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Céline Degrande* and Matteo Maltoni †

Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain,
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Interferences are not positive-definite and therefore they can change sign over the phase space. If the
contributions of the regions where the interference is positive and negative nearly cancel each other,
interference effects are hard to measure. In this paper, we propose a method to quantify the ability of an
observable to separate an interference positive and negative contributions and therefore to revive the
interference effects in measurements. We apply this method to the anomalous gluon operator in the SMEFT
for which the interference suppression is well-known. We show that we can get, for the first time,
constraints on its coefficient using the interference only similar to those obtained by including the square of
the new physics amplitude.
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I. INTRODUCTION

The Standard Model effective field theory (SMEFT)
explores the deviations in SM couplings due to interactions
among Standard Model (SM) particles and new states, too
heavy to be produced at the LHC or any other considered
experiment. Nonetheless, those new states affect the inter-
actions between the SM particles and accurate measure-
ments of their strengths should, thus, reveal or constrain the
presence of new physics. In this framework, heavy new
degrees of freedom are integrated out and the new physics
is parametrized by higher-dimensional operators [1,2],

LSMEFT ¼ LSM þ
X
i

Ci

Λ2
Oi þOðΛ−4Þ; ð1Þ

where Λ is the new physics scale. As a results, observables
such as differential cross sections display the same
expansion,

dσ
dX

¼ dσSM

dX
þ
X
i

Ci

Λ2

dσ
dX

þOðΛ−4Þ ð2Þ

where X is a generic name for a measurable variable. While
constraints should ideally come from the second term,

i.e., the term linear in the coefficients, they often come in
practice from the term quadratic in Ci or from terms of even
higher power of Ci. This phenomenon mainly originates
from the fact that the linear term is an interference between
the SM amplitudes and the amplitudes linear in Ci, and this
interference has been shown to be suppressed [3] for 2 → 2
processes. As it will be illustrated below, this suppression
occurs also in higher multiplicity processes. An interfer-
ence suppression can have two origins: either the interfer-
ence matrix element is small all over the phase space, or it
changes sign over the phase space. This paper aims, in the
second case, to revive the interference using differential
measurements and to assess the efficiency of the reviving
procedure. Although we will focus on a single operator in
the rest of the paper, the method is generic and can be
applied for any interference suppressed by a sign flip in the
phase space, including interference unrelated to the
SMEFT. Another obvious application in the SMEFT is
the CP-violating operators [4]. Their interference do not
contribute to the total cross section of C-even processes
by symmetry, but they can probed using CP-violating
observables.

II. FRAMEWORK

In this work we concentrate on the dimension-6 operator

OG ¼ gsfabcG
a;μ
ν Gb;ν

ρ Gc;ρ
μ ; ð3Þ

with Gμν the gluon field strength. While this operator is
expected to contribute to multijets and top-pair production,
its interference vanishes for dijet and is strongly suppressed
for the other processes. As a matter of fact, previous
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studies [5–7] suggest that a good sensitivity to its inter-
ference is unachievable. However, constraints on this
operator are essential as they affect the sensitivity over
other operators involved, for example, in top quark pro-
duction [8]. High-multiplicity jet measurements strongly
constrain this operator but mainly from theOðΛ−4Þ or even
higher order terms [6,7]. The stricter bound on this operator
comes from the OðΛ−4Þ in dijet measurements [9] and
reads

CG

Λ2
< ð0.031 TeVÞ−2 ð4Þ

at 95% confidence level (CL). We use the SMEFT@NLO
[10] Universal FeynRules Output (UFO) [11], written from
a FeynRules model [12] containing the dimension-six
operators, to generate the LO partonic events needed for
our study. All the operators coefficients are set to zero but
the OG one, which is taken equal to 1 with Λ ¼ 5 TeV.
Madgraph@NLO [13] is then used to generate events for
the SM, the square of the 1=Λ2 amplitudes and their
interference. Throughout this paper, we truncate the ampli-
tude at Oð1=Λ2Þ and therefore Oð1=Λ4Þ terms always
come from the square of the 1=Λ2 amplitudes. Namely,
multiple insertions of the dimension-six operators are not
allowed. We use the NNPDF2.3 parton distribution func-
tion (PDF) set [14] and the results are given for LHC at
13 TeVat the partonic level. We leave the study of the effect
of NLO corrections, parton shower and detector effects for
future studies. The cancellation over the phase space is
efficient if the integrals of the interference in the phase
space part where its matrix element is positive and negative
are almost equal in absolute value. Those two integrals are
obtained from the sum of the weights of events generated
according to the interference, keeping respectively only
positive or negative weighted events. In Table I, we use the
percentage of positive unweighted events to quantify the
efficiency of this cancelation for top and jet processes.
Since the strongest cancellation occurs for three-jets and
this process has the large cross section necessary for
accurate differential measurement, in the remaining of this
paper, we will restrict ourself to this process and leave the

other for future analyses. The integral of the absolute
valued interference differential cross section,

σjintj ≡
Z

dΦ
���� dσintdΦ

���� ð5Þ

is computed from the sum of the absolute values of the
weights and is an upper bound of the total measurable effect
of the interference over the whole phase space Φ. This
quantity is given in Table II together with the SM, the
interference and the Oð1=Λ4Þ total cross-sections. The
comparison of those four quantities shows the strong
suppression of the interference total cross section, and
how it is lifted by σjintj. Unfortunately, σjintj is not a
measurable quantity as it requires to measure not only
the momenta of the jets, but also their flavors and helicities,
as well as those of the incoming partons. Therefore, we
define the measurable absolute value cross section,

σjmeasj ≡
Z

dΦmeas

����
X
fumg

dσ
dΦ

���� ð6Þ

where fumg is the set of unmeasurable quantities of the
events. For other processes, the sum can be replaced, at
least partially, by integrals over continuous unmeasurable
quantities, such as the longitudinal momenta of a neutrino.
This is the difference between the positive and negative
contributions of the interference to the total cross section
using all the information experimentally available (and
assuming perfect measurements of the jets momenta). As a
result, this is an upper bound for any asymmetry build on
one or a few kinematic variables aiming at restoring the
interference, and therefore can be used to assess the
efficiency of such asymmetry. σjmeasj is estimated by

σjmeasj ¼ lim
N→∞

XN
i¼1

wi � sign
�X

um

MEðp⃗i; umÞ
�

ð7Þ

where ME is the part of the squared amplitude due to the
interference and wi and p⃗i label the weight and the
momenta of the jets of the event i. Therefore, this can
be seen as a matrix element method [15–20] at the partonic

TABLE I. OðΛ−2Þ cross sections and percentages of positive-weighted events for processes with a non-null interference between the
SM and the OG operator and a large cross section. These results are calculated for jets separated by ΔR > 0.4 and with different
minimum values for their transverse momentum pT .

pT > 50 GeV pT > 200 GeV pT > 1000 GeV

Proc. σ [pb] w > 0 σ [pb] w > 0 σ [pb] w > 0

tt̄ 1.384 85% 1.384 85% 1.384 85%
tt̄j 5.20 × 10−1 62% 1.13 × 10−1 60% 1.37 × 10−3 62%
jjj 2.98 × 101 52% 5.90 × 10−1 52% 4.91 × 10−4 61%
jjjj −2.89 × 101 45% −2.50 × 10−1 44% −4.12 × 10−6 39%
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level to revive the interference. The values of σjmeasj for the
three-jet final state and different cuts are given in Table II.
The cancellation among positive and negative weighted
events decreases with the pT cut while the ratio σjmeasj=σjintj
remains roughly constant.

III. DIFFERENTIAL DISTRIBUTIONS

We tested the ability to separate positive and negative
weight for various differential and double differential cross
sections. Tested distributions include the transverse
momenta pT and the pseudorapidities η of the jets, their
angular distances ΔR, their invariant masses, the normal-
ised triple product among the three-momenta of the jets,
and some event-shape variables, including the transverse
thrust, the jet broadening [21] and the transverse sphericity
[22]. Several variables such as the pT of the first jet, pT ½j1�,
the transverse trust and the angular distance between the
two lowest pT jets, ΔR½j2j3� achieve an efficiency of about
40% compared to σjmeasj. For comparison, the efficiency of
the total cross section is about 2%. The best efficiency,
however, is obtained for the transverse sphericity and is
about 80%. Moreover, this efficiency barely varies with the
global lower cut on each of the three jets pT . The transverse
sphericity SphT is defined by using the eigenvalues λ1 ≥ λ2
of the transverse momentum tensor:

Mxy ¼
XNjets

i¼1

� p2
x;i px;ipy;i

py;ipx;i p2
y;i

�
; SphT ¼

2λ2
λ2þλ1

: ð8Þ

Therefore, sign flip occurs between the events that are more
two-jets like (SphT ∼ 0) and those that are three well
separated and balanced jets (SphT ∼ 1). This explains
why the phase space cancellation is lower with the high
pT cut, as strong hierarchy between the jets becomes then
unlikely. The separations of the negative and positive
contributions for some of those variables are illustrated in
Fig. 1, where the full distributions as well as those of the
positive and negative weighted events are drawn separately.
Contrarily to inefficient variables, the distribution of the
positive and negativeweighted events are different, resulting

in a nonzero and changing sign distribution for the full
interference.
NLO predictions for the interferences of operators

known for their cancelation over the phase space seem

TABLE II. Cross sections for three-jet production, for different values of the pT -cut, ΔR > 0.4, Λ ¼ 5 TeV and renormalization
scales fixed respectively at 150, 250, 500, 1000 and 2000 GeV, with up to one OG insertion. The percentages of the total amount of
positive-weighted events, the percentages of the positive and negative measurable matrix elements (mme) and σjintj are shown for the
interference.

SM Oð1=Λ2Þ Oð1=Λ4Þ
pT;min [GeV] σ [pb] σ [pb] wgt > 0 σjmeasj [pb] σjintj [pb] σ [pb]

50 9.70 × 105 4.08 50.4% 7.83 × 102 1.05 × 103 3.93 × 101

200 8.96 × 102 2.92 × 10−1 51.4% 3.5 × 101 5.02 × 101 2.73
500 3.10 1.69 × 10−2 54.0% 6.04 × 10−1 8.96 × 10−1 1.48 × 10−1

1000 9.08 × 10−3 4.56 × 10−4 60.1% 1.46 × 10−3 2.29 × 10−3 3.05 × 10−3

FIG. 1. Differential distributions for pp → 3j at the LHC with
pT > 200 GeV for the jets. The red (blue) line represents the
differential cross-section contribution by the positive (negative)
weighted events. Their difference, the green line, is the differ-
ential cross-section distribution for the interference; the dashed
portion is the opposite of the negative differential distribution.
The black line reproduces the SM cross-section distribution,
divided by 100. The last bins contain the overflow.
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to lead in general to very large and/or negative K-factors
[4], as it is the case for analogous weak version of OG,
i.e., OW . They can be understood by the fact that regions
contributing positively and negatively to the interference
have much more reasonable but different K-factors which
can, therefore, significantly affect the level of cancelation.
As a result, only observables able to separate the two
regions would have stable predictions for the interference
and would be able extract meaningful information about
such interferences. Due to the heavy computation needed,
we leave, however, the computation of the NLO corrections
for our observables for future work.
Using the transverse sphericity to split the positive and

negative contributions, we now estimate the limits that
could be obtained on CG

Λ2 , either for the interference only or
including the Oð1=Λ4Þ contribution, too. The bounds are
obtained, for each double distribution, from the following
χ-squared

χ2 ¼
X
i

�
xexpi − xthi

σi

�
2

¼
X
i

�CG
Λ2 x

1=Λ2

i

σi

�2

ð9Þ

where xexpi and xthi ¼ xSMi þ CG
Λ2 x

1=Λ2

i are respectively the
measured and predicted content of each bin. Since the
experimental results for the distributions we are interested
in have not been published yet, we assume that the
experimental data will follow the SM distributions for
the considered quantities [resulting in the last step of
Eq. (9)] and that the uncertainty, σi, for the ith bin is
10% of its SM content. This estimate of the uncertainty
seems consistent with available experimental results [23].
We choose our binning such that each bin would contain
enough events, assuming the SM only to ensure that the
statistical errors are below 10%, for a luminosity of
100 fb−1. The best results are displayed in Table III.
Finally, to assess the validity of the SMEFT with our

approach, we display in Fig. 2 how the limits on Λ varies if
a cut on the center-of-mass energy is applied, assuming
CG ¼ 1. In principle, the EFT is valid if

ffiffiffi
s

p
< Λ, which is

only satisfied for CG slightly bigger that 1 with the low pT

TABLE III. Best bounds on the CG coefficient for different cuts on the pT , for Λ ¼ 1 TeV and 68% CL. The number of bins is
reported, for each distribution; the cut on the sphericity is the value, between 0 and 1, in which we separated the two bins used for this
variable. In the bounds columns, the first numbers are obtained through the OðΛ−2Þ contribution only, the ones into brackets take into
account the OðΛ−4Þ data, too.
pT;min [GeV] Distribution SphT cut Bins Upper bound on CG Lower bound on CG

50 pT ½j3� vs SphT 0.23 34 2.5 × 10−1 (1.1 × 10−1) −2.5 × 10−1 (−1.2 × 10−1)
200 ST vs SphT 0.27 34 7.5 × 10−2 (2.3 × 10−2) −7.5 × 10−2 (−2.4 × 10−2)
500 M½j2j3� vs SphT 0.31 21 5.5 × 10−2 (5.3 × 10−2) −5.5 × 10−2 (−3.5 × 10−2)
1000 M½j2j3� vs SphT 0.35 7 2.6 × 10−2 (1.9 × 10−2) −2.6 × 10−2 (−1.8 × 10−2)

FIG. 2. Upper bounds on Λ (for CG ¼ 1) as functions of the
upper cut over the center-of-mass energy

ffiffiffi
s

p
, inferred from the

best distribution for each pT -cut. The red line shows the bounds
from the OðΛ−2Þ term only, which are symmetrical with respect
to 0, while the blue line take into account the OðΛ−4Þ one, too.
The orange and purple lines reproduce the bounds, obtained
through the ST variable, considered in [6], at OðΛ−2Þ and
OðΛ−4Þ. The axis on top of the plots quantifies the percentage
of events, in the interference sample, that get lost form
the cut on

ffiffiffi
s

p
.
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cuts. The situation improve for the stronger constraints
derived with higher cuts. In both cases, the constraints
barely change when the events with

ffiffiffi
s

p ≳ 6 TeV are
included. The bounds, obtained through the interference
only, grow faster than the ones which involve the OðΛ−4Þ
contribution too, as it is expected because of their different
dependency on Λ. The bounds obtained by using the ST
variable, defined in [6], are also shown for comparison. As
expected, our distribution shows a nice improvement for
the bounds at OðΛ−2Þ.

IV. CONCLUSIONS

We used the sign of the measurable matrix element as a
tool to revive the interference and to quantify the efficiency of
differential distributions to separate negatively and positively
contributing regions of the phase space. We used it to find
efficient distributions to look for the interference effect of
anomalous gluon interactions, as predicted by the SMEFT,
and to put on the corresponding operators, for the first time,

constraints which are dominated by the leading [OðΛ−2Þ]
interference and not by the OðΛ−4Þ term, coming from the
new physics amplitude squared. Therefore, we have finally
found an answer to the long-standing quest for a sensitivity
to the interference between the anomalous gluon operator
and the SM. Due to its sensitivity to the interference, our
observable is also sensitive to the sign of its coefficient.
Finally, the proposed measurement can be easily reinter-
preted in other BSM scenarios if SMEFT assumptions turn
out not to be valid, as they are purely kinematic distributions.
While the method has been tested on this particular case, it is
fully generic and can be applied for any interference
suppression due to sign flips over the phase space.
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