai By — V6asp;
asfy + V3, s — Vo

V3ai ) + a3 + axfs
3= afz — \/zazﬂz - \/§a3ﬁ4
a1y — V25 — V2a3ps

20,3, - \/ialﬂS —3w3py
3arfs + V2, s — 2035

(03ﬂ3 +2v2a, 5, — Vo )
\/6(13ﬁ1 —afs — Zﬁalﬁs

\/§0’2ﬂs - \/§03ﬂ2

—V2a385 = V3 — a1
5= —\/Eazﬂz —2a,3
20,54 + V2385

V3azfy + V2B + ayps

BR6=204 ®6, D6,

2 — ( xpy + V215 + V2364 — arfps )
—a3fp —a3fr — \/E(lzﬂs - \/Ealﬁ()

V65 + V6a By + /33 s
V6a, s + V6a3 s — V34
2V2m:81 + s — V2a3, — 2a,
- py — \/50‘3/33
a1fy + V24
6, = afs — \/iazﬂl
\/Easﬁs —a1fy
V2, + a s
\/Easﬂz —a1fs
V218, + a3 3 — s
\/jalﬂl —ffs — afs
6, = P — afr — \/§a3ﬂ4
\/5(11/34 - \/E(lzﬂs
\/§a3ﬁ6 - \/Ealﬁs
\/iazﬂs - — a3

(a3ﬂ4 — V2, — 2V 2,8, — 2, B3 )
4 =

FR3=103, 05|
1, = a1 f) + azfr + s

20141 — azfr — a3
\/80‘3ﬁ3

5 = _\/§a2ﬂl - \/5051,52

—\/§a3ﬂ1 - \/galﬁ.%
\/gazﬁz

opfs — azf
3= (alﬂz —af )
a3 — a1 B

|3’®4:3€B4€BS|
—\/§a3ﬂ2 - \/Eazﬁs )

3= | V2a, + wpfy — asfs
api + V2, By — arfs

aipi + V2w p5

4 — afr — ﬁa3ﬂ4
\/§a2ﬁl —aif;

—\/iazﬁz —afy

\/60!2,53 - \/6a3ﬂz
\/ialﬂl —a3f3 = 3apy
5= 2V2a, 5, + 234

206, — 2\/§alﬂ3
3a3f) + axfy — V2a, 4

Fe4d=204 04
2 — (\/§a3ﬁ3 —V2ap, — azﬂ4>
asfy — \/gazﬁz - \/Ealﬁét

4 = \f6a3ﬂ4 =31/,
Véar By + 3a, 3
2V2a3 81 + Vo, — oy By
—a3f3y — 3o
3azfy — arfs
V6a,p1 + azfs — V3aps
2a,$, + Vo6aspy
20,5 — V6
V3aspy + Voai By — arps

api + Vo ps + 2\/5052/}4)

F@5-303 0405
( V3ai By + azfs + anpy )
3=

a1 fr — \/5053/34 - \/5012/)75
afs — \/50352 - \/Eazﬂ3

BFR6=20406 66,
2 — (azﬂl +afs+ a3ﬂ6)
arfs + azfr — a3

095013-34

(Table continued)



FERMION MASSES AND MIXING FROM THE DOUBLE COVER ...

PHYS. REV. D 103, 095013 (2021)

(Continued)

V3aspy + V3afy = 2a,
3= | ap + V3 — Vo ps

\/6(13/55 - \/601ﬁ3 - \/§a2ﬁ6
af + a3fs — 3 fy — 201 B4

4=
aBy +V3a; B, — Vo 3azfi + azfy — Pz — 20, fs
3B+ V3apy — Voarps Vs — \oarf — oafo
\/i(llﬂz + 3(12ﬂ5 - 26!3/}4 alﬁl - a3ﬁ4
4 — 2\/5(1],63 + a3ﬁ5 - \/602,31 (lzﬁs - alﬂZ
B \/6(13ﬂ1 - (12/22 - 2\/§(llﬁ4 6, = alﬁ3 + a3ﬁ5
2a5 — 33> — V2, B ' aafe — apy
a3y + arf
apfs — a1 fe
V3ayfs — 3z a1fy + azfy + axfs
20,8, + V234 aify + azfy — axfs
5= —\/§(12ﬁ1 - (11/1]3 - \/5(13/}5 6, = \/EaZﬂﬁ - alﬁ3
V3azfy + V2P, + a1 fy 2 mpfr+ axfy — a1 fy
V2,5 — 20, s af + aifs — azf
V2a35 + ay s
4e4=1,03,03, ®4, &5 44 =4 @6, D 6,
Iy = auf) + a1fs + a3fpr + aufps —a3fs — ayfs — V3P,
af — a1 fy + afs — azp 4 — a1 py + V3ayp; — azfy
3a = < \/iazﬂ4 - \/§a4ﬂ2 > a (l4ﬂ4 + (12/31 - \/g(llﬂz
V20,85 — V2a3 ) wps +\V3ap) — aifs
Wfs — o3Py + oy fy — aup —\3Bazfy — a1y
3 — ( V23 — 2y > V3arpy — aufy
V2a, 4, = V2 6, — fs — V3aps
a3z + agfr + afy Y =28 = V2asps
4 — afy + aafs + a3ﬂ4) V2a,8, — V2P,
s Py + f + a1 p asfy + V3,3
o pfy + azfy + a1 fs
\/§a4ﬂ1 + \/§a1ﬁ4 - \/§a3ﬂ2 - \/§a2ﬂ3 —\/§(14/31 =235 — a3
2V2a35 — V2043, — V2, V3aiBy + 2a:85 — az s
5 = V2auBs3 + V2385 — 2V 2a, By 6, V3afy — ayfy = 203,

\/EO‘Z,B] + \/EalﬂZ - 2\/20!4,54
2\/§azﬂ2 - \/5(13/}1 - \/E(llﬁ%

\/5054,33 - \/galﬁl
V2a,8; + V6a,p,
V3azfy + a3 = 2a2f3;

d@5-303 ®d4®5 @ 5)
(\/Eazﬂs +2V2a, 5 — 2V2a4f, — \/iazﬂ4)
3 =

205 + 3Py — aufs — V6a, By
V6a, By + ayfy — 203, — 3a 3

V2a,Bs + 2V2m s — V24, — 2V 20353
3= 2a4fy + 315 — Vo i — azfs
afy + Vo py — 2a1 5 — 3aups

V3ap1 + V2384 — 2V 20433 — V25
4— V2,4 + 2V2a385 — V3B — V20,5,
2V2a,, + V2a, 5 — V33 — V2aups
V3aypy = 232, By + V2.5 — V23,
V2015 + V204, — V2084 — V2a3p5
_\/zalﬁl - \/§a4ﬁ3 - \/5013/34
51 = V3a3fis + V2,1 + V3a b
V231 + V35 + V3aups
—\/gazﬂs - \/§a4ﬁ1 - \/galﬂzl
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(Continued)

dasfz + 204 fs + 204, + 4arfy
4o By + 2v/6a,5
5, = | 2V6auBy + 2a:3, — V6,3, — V6335
2031 + 2v6a, 55 — V6 — V6aups
4,y + 2v/6a3,

4®6=20204 &4, ®6 & 6)
2 (azﬁl +\/§(14ﬂ5+(l3/36—(12ﬁ2—“1/)’3)

V20,4 + aufs + arffs — azfa — asfp

2 — <a4ﬂ4 + a3 s + V2 — \/Ealﬁ2)
V2apy + aifs — V2385 — ary

V3ai By = V3ai By — V6asps
g — | @Pr+2m36 —afy =205 - V2a,ps
? asPi + 204 + a3 + 2005 — V2 By
—\/§a4ﬁ1 - \/§(14/32 - \/60’2/34
apfs — \/§a4ﬁ3 — a3,
—3fy — arfis — \/Ealﬁ6
6, = ayfy — \/Ealﬂl — a3fs
a1f3 + a3fs — fpy — axfs
Py + ayfs — azfy — arfs
afs + aps — V20up,

_\/§a2/}1 - \/5011/”3
V3az B + V3aups

( Wfs — a1y — 2Py — V235 )
asfs + V2185 — aufy — V24

s + V2auBs + azfy — V2a,

wpfs + V20185 + V2,85 — azpy

6, — afs — \/ialﬂZ — Py — \/Eazﬂe
2 2006 + V20ups
23, — \/ialﬂ4

V2a,B) + V2385 — axfpy — oy fis

W R4=1,03 D3 ®4 5,
1, = wpf — s + azfr — a3
S3aufi + 3014 + 3Py + arf3 )

30 = | 2V2a35 + V6aup, + Vo s
Voas By + V6a, 55 — 21/ 23,

asfr + afs — V3

4. — V3a,fy + aufs + azf
* V3ayps + arfpy + a1
—\/§(12ﬁ2 —a3f —aif;

V6aups + Voasfy — 23/ 2a,
2\/§a4ﬂ4 - \/aazﬂl - \/galﬂZ

i — 1Py + Py — asp
\/Zaz/ﬁ - \/5014,52
5. = \/5‘14/33 - \/§a3ﬁ4
\/EalﬂZ - \/5052,51
\/Ealﬁ3 - ﬁ%ﬁl

( P + a1 fs — 33y — 33 )
3=

4R5=20204 D6, D6,

2 — ( V2ayfy + iy — 2044 — V335 )
V3arpy + aufs + V28, + 2a1 5

2 — < \/§a4/}3 —fy — \/Ealﬁl —2mps )
V2aupi + V3a1py + 205, — s

V2a,B4 + V6,5 — V2a3 3

—V2a3p5 — V6ayp — \V2a:p,

6, — V2,5 + V6aups + V2w B4
! asfs + Voapy — V3aipa
Wby +V3aups — Vo py

V6a, By + V2,5 — V2a3,

\/zazﬁs —ap - \/5053,34
4 — V2auifs + w4+ V201,
V2aups + azfy — V2a1 55
V2asfy + V25 — aupy
2043, — \/§a2ﬂ4 - \/§a3ﬂ3
V3asfs + 2a1 s — V3 s
6, — \/§a3ﬁ4 —ayfs — \/3a1ﬁ1
g \/5014/34 - \/2011/32 - \/60!3/35
V20,5 + V2,5 — Vo s
V3ayfs + Voaup — i By
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W R6=303D4, 04, D5 05
( 2016 + V6a: B4 — 2433 — V6, s )
3

V20,5, + aufs + 3z fs — 23/ 2a, 1 — V6 s
V635 + V3arfy — 2V 24y — V241 — B

V6aups + 2a3 4 — 20085 — /6, g
3= (3(lzﬂ1 + afs + V3ai 3 — V6aps — “3ﬂ6)
V3aufs + 3asfr — arfpy — azfy — V6a, s
apy — \/5054/34 - \/5012/36
4, = —\/gazﬁz —afs - \/5054,55
V20,84 + aufs — V3asp
—aufy — \/§0‘3ﬂ3 - \/EalﬁS
V6asps + Vo ps
V60,5 + azfs + V285 — V3aupa

51= | V2mp + V2, + V236 — Vo
V2381 + V6aufs — V235 — V25
V6ayp) + V2a385 — s — V3 s
V6aups + V6ay B
20181 + V2a4Bs + V6asps
5, = \/gazﬂz - \/§a2ﬂ1 —afs - \/504/}5 - \/5053/36

V3asfy + V285 + ayfs + V3aspr + V3aps
\/zalﬁs —2a4p — \/602ﬁ4

\/5013/35 - \/?;alﬂZ - \/60‘4/34 - afs
ofy = 2P, — ﬁalﬂ% —2a3p
VBayfs + 2003 — azfy — 23

—\/§a4ﬂ1 —a3fi3 — \/Eazﬂ4 - \/galﬂs

585-1,03, 03,804,604, 05, ® 5,
Iy = a1f) + asfr + afs + aufps + a3,

< 2034 — 2045 + apfs — asp )
3. =

V3apy = V3ai B + V2a3 85 — V2as s
V2,84 = 204y + V3o fs — V3asp,
afs — asfy + 2 f5 — 205/
3= (\/galﬁ3 —V3asfi +V2aps - ﬁas/ﬁ)
V3aypi — 3By + V2a:p5 — V2a3p,
dayBy + Voarpy + Voo, py — asPs — azps
4. — 4oy + Voas By + V6a, 3 — asPs — asPs
) dasPs + V6ayp) + Vo, s — azfy — arfs
daz B3 + V6asp + Vo6afs — asfy — arps
V2a,8> = V2B + V3azBs — V3asps
4. — V2a3 ) — V2a1 B3 + V3aups — 3asp,
* V2auBy = V2a, B4 + V3a3 By — V3B
VBayBy — By + V2 B5 — V2asp,

2011 + asPy + axffs — 243 — 2334
WPy + a1 fr + V6asps + voas s
515 = \/6052/32 —2mp — 2o,
Véasps — 2aupy — 2a1 54
asPy + a1 fs + V6aup, + Voar

20101 + auf3 + azfy — 2as5P; — 2a,p5
\/6(14ﬂ4 =2 — 201,
S = afi + B3 + V6asps + V6ayps
P + aifa + Voaz By + V6
\/60!3/33 —2asp) —2a,ps
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5R6=20204 04,06 06 0 6

92— (013/31 + V3154 + s + 20365 — 2005 — \/2asPs )
204 + asfs + 2asPs — V3 fs — ayfy — V2.4

(3052,31 + afs + V6a, 5 + V2asps + 2V 2a4p5 — 2“3:66)
V6a, 6 + 3ashs + V25 + 2auf; — 2V 234 — asp
V6,5 + a3 fs + V2asps — V2,5 — 25,
V3aspy + V3aspr + VoéasPs — V3
V3aypy + Voarfs — V3auhs — V3asps
ayfs — \/§a3ﬁ4 —2asp — \/Eazﬁs - \/galﬁﬁ
\/gasﬁzx - \/6(12/31 - \/6a3/36
( \/50!3,52 - \/§a2ﬂ3 - \/§a3ﬂ1 - \/601ﬂ4 —aspfs — \/§a4ﬁ6 )
V2,1 + V605 + V2asBs + V2aupr — arfs — V235
\/gasﬁz - \/gazﬂs - \/60’4ﬂ3
aipy + V3ayPs — V6 s
aiB> + V6asps + V3asps
6 — V6arpy + i3 — V3aups
! V3aspy + V3asps — 2a1pa
\/5(14/32 - \/5(13/33 =25
V3aspy + aifs — V6asp,
V2a, 81 4+ V3 + V3asps — Voasfs — vVoaup,
V20,55 + V6au By + V3 — V3asps — v/6azps
6« — V3afy + Voasps — 3y — 2V 2a, 55
¥ V20,84 + V63 + Va3 — Vo
V2a, 5 + V6asps — Voafy — Vbaup,
V3aspy +V3asp, + Voafs — 23/ 2a, g

2
4
4,

V3ai By + V2asps — 2a385 — aypy
V3aiBa + 2044 + V225 — asfs
6, — V2,1 + 2aspy — asPs — V3o B
P + 2035 + 20,3 — a3 B
20566 — 20431 — ayfr — 333
asfy + V2asps + 2085 — V3o Bs

|6 [0y 6= la (&) 31,5 (&) 32,5 ® 335 ® 3,25 @ 4s @ 4a S2] 51.5 @ 52,3 @ 53.3‘

1, = wf — a1 pr + a3 — 3P + asfs — ayPs
asf3 + a3fs — fiy — a1y — asfs — ayps
31s = ( V2asps — V23, — V2ar 53 >
—\/50'454 - \/E%ﬂl - \/Ealﬂﬁ

2050, + 2as5f4 + 245 — 201
s = (ﬁ%ﬂl + V2,185 + V2365 + V285 — 2a6Bs — 2a4ﬂ6>
V2asf) + V20185 — V2a3, — V2,35 — 20533 — 20335
apy + a1 fr + asfs + azfe
3= ( Asfs + asPs — aufly — arfy )
—asfy —aifs — aufs — azpy

0fy — a1 f — asfz — a3fs — asPy — ayPs
3= ( sy + wfs — V2385 — aufy — ay By )
V2a6Bs + aspy + a1 s + asps + arfs

2\/§G3ﬂ3 =3aufy = 3a1Ps — aufr — Py — AsPs — aspPs
2\/§a6ﬁ6 +asfy +afs —3asp, — 3afs — ayfs — azfy

2V2a31 + 2V2a1 5 + agPa + aufs — 2V 2asBs — V2a3 2 — V23
V2asPi + V20,85 + 2V 2a6P, + 232058 — 2V 204 B4 — asPy — a3

i — 1Py + aafs — asfr + asPs — aspP
aspi — a1fs + asPy — axfs + a3fy — auf;
V2aghy — V21 Bs + a3 fs — asps
—\/60’1,31 - \/aazﬂz
2asfs + asfi + ayfs + oz + s + V2ashs + V2aubs
S1s = 2a5f5 + V24 + V204 + V2065 + V205
2a6fs + V2a4ps + V2a34 — V205 — V2 Bs
204 + asPr + arfs — agPi — arfs — V2asP3 — V2asps

( V2a,B5 = V2a3 8, + ayfs — aPs )
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(Continued)

a1fr — oy + 2a5p4 — 2045 + azfs — agPs
\/6051,53 - \/60‘3ﬂ1
520 = V3aypy — 3By + V3aghs — V3asPs
V3az By = V3aups + V3a1ps5 — V3asp,
\/Eazﬂs - \/gaﬁﬂZ

V2,1 = V20182 + V2asBy — V20,5 + 2720385 — 2V 2043
V3ai Bz = V3az By + V3arps — V3aspy + V6ashy — vVoaups
530 = Vba, By — Vb6ai By + V6a,p, — Voarp,
V6asp, — Véarfs + v/6a,p5 — V6asp,
V3agf — V3aiBs + V6asps — Véasps + V3arfs — V3asps

APPENDIX B: CONSTRUCT WEIGHT 1 where the expression of the eta-function 7(z) is [86-88],
AND LEVEL 5 MODULAR FORMS

WITH KLEIN FORM > ,
, N n() =q"*J[(1-¢"). g=e>. (B2
The linear space M, (I'(5)) of modular forms of positive n=1

integral weight k and level 5 has been explicitly constructed

through the Dedekind eta-function and Klein form as The Klein form fr] ) ( ) in Eq. (B1) is a holomorphic

follow [85] function which has no zeros and poles on the upper half
complex plane. The Klein form can be written into an

15k(5¢ infinite product expansion [88-91]:
M) = @ e som, 50, (1) PEGREEESE
a+b=5k,a.b>0 1 (T) 55 55
|
by (D) =20 =) [T - 4700 (1 = q"g7") (1 = g") 2, (B3)
n=1

where ¢, = €2 with z = r7 + r,. From Eq. (B1) we see that the modular forms of weight k and level 5 spans a linear
space of dimension 5k + 1. For the weight k = 1 modular forms, the modular space M (I'(5)) has dimension 6 and the
basis vectors can be chosen to be

15 5t 15 5t
e(7) = ’7}73((1)) 5,50 exlr) = ’7}73((1)) t0(57) 8y (59),
15(5; 15(5,
e3(r) = ]1173((1)) f?o(Sr)f;O(Sr), e4(r) = ]17]3((1)) f;o(Sr)f%%O(Sr),
15(5¢ 15(5¢
es(r) = "173(5 )) B (5080(50),  eslr) = ”}73(5 )> £,(57). (B4)

The above basis vectors are linearly independent and they span the weight 1 modular space M (I'(5)). Any modular
function of weight 1 and level 5 can be expressed as a linear combination of the basis elements e¢; withi = 1,2, ..., 6. Under
the action of the generator 7, they transform as

ei(r) = e (7), e(7) = ei%”ez(f), e3(7) = ei%”%(f)v

es(7) = ei%”@zt(f), es(7) — e’%ﬂes(f), es(7) = es(7). (B5)

Furthermore, we find the following transformation properties under another generator S,
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Vi ¢’ 2e, (T e et le T Le T
1)~ 5ﬁ(ﬁ{g- )+ Pes(s) + 2es(r) + 2e4(0) + pes) + zealr) .
@ 1
e(r) = 5\/545 {ﬁ 7) + (1) = 2e3(7) — 2¢pey (1) — des(7) —Eeﬁ(f)}v
i )—e es(7) + eyt es(t Le T
ex(z) — &@¢Lﬁ (1) - ¢3u+u>+¢x>+¢§a>}
1 ¢
ey(7) = 5\/§¢ {ﬁ — ey (7) + e3(7) + es() — es5(7) _%66(7)}’
{1 mw>+QWWﬂ—2eww«<ﬂ+ffe@ﬁ
5\/§¢ \/§¢ 2T 3 4 5 \/g 6 )

3
re1(0) = (o) + 26s(0) = 2es(e) + Pes) - L (o) (86

¢;§{w2

where ¢ = (1 ++/5)/2 is the golden ratio. We see that the basis vectors e; are closed under S and T
up to multiplicative factors, and each element is exactly mapped into itself under the action of $* (ST)? and
T3. Therefore we conclude that e; really span the whole modular space M, (I’(5)). As shown in [9,53], the
modular form space of weight k and level N can always be decomposed into different irreducible representations of
I"y. We can perform linear combinations of the six basis vectors e 3456 to form a six dimensional representation 6
of A%,

Y6(r) = (Y1(7). Y2(7). Y3(1). Y4(1). Y5(2). Yo(2))". (B7)

with

Yi(7) = ei(z) + 2e6(7), Y5(7) = 2e1(7) — e5(2), Y3(7) = 5e(1),
Yy(z) = 5v2e3(1), Ys(7) = —5v2e4(1), Yo(7) = Ses(z). (B8)
Under the actions of the modular symmetry generators S and 7, the modular form Y¢(z) transforms as
Ye(=1/7) = —1p6(S)Ys(2), Ye(z + 1) = pe(T)Ys(2), (B9)

where the six dimensional representation matrices pg(S) and pg(7) are given in Table XI. Furthermore, we can read
out the g-expansion of the modular forms Y; as

Yi(z) = 1+5¢g+ 10¢°> = 5¢* + 5¢° + 10¢° + 5¢° + -

Y>(7) =2+ 5¢ + 10¢*> + 5¢* + 5¢° + 10¢° + 104’ —Sq +-

Y3(1) = 5¢'3(1+2q +2¢* + ¢* +2¢* +2¢° +2¢° + g7 + 2¢° +2q9+---),

Yi(e) =5V24* (1 + g+ + ¢ +2¢* + ¢ +q" +2¢° +¢° + ),

Ys(t) = =5V2¢ P (1 + @+ + 4" - +2¢° + ¢* + ¢° +- ),

Yo(r) =5¢*3(1 —q+2¢*> +2¢° —2¢" +2¢% +¢° +--). (B10)
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TABLE XI. The representation matrices of the generators S, 7 and R in different irreducible representations of A%, where ws is the
quintic unit root ws = e2%/3,

Rep. Pr($) pe(T) Pr(R)
1 1 1 1
2 (¢ 1 2 0 -1 0
! f5¢(1 —¢) (0 ¢g) (0 —1)
2 (1 ¢ ws; 0 -1 0
Wealy 4) (T o) (o 5
3 1 V2 -2 1 0 0 1 00
1| =2 -9 1 (0 [oF 0> <0 1 O)
s
Vs VL g 0 0 of 00 1
3 -1 V2 2 10 0 100
1|2 =1 d (0 a)g 0) <0 1 0)
AW ¢¢ O 0 0 o 00 1
4 1L - ws 0 0 0 100 0
N 0 @ 0 0 0100
1 3
7 Lo 1 0 0 w 0 0010
4 o7 0 0 0 o 000 1
-1 ¢ Lo
4 ¢ V3 3 L ws 0 0 0 -1 0 0 0
2
| e S B I
VSl V3=t =y V3 S ot
/ 0 0 0 00 0 -1
-5 V3 =3 ¢
5 -1 V6 V6 V6 6 1 0 0 0 0 1000 0
Vo L2 2 0 @ 0 0 0 01000
00 w 0 0 00100
1 -2 2 L2 5
L Ve 2¢’ "51 oo 00 0 o 0 00010
Ve 3 p -2 00 0 0 o 0000 1
Ve ¥ 2 5
6 -1 o 7 V2 V2 R 10 0 0 0 O -1 0 0 0 0 O
2 _ _1 01 0 0 0 0 0 -1 0 0 0 0
v 4; _\% \>/§§¢ 7l loo ws 0 0 o0 0 0 -1 0 0 0
e ¢ =9 00 0 w 0 0 0 0 0 -1 0 0
V2 V2 V2 = -1 V29| o0 0 0 @ 0 0 0 0 0 -1 0
V2 V29 V29 -1 V2 000 0 0 0O 0 0 0 0 -l
P -5 = V20 V2 -l
APPENDIX C: PROVE THE IDENTITIES IN io: 1y g2
EQ. (100) =)t
n=—oo
In Sec. VI, we find the identities between the theta o
constants and Kelin forms in Eq. (100) which is checked =(1-gq) H(l - (1 =@ (1 =g, (C2)

numerically. We will prove them by using the famous Jacobi
triple product identity. Given the definition of eta function,
Klein form and theta constant in Egs. (B2), (B3), (93), the
identities in Eq. (100) become the following formulas,

0

Z (_l)nq(5n2+n)/2 =(1- q2)

n=-—0o

X ﬁ(l _ an)(l _ q5n—2)(1 _ 6]5’1+2), (Cl)

n=1

Notice that these formulas relate the infinite triple product
with infinite summation, this reminds us of the famous Jacobi
triple product identity which is the special case of the more
general Macdonald identity [92,93]:

Z xnlyn _ H(l _x2n)(1 _|_x2n—1y)(1 +x2n—1y—1)’

n=—oo n=1

(C3)
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where x,y€C and |x| <1,y #0. Taking x — ¢? APPENDIX D: HIGHER WEIGHT MODULAR
and y=—¢'? in the above Jacobi triple product FORMS OF LEVEL 5
identity, we can straightforwardly obtain Eq. (CI), The weight 4 modular multiplets can be generated from

and similarly Eq. (C2) follows from x=g¢°? and  the product of Y¢ and the modular forms of weight 3. We

y= —q3/ 2, find there are 21 linearly independent modular forms which
can be taken to be
3 3 3 3 3
Y,y 6111 -Y, Yt(ﬂ},z + Y stz)m = Ys Y(613,4 =Y, Yé&,s + Y3 Yt(w}.,ﬁ
4) _ 3 3 3
Yl - _\/E(Y3 Y(6[)I,2 + Y2st1)1.3 —Ys Yélz,s) ’
3 3 3
—V2(YeYg)y + Ya¥gp s+ V1Y)
(3) ©) (3) (3) 3)
Yy 6112 Y2Y611 |+ Y3Y6116 - Y4Y6115 - Y5Y6114 + Y6Y611,3
@ _
Y3 - ( 611 31s _\/_Y2 6113 \/_Y3 6112+\/_Y5 6115 ’
_\[Y Y6116 \/_Y4 6114 \/_YG 6111
3 3 3
—Y, Y6I T Y, Yt(sl)z — Y Y(61)3 Ys Ygl?ét —Y4Y (61?5 -Y; Yt(il?é
“4) _ 3 3
Yy = ( Y4(Y612 Y6l,l)_\/§Y3Y6l?3+(Y2_Y1)YgI?4 ,
3 3 3
Ys(Ye) +Yeh) + (Y1 + Y2)Yis + V2Y Y o

—V2Y3Yh VLY g = YV + YaY
Ya(Ye) = Yah) = VYol + oY)y + Ye¥ g — Ys¥ o
Ys(Ye)h + V) = Ya¥ils + Y3Y¢<51)4 Yi¥g)s - Yszsz |
\/§Y6Y81 YsY é1)3+Y3 615 —V2Y Y 616
—VO(Y Y, + YaYh)
YS(YS?I + Y(631?2) + Y, t(s31)3 + 1, Y?I?B» +V2YeY ?1?4 +2Ys Y?I?S +V2Y,Y, 231?6
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Using the Clebsch-Gordan coefficients listed in Appendix A, we can express each entry of these weight four modular forms

as quartic polynomial of Y;. In the same fashion, we can obtain the modular multiplets of weight 5 as follow,
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4
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4 4
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A%y Y3Yy + YoYy
4 4 4
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Finally we report the linearly independent weight 6 modular multiplets,
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We see that the linear space of modular forms of level 5 and weight 6 has dimension 31 which matches with the dimension
formula Sk+1=5x6+1=31.

1. Higher rational weight modular forms of level 5

In the following, we report the higher rational weight modular forms at level 5, and they are organized into irreducible
multiplets of I's.
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6 5
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