
 

Dark matter physics in dark SUð2Þ gauge symmetry with
non-Abelian kinetic mixing

P. Ko ,1,2,* Takaaki Nomura,1,† and Hiroshi Okada3,‡
1School of Physics, KIAS, Seoul 02455, Korea

2Quantum Universe Center, KIAS, Seoul 02455, Korea
3Asia Pacific Center for Theoretical Physics (APCTP)—Headquarters San 31,

Hyoja-dong, Nam-gu, Pohang 790-784, Korea

(Received 10 November 2020; accepted 17 April 2021; published 18 May 2021)

We investigate a model of dark sector based on non-Abelian SUð2ÞD gauge symmetry. This dark
gauge symmetry is broken into discrete Z2 via vacuum expectation values of two real triplet scalars,
and an SUð2ÞD doublet Dirac fermion becomes Z2—odd particles whose lighter component makes
stable dark matter candidate. The standard model and dark sector can be connected via the scalar
mixing and the gauge kinetic mixing generated by higher dimensional operators. We then discuss relic
density of dark matter and implications to collider physics in the model. The most unique signatures

of this model at the LHC would be the dark scalar (Φð0Þ
1 ) productions where it subsequently decays into:

(1) a fermionic dark matter (χl) and a heavy dark fermion (χh) pair, Φ
ð0Þ
1 → χ̄lχhðχ̄hχlÞ, followed by χh

decays into χl and non-Abelian dark gauge bosons (Xi’s) which decays into SM fermion pair f̄SMfSM
resulting in the reaction pp → Φð0Þ

1 → χ̄hχlðχ̄lχhÞ → fSMf̄SMχlχ̄l, (2) a pair of Xi ’s followed by Xi decays

into a DM pair or the SM fermions resulting in the reaction, pp → Φð0Þ
1 → XiXi → χ̄lχlfSMf̄SM or even

number of fSMf̄SM pairs.

DOI: 10.1103/PhysRevD.103.095011

I. INTRODUCTION

The standard model (SM) of particle physics has been
very successful in describing phenomenology observed in
various experiments. However the existence of dark matter
(DM) cannot be explained in the SM framework, and it
would be described as a new particle associated with
physics beyond the SM. The nature of DM is an open
question and there are many experimental searches for
interactions among DM and the SM particles such as in
direct detection, indirect detection, and collider experi-
ments. No clear evidence of DM would indicate a dark
sector which is hidden from current observations.
As the SM is described by local gauge symmetries, it is

plausible that the dark sector is also ruled by a hidden/dark
gauge symmetry. Moreover stability of DM indicates
necessity of a symmetry to protect it from decay, and it

can be a remnant of dark gauge symmetry (see Ref. [1] for a
review along this line). Thus, it is an attractive scenario that
dark gauge symmetry is spontaneously broken to a sym-
metry stabilizing DM candidate. To realize this concept,
we are especially interested in the extension of the SM
introducing a new SUð2ÞD gauge symmetry where all the
SM fields are singlet under it. The interesting properties of
a model with local SUð2ÞD group is that an unbroken
discrete symmetry can be naturally preserved after the
spontaneous breaking of the SUð2ÞD gauge symmetry
comparing with a hidden local Uð1Þ case in which the
Uð1Þ charge has to satisfy some artificial tuning [2]. For
example, if we require remnant Z2 symmetry from local
Uð1Þ the charge of fields should be integer with sponta-
neous symmetry breaking by scalar field having even
charge; then particles with even(odd) charge become Z2

even(odd). Thus we need to tune charge of fields to get
discrete symmetry while any real number is possible for
value of charges as long as anomaly free. On the other
hand, we have less choice for representation of non-
Abelian gauge symmetry considering fundamental and
adjoint representations, and one can say it is more natural
if we get discrete symmetry from the non-Abelian case.
Note that various applications of the hidden SUð2Þ gauge
symmetry have been studied in literatures, for examples, a
remaining Z2 symmetry with triplet scalar [3], a remaining
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Z3ðZ4Þ symmetry with a quadruplet(quintet) in Refs. [4–7],
Z2×Z0

2 symmetry [8], a custodial symmetry in Refs. [9,10],
an unbroken Uð1Þ from SUð2Þ in Refs. [11–13], a model
adding hidden Uð1Þh [14] and a model with classical scale
invariance [15].
In this paper, we discuss a minimal fermion DM model

with local SUð2ÞD breaking into discrete Z2 symmetry
where we introduce two SUð2ÞD triplet real scalar fields (ϕ⃗
and ϕ⃗01) developing vacuum expectation values (VEVs)
and an SUð2ÞD doublet Dirac fermion χ as Z2-odd DM
candidate,2 and analyze its phenomenology such as DM
relic density and collider physics. We also introduce higher
dimensional operators that induce gauge kinetic mixing
terms between SUð2ÞD and Uð1ÞY gauge fields after
SUð2ÞD symmetry breaking by nonzero VEV’s of ϕ⃗ and
ϕ⃗0 as mediators between the dark gauge sector and the SM
sector. After fixing our model, we formulate particle mass
spectra and their interactions in the dark sector and the
portals to the SM sector. Then relic density of our DM
candidate is estimated scanning free parameters globaly
where we also take into account constraint from direct
detection of DM. Furthermore we discuss implications to
collider physics considering the scalar portal and the kinetic
mixing as connections between dark sector and the SM.
This paper is organized as follows. In Sec. II, we show

our model of SUð2ÞD dark sector formulating mass spectra
and interactions. In Sec. III, we analyze DM relic density
and discuss the allowed parameter region. In Sec. IV, we
discuss implications to collider physics. Finally, we con-
clude and discuss in Sec. V.

II. MODEL AND FORMULAS

In this section we summarize the setup for our model. We
introduce a dark sector which is controlled by a non-
Abelian SUð2ÞD dark gauge symmetry, with two real scalar
fields ϕ⃗ and ϕ⃗0, and one Dirac fermion χ as summarized in
Table I. In components, ϕ⃗ðϕ⃗0Þ and χ are written as

ϕ⃗½ϕ⃗0� ¼ ðϕ1½ϕ0
1�;ϕ2½ϕ0

2�;ϕ3½ϕ0
3�Þ; χ¼ðχ1;χ2ÞT; ð2:1Þ

where the indices for triplet scalars correspond to three
SUð2ÞD generators.
The SUð2ÞD dark gauge symmetry is spontaneously

broken by nonzero VEV’s of two real scalar triplets ϕ and
ϕ0. In our scenario, we assume VEV alignments of two
scalar triplets as

hϕ⃗i ¼
�
0; 0;

vϕffiffiffi
2

p
�
; hϕ⃗0i ¼

�
vϕ0ffiffiffi
2

p ; 0; 0

�
: ð2:2Þ

When SUð2ÞD is broken by the VEVs of the triplets, the
vacuum is invariant under the transformation defined by

UT3
≡ ei2πT3 as UT3

hϕ⃗ð0Þi ¼ hϕ⃗ð0Þi, where T3 is the diago-
nal component of SUð2ÞD generators. Then χ field trans-
form UT3

χ ¼ −χ since T3 values of χ ’s components are
�1=2. In general, we would obtain even (odd) parity under
U transformation for any component of SUð2ÞD multiplet
with integer (half-integer) value of T3. Thus SUð2ÞD gauge
symmetry is broken to Z2 symmetry when we assume
Eq. (2.2). Note that the Z2 symmetry will guarantees the
stability of DM candidate which is the lightest component
with odd Z2 parity.
Now we write down the Lagrangian for kinetic terms of

the dark sector and the scalar potential:

LD ¼ −
1

4
Xa
μνXaμν þDμϕ⃗ ·Dμϕ⃗þDμϕ⃗

0 ·Dμϕ⃗0

þ χ̄ðDμγ
μ −MχÞχ ð2:3Þ

V¼ μ2HH
†HþλHðH†HÞ2þμ21ϕ⃗ · ϕ⃗þμ22ϕ⃗

0 · ϕ⃗0 þλ1ðϕ⃗ · ϕ⃗Þ2

þλ2ðϕ⃗0 · ϕ⃗0Þ2þλ3ðϕ⃗ · ϕ⃗0Þ2þλ4ðϕ⃗ · ϕ⃗Þðϕ⃗ · ϕ⃗0Þ
þλ5ðϕ⃗0 · ϕ⃗0Þðϕ⃗ · ϕ⃗0Þþλ6ðϕ⃗ · ϕ⃗Þðϕ⃗0 · ϕ⃗0Þ
þλHϕðϕ⃗ · ϕ⃗ÞðH†HÞþλHϕ0 ðϕ⃗0 · ϕ⃗0ÞðH†HÞ
þyχϕ

2
χ̄ðϕ⃗ · σ⃗Þχþyχϕ0

2
χ̄ðϕ⃗0 · σ⃗Þχ ð2:4Þ

where Xa
μν (a ¼ 1, 2, 3) is the field strength of SUð2ÞD

gauge field, and H is the SM Higgs doublet field written as

H ¼
� Gþ

1ffiffi
2

p ðvþ h̃þ iGZÞ
�
: ð2:5Þ

Here vH is the VEV of the SM Higgs doublet, H, and G�
and GZ are Nambu-Goldstone(NG) bosons absorbed by
W� and Z bosons.

A. Scalar sector

Firstly we briefly discuss our VEV configuration
Eq. (2.2) can give global minimum of the potential. In
general we choose hϕ⃗i ¼ ð0; 0; vϕffiffi

2
p Þ using freedom of SUð2Þ

rotations. Then the value of scalar potential V will be

TABLE I. Charge assignment for the fields in SUð2ÞD dark

sector where χ is Dirac fermion and ϕ⃗i (i ¼ 1, 2) are scalars.

Fields χ ϕ⃗ ϕ⃗0

SUð2ÞD 2 3 3

1At least two triplet scalars are required to break SUð2ÞD
into Z2 where unbroken Uð1Þ remains for one triplet case.

2In Ref. [3], a similar model is considered where two Dirac
fermions are introduced to explain some astrophysical anomalies
assuming specific mass relation among DM candidates and
hidden gauge bosons.
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smaller when ϕ⃗ · ϕ⃗0 ¼ 0 for λi > 0ði¼ 1;…;6Þ. Thus hϕ⃗0i ¼
ðvϕ0

1
; vϕ0

2
; 0Þ gives global minimum of the potential (for

μ21;2 < 0). Since the potential minima is symmetric under

rotation on ðvϕ0
1
; vϕ0

2
Þ space we chose hϕ⃗0i ¼ ðv

0
ϕffiffi
2

p ; 0; 0Þ
Here we consider the scalar sector of the model. First we

consider conditions to get VEV alignment in Eq. (2.2).
From the stationary conditions ∂V=∂ϕi ¼ 0 and
∂V=∂ϕ0

i ¼ 0, we obtain the following nontrivial conditions
(or vanishing tadpole conditions):

λ1v3ϕ þ
1

2
λ6vϕv2ϕ0 þ 1

2
λHϕvϕv2H − μ21vϕ ¼ 0;

λ2v3ϕ0 þ 1

2
λ6v2ϕvϕ0 þ 1

2
vϕλHϕ0v2H − μ22vϕ0 ¼ 0;

λHv3H þ 1

2
λHϕv2ϕvH þ 1

2
λHϕ0v2ϕ0vH − μ2HvH ¼ 0;

λ4v2ϕ þ λ5v2ϕ0 ¼ 0: ð2:6Þ

The mass terms of scalar fields are given by the quadratic
terms in the scalar fields in the Lagrangian:

−LMS
¼ 1

4
λ3v2ϕ0ϕ2

1þ
1

4
λ4vϕvϕ0ϕ1ϕ3−

1

2
λ4v2ϕϕ1ϕ

0
1

þ1

2
λ3vϕvϕ0ϕ1ϕ

0
3þλ1v2ϕϕ

2
3þλ6vϕvϕ0ϕ3ϕ

0
1

þ1

2
λ4v2ϕϕ3ϕ

0
3þ λ2v2ϕ0ϕ02

1−
1

2
λ4
v3ϕ
v0ϕ

ϕ0
1ϕ

0
3þ

1

4
λ3v2ϕϕ

02
3

þλHv2Hh̃
2þλHϕvϕvHϕ3h̃þλHϕ0vϕ0vHϕ0

1h̃; ð2:7Þ

where we used the last equation of Eq. (2.6) to substitute λ5.
Notice that mass terms associated with ϕ2 and ϕ0

2 are absent
and they are identified as Nambu–Goldstone(NG) bosons
which are absorbed by the two massive gauge bosons in the
dark sector.
From now on, we shall assume λ4 ≪ 1 to simplify the

scalar mass terms. Then Eq. (2.7) becomes

−LMS
≃
1

4
λ3v2ϕ0ϕ2

1 þ
1

2
λ3vϕvϕ0ϕ1ϕ

0
3 þ λ1v2ϕϕ

2
3

þ λ6vϕvϕ0ϕ3ϕ
0
1 þ λ2v2ϕ0ϕ02

1 þ
1

4
λ3v2ϕϕ

02
3 þ λHv2Hh̃

2

þ λHϕvϕvHϕ3hþ λHϕ0vϕ0vHϕ0
1h; ð2:8Þ

ignoring terms with the λ4 coupling. The terms for ϕ1 and
ϕ0
3 can be organized as

1

4
λ3ðv2ϕ þ v2ϕ0 Þðcos αϕ1 þ sin αϕ0

3Þ2; ð2:9Þ

where sin αðcos αÞ ¼ vϕ0 ðvϕÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ϕ þ v2ϕ0

q
. We then find

that the mass eigenstate ðcos αϕ1 þ sin αϕ0
3Þ has the mass

eigenvalue λ3ðv2ϕ þ v2ϕ0 Þ=2, whereas its orthogonal state
ð− sin αϕ1 þ cos αϕ0

3Þ corresponds to the NG boson
absorbed by SUð2ÞD dark gauge boson.
Finally, the mass matrix for ðh;ϕ3;ϕ0

1Þ is given by

−LMS
⊃
1

2

0
B@

h

ϕ3

ϕ0
1

1
CA

T
0
B@

2λHv2H λHϕvϕvH λHϕ0vϕ0vH

λHϕvϕvH 2λ1v2ϕ λ6vϕvϕ0

λHϕ0vϕ0vH λ6vϕvϕ0 2λ2v2ϕ0

1
CA

×

0
B@

h

ϕ3

ϕ0
1

1
CA: ð2:10Þ

Thusϕ3 andϕ0
1 canmixwith the SMHiggs field and interact

with SM particle via mixing effects. In our phenomeno-
logical analysis, we discuss the following two simplified
cases. Scenario (1): λHϕ0 ; λ6 → 0 In this case, h̃ and ϕ3 mix
whileϕ0

1 is almost the mass eigenstatewithout mixing. Then
squared mass terms for fh̃;ϕ3g are given by

−L ⊃
1

2

�
h̃

ϕ3

�T� 2λHv2H λHϕvϕvH

λHϕvϕvH 2λ1v2ϕ

��
h̃

ϕ3

�
: ð2:11Þ

This squared mass matrix can be diagonalized by an
orthogonal matrix, and the resulting mass eigenvalues are
given by

m2
h;Φ1

¼ λHv2H þ λ1v2ϕ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλHv2H − λ1v2ϕÞ2 þ λ2Hϕv

2
ϕv

2
H

q
:

ð2:12Þ

The relevant mass eigenstates h and Φ1 are also given by

�
h

Φ1

�
¼

�
cos α sin α

− sin α cos α

��
h̃

ϕ3

�
;

tan 2α ¼ λHφvϕvH
λHv2H − λ1v2ϕ

; ð2:13Þ

where α is the mixing angle, and h is identified as the SM-
like Higgs boson. Also we rewrite ϕ0

1 as an approximate
mass eigenstate such that

Φ2 ≃ ϕ0
1; m2

Φ2
≃ 2λ2v2ϕ0 : ð2:14Þ

The scalar mixing is constrained by Higgs precision mea-
surements as sin α≲ 0.3when the SMHiggs does not decay
into particles in the dark sector [16,17] We investigate the
bound for sin α when the SM Higgs decays into dark gauge
bosons below. Scenario (2): λHϕ; λ6 → 0 In this case, we
obtain mass eigenvalues and eigenstates by replacement
λHϕ → λHϕ0 , vϕ → vϕ0 , λ1 ↔ λ2 and ϕ3 ↔ ϕ0

1 for case (1).
Then they are given by
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m2
h;Φ0

1
¼ λHv2H þ λ2v2ϕ0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλHv2H − λ2v2ϕ0 Þ2 þ λ2Hϕ0v2ϕ0v2H

q
;

ð2:15Þ
�

h

Φ0
1

�
¼

�
cos α0 sin α0

− sin α0 cos α0

��
h̃

ϕ0
1

�
;

tan 2α0 ¼ λHφ0vϕ0vH
λHv2H − λ2v2ϕ0

; ð2:16Þ

where α0 is the mixing angle, and h is again identified as the
SM-like Higgs boson. Also we rewrite ϕ3 as approximate
mass eigenstate such that

Φ0
2 ≃ ϕ3; m2

Φ0
2
≃ 2λ1v2ϕ: ð2:17Þ

B. Gauge sector

The dark and the SM sectors can interact through terms
in the potential associated with the SM Higgs in Eq. (2.4)
that is called the Higgs portal. In addition the dark gauge
sector and the SM gauge sector can be concocted via
kinetic mixings between SUð2ÞD and Uð1ÞY after SUð2ÞD
gauge symmetry breaking by nonzero VEVs of ϕ⃗ and ϕ⃗0

[18]. The relevant terms for these kinetic mixings are two
dim-5 operators:

LXB ¼ Cϕ

Λ
Xa
μνBμνϕa þ Cϕ0

Λ
Xa
μνBμνϕ0a; ð2:18Þ

where Λ indicate the cut off scale and Bμν is the gauge field
strength for Uð1ÞY.3 After ϕ and ϕ0 developing VEVs, we
obtain the following kinetic mixing terms:

LKM ¼ −
1

2
sin δ1X1

μνBμν −
1

2
sin δ3X3

μνBμν; ð2:19Þ

where we defined sin δ1 ≡
ffiffiffi
2

p
Cϕ0vϕ=Λ and sin δ3 ≡ffiffiffi

2
p

Cϕvϕ0=Λ as new kinetic mixing parameters.
The kinetic terms for X1;3

μ and Bμ can be diagonalized by
the following transformations:

Bμ ¼ B̃μ− tanδ1X̃1
μ−

1

cosδ
ðtanδ3− tanδ1 sinδÞX̃3

μ; ð2:20Þ

X1
μ ¼

1

cos δ1
X̃1
μ −

tan δ
cos δ1

X3
μ; ð2:21Þ

X3
μ ¼

1

cos δ3 cos δ
X̃3
μ; ð2:22Þ

where δ is defined as sin δ≡ − tan δ1 tan δ3. In our analysis,
we take a limit of δ1 ≪ 1 and δ3 ≪ 1 and gauge fields are
approximately written by

B≃ B̃−δ1X1
μ−δ3X3

μ; X1
μ≃ X̃1

μ; X3
μ≃ X̃3

μ: ð2:23Þ

Then we denote dark gauge bosons associated with X1;2;3
μ

field as X1;2;3 henceforth. Note that mixing with Z boson is
suppressed unless dark gauge boson and the SM Z boson
masses are not close enough. In our analysis, we assume a
dark gauge boson mainly mixes with photon field.
After two triplet scalar fields develop nonzero VEVs,

SUð2ÞD gauge bosons obtain masses from kinetic term
such that

LM ¼ g2Dv
2
ϕX

1
μX1μ þ g2Dðv2ϕ þ v2ϕ0 ÞX2

μX2μ þ g2Dv
2
ϕ0X3

μX3μ:

ð2:24Þ

Here we have ignored kinetic mixing effects since it is
negligibly small in our scenario. We thus find the masses of
dark gauge bosons to be

mX1
¼

ffiffiffi
2

p
gDvϕ; mX2

¼ gD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðv2ϕ þ v2ϕ0 Þ

q
;

mX3
¼

ffiffiffi
2

p
gDvϕ0 : ð2:25Þ

Note that the X2 is always the heaviest one. In addition,
three-point interactions among scalar and gauge bosons are
given by

L⊃ g2Dvϕϕ3ðX1
μX1μþX2

μX2μÞþg2Dvϕ0ϕ0
1ðX2

μX2μþX3
μX3μÞ;
ð2:26Þ

where ϕ3 and ϕ0
1 can be written as mass eigenstates

using Eqs. (2.13) and (2.14) for the case (1) and using
Eqs (2.16) and (2.17) for the case (2) described in a
previous subsection.
Finally interactions among dark gauge fields are also

written → given by

L ⊃ −gDϵabc∂μXa
νXbμXcν −

1

4
g2Dϵ

abcϵadeXb
μXc

νXdμXeν;

ð2:27Þ

where ϵabc is the structure constants of SUð2ÞD and a ¼ 1,
2, 3. The heaviest gauge boson X2 would decay into X1X3

through the three point gauge interaction, where the X1 and/
or X3 transition will be off-shell due to the mass relation

3The effective operator can be obtained when there is a
field with nonzero Uð1ÞB charge and nontrivial SUð2ÞX repre-
sentation. For example, it is possible to obtain the effective
operator at one loop level when we introduce extra fermion
E whose representation is 2ð−1Þ under SUð2ÞXðUð1ÞBÞ. Such
one-loop diagrams are obtained from interactions: gXĒγμXμE −
gBĒγμBμEþ yĒϕð0Þ

a σa=2E where σa is the Pauli matrix acting on
SUð2ÞX representation space.
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among dark gauge bosons and both of them will
eventually decay into the SM particles through kinetic
mixings, Eq. (2.19).

C. Fermions in the dark sector

The mass terms of SUð2ÞD doublet fermion are given by

−L ⊃ Mχðχ̄1χ1 þ χ̄2χ2Þ þ
yχϕvϕ
2

ðχ̄1χ1 − χ̄2χ2Þ

þ yχϕ0vϕ0

2
ðχ̄1χ2 þ χ̄2χ1Þ

≡M11χ̄1χ̄1 þM12ðχ̄1χ2 þ χ̄2χ1Þ þM22χ̄2χ2; ð2:28Þ

where we assumed all coefficients are real. The mass
splitting and the mass mixings between χ1 and χ2 are
induced by the yχϕ and yχϕ0 respectively, in the last line of
Eq. (2.4). The mass eigenvalues and eigenstates are
obtained in a straightforward manner as

mχl;χh ¼
1

2
ðM11 þM22Þ �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM11 −M22Þ2 þ 4M2

12

q
;�

χ1

χ2

�
¼

�
cos θχ − sin θχ
sin θχ cos θχ

��
χl

χh

�
; ð2:29Þ

where mχl < mχh by definition. The mixing angle θχ is
given by

tan 2θχ ¼
2M12

M11 −M22

¼ yχϕ0vϕ0

yχϕvϕ
: ð2:30Þ

Furthermore we obtain interactions among scalar fields and
mass eigenstates of dark fermions such that

L⊃
yχϕ
2
½ϕ3ðcos2θχχ̄lχl−cos2θχχ̄hχh−sin2θχðχ̄lχhþ χ̄hχlÞÞ

þϕ1ðsin2θχχ̄lχl−sin2θχχ̄hχhþcos2θχðχ̄lχhþ χ̄hχlÞÞ�
þyχϕ0

2
½ϕ0

3ðcos2θχχ̄lχh−cos2θχχ̄hχh

−sin2θχðχ̄lχhþ χ̄hχlÞÞ
þϕ0

1ðsin2θχχ̄lχl−sin2θχχ̄hχhþcos2θχðχ̄lχhþ χ̄hχlÞÞ�;
ð2:31Þ

where ϕ1;3 and ϕ0
1;3 are substituted to mass eigenstates as

discussed in previous subsection.

1. Topological Z2 string

In our DM model, the original non-Abelian gauge
symmetry G≡ SUð2ÞD is spontaneously broken down to
its subgroup H ¼ Z2 ¼ f1;−1g which is disconnected.
Then the vacuum manifold of the model is given by M ¼
G=H so that the first homotopy group ofM is π1ðG=HÞ ¼
π0ðHÞ ¼ H ¼ Z2 [19]. Therefore in the particle spectra of

this model, there will be Z2 string which is a topological
object. One Z2 vortex is topologically nontrivial, but two of
them can be deformed smoothly into the vacuum, thereby
being topologically trivial. These Z2 string can contribute
to the dark matter of the current Universe to some extent,
but detailed study of this issue is beyond the scope of this
paper. In the following, we shall simply ignore topological
Z2 strings assuming their contribution to the Universe is
negligible.

III. DARK MATTER

In this section, we discuss DM phenomenology in our
model including DM relic density. In our scenario, DM is
the lightest dark fermion χl which is stabilized by the
remnant dark Z2 symmetry after dark gauge symmetry
breaking. First we require that Higgs portal interactions of
DM are suppressed in order to avoid severe constraints
from DM direct detection experiments. For the scenario (1)
of Higgs mixing, we prefer large mixing of dark fermions,
θχ ∼ π=4, since DM couples with Higgs via ϕ3. On the
other hand, for the scenario (2), we prefer small mixing,
jθχ j ≪ 1, since DM couples with Higgs via ϕ0

1. Then relic
density of DM is determined by gauge interactions in dark
sector in our scenarios where we assume dark scalars are
heavier than DM.
Then, the relevant interaction terms are

L ⊃
gD
2
ðcos 2θχχ̄lγμχl − sin 2θχχ̄lγμχh − sin 2θχχ̄hγμχl

− cos 2θχχ̄hγμχhÞX3
μ

þ gD
2
ðsin 2θχχ̄lγμχl þ cos 2θχχ̄lγμχh

þ cos 2θχχ̄hγμχl − sin 2θχχ̄hγμχhÞX1
μ

þ i
gD
2
ðχ̄hγμχl − χ̄lγ

μχhÞX2
μ þ ecWδ1X1

μJ
μ
EM

þ ecWδ3X3
μJ

μ
EM; ð3:1Þ

JμEM ¼
X
fSM

QfSM f̄SMγ
μfSM; ð3:2Þ

where JμEM is electromagnetic current and QfSM is the
electric charge of the SM fermions fSM. Then we imple-
ment these interactions in MICROMEGAS 4.3.5 [20] to
estimate relic density where all annihilation and coannihi-
lation processes induced by these interactions are included
in the numerical analysis.
In our analysis we take the dark fermion mixing angle for

each scenario as

θχ ¼
π

4
for the scenario ð1Þ; ð3:3Þ

θχ ¼ 0 for the scenario ð2Þ; ð3:4Þ
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in order to avoid direct detection constraint. For illustration,
we consider two benchmark cases of dark gauge boson
masses for each scenario;

Scenario ð1Þ∶ mX1
< mX3

; ð3:5Þ

Scenario ð2Þ∶ mX1
> mX3

; ð3:6Þ

and mX2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

X1
þm2

X3

q
. Also we require interaction

between DM and the lightest dark gauge boson not to
be suppressed by the dark fermion mixing effect. In the
following, we shall focus on the scenario (1) since we just
obtain similar results by replacing the role of X1 and X3 for
the scenario (2).
In addition, we take into accountDM-nucleon scattering

via Z0 boson exchanging process. The cross section for this
process is calculated in nonrelativistic limit as

σ ≃
δ21g

4
D

2π

1

m4
X1

�
mχlmp

mχl þmp

�
2

; ð3:7Þ

where mp indicates the proton mass. Since the Z0-SM
fermion interaction is proportional to electromagnetic
current, the DM scattering with neutron is suppressed.
For mχl ¼ Oð100Þ GeV, we obtain

σ ∼ 6δ21g
4
D

�
100 GeV

mX1

�
4

× 10−37 cm2: ð3:8Þ

We then assume δ1 ≲ 10−5 to avoid direct detection
constraints such as XENON1T [21] and PandaX-II [22]
which provide upper limit of ∼10−46 cm2 for DM mass
of ∼100 GeV.
In Fig. 1, we show thermal relic density of DM, adopting

dark gauge boson masses fmX1
; mX3

g as f200; 500g GeV
and f10; 30g GeV as reference values, mχh ¼ 1.5mχl ,
δ1;3 ¼ 10−5, and some relevant values of gauge coupling

gD. We find that relic density is decreased when χlχ̄l →
X1X1 and χlχ̄l → X2X2 processes are kinematically
allowed. Then larger gauge coupling is required for larger
mX1

mass to accommodate with observed thermal relic
density of DM. We can also explain relic density around
resonance 2mXχl

∼mX1
when X1 mass is relatively light

while the relic density tends to be larger than observed one
for heavier dark gauge boson case due to small kinetic
mixing parameter.
Next we scan free parameters fixing δ1;3 ¼ 10−5 to avoid

direct detection constraint. The two region for masses of
χl;h and X1;3 are considered in the range of

Region I∶ mχl ∈ ½1; 50� GeV; mχh ¼ 1.5mχl ;

mX1
∈ ½5; 20� GeV; mX3

¼ 1.5mX1
;

gD ⊃ ½0.01; 1�; ð3:9Þ

Region II∶ mχl ∈ ½50; 1000� GeV; mχh ¼ 1.5mχl ;

mX1
∈ ½150; 1000� GeV; mX3

¼ 1.5mX1
;

gD ⊃ ½0.05; 2�; ð3:10Þ

where masses of χh and X3 are respectively determined by
those of χl and X1 for simplicity. We then search for the
parameter region which provide observed DM thermal relic
density approximately in the range of 0.11 < Ωh2 < 0.13.
In the left and right panels of Fig. 2, we show allowed
parameter region on fmDM; mX1

g plane for the region I and
II where color gradient indicates values of gD. We find large
allowed region when χlχ̄l → X1X1ðX2X2Þ processes are
kinematically allowed. On the other hand, for mX1

> mχl,
we need some fine tuning around mX1

≃ 2mχl to obtain
resonant enhancement of annihilation cross section.

FIG. 1. Relic density as a function of DM mass where relevant parameters are fixed as indicated on the plots.
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IV. IMPLICATIONS IN
COLLIDER PHYSICS

Here we discuss collider physics in the model
focusing on extra scalar boson production at the LHC
via Higgs mixing. Then extra scalar boson decays into
dark gauge boson, dark fermion or SM particles where
the branching ratio (BR) depends on parameters in the
model. We then discuss possible signals of the model at
the LHC.

A. Constraint from the SM Higgs boson decay

First we discuss constraints from the SM Higgs decay
process, h → X1;2;3X1;2;3 → lþl−lþl− where l denotes
electron or muon. This multilepton decay channel is strongly
constrained by the search for Higgs boson decaying into extra
gaugebosonwhichcandecayintocharged leptons [23]because
of little background. The decayh → X1;2;3X1;2;3 is induced via
scalarmixingbetween the dark sector and theSMHiggs sector.
For the scenario (1), we obtain the decay widths as

Γh→X1X1
¼ gD4 cos2 α

8π

v2ϕ
mh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
X1

m2
h

s �
2þ m4

h

4m4
X1

�
1 −

2m2
X1

m2
h

�2�
; ð4:1Þ

Γh→X2X2
¼ gD4 cos2 α

8π

v2ϕ
mh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
X2

m2
h

s �
2þ m4

h

4m4
X2

�
1 −

2m2
X2

m2
h

�2�
: ð4:2Þ

For the scenario (2), we also obtain the decay widths as

Γh→X3X3
¼ gD4 cos2 α0

8π

v2ϕ0

mh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
X3

m2
h

s �
2þ m4

h

4m4
X3

�
1 −

2m2
X3

m2
h

�2�
; ð4:3Þ

Γh→X2X2
¼ gD4 cos2 α0

8π

v2ϕ0

mh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
X2

m2
h

s �
2þ m4

h

4m4
X2

�
1 −

2m2
X2

m2
h

�2�
: ð4:4Þ

In Fig. 3, we show branching ratio (BR) for the process
h → X1X1 → lþl−lþl− in the scenario (1) where we
consider 2mX1

< mh and 2mX2;3
< mh for simplicity; for

the scenario (2) we obtain the same result replacing the role
of X1 and X3. We also show the upper limit on the BR as a
dashed horizontal line. It is then found that the scalar
mixing angle and/or the gauge coupling gD should be

suppressed when the SM Higgs can decay into dark gauge
boson decaying into charged leptons.

B. Scalar boson production

Here we discuss Φ1ðΦ0
1Þ production processes at the

LHC. The scalar boson can be produced by gluon fusion
process gg → Φ1ðΦ0

1Þ through the mixing with the SM

FIG. 2. Parameter region satisfying relic density of DM.
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Higgs boson parametrized by mixing angle αðα0Þ. The
relevant effective interaction for the gluon fusion is written
as [24]

Lϕgg ¼
αs
16π

sin α½α0�
v

A1=2ðτtÞϕGa
μνGaμν; ð4:5Þ

where Ga
μν is the field strength for gluon and A1=2ðτtÞ ¼

− 1
4
½ln½ð1þ ffiffiffiffi

τt
p Þ=ð1 − ffiffiffiffi

τt
p Þ� − iπ�2 with τt ¼ 4m2

t =m2
ϕ.

We obtain this effective interaction from t̄tΦ1ðΦ0
1Þ coupling

via the mixing effect where we take into account only top
Yukawa coupling since the other contributions are sub-
dominant. Here we estimate the gluon fusion cross section
with CalcHEP [25] by use of the CTEQ6 parton distribu-
tion functions (PDFs) [26], implementing the relevant
interaction. In addition we apply K-factor Kgg ¼ 1.6 for
gluon fusion process which represent NLO correction
effect [27]. In Fig. 4, we show the production cross section
for scalar boson as a function of its mass with

ffiffiffi
s

p ¼
14 TeV adopting several values of sinαðα0Þ. We find that a

sizable scalar mixing is required to obtain observable
cross section. Thus we consider parameter region of
2mX1

> mh in our discussion of collider physics since
the scalar mixing is constrained for 2mX1

< mh as shown in
previous subsection.

C. Branching ratio of extra particles

Here we estimate BRs of particles in dark sector. The
decay widths for the Φ1½Φ0

1� → χaχbðaðbÞ ¼ l; hÞ proc-
esses are given by

ΓΦ1½Φ0
1
�→χaχb ¼

jYχaχb
Φ1½Φ0

1
�j2

8π
mΦ1½Φ0

1
�λ

1
2ðmΦ1½Φ0

1
�;mχa ;mχbÞ

×

�
1−

ðmχa þmχbÞ2
m2

Φ1½Φ0
1
�

�

Yχlχl
Φ1

¼ yχϕ cosα

2
cos2θχ ;

Yχhχh
Φ1

¼−
yχϕ cosα

2
cos2θχ ;

Yχlχh
Φ1

¼−
yχϕ cosα

2
sin2θχ ;

Yχlχl
Φ0

1
¼ yχϕ0 cosα0

2
sin2θχ ;

Yχhχh
Φ0

1
¼−

yχϕ cosα0

2
sin2θχ ;

Yχlχh
Φ1

¼−
yχϕ cosα0

2
cos2θχ ;

λðm1;m2;m3Þ≡1þm4
2

m4
1

þm4
3

m4
1

−
2m2

2

m2
1

−
2m2

3

m2
1

−
2m2

2m
2
3

m4
1

ð4:6Þ

where Φ1½Φ0
1� is mass eigenstate which mixes with the

SM Higgs as Eq. (2.16) and (2.17). The dark scalar bosons
also decay into dark gauge bosons. For the scenario (1),
we obtain

FIG. 3. Branching ratio for h → X1X1 → lþl−lþl− as a function of SUð2ÞD gauge coupling gD.

FIG. 4. Cross section for gg → ΦðΦ ¼ Φ1;Φ0
1Þ process as a

function of scalar mass with
ffiffiffi
s

p ¼ 14 TeV.
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ΓΦ1→X1X1
¼ gD4 cos2 α

8π

v2ϕ
mΦ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
X1

m2
Φ1

s �
2þ m4

Φ1

4m4
X1

�
1 −

2m2
X1

m2
Φ1

�2�
; ð4:7Þ

ΓΦ1→X2X2
¼ gD4 cos2 α

8π

v2ϕ
mΦ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
X2

m2
Φ1

s �
2þ m4

Φ1

4m4
X2

�
1 −

2m2
X2

m2
Φ1

�2�
: ð4:8Þ

For the scenario (2), we also obtain

ΓΦ0
1
→X3X3

¼ gD4 cos2 α0

8π

v2ϕ0

mΦ0
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
X3

m2
Φ0

1

vuut �
2þ

m4
Φ0

1

4m4
X3

�
1 −

2m2
X3

m2
Φ0

1

�2�
; ð4:9Þ

ΓΦ0
1
→X2X2

¼ gD4 cos2 α0

8π

v2ϕ0

mΦ0
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
X2

m2
Φ0

1

vuut �
2þ

m4
Φ0

1

4m4
X2

�
1 −

2m2
X2

m2
Φ0

1

�2�
: ð4:10Þ

In Fig. 5, we show BR for Φ1 → χlχh as functions of mχh
and mX1

in the scenario (1) where we have scanned
coupling as yχϕðgDÞ ∈ ½0.5; 2.5�ð½1.5; 2.5�Þ and fixed some
parameters sinα ¼ 0.1, θχ ¼ π=4, mχl ¼ 200 GeV, mX2

≃
mX3

¼ 500 GeV and mΦ1
¼ 600 GeV. We find the BR for

Φ1 → χlχh is maximally 1.2 × 10−2 and dominant decay
mode is the Φ1 → X1X1 mode where the other modes
are suppressed. For the scenario (2), we obtain similar
result by replacing X1 and X3 and the corresponding plot is
omitted here. The dominant decay mode of Φ1 is summa-
rized in Table II for different mass relations.

D. Signal at the LHC

Here we discuss the signature of our model at the
LHC based on decay modes of extra scalar bosons
which are produced through gluon fusion process via
scalar mixing. As we discuss in Sec. IVA, scalar mixing
cannot be sizable when the SM Higgs decays into dark
gauge bosons. Thus dark gauge boson masses are
assumed to be heavier than half of Higgs mass to
realize observable signals from extra scalar production.
We summarize possible signature of the model in the
following.

FIG. 5. Branching ratio for Φ1 → χlχh where final state includes both χ̄lχh and χ̄hχl.

TABLE II. Dominant decay mode of Φ1 for some mass relations.

Mass relation mΦ1
> 2mX1

, mX3
> mX1

mΦ1
> 2mX1

, mX1
∼mX3

mΦ1
< 2mX1;3

, mΦ1
> mχl þmχh

X1X1 X1X1, X2X2, X3X3 χ̄lχhðχ̄hχlÞ
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1. Φ1½Φ0
1� → X1X1½X3X3� decay mode

For mX1½3� < 2mχl, X1½3� dominantly decays into SM
fermions induced by kinetic mixing. The BR of this decay
chain of Φ1ðΦ0

1Þ is dominant when it is kinematically
allowed, mΦ1½Φ0

1
� > 2mX1½3� , and provide sizable cross sec-

tion. The most clear signal is four charged lepton final
states which can be well tested at the LHC. For
mX1½3� > 2mχl , X1½3� dominantly decay into DM since SM
fermion mode is suppressed by small kinetic mixing. In this
case, the final state becomes transverse missing energy and
we need additional jet/photon for tagging.

2. Φ1½Φ0
1� → X2X2 decay mode

For mX2
< mχl þmχh, our signal is eight SM fermions

coming from decay chain of X2 → X1X3ðX1;3 → f̄SMfSMÞ.
The BR of this decay mode of Φ1ðΦ0

1Þ can be sizable when
it is kinematically allowed and masses among dark gauge
bosons are not hierarchical. For mX2

> mχl þmχh, X2

dominantly decays into χ̄hχlðχ̄lχhÞ. Then χh decays as

χh → Xð�Þ
1½3�χl where dark gauge boson is off-shell or on-

shell depending on mass hierarchy. In this case, we obtain
signal of four SM fermions with missing transverse
momentum from the decay chain.

3. Φ1½Φ0
1� → χ lχ h decay mode

In this case our signal is SM fermion pair with missing
transverse momentum coming from decay chain of
χh → X1;3χlðX1;3 → f̄SMfSMÞ. For mΦ1½Φ0

1
� > 2mX1½3�, the

BR for the decay mode is small as we discussed above
but we can still obtain ∼30 events when σðgg → Φ1½Φ0

1�Þ ¼
10 fb, BRðΦ1½Φ0

1� → χlχhÞ ∼ 10−2 and integrated luminos-
ity is L ¼ 300 fb−1. On the other hand, for mΦ1½Φ0

1
� <

2mX1½3� , the BR of this decay chain is dominant and we
can obtain cross section as large asΦ1½Φ0

1� production cross
section.
We indicate dominant decay mode of Φ1 for some mass

relations in scenario (1) where we can obtain similar results
in scenario (3) interchanging the role of fΦ1; X1g and
fΦ0

1X3g. In Table III, we show cross sections of signal
processes for some benchmark points (BPs) where these

parameters can be consistent with relic density of DM. We
thus find that signal cross sections can be sizable when
scalar mixing is not too small, and signatures of our model
at the collider experiments depend on mass relation in dark
sector.
Here we briefly discuss experimental constraints.

Signatures from neutralino χ0 production followed by
decay χ0 → G̃Z (G̃ gravitino) is similar to our signature
from χhχl production. The upper limit of neutralino
production cross section is ∼1 pb at LHC 13 TeV when
its mass is 125 GeV [28] and the value is sufficiently
larger than our cross section for BP3. Cross sections for
2fSM mode in BP1 and BP2 would be also safe from
current data; upper limit of cross sections for pp → scalar
→ ZZ at LHC 13 TeVare larger than our values (see Fig. 10
in Ref. [29]).
Among the modes in our BPs, leptonic final states

will be the most clear signature. The cross sections
are σBRð2lþl−Þ ≃ 0.75 fb for BP1, σBRð2lþl−Þ ≃
1.6 fb and σBRð4lþl−Þ ≃ 0.025 fb for BP2, and
σBRðχ̄lχllþl−Þ ≃ 29 fb for BP3. The cross sections for
possible backgrounds in the SM are estimated using
MadGraph 5 [30] as follows: σðpp → 2lþl−Þ ¼ 24 fb;
σðpp → lþl−νν̄Þ ¼ 62ð5.1Þ fb with missing transverse
energy cut =ET > 50ð150Þ GeV (cross section of 4lþl−

final state is very small). Thus we can test our model at the
LHC and the HL-LHC combining analysis of these
processes imposing appropriate kinematical cuts. Further
analysis with detailed simulation is beyond the scope of this
work and it is left for future work.

V. SUMMARY AND DISCUSSIONS

We have discussed a model of dark sector described by
SUð2ÞD gauge symmetry in which two triplet real scalar
fields and one doublet Dirac fermion are introduced. In our
scenario, SUð2ÞD symmetry is broken to discrete Z2

symmetry by VEVs of two triplet scalar fields. Then
remaining Z2 symmetry guarantees stability of DM can-
didate which is the lighter component from doublet fermion
χl. In the gauge sector, we consider kinetic mixing term
between SUð2ÞD and Uð1ÞY which is assumed to be
generated via 5-dimensional operators. Then we have
investigated dark gauge sector which provides three

TABLE III. Cross sections for signal processes in some benchmark points (BPs) for scenario (1) at the LHC 14 TeV. The numbers in
front of f̄SMfSM indicate number of SM fermion anti-fermion pair in final states.

BP Parameters Final states σBR

1 fmΦ; mχl ; mχh ; mX1
; mX3

g ¼ f800; 300; 401; 200; 500g [GeV] 2f̄SMfSM ∼6 [fb]
fgD; yχϕ; yχϕ0 ; sin αg ¼ f0.4; 0.1; 0.1; 0.1g χ̄lχlf̄SMfSM ∼0.01 [fb]

2 fmΦ; mχl ; mχh ; mX1
; mX2

g ¼ f600; 200; 335; 200; 200g [GeV] 2f̄SMfSM ∼12.8 [fb]
fgD; yχϕ; yχϕ0 ; sin αg ¼ f0.7; 0.1; 0.1; 0.1g 4f̄SMfSM ∼1.6 [fb]

3 fmΦ; mχl ; mχh ; mX1
; mX2

g ¼ f300; 75; 125; 150; 200g [GeV] χ̄lχlf̄SMfSM ∼83 [fb]
fgD; yχϕ; yχϕ0 ; sin αg ¼ f0.7; 0.2; 0.2; 0.1g
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massive dark gauge bosons X1;2;3, two of which can mix
with SM gauge boson via the kinetic mixings.
We have estimated relic density of our DM candidate

where the observed value is explained via gauge inter-
actions in dark sector with kinetic mixing effect as a
portal to the SM sector. Then we have explored the
parameter region satisfying observed relic density. We
have found that the relic density is explained by the
process, χlχ̄l → X1;2;3X1;2;3, in large parameter region
while we need fine tuning to obtain resonant enhancement
for the process, χlχ̄l → fSMf̄SM, via dark gauge boson
exchange with kinetic mixing.
Implications to collider physics have been discussed

such as h → Z0Z0 decay, and extra scalar production and its
possible signals at the LHC. We have found that the
constraint from h → Z0Z0 branching ratio restricts scalar
mixing with the SM Higgs and SUð2ÞD gauge coupling
severely when the mode is kinematically allowed. Extra
scalar boson can be produced by gluon fusion process

through scalar mixing associated with the SM Higgs.
For extra scalar production, we obtain some specific sig-
natures depending on mass relation of dark sector particles.
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