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We derive the effective Hamiltonian describing collective oscillations of Majorana neutrinos with a
transition magnetic moment, allowing for the presence of scalar and pseudoscalar nonstandard neutrino
self-interactions (NSSIs). Using this Hamiltonian, we analyze new flavor instability channels of
collective oscillations in a core-collapse supernova environment that open up in the presence of a small
but nonzero neutrino magnetic moment. It turns out that, contrary to certain claims in the literature,
within the minimally extended Standard Model (i.e., without NSSIs), no new instabilities arise within
the linear order, nor do they produce any observable signatures in the neutrino flavor-energy spectra, at
least for magnetic moments up to 10−15μB and quite realistic fields of the order of 1012 Gauss. On the
other hand, in the presence of NSSIs, new fast and slow instabilities mixing neutrinos and antineutrinos
appear, which show up in the spectra even for tiny magnetic moments of the order of 10−24μB, leading to
considerable distortions of the spectra and nonstandard spectral splits. We study sensitivity of collective
oscillations to these, NSSI-induced instabilities in detail and discuss the observability of the NSSI
couplings triggering them.
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I. INTRODUCTION

During the most violent phase of a core-collapse super-
nova explosion, emitted neutrinos carry away the lion’s
share of the explosion energy and turn out to be the first
signal from a newborn supernova coming from its inner-
most regions [1,2]. An observation of supernova neutrinos
could thus yield priceless information both on the physical
processes at work during the explosion and on the physics
of the neutrino itself in such an extreme environment,
possibly unveiling signatures of certain beyond-Standard-
Model (BSM) phenomena [3–7]. Indeed, thanks to the
progress in experimental techniques of neutrino detection
made since the SN 1987A event, modern neutrino observa-
tories, as well as those planned to start operating in the
coming years, should be able to yield a number of events
quite sufficient to draw the neutrino energy spectra. For
instance, for a 10 kpc-away explosion, the JUNO detector

would yield as many as several thousand events in both the
neutrino and the antineutrino channels, including the
inverse-beta-decay detection channel with an unprec-
edented energy resolution about 1% [8]. Inevitably though,
the energy spectra thus observed would be a result of
neutrino oscillations on the way from the supernova core
(the protoneutron star) to the detector, so, in order to
“decypher” the spectra, one should be able to “rewind”
these oscillations back to the stellar interior.
For a typical core-collapse supernova, the neutrino

densities turn out to be so high next to their last scattering
surface (also referred to as the neutrino sphere) that
neutrino-neutrino forward scattering processes become
important for the flavor evolution, ushering into the physics
of collective neutrino oscillations [9]. This self-induced,
nonlinear process shapes the flavor-energy spectra in
the region deep under the Mikheev-Smirnov-Wolfenstein
(MSW) resonance surface, i.e., where noncollective oscil-
lations would be suppressed by a gigantic matter potential
[10,11]. One of the main drivers of collective flavor
transformations is the instabilities, which are intrinsically
present in the nonlinear evolution equations on collective
oscillations [9,12–17]. It has been identified, indeed, that
a hierarchy of these instabilities, both in the linearized
and fully nonlinear regimes, can lead to specific neutrino

*kharlanov@physics.msu.ru

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 103, 095004 (2021)

2470-0010=2021=103(9)=095004(23) 095004-1 Published by the American Physical Society

https://orcid.org/0000-0002-2546-1247
https://orcid.org/0000-0002-7038-6784
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.095004&domain=pdf&date_stamp=2021-05-07
https://doi.org/10.1103/PhysRevD.103.095004
https://doi.org/10.1103/PhysRevD.103.095004
https://doi.org/10.1103/PhysRevD.103.095004
https://doi.org/10.1103/PhysRevD.103.095004
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


spectral features, such as the so-called spectral swaps
(splits) and the behavior resembling turbulence [18–20].
New types of instabilities often arise when new

degrees of freedom come into play. For example, fast
instabilities show up beyond the so-called single-angle
scheme [12,14–16,21]; lifting the assumption of transla-
tional invariance of the solution leads to turbulent flavor
patterns breaking this invariance on a wide range of spatial
scales [19,20,22]. In view of this, it seems appealing to
analyze the effect of the neutrino anomalous magnetic
moment [23], which mixes the two helicity states and thus
doubles the number of nontrivially interacting degrees of
freedom, on the spectrum of instabilities. This also sounds
natural because of superstrong magnetic fields typical
for collapsing stars. This problem has been studied in a
number of papers, including the derivation of the effective
Hamiltonian [6,24,25] and the impact on the flavor evo-
lution within the single-angle [6,26] and multiangle frame-
works [27]. Notably, the effective Hamiltonians derived/
used in Refs. [24–27] and Ref. [6] are different in the self-
interaction term and lead to drastically different flavor
evolutions: in the latter case, new types of instabilities arise
that strongly deform the neutrino flavor-energy spectra
even for tiny values of the magnetic moment [6].
Certainly, it seems interesting not only to settle the

question of the correct Hamiltonian, but rather to ask a
more general question: are there any other factors produc-
ing neutrino flavor signatures in an interplay with the
effects of a (tiny) neutrino magnetic moment? At least one
answer to this question is discussed in the present paper.
Namely, we study the effect of the so-called nonstandard
neutrino self-interactions (NSSIs, see Refs. [28–30] for a
review) on the collective flavor evolution of Majorana
neutrinos triggered by the nonzero neutrino transition
magnetic moment. Recently, NSSIs, i.e., four-fermion
neutrino-neutrino interactions that are absent in the electro-
weak sector of the Standard Model, have attracted a lot of
attention for being able to affect the observable neutrino
spectra [31–35]. One can distinguish two classes of NSSIs,
those with flavor-dependent V–A interactions and those
with a non-V–A tensor structure of the four-fermion
interaction. The NSSIs of the second class, specifically,
those involving scalar ðν̄νÞ2 and pseudoscalar ðν̄γ5νÞ2
terms, are especially interesting to us in our context, since,
as we show below, their presence opens up a new instability
channel in oscillations of Majorana neutrinos with a non-
zero magnetic moment. It is worth admitting here that
another instability channel due to scalar-pseudoscalar
NSSIs has already been studied in Ref. [34]; however,
the corresponding unstable modes do not mix the neutrino
helicities and the nonvanishing magnetic moment is not
crucial for their development.
According to our analysis which follows, it turns out that

presence of a scalar-pseudoscalar NSSI violently deforms
the neutrino spectra even for minuscule values of the

magnetic moment, at least down to 10−24μB for nonexag-
gerated stellar fields B ∼ 1012 Gauss, while in the absence
of NSSIs (i.e., for the neutrino interactions within the
Standard Model), the effect of the magnetic moment is
virtually unobservable even for much greater magnetic
moments. Moreover, certain NSSI signatures originating in
collective oscillations deep inside the supernova, such as
the anomalous neutrino-to-antineutrino number ratio, can
be safely transported to the surface and further to the
detector. This means that supernova neutrino spectra can be
used to probe the presence of (pseudo)scalar NSSIs,
possibly stemming from exchange of (pseudo)scalar
BSM particles. The steps we take within our analysis
of the NSSI-induced instabilities are presented in the
following sections. Namely, in Sec. II, we rederive the
Hamiltonian for collective Majorana neutrino oscillations
with NSSIs and a nonzero neutrino magnetic moment and
compare the no-NSSI case with the results of previous
derivations. Further, in Sec. III, we carry out a linear
stability analysis of our flavor evolution equations, also
showing why in the absence of NSSIs, the effect of the
magnetic moment should be small. Focusing then on the
most interesting NSSI-induced unstable modes mixing
the two neutrino helicities, we determine their growth
rates, revealing fast and slow branches, as well as a specific
intermediate, matter density dependent one. The linear
analysis is accompanied by a full numerical simulation in
Sec. IV, to study what happens beyond the linear stability
regime and to determine the sensitivities of the spectra to
the neutrino magnetic moment and the NSSI couplings.
Section V summarizes the results obtained and discusses
their possible generalizations. In the Appendix, several
identities are proved or listed that we use in the derivation
of the effective Hamiltonian in the presence of NSSIs.

II. EVOLUTION EQUATION FOR COLLECTIVE
OSCILLATIONS IN THE PRESENCE OF NSSIs

Let us now settle the question of the effective
Hamiltonian for collective oscillations of Majorana neu-
trinos with nonzero magnetic moment we mentioned above
and, more importantly, derive the terms in this Hamiltonian
that describe the scalar and pseudoscalar NSSIs. For that,
let us derive the evolution equations for the neutrino flavor
density matrix accounting for the forward scattering proc-
esses, starting from field theory. We use relativistic units
ℏ ¼ c ¼ 1 throughout the paper.
We consider Majorana neutrinos in a small representa-

tive volume V, interacting with background electrons,
protons, and neutrons, plus an external electromagnetic
field FμνðxÞ. After the electroweak symmetry is broken, the
terms in the Lagrangian that contribute to neutrino forward
scattering read [2,23,34,36]

Lν ¼ Lð2Þ
vac þ Lð2Þ

mat þ Lð2Þ
AMM þ Lð4Þ

VA þ Lð4Þ
SP ; ð1Þ
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Lð2Þ
vac ¼ 1

2

XNf

a¼1

ν̄aðiγμ∂μ −maÞνa; ð2Þ

Lð2Þ
mat ¼ −GF

ffiffiffi
2

p
ν̄f0γ

μ
Lνff−δf;f0 ½p̄ð2s2Wγμ − γμLÞp

þ n̄γμLn� þ ē½δf;f0 ð2s2Wγμ − γμLÞ þ 2δf;eδf0;eγμL�eg;
ð3Þ

Lð2Þ
AMM ¼ −

i
4
mabν̄aσμνFμννb; ð4Þ

Lð4Þ
VA ¼ −

GFffiffiffi
2

p ∶ðν̄aγμLνaÞ2∶; ð5Þ

Lð4Þ
SP ¼ −

GF

4
ffiffiffi
2

p fgS∶ðν̄aνaÞ2∶þ gP∶ðν̄aγ5νaÞ2∶g: ð6Þ

Here νaðxÞ; a ¼ 1;…; Nf, are the neutrino fields with
Majorana masses ma and eðxÞ, pðxÞ, nðxÞ are the fields
describing electrons, protons, and neutrons, respectively.

The notations Lð2Þ
vac;mat;AMM versus Lð4Þ

VA; SP emphasize the
quadratic and quartic dependence of these terms in the
Lagrangian on the neutrino fields, respectively; these
groups of terms will require different treatment when
deriving the flavor evolution equations below. By defini-
tion, the neutrino fields obey Majorana constraints
ν̄aðxÞ ¼ νTaðxÞC, where C ¼ −iγ2γ0 is the charge conju-
gation matrix and the bar denotes a Dirac conjugate
ψ̄ ≡ ψ†γ0. The Dirac matrices γμL ≡ γμð1 − γ5Þ=2, σμν≡
i
2
½γμ; γν�; sW ≡ sin θW is the sine of the weak mixing angle,

and GF is the Fermi constant; colons in Eqs. (5) and (6)
denote normal ordering of field operators. The neutrino
flavor states are defined via a Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix [36,37] assumed to be unitary,

νfðxÞ≡UfaνaðxÞ; νaðxÞ≡U�
faνfðxÞ; ð7Þ

where the summation over the mass indices a; b;… and
flavor indices f; f0;… is assumed, the latter take on e, μ, τ
values in the three-flavor case and e, x values in the two-
flavor case. The electromagnetic interaction term (4)
contains the neutrino magnetic moment matrixmab, which
is real and antisymmetric in the Majorana case, so that only
transition magnetic moments are allowed [23]. Finally, the
quartic terms (5), (6) describe the electroweak (V–A) and
the nonstandard (scalar/pseudoscalar, SP) neutrino inter-
actions, and the latter is parametrized by two dimensionless
NSSI couplings gS;P.
Within the forward-scattering approximation, i.e., while

momentum-changing processes of the form νaðpÞ →
νbðp0Þ, νaðpÞ → ν̄bðp0Þ with p0 ≠ p play a minor role,
we can ignore coherent superpositions of different neutrino
momentum states (while keeping track of coherent

superpositions of mass states due to oscillations).
Accordingly, the neutrino state(s) jΦi we will consider
below factorize into a infinite tensor product of state vectors
jΦpi, each of them describing neutrinos with a fixed
momentum p and belonging to the corresponding Fock
space,

jΦi ¼ ⊗
p
jΦpi; ð8Þ

jΦpi ¼
X

A1…ANp

CA1…ANp
ðpÞâ†A1p

…â†ANpp
j0pi: ð9Þ

Here, for the sake of the calculations which will follow, we
adopt a notation A ¼ ðaαÞ, B ¼ ðbβÞ;… for the creation
operators â†Ap, with the Latin indices a; b;… ¼ 1;…; Nf

denoting the neutrino mass states and the Greek ones
α; β;… ¼ �1 standing for the neutrino helicities (multi-
plied by two). As mentioned above, the state vector jΦpi
describes neutrinos with momentum p, whose total number
Np ∈ f0; 1;…; 2Nfg is limited due to the Pauli exclusion
principle; moreover, in the forward scattering regime, these
numbers are conserved for every individual p andX

A

â†ApâAp · jΦi ¼ NpjΦi: ð10Þ

Thus, the time evolution of the neutrino state affects
only the set of c-number-valued coefficients CA1…ANp

ðpÞ.
It is much more convenient, however, to work with a
2Nf × 2Nf neutrino flavor density matrix instead of these
coefficients,

ρABðpÞ≡ hΦjâ†BpâApjΦi; ð11Þ

∂ρABðpÞ
∂t ¼ ihΦj½Ĥ; â†BpâAp�jΦi; ð12Þ

where Ĥ is the Hamiltonian corresponding to the
Lagrangian (1). Our task now is to transform Ehrenfest
equation (12) into an effective von Neumann equation for
the density matrix,

i
∂ρABðpÞ

∂t ¼ hACðpÞρCBðpÞ − hCBðpÞρACðpÞ
≡ ½hðpÞ; ρðpÞ�AB; ð13Þ

where hðpÞ is the desired 2Nf × 2Nf c-number matrix of
the effective Hamiltonian, possibly depending on the density
matrix ρ. In the derivation of the effective Hamiltonian,
which follows, let us work in the Schrödinger picture and
consider the contributions of the quadratic and quartic parts

of Ĥ (i.e., those arising from Lð2Þ
vac;mat;AMM and Lð4Þ

VA;SP,
respectively) separately.
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In the ultrarelativistic approximation we are using, the
Schrödinger-picture neutrino field operators νaðxÞ read

νaðxÞ ¼
1ffiffiffiffi
V

p
X
p;α

fuαðpÞeip·xâaαp þ u−αðpÞe−ip·xâ†aαpg;

a ¼ 1;…; Nf; ð14Þ

where the 3-momentum p ∈ ð2π=LÞZ3 is quantized in the
normalization volume V ≡ L × L × L. The neutrino anni-
hilation operators âaαp enter together with the plane-wave
solutions uαðpÞeip·x=

ffiffiffiffi
V

p
describing particles with helicity

α=2 ¼ �1=2. In what follows, for brevity, we will refer to
negative- and positive-helicity states as neutrino and anti-
neutrino states, respectively, and also refer to α ¼ �1 as
the helicity values, instead of the rigorous helicities
α=2 ¼ �1=2. Some obvious expressions for the polariza-
tion bispinors uαðpÞ, as well as for their bilinear combi-
nations we will need below, are listed in Appendix A.
The quadratic part of the Hamiltonian Ĥ in the Ehrenfest

equation (12), up to an insignificant multiple of the identity
operator, can obviously be written as

Ĥð2Þ ¼
X

C;D;q;r

λCDðq; rÞâ†CqâDr þ â â termsþ â†â† terms:

ð15Þ

The second and third terms produce vanishing contribu-
tions to the Ehrenfest equation, since jΦi possesses definite
particle numbers Np in all momentum modes. As for the
particle number-conserving â†â term, the corresponding
contribution to the time derivative of the density matrix is
evaluated straightforwardly:

i
∂ρABðpÞ

∂t ⊃ −hΦj½Ĥð2Þ; â†BpâAp�jΦi
¼ −

X
C;D;q;r

λCDðq; rÞhΦjδrpδBDâ†CqâAp

− δqpδACâ
†
BpâDrjΦi

¼ ½λðp;pÞ; ρðpÞ�AB ð16Þ

and has the desired von Neumann structure (13) (the ⊃ sign
means that quartic terms have been omitted on the rhs).
Forward scattering clearly manifests itself in only the
diagonal (q ¼ r) entries of the coefficient function
λðq; rÞ affecting the evolution of the density matrix.
Thus, to find the noncollective part of the desired effective
Hamiltonian hðpÞ in Eq. (13), one should simply list the
three â†â terms in Ĥð2Þ coming from the three Lagrangians

Lð2Þ
vac, Lð2Þ

mat, and Lð2Þ
AMM describing the vacuum neutrino

mixing and their interaction with matter and magnetic field.
The first term gives nothing but a free Hamiltonian,

Ĥð2Þ
vac ¼

X
q;C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

c

q
â†CqâCq ¼

X
q;C;D

λvacCDðq;qÞâ†CqâDq;

ð17Þ

λvacðq;qÞ ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þM2
p

0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

p
!

≈ jqj
�
1 0

0 1

�
þ
�
M2=2jqj 0

0 M2=2jqj

�
;

ð18Þ

where ðM2Þcd ¼ m2
cδcd is the neutrino mass-squared matrix

(in the mass basis here) and, as usual, the term proportional
to the identity matrix does not contribute to the commutator
in Eq. (16) and can be omitted. The matrix notation we have
adopted in Eq. (18) and to be used hereinafter is as follows:
the two block lines/columns of a 2Nf × 2Nf matrix λvac

correspond to the two helicities γ; δ ¼ −1;þ1, following a
pattern:

ρ≡
�
ρ−− ρ−þ
ρþ− ρþþ

�
≡
�
ρνν ρνν̄

ρν̄ν ρν̄ ν̄

�
: ð19Þ

In other words, the first and the second diagonal blocks
describe neutrinos and antineutrinos, respectively, while the
two off-diagonal blocks describe coherent mixtures of
neutrinos and antineutrinos.
The matter (MSW) term in Ĥð2Þ can be retrieved by

treating background matter and the corresponding e, p, n
operators in the mean-field fashion:

Ĥð2Þ
mat ¼ −

Z
V
Lð2Þ
matd

3x → GF

ffiffiffi
2

p
hJμabi

Z
V
ν̄aγμLνbd3x: ð20Þ

The background matter current Jμab above is directly
extracted from Eq. (3) and after averaging over neutral
nonmoving nonmagnetized matter gives

hJμabi ¼ −δabhp̄ð2s2Wγμ − γμLÞp − ēð2s2Wγμ − γμLÞeþ n̄γμLni
þ 2ðPeÞabhēγμLei

¼ δμ0

�
neðPeÞab −

nn
2
δab

�
; ð21Þ

where the projector onto the electron neutrino state
ðPeÞab ≡U�

fa · δf;eδf0;e · Uf0b and ne;n are the electron
and neutron number densities, respectively. Indeed, expect-
ations of all axial vectors vanish, while for polar vectors,
hl̄γμli ¼ δμ0nl, l ¼ e, p, n. It remains now to directly
substitute the neutrino operators (14) into (20) and extract
the terms contributing to forward scattering [for the bilinear
expressions of the form ūð…Þu, see Appendix A]:
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Ĥð2Þ
mat ⊃ GF

ffiffiffi
2

p X
q;A;B

hJ0abifūαðqÞγ0LuβðqÞâ†AqâBq

− ū−αðqÞγ0Lu−βðqÞâ†BqâAqg
¼
X
q;A;B

λmat
AB ðq;qÞâ†AqâBq; ð22Þ

λmatðq;qÞ ¼ GF

ffiffiffi
2

p � hJ0i 0

0 −hJ0iT
�

¼ GF

ffiffiffi
2

p �nePe −
nn
2
1 0

0 −nePT
e þ nn

2
1

�
: ð23Þ

Finally, the magnetic moment term is evaluated in the
same way giving

Ĥð2Þ
AMM ¼ −

i
2
mabB ·

Z
V
ν̄aΣνbd3x

⊃
X
q;A;B

λAMM
AB ðq;qÞâ†AqâBq; ð24Þ

λAMMðq;qÞ ¼ −i
ffiffiffi
2

p �
0 ðζþðpÞ · BÞm

ðζ−ðpÞ ·BÞm 0

�
;

ð25Þ

where complex vectors ζ�ðpÞ ¼ 1ffiffi
2

p χ†∓ðpÞσχ�ðpÞ are

matrix elements of the Pauli matrices between states with
opposite helicities (see Appendix A for the definition
details and properties of these vectors).
Thus, we have found the noncollective part of

the effective neutrino Hamiltonian to be λvacðp;pÞ þ
λmatðp;pÞ þ λAMMðp;pÞ, and we can now resort to the
quartic terms in the neutrino Hamiltonian Ĥ. These terms,
after commutation with â†BpâAp in the Ehrenfest equa-
tion (12), lead to quartic expectations of the form
hΦjâ†â†â â jΦi. In order to close our system of equations
on the density matrix, namely, to obtain (13), we will now

apply a kind of Wick’s theorem and express such quartic
expectations in terms of quadratic ones hΦjâ†BpâApjΦi ¼
ρABðpÞ. Let us start from the contribution of the electro-
weak Lagrangian (5) having a V–A structure and insert the
corresponding Hamiltonian into Eq. (12):

i
∂ρABðpÞ

∂t ⊃ i

�∂ρABðpÞ
∂t

�
VA

¼ −
GFffiffiffi
2

p
Z
V
d3x

× hΦj½∶ðν̄cðxÞγμLνcðxÞÞ2∶; â†BpâAp�jΦi: ð26Þ

First of all, commutation with â†BpâAp transforms creation
and annihilation operators into creation and annihilation
ones, respectively, i.e., it does not spoil the normal order-
ing. Thus, the commutator can safely be put inside the
normal ordering, leading to an expectation of

∶½ðν̄cðxÞγμLνcðxÞÞ2; â†BpâAp�∶
¼ 2∶ν̄cðxÞγμLνcðxÞ½ν̄dðxÞγμLνdðxÞ; â†BpâAp�∶: ð27Þ

Next, due to symmetries of bilinear expressions in
Majorana fields (see, e.g., Ref. [2])

∶ψ̄ω∶ ¼ ∶ω̄ψ∶; ∶ψ̄γ5ω∶ ¼ ∶ω̄γ5ψ∶;

∶ψ̄γμω∶ ¼ −∶ω̄γμψ∶;

∶ψ̄γμγ5ω∶ ¼ ∶ω̄γμγ5ψ∶; ∶ψ̄σμνω∶ ¼ −∶ω̄σμνψ∶; ð28Þ

the V–A currents can be replaced by axial vector ones,
ν̄dðxÞγμLνdðxÞ ¼ − 1

2
ν̄dðxÞγμγ5νdðxÞ. Moreover, by virtue

of the same symmetry properties, the latter one is a
symmetric quadratic form in νd, and its commutator
with â†BpâAp leads to two identical terms, yielding

−ν̄dðxÞγμγ5½νdðxÞ; â†BpâAp�. As a result, the V–A contri-
bution to the evolution equation for the density matrix takes
the form

i
�∂ρABðpÞ

∂t
�

VA
¼ −

GFffiffiffi
2

p
Z
V
d3xhΦj∶ν̄cðxÞγμγ5νcðxÞ · ν̄dðxÞγμγ5½νdðxÞ; â†BpâAp�∶jΦi

¼ −
GFffiffiffiffiffiffi
2V

p
Z
V
d3xhΦj∶ν̄cðxÞγμγ5νcðxÞ · ν̄dðxÞγμγ5fδbdeip·xuβðpÞâAp − δade−ip·xu−αðpÞâ†Bpg∶jΦi

≡ −
GFffiffiffiffiffiffi
2V

p
Z
V
d3xhΦj∶φ̄γμγ5χ · ψ̄γμγ5ω∶jΦi; ð29Þ

where we have symbolically denoted φ ¼ χ ¼ νcðxÞ, ψ ¼ νdðxÞ, and ω ¼ δbdeip·xuβðpÞâAp − δade−ip·xu−αðpÞâ†Bp.
A quartic expectation value we have encountered can now be (approximately) reduced to products of quadratic
expectations, or contractions, by virtue of the Wick’s theorem (see Appendix B for details)

ð30Þ
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where a contraction of two spinor fields , with i, j ¼ 1, 2, 3, 4 numbering the components of a
bispinor. To avoid using the index notation, however, we note that the second and the third terms in the above expression are
equal due to (28) and apply the Fierz identity to them [38], arriving at

ð31Þ

Now, every one of these contractions is a sum of expect-
ation values of the form hΦjâ†âjΦi, which are nothing but
specific entries of the density matrix ρ, namely,

ð32Þ

ð33Þ

ð34Þ

ð35Þ

ð36Þ

ð37Þ

ð38Þ

The above identities are obtained in a straightforward way
from the neutrino operator (14) and the bilinears (A6)–(A11).
In the first two identities, we have introduced a matrix
distinguishing neutrinos and antineutrinos,

G≡
�
1 0

0 −1

�
; Gcγ;dδ ¼ −γδcdδγδ; ð39Þ

while another matrix featuring in identities (35) and (36) is a
difference between the density matrix and the charge con-
jugate of its transpose

℘cγ;dδðqÞ≡ ρcγ;dδðqÞ − ρd−δ;c−γðqÞ;
℘ðqÞ ¼ ρðqÞ − ρcTðqÞ; ð40Þ

ρc ≡ CρC; C≡
�
0 1

1 0

�
: ð41Þ

The charge conjugation, as defined here, simply swaps the
neutrino lines/columnswith the antineutrino lines/columns of
the density matrix.
Finally, after substituting the contractions listed above

into the Fierz transformed Wick’s theorem (31) and using
the latter expression in the Ehrenfest equation (29), we
obtain a contribution to the evolution of neutrino density
matrix due to electroweak neutrino-neutrino interactions:

i
�∂ρðpÞ

∂t
�

VA
¼ ½hVAselfðpÞ; ρðpÞ�; ð42Þ

hVAselfðpÞ ¼
GF

ffiffiffi
2

p

V

X
q

ð1 − p̂ · q̂ÞftrðρðqÞGÞGþ ℘diagðqÞg:

ð43Þ

The ℘diagðqÞmatrix above is a block-diagonal part of ℘ðqÞ:

℘≡
�
℘νν ℘νν̄

℘ν̄ν ℘ν̄ ν̄

�
;

℘diag ≡ 1

2
ð℘þ G℘GÞ ¼

�
℘νν 0

0 ℘ν̄ ν̄

�
: ð44Þ

It is now time to find the term in the evolution equation
coming from the scalar (S) and pseudoscalar (P) nonstand-
ard neutrino interactions. This is done following exactly the
same steps as in the V–A interaction case, but starting from
Lagrangian (6). Namely, the S/P contribution to the time
derivative of the density matrix reads
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i

�∂ρABðpÞ
∂t

�
SP

¼ −
GFffiffiffiffiffiffi
2V

p
Z
V
d3xhΦj∶gSφ̄χ · ψ̄ωþ gPφ̄γ5χ · ψ̄γ5ω∶jΦi; ð45Þ

and after applying the Wick’s theorem, we arrive at

ð46Þ

Note that the first contractions in each of the two parentheses vanish due to Eq. (A6). For the second contractions, we use
the Fierz identity [38], omitting the vanishing scalar and pseudoscalar terms in it (34), and arrive at

ð47Þ

where g� ≡ ðgS � gPÞ=2. In fact, the vector and the axial vector terms have already been evaluated above, so that it remains
only to evaluate the tensor one:

ð48Þ

ð49Þ

ð50Þ

ð51Þ

ð52Þ

Again, working in the same way as we did in the case of V–A interaction, we transform Eq. (47) into

i

�∂ρðpÞ
∂t

�
SP

¼ ½hSPselfðpÞ; ρðpÞ�; ð53Þ

hSPselfðpÞ ¼
GF

ffiffiffi
2

p

V

X
q

ð1 − p̂ · q̂Þfg−ð℘diagðqÞÞT þ gþeiΓðp̂;q̂ÞGð℘offdiagðqÞÞTg; ð54Þ

where we have expressed the scalar products ζ�ðpÞ · ζ�ðpÞ ¼ e�iΓðp̂;q̂Þð1 − p̂ · q̂Þ=2 in terms of a single complex phase
Γðp̂; q̂Þ (see Appendix A). The block-off-diagonal part of the matrix above is defined analogously to Eq. (44):

℘offdiag ≡ 1

2
ð℘ − G℘GÞ ¼

�
0 ℘νν̄

℘ν̄ν 0

�
; ℘ ¼ ℘diag þ ℘offdiag: ð55Þ
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In fact, this block-off-diagonal part anticommutes with G,
which underpins Hermiticity of the gþ part of the
Hamiltonian. Further, the complex phase Γðp̂; q̂Þ comes
from the phases included in the helicity eigenstates
χ�ðpÞ, χ�ðqÞ; one would therefore like to rephase
helicity eigenstates, thus getting rid of the eiΓG term in
the NSSI Hamiltonian. However, this is impossible to
achieve on the whole Bloch sphere p̂, q̂ ∈ S2, since
the parallel transport of the helicity eigenstates
across this sphere is characterized with a nonzero
Berry curvature [39].

As we observe, both in the electroweak and the non-
standard scalar-pseudoscalar case, the time derivative of the
neutrino flavor density matrix ρðpÞ can be cast into a von
Neumann form (13), i.e., a form of a commutator with a
Hermitian matrix hðpÞ. Writing down all the contributions
to this time derivative together [see Eqs. (18), (23), (25),
(43), (54)], we finally arrive at the desired evolution
equation on ρ:

i
∂ρðpÞ
∂t ¼ ½hðpÞ; ρðpÞ�; ð56Þ

hðpÞ ¼ hvacðpÞ þ hmat þ hAMMðpÞ þ hselfðpÞ

≡ 1

2jpj
�
M2 0

0 M2

�
þGF

ffiffiffi
2

p �nePe −
nn
2
1 0

0 −nePT
e þ nn

2
1

�
− i
�

0 m · B⊥ðpÞ
m · B�⊥ðpÞ 0

�

þ GF

ffiffiffi
2

p

V

X
q

ð1 − p̂ · q̂ÞftrðρðqÞGÞGþ ℘diagðqÞ þ g−ð℘diagðqÞÞT þ gþeiΓðp̂;q̂ÞGð℘offdiagðqÞÞTg; ð57Þ

where one can show that B⊥ðpÞ≡
ffiffiffi
2

p
ζþðpÞ ·B is indeed a

complex number with the absolute value equal to the
strength of the magnetic field across the neutrino momen-
tum (in accordance with the notation we use). The
equations of motion possess a gauge freedom with respect
to rephasing the helicity eigenstates,

ρðpÞ → eiγðp̂ÞG=2ρðpÞe−iγðp̂ÞG=2; ð58Þ

B⊥ðpÞ → B⊥ðpÞeiγðp̂Þ;
Γðp̂; q̂Þ → Γðp̂; q̂Þ þ γðp̂Þ þ γðq̂Þ; ð59Þ

where γðp̂Þ is a real function on a sphere describing
the gauge transformation. This transformation virtually
tunes the relative phases of neutrino and antineutrino
states and becomes trivial for a block-diagonal density
matrix, i.e., if neutrinos do not coherently mix with
antineutrinos.
It is also instructive here to emphasize that the off-

diagonal blocks of ρðpÞ do not behave as scalars under
rotations. Indeed, the spinor representation of a rotation
RðnϑÞ ∈ SOð3Þ around the n axis on ϑ radians has the
form

ÛðRðnϑÞÞνaðx; tÞÛ†ðRðnϑÞÞ ¼ ein·Σϑ=2νaðRðnϑÞx; tÞ;
ð60Þ

from which one readily obtains the transformation of the
neutrino annihilation operators

ÛðRðnϑÞÞâApÛ†ðRðnϑÞÞ ¼ eiαΞðp;nϑÞâA;RðnϑÞp; ð61Þ

where the phase Ξ is connected with the complex phases
chosen in the helicity eigenstates, ein·σϑ=2χ�ðRðnϑÞpÞ≡
e�iΞðp;nϑÞχ�ðpÞ. Now, if one rotates the neutrino state,
jΦi → jΦ0i ¼ Û†ðRðnϑÞÞjΦi, the density matrix ρABðpÞ ¼
hΦjâ†BpâApjΦi will transform as

ρðpÞ → ρ0ðpÞ ¼ e−iΞðp;nϑÞGρðRðnϑÞpÞeiΞðp;nϑÞG: ð62Þ

Just like in the case of a gauge transformation, the diagonal
blocks are left intact, while the off-diagonal ones get
rephased. In particular, one can demonstrate that for the
neutrino-antineutrino block,

ρ0νν̄ðpÞζ−ðpÞ ¼ ρνν̄ðRpÞR−1ζ−ðRpÞ; ð63Þ

i.e., its product with the ζ− vector transforms as a vector
field without additional phases. As a result, for an isotropic
neutrino gas (ρ0ðpÞ ¼ ρðpÞ), the above equation tells us that
ρνν̄ðpÞζ−ðpÞ is a spherically symmetric vector field.
However, because p · ζ−ðpÞ ¼ 0 (see Appendix A), this
requires ρνν̄ðpÞ ¼ 0. That is, nontrivial neutrino-antineutrino
mixing violates isotropy, so the NSSI Hamiltonian (57) loses
its gþ term when applied to an isotropic neutrino gas.
In the next two sections, we will study the effect of the

nontrivial neutrino NSSIs on the flavor evolution in the
neutrino bulb model using the so-called single-angle
scheme [9]. To obtain the corresponding evolution
equations, we focus on stationary processes with propa-
gating neutrinos and make a replacement transforming the
von Neumann equation (13) into a quantum Liouville
equation:
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∂ρðp;tÞ
∂t →

� ∂
∂tþ p̂ ·

∂
∂x
�
ρðp;xÞ¼ðp̂ ·∇Þρðp;xÞ: ð64Þ

Next, construction of the single-angle scheme should include
introduction of the so-called geometric factor Dðr=RνÞ,
(partially) accounting for the nonspherically symmetric
distribution of the neutrino numbers far from the neutrino
sphere; even in the Standard-Model case, there exist several
versions of it [9,18,40]. In our case, since the same factor
1 − p̂ · q̂ appears in front of both the electroweak and NSSI
g− terms in the collective part of the Hamiltonian (57), it is
natural to equip their single-angle counterparts with the same
geometric factor. Regarding the gþ term having an extra
eiΓðp̂;q̂ÞG factor, the same may not be the case, however, we
will keep the same geometric factor, qualitatively relying
upon the argument that far from the neutrino sphere the solid
angle spanned by the neutrino momenta q is small and one
can rephase the helicity eigenstates within it to approx-
imately eliminate the phase factor eiΓG. A more rigorous
discussion of the geometric factor for the gþ term of the
Hamiltonian is to be given elsewhere.
With these points in mind, we can now write down the

evolution equations of the single-angle scheme. Namely,
in the flavor basis and the two-flavor approximation, a
neutrino with energy E, escaping the protoneutron star
radially from its neutrino sphere r ¼ Rν outwards, is
described by equations

i
∂ρEðrÞ
∂r ¼ ½hEðrÞ; ρEðrÞ�;
hEðrÞ ¼ hvac;E þ hmatðrÞ þ hAMMðrÞ þ hselfðrÞ; ð65Þ

hvac;E ¼ ηΔm2

4E

�
M 0

0 M

�
; M≡

�− cos 2θ sin 2θ

sin 2θ cos 2θ

�
;

ð66Þ

hmatðrÞ ¼ GF

ffiffiffi
2

p
diag

�
neðrÞ −

nnðrÞ
2

;−
nnðrÞ
2

;

− neðrÞ þ
nnðrÞ
2

;
nnðrÞ
2

�
; ð67Þ

hAMMðrÞ ¼
�

0 μ12B⊥ðrÞσ2
μ12B�⊥ðrÞσ2 0

�
; ð68Þ

hselfðrÞ ¼ GF

ffiffiffi
2

p
D
�

r
Rν

�
nνðrÞ

Z
∞

0

dE0ftrðρE0 ðrÞGÞG

þ ℘diag
E0 ðrÞ þ g−ð℘diag

E0 ðrÞÞT þ gþð℘offdiag
E0 ðrÞÞTg;

ð69Þ

where Δm2 is the mass squared difference, η ¼ �1 marks
the normal/inverted mass hierarchy, θ is the vacuummixing

angle, and μ12 is the transition magnetic moment (note that
the diagonal entries μ11 ¼ μ22 ¼ 0 for Majorana neutrinos
[23]); for brevity, we use the same notation ρ for the density
matrix in the flavor basis. To get rid of additional factors,
we have renormalized the density matrix so that

Z
∞

0

tr ρEðrÞdE ¼ 1; ð70Þ

after such a renormalization, the total neutrino number
density nνðrÞ appears in the nonlinear collective term. Note
also that in the two-flavor case, a nontrivial Majorana phase
can be eliminated from all terms but the g− NSSI term in the
self-interaction (69) by a gauge transformation (58) (for
details, see Appendix C). Thus, technically, the g− term in
(69) should also contain a Majorana phase, however, we are
not focusing on this term further and thus limit ourselves to
a simplified expression ignoring it.
The initial condition for the above system of equations is

usually placed at the neutrino sphere, where different
neutrino flavors/helicities are assumed to be thermalized
with well-defined energy spectra:

ρEðRνÞ ¼ diagðsνeðEÞ; sνxðEÞ; sν̄eðEÞ; sν̄xðEÞÞ; ð71Þ

with the normalization convention (70) requiring that

Z
∞

0

ðsνeðEÞ þ sνxðEÞ þ sν̄eðEÞ þ sν̄xðEÞÞdE ¼ 1: ð72Þ

Equations similar to the above ones for collective
oscillations of Majorana neutrinos have been derived earlier
in a number of contexts. First of all, V–A neutrino-neutrino
interactions were included into the effective Hamiltonian
in Ref. [24], allowing for a nontrivial structure of this
interaction in the flavor space. The result we obtained here
agrees with Ref. [24] in the absence of nonstandard
interactions (g� ¼ 0). In a recent paper [34], the collective
NSSI Hamiltonian was derived in the absence of the
neutrino magnetic moment. One also observes agreement
of the matrix structure of our effective Hamiltonian with
this paper for μ12 ¼ 0, however, our derivation goes
qualitatively beyond this special case. Namely, interaction
with the external magnetic field via the magnetic moment
introduces mixing between neutrinos and antineutrinos, so
that their states cannot be described by two Nf × Nf

density matrices anymore, but a single 2Nf × 2Nf matrix
is necessary to refer to both neutrino and antineutrino
flavors and their coherent mixtures. In fact, in the μ12 ¼ 0
(or B ¼ 0) case, our density matrix becomes block diago-
nal and its ρνν and ρν̄ ν̄ blocks representing neutrinos and
antineutrinos, respectively, do obey the evolution equations
of the form [34].
In fact, careful comparison of the coefficient in front of

the g− NSSI term in our Hamiltonian (57) with Ref. [34]
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reveals a twofold discrepancy: our result is 2 times greater.
We have analyzed the two derivations and reckon that
the discrepancy comes from the very method, rather than
from a mistake in the calculations. The authors of Ref. [34]
introduce a mean-field Hamiltonian HMF by reducing
quartic neutrino field products to partially contracted
quadratic ones, analogously to our Wick’s theorem (46),
and then use these quadratic operators in the effective
evolution equation for the density matrix. In particular,
being written in the notation we are using here, their Eq. (9)
with α ¼ β ¼ a; ξ ¼ η ¼ b virtually claims that

, which can be trans-

formed into
using the Fierz identity. However, even though the
expectation of this quadratic operator coincides with
hΦj∶ν̄aνaν̄bνb∶jΦi, this does not apply to its commutator
with â†BpâAp one needs in the evolution equation (12):
contracted operators are c-numbers and do not contribute to
the commutator, while in Eq. (12) all four neutrino
operators in ν̄aνaν̄bνb do contribute. Roughly speaking,
a mean-field expression for a quartic Hamiltonian HðνÞ ¼
gν4 should come from its quadratic part around the mean
value hνi, i.e., HMF ¼ H00ðhνiÞðδνÞ2=2 ¼ 6ghνi2ðδνÞ2,
where δν≡ ν − hνi; this expression features six terms, in
contrast to the three terms assumed in Ref. [34]. In view of
the above, we are inclined to treat our g− coefficient in the
Hamiltonian (57) as correct.
Next, we should also mention two papers [6] by de

Gouvêa and Shalgar, in which the single-angle scheme for
collective oscillations of Majorana neutrinos was analyzed
in the μ12 ≠ 0 case. The papers analyzed the electroweak
(V–A) four-fermion neutrino interaction, arriving at the
neutrino self-interaction Hamiltonian of the form

hðdGSÞself ðrÞ ¼ GF

ffiffiffi
2

p
D
�

r
Rν

�
nνðrÞ

Z
∞

0

dE0ftrðρE0 ðrÞGÞG

þ G℘E0 ðrÞGg: ð73Þ

Note that such an interaction, in principle, includes off-
diagonal blocks mixing neutrino and antineutrino states. In
contrast, our collective Hamiltonian (69) does not have
such blocks in the Standard-Model regime g� ¼ 0, even if
the density matrix ρEðrÞ contains them. As we will see
below, this makes a considerable difference in the insta-
bility spectra of the two Hamiltonians and, as a result, in the
evolution of the neutrino spectra in the magnetic field. In a
nutshell, collective oscillations governed by interaction
Hamiltonian (73) favor neutrino-antineutrino mixing due
to the presence of nontrivial off-diagonal blocks, thus, a
tiny mixing introduced into the system by the magnetic
moment term is followed by its exponential growth due to
instabilities; however, nothing like this occurs in the
Standard-Model regime of our evolution equations (65),
since the only source of neutrino-antineutrino mixing is the

(linear, noncollective) magnetic-moment term. In fact, one
can also briefly explain the absence of off-diagonal blocks
in our interaction Hamiltonian (69) in the Standard-Model
regime: this Hamiltonian arises from the chiral limit of the
V–A neutrino-neutrino interaction, which contains oper-
ators of the form ψ̄γμχ, ψ̄γμγ5χ not mixing the two chiral
components and thus neutrinos and antineutrinos [see
Eq. (30)]. The corresponding terms in the interaction
Hamiltonian are block diagonal [see Eqs. (32), (35),
(36)]; the off-diagonal (neutrino-antineutrino) blocks
appear once tensor interactions stemming from NSSIs
come into play in Eq. (47). Suppression of chirality-mixing
neutrino interactions within the Standard Model was also
demonstrated in Ref. [25] and used in simulations of
neutrino flavor evolution in Ref. [27].
In any case, despite the disagreement of the results of

Ref. [6] with ours, as well as with the earlier Ref. [24], the
Hamiltonian presented in the former paper can be treated as
yet another type of NSSI containing nontrivial off-diagonal
blocks. Moreover, it is spectacular that both the equations
from Ref. [6] and our equations (65) conserve the block-
diagonality property of the density matrix ρEðrÞ along
the trajectory, provided that μ12 ¼ 0 and that the initial
condition ρEðRνÞ is block diagonal [e.g., the one we
chose (71)]. In this case, ρ ¼ ρdiag ¼ diagðρνν; ρν̄ ν̄Þ and
Hamiltonian (73) can be replaced by

hðdGSÞself ðrÞ → GF

ffiffiffi
2

p
D
�

r
Rν

�
nνðrÞ

×
Z

∞

0

dE0
�
℘νν;E0 ðrÞ 0

0 ℘ν̄ ν̄;E0 ðrÞ
�
; ð74Þ

which is nothing but the well-known expression within the
Standard Model, also valid for Dirac neutrinos [9]. Our
Hamiltonian (65) also takes the above conventional form,
when additionally, g− ¼ 0, i.e., the scalar and the pseudo-
scalar couplings are equal in the NSSI Lagrangian (6). If, in
contrast, g− ≠ 0, then scalar-pseudoscalar NSSI terms are
present in the diagonal blocks of the density matrix and
survive in the μ12 ¼ 0 regime. Their effect has recently been
analyzed in Ref. [34], revealing considerable deviations of
the neutrino spectra from the predictions of the electroweak
theory for nonvanishing g−. As a result, constraints can be
placed on the g− coupling from the possible measurements
of the neutrino spectra from a supernova, regardless of the
magnitude of the neutrino magnetic moment.
Our Hamiltonian, however, contains another, “hidden”

sector with the coupling gþ, which produces no effect in
the zero magnetic moment case. It is this coupling that is
able to introduce block-off-diagonal terms into the self-
interaction Hamiltonian (69), possibly leading to nontrivial
evolution of neutrino-antineutrino mixing. In the special
case g− ¼ 0, gþ ¼ −1, the corresponding interaction
term takes a form resembling the Hamiltonian (73) from
Ref. [6]:
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hselfðrÞ ¼ GF

ffiffiffi
2

p
D
�

r
Rν

�
nνðrÞ

Z
∞

0

dE0ftrðρE0 ðrÞGÞG

þ ℘diag
E0 ðrÞ − ð℘offdiag

E0 ðrÞÞTg; gþ ¼ −1 ð75Þ

(note that G℘E0G ¼ ℘diag
E0 − ℘offdiag

E0 ), yet, it differs in the
transposition of the off-diagonal part of the density matrix.
As we will see below, however, the transposition leads to
qualitatively different effects, and we have to conclude that
the interaction (73) introduced in Ref. [6] cannot originate
from scalar/pseudoscalar four-fermion interactions of
Majorana neutrinos.
Finally, we would like to mention that we briefly

analyzed the case of Dirac neutrinos in our recent paper
[26], where coherent mixing between two (anti)neutrino
helicity states was introduced by the magnetic moment.
It turns out that the corresponding interaction Hamiltonian
is also block diagonal in the absence of NSSIs and, as a
result, the effect of the magnetic moment on the neutrino
spectra is suppressed, not being subject to instabilities. In
the present paper, we are not focusing on Dirac neutrinos,
and the analysis which follows will be restricted to the
Majorana case.

III. LINEAR STABILITY ANALYSIS

Before making numerical simulations of the single-angle
scheme in various scenarios, it is instructive to take a look
at the linear stability of the evolution equations. Our
specific interest here regards the effect of a small neutrino
magnetic moment; the crucial question is whether it can
trigger new types of neutrino flavor instabilities that are
hidden in the μ12 ¼ 0 regime.
As we mentioned above, when μ12 ¼ 0 and the initial

condition is of the form (71), the density matrix ρð0ÞE ðrÞ
retains its block-diagonal form during the whole evolution
r ≥ Rν. For such a matrix, the effect of a nonzero gþ NSSI
term is absent, while the effect of the block-diagonal g−
term was studied in a recent paper [34]. Namely, in that
paper, it was shown that the g− term is able to trigger
instabilities even in the absence of neutrino magnetic
moment. Now, on top of possibly nonzero g� couplings,
let us switch on an infinitesimal magnetic moment μ12 → 0
and write down the equations of motion linearized in this
small μ12 quantity:

∂δρE
∂r þ i

h
hvac;Eþhmatþhð0Þself ;δρE

i
þ i
h
δhself ;ρ

ð0Þ
E

i
¼J EðrÞ;

ð76Þ

J EðrÞ≡ −i½hAMMðrÞ; ρð0ÞE ðrÞ� ¼ Oðμ12Þ; ð77Þ

ρEðrÞ ¼ ρð0ÞE ðrÞ þ δρEðrÞ; δρEðRνÞ ¼ 0;

δρEðrÞ ¼ Oðμ12Þ; ð78Þ

where hð0Þself is the neutrino-neutrino Hamiltonian calculated

for the density matrix ρð0ÞE and δhself is its variation resulting
from a variation δρE of the density matrix. For both
standard and nonstandard neutrino interaction terms, one
can separate the block-diagonal and block-off-diagonal
parts of the above equation:

∂δρdiagE

∂r þ i
h
hvac;Eþhmatþhð0Þself ;δρ

diag
E

i
þ i
h
δhdiagself ;ρ

ð0Þ
E

i
¼ 0;

ð79Þ

∂δρoffdiagE

∂r þ i
h
hvac;E þ hmat þ hð0Þself ; δρ

offdiag
E

i
þ i
h
δhoffdiagself ; ρð0ÞE

i
¼ J EðrÞ: ð80Þ

Indeed, hvac;E þ hmat þ hð0Þself is a block-diagonal matrix and
so commutation with it does not mix the diagonal with off-
diagonal contributions; the same applies to commutation

with ρð0ÞE ; finally, the “source” term J E is purely block-off-
diagonal because of the form of hAMM. Note also that
block-diagonal and block-off-diagonal parts of δhself are
determined by the corresponding parts of δρE, so that
evolutions of δρdiagE ðrÞ and δρoffdiagE ðrÞ, defined by the two
above equations, do indeed decouple in the linear regime.
Technically, this means that one can search for block-
diagonal and block-off-diagonal unstable modes separately.
If one sets gþ to zero, i.e., turns off the block-off-

diagonal part of the interaction, then the second equation
becomes

∂δρoffdiagE

∂r þ i
h
hvac;Eþhmatþhð0Þself ;δρ

offdiag
E

i
¼J EðrÞ; ð81Þ

which features a fixed Hamiltonian hvac;E þ hmat þ hð0Þself . In
other words, this equation virtually describes a noncollec-
tive flavor evolution and it is straightforward to show that

kδρoffdiagE ðrÞkF ≤
Z

r

Rν

kJ Eðr0Þkdr0; ð82Þ

where kMkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðM†MÞ

p
is the Frobenius norm of a

matrix and kJ Eðr0Þk is the spectral norm. The latter being

equal to jμ12B⊥ðr0Þj · kρð0ÞE ðr0Þk up to a factor of order
unity, we conclude that block-off-diagonal perturbations
δρoffdiag grow linearly with distance, not exhibiting expo-
nential growth. As for the block-diagonal part δρdiag of
the perturbation, it obeys the same equation (79) as in the
μ12 ¼ 0 case, when the density matrix is exactly block
diagonal at all r. Instabilities are well known to exist here,
both in the absence of NSSIs, gþ ¼ g− ¼ 0 [9], and in their
presence, gþ ¼ 0; g− ≠ 0 [34], but they contain no signa-
tures of a nonzero magnetic moment in the linear regime.
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We are thus able to conclude that in the absence of a
scalar-pseudoscalar NSSI, i.e., within the electroweak
theory, a tiny magnetic moment of a Majorana neutrino
does not trigger new unstable modes that could result in
observable signatures in the neutrino spectra. In order to
leave such a signature, the transition magnetic moment
should be at least of the order of 1=jB⊥jL, where L is
the distance covered by the neutrino [see Eq. (82)]; for
L ∼ Rν ∼ 50 km and jB⊥j ∼ 1012 Gauss, this amounts to
about 0.5 × 10−15μB. In the next section, we will show
numerically that this statement also holds true beyond the
linear stability regime. Note also that the argument that
has led to such a conclusion was based only on the
block structure of the Hamiltonian matrix, thus, it can be
repeated beyond the single-angle scheme, i.e., for the
Hamiltonian (57).
Let us now turn on the block-off-diagonal NSSI, gþ ≠ 0.

Even in this case, Eq. (79) tells us that the fate of block-
diagonal perturbations is determined solely by g− and
provides no signatures of a nonzero μ12. The block-off-
diagonal modes follow Eq. (80), which, in general, has to
be treated numerically. However, to probe the possibility of
unstable modes, it is usually instructive to carry out a
Lyapunov stability analysis. For that, first, the source term
in the evolution equation (80) is omitted but is replaced by a
nontrivial initial perturbation δρoffdiagE ðRνÞ on top of a

diagonal reference matrix ρð0ÞE ðRνÞ of the form (71).
Second, assuming that the mixing angle is virtually zero
and (for our toy model) that neutrinos are monochromatic
with energy E0, we arrive at a constant nonperturbed
solution:

ρð0ÞE ðrÞ ¼ ρð0ÞE ðRνÞ≡ ϱð0ÞδðE − E0Þ;
ϱð0Þ ¼ diagðsνe ; sνx ; sν̄e ; sν̄xÞ: ð83Þ

Finally, let us assume that inhomogeneities of the matter
and neutrino number densities are negligible at the typical
growth scale of unstable perturbations. Under these
assumptions, we arrive at a linear homogeneous equation
with constant coefficients governing the growth of pertur-
bation δρoffdiagE ðrÞ≡ δϱðrÞδðE − E0Þ:

i
∂δϱ
∂r ¼ LðδϱÞ;

LðδϱÞ≡
h
hvac;E0

þ hmat þ hð0Þself ; δϱ
i
þ
h
δhoffdiagself ; ϱð0Þ

i
;

ð84Þ

δhoffdiagself ¼ μgþðδϱT − δϱcÞ; ð85Þ

where μ ¼ GF

ffiffiffi
2

p
Dðr=RνÞnνðrÞ is the neutrino-neutrino

coupling strength. Now the question of linear stability
reduces to existence of nonreal eigenvalues of a linear
map L. Parametrizing the (block-off-diagonal) perturbation
matrix as

δϱ≡

0
BBB@

0 0 ξ5 ξ1

0 0 ξ2 ξ6

ξ7 ξ3 0 0

ξ4 ξ8 0 0

1
CCCA; ð86Þ

one writes the eigenvalue equation for LðδϱÞ ¼ λδϱ in a
vectorized form,

Lvecξ ¼ λξ; Lvec ≡
�
LA 0

0 LB

�
; ð87Þ

LA ¼

0
BBBBB@

Ω− þ 3μðΔse þ ΔsxÞ 0 μgþðsνe − sν̄xÞ −μgþðsνe − sν̄xÞ
0 Ωþ þ 3μðΔse þ ΔsxÞ −μgþðsνx − sν̄eÞ μgþðsνx − sν̄eÞ

−μgþðsνx − sν̄eÞ μgþðsνx − sν̄eÞ −Ωþ − 3μðΔse þ ΔsxÞ 0

μgþðsνe − sν̄xÞ −μgþðsνe − sν̄xÞ 0 −Ω− − 3μðΔse þ ΔsxÞ

1
CCCCCA; ð88Þ

LB ¼ 2GF

ffiffiffi
2

p
diag

�
ne −

nn
2
;−

nn
2
;−ne þ

nn
2
;
nn
2

�
þ 2μ diagðΔse þ Δsx;Δse þ 2Δsx;−2Δse þ Δsx;−Δse − 2ΔsxÞ;

ð89Þ

where ξ ¼ ðξ1; ξ2;…; ξ8ÞT, Δse;x ≡ sνe;x − sν̄e;x , Ω� ¼
GF

ffiffiffi
2

p ðne − nnÞ � ηω, ω ¼ Δm2=2E0 is the vacuum oscil-
lation frequency, and η ¼ �1 is the mass hierarchy. The
diagonal block LB has real eigenvalues, while the eigen-
values of a non-Hermitian 4 × 4matrix LA may be complex
if the initial neutrinos possess a flavor imbalance,

sνe;x ≠ sν̄e;x ; sν̄x;e . Further we will plot the instability rates
κmax, i.e., the maximum imaginary parts of the eigenvalues
of LA, for sνe ¼ 1, sν̄e ¼ α ≥ 0, and sνx ¼ sν̄x ¼ 0, changing
the neutrino intensity parameterμ and theNSSI coupling gþ.
In fact, for the matter potentialVe;n ≡GF

ffiffiffi
2

p
ne;n set to zero,

the eigenvalues of LA can be found analytically,
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λ1;2;3;4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ ð1 − αÞ2ð9 − g2þ=2Þμ2 � μ

ffiffiffiffi
D

pq
;

D ¼ g4þð1 − αÞ4μ2=4þ 4½9ð1 − αÞ2 þ αg2þ�ω2

þ 6g2þð1þ αÞð1 − αÞ2ηωμ:

From this equation, one observes that for a strong NSSI
coupling jgþj > 3, instabilities survive even in the
ultradense neutrino gas regime ω ¼ Ve;n ¼ 0, their
growth rate being κmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þ − 9

p
μj1 − αj. This corre-

sponds to a so-called fast unstable mode (see, e.g.,
Refs. [14–16]), whose growth rates for ω, Ve;n ≪ μ are
of the order of μ. It is well known that there are no such
modes in the single-angle scheme with purely electro-
weak (V–A) neutrino-neutrino interactions: all instabil-
ities disappear as ω → 0 [9]. Moreover, interestingly, the
unstable mode we have obtained survives in the absence
of antineutrinos (α ¼ 0), whereas Standard-Model inter-
actions do not generate instabilities in this case, within
the monochromatic setup being discussed. In contrast,
scalar-pseudoscalar NSSI, as we see, does generate a
fast unstable mode even for monochromatic neutrinos,
and its growth rate is plotted in Fig. 1. However, we
will not discuss this mode here, since we are more
interested in unstable modes present for a small NSSI
coupling. These come from an eigenvalue branch with
limω→0 ImλðωÞ ¼ 0, thus, these instabilities are slow,
i.e., suppressed in the ω ≪ μ regime.
The instability rates for the slow modes are plotted in

Figs. 2 and 3 for different neutrino/antineutrino ratios α
and both hierarchies. One observes that the presence of

FIG. 1. Growth rates corresponding to a fast unstable mode for
a monochromatic neutrino flux, depending on the NSSI coupling
gþ. The plot demonstrates the asymptotic case with both the
vacuum oscillation frequency ω and the matter potentials Ve;n
neglected.

FIG. 2. Instability growth rates for a monochromatic neutrino flux due to the presence of a block-off-diagonal NSSI with parameter gþ.
Inset: instability growth rate as a function of the neutrino number density for a fixed NSSI coupling gþ ¼ 0.5. The background matter
density is set to zero in all panels.
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antineutrinos considerably enhances the instability region;
for normal hierarchy (η ¼ þ1), in fact, the widest
instability “sector” in the ðμ=ω; gþÞ plane corresponds
to α ¼ 1. This sector touches the gþ ¼ 0 line at a
resonant neutrino density μ ¼ ω=3j1 − αj, i.e., for such
a density, the studied type of instabilities arises for
arbitrarily small gþ. The α ¼ 0 case, corresponding to
flavor instabilities of a monochromatic purely νe flux, is
worth special attention: as we mentioned above, insta-
bilities are absent here in the conventional V–A case,
while NSSI triggers them for the normal hierarchy only
near the resonance μ ∼ ω=3 (Fig. 3). This effect may
have implications for the flavor evolution of predomi-
nantly electron neutrinos produced during the early
neutronization phase of a supernova explosion [41]. In
the presence of antineutrinos, instabilities do arise for
both mass hierarchies, but the patterns for the inverted
one are quite different (see the lower row in Fig. 2), also
presenting another, high-neutrino-density instability region.
In both cases, as one observes, these slow instabilities
should grow at typical scales smaller than the vacuum
oscillation length, i.e., at several kilometers or even
smaller.
Let us now discuss the effect of background matter,

i.e., nonzero Ve;n potentials, on the stability properties of our
system. Interestingly, in the presence of neutrino-antineu-
trino NSSI coupling, a transformation to a corotating frame
in the flavor space does not let one eliminate the MSW term,
as it does for g� ¼ 0 [9]. Namely, a substitution

δϱðrÞ ¼ exp

�
−i
Z

r

Rν

hmatðr0Þdr0
�
δϱ̃ðrÞ

× exp

�
i
Z

r

Rν

hmatðr0Þdr0
�

ð90Þ

into the equation of motion (84) for the instability does not
totally “hide” the MSW term into the unitary transforma-
tion because of the matrix structure of the block-
off-diagonal NSSI interaction (85). Note that both the
electroweak (g� ¼ 0) interaction Hamiltonian and the
Hamiltonian (73) from Ref. [6] feature a combination of
the form ρ − ρcT instead of a scalar-pseudoscalar ρT − ρc in
Eq. (85), which lets one eliminate the MSW term by a
unitary transformation to a corotating frame. Physically, this
results in the fact that in the presence of NSSI, background
matter modifies the instability rates; in particular, one
observes that even when ω ¼ 0 and Ve;n ≠ 0, there are
“intermediate” (neither fast, nor slow) unstable modes whose
rates κ are proportional to Ve;n. Indeed, in a typical super-
nova situation, μ≳ Ve;n ≫ ω near the neutrino sphere, thus,
these should be considerably faster than the slow ones.
Correspondingly, the two possibly nonreal eigenvalues in the
ω ¼ 0 case read

λ1;2¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVe−Vnþ3ð1−αÞμÞ2−g2þð1−αÞ2μ2

q
: ð91Þ

In particular, from this expression, it follows that for a small
NSSI coupling, instabilities take place in a narrow resonance
region around μ ¼ ðVn − VeÞ=3ð1 − αÞ. In Fig. 4, we
demonstrate their growth rates for an idealized situation
ω ¼ Ve ¼ 0; the pattern looks quite similar to Fig. 2, but
now the rates are measured in Vn instead of ω, i.e., they are
higher.
As we see, the block-off-diagonal NSSI coming from the

scalar and pseudoscalar terms in the Lagrangian may lead
to fast, slow, and intermediate instabilities that remain
hidden in the absence of neutrino magnetic moment (or

FIG. 3. Instability growth rates for a monochromatic purely
electron neutrino flux due to the presence of a block-off-
diagonal NSSI with parameter gþ. The background matter
density is set to zero.

FIG. 4. Instability growth rates for a monochromatic neutrino
flux due to the presence of a block-off-diagonal NSSI interaction
with parameter gþ. In contrast to Fig. 2, a neutron background is
added with Wolfenstein potential Vn, while the contribution of
background electrons Ve and the vacuum oscillation frequency ω
are neglected.
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external magnetic field). Within the purely electroweak
interaction model, these modes are also absent.

IV. NUMERICAL SIMULATION

Lyapunov stability analysis carried out in the previous
section provides an insight into the effect of a small
magnetic moment of a Majorana neutrino on collective
oscillations, however, it is based on a number of artificial
assumptions limiting the status of its conclusions.
Moreover, in reality, one is interested in non-negligible
NSSI/magnetic moment signatures in the observable neu-
trino energy spectra, which is beyond the regime of linear
perturbations on top of a stationary nonperturbed solution.
To explore the issue and estimate the sensitivities of the
neutrino spectra to the magnetic moment, in the present
section we carry out a numerical analysis of collective
oscillations with the block-off-diagonal NSSI within the
single-angle scheme.
For our simulation, we work with two neutrino flavors

with Δm2 ¼ 2.4 × 10−3 eV2 and θ ¼ 9° [36]. The super-
nova setup is analogous to the one used, e.g., in [6].
Namely, a neutrino is leaving the neutrino sphere with the
radius Rν ¼ 50 km radially in the equatorial plane, so that
the transversal component of the magnetic field decays as
an inverse power law with r,

B⊥ðrÞ ¼ Bsurf

�
Rν

r

�
2

; Bsurf ¼ 1012 Gauss: ð92Þ

The neutrino density profile and the geometric factor
together form an effective neutrino-neutrino coupling,

μðrÞ≡GF

ffiffiffi
2

p
nνðrÞDðr=RνÞ

¼ GF

ffiffiffi
2

p
×

L
2πR2

ν
×
1

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðRν=rÞ2

q �
2
; ð93Þ

where L is the neutrino luminosity parameter, namely, the
number of emitted neutrinos per second (we follow the
convention of Ref. [9] dividing it by 2πR2

ν). By default
we take L ¼ 1055 sec−1 corresponding to the total radiation
power L × 10 MeV ∼ 1.5 × 1050 erg=sec. The electron
density is chosen following the single-angle simulations
in Ref. [6], while we also add neutrons with the density
nn ¼ 1.5ne. The potentials Ve;nðrÞ ¼ GF

ffiffiffi
2

p
ne;nðrÞ and the

above neutrino-neutrino coupling are shown in Fig. 5(a),
together with the energy scale ω ¼ Δm2=ð2 × 10 MeVÞ of
vacuum oscillations. At the neutrino sphere, the flavor
density matrix is diagonal [see Eq. (71)], with the energy
spectra taken from a simulation [42] [see Fig. 5(b)]; these
spectra are nothing but Fermi distributions for the three
different decoupling temperatures of νe, ν̄e, and νx=ν̄x.
Upon evolution (65), the flavor/energy spectra are extracted
from the density matrix with the help of a flavor/helicity
projector Pf:

nfðE; rÞ ¼ trðρEðrÞPfÞ ¼ ðρEðrÞÞf;f;
f ¼ e; x; ē; x̄ðe−; x−; eþ; xþÞ: ð94Þ

We study the region Rν ≤ r≲ 250 km far from the
MSW resonance (Ve;n ≫ Δm2 cos 2θ=2E), in which the
oscillations are mainly driven by collective effects.
Moreover, in reality, the neutrino self-coupling falls off
quite rapidly, so that the oscillations virtually freeze
around r ¼ 200–250 km producing well-defined “final”
neutrino spectra on exit from the region. It is these spectra
produced by nonlinear, collective effects that we are
interested in within our analysis of NSSI-induced flavor
instabilities.
Let us first discuss the flavor evolution without

(pseudo)scalar NSSIs, i.e., within the (minimally extended)

(a) (b)

FIG. 5. (a) Comparison of matter (neutron, electron) potentials, the neutrino self-coupling, and the energy scale of vacuum oscillations
for a star with luminosity L ¼ 1055 sec−1. (b) The initial flavor/energy spectra at the neutrino sphere r ¼ Rν used in the simulations.
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Standard Model, comparing the effect of the self-
interaction Hamiltonian (69) derived by us and that of
the Hamiltonian (73) claimed in Ref. [6]. As mentioned in
Sec. II, these two Hamiltonians lead to identical flavor
evolutions in the μ12 ¼ 0 case. Figure 6 shows the results of
the simulation for μ12 ≠ 0, in the cases where the effect is
visually noticeable. It turns out that with our Hamiltonian
the final spectra are virtually insensitive to the neutrino
magnetic moment up to at least jμ12j ∼ 10−15μB, while the
evolution with self-interaction (73) contains considerable
magnetic moment signatures already for μ12 ¼ 10−19μB,
especially in the normal hierarchy (the latter was, in fact,
stated in [6]). For a luminosity L ¼ 1054 sec−1 1 order of
magnitude lower than that in Fig. 6, the magnetic moment
signatures virtually disappear, obviously because the
instabilities causing them get suppressed. Note that
the low sensitivity of the evolution equations (65) to the
magnetic moment of a Majorana neutrino agrees with the
linear stability analysis in Sec. III, so that we have to
conclude that within the StandardModel without NSSIs, the
effect of a small magnetic moment should be quite hard to
observe. This has also been noted in our previous analysis
[26]; the case of a large neutrino magnetic moment has been
recently studied in [27], including the angular neutrino

distributions, and the analysis demonstrates that for a smaller
magnetic moment/weaker magnetic field, their signatures are
suppressed. Regarding the Hamiltonian (73) that was
claimed to hold within the Standard Model in Ref. [6],
we have to consider it a nonstandard neutrino self-interaction
instead, which leads to a pronounced effect of the neutrino
transition magnetic moment.
Now let us switch to the main issue of the present paper,

namely, to the effect of nontrivial scalar/pseudoscalar
NSSIs on the collective neutrino flavor evolution.
Namely, for the same luminosity L ¼ 1055 sec−1, we set
the block-diagonal NSSI coupling g− to zero (as mentioned
earlier, this coupling has been analyzed in other papers
[34]), keeping only the block-off-diagonal term with the gþ
coupling, and analyze the effect of this small NSSI for a
small transition magnetic moment μ12 ¼ 10−19μB. Again,
when the magnetic moment is zero, the density matrix
becomes block diagonal and the gþ coupling produces zero
effect on the oscillations. For a nonzero magnetic moment,
in contrast, nonstandard interactions radically change the
neutrino spectra, see Fig. 7.
Indeed, neutrino-antineutrino instability caused by the

block-off-diagonal NSSI and triggered by the μB inter-
action shows up in both hierarchies provided that the NSSI

(a) (b) (c)

(d) (e) (f)

FIG. 6. The effect of the neutrino magnetic moment on the neutrino spectra without (pseudo)scalar NSSI for L ¼ 1055 sec−1. The
upper and the lower rows correspond to the normal and the inverted hierarchies, respectively. The first column [(a) and (d)] shows the
case μ12 ¼ 0, the second [(b) and (e)] the μ12 ≠ 0 case with self-interaction Hamiltonian (69), and the last one [(c) and (f)] also to
μ12 ≠ 0, but based on the Hamiltonian (73) from Ref. [6]. Dashed lines sketch the initial spectra at the neutrino sphere [Fig. 5(b)]. In the
μ12 ¼ 0 case, the two Hamiltonians produce the same result. Visual identity of [(a) and (c)] and [(b) and (d)] plots, respectively, holds up
to at least jμ12j ∼ 10−15μB.
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coupling is not too small, jgþj ≳ 0.3, and rapidly leads to a
complicated, if not a chaotic pattern. This is clearly
manifested in the wiggly patterns in Fig. 7 resulting from
probability exchange between νe and ν̄x flavors. For large
gþ couplings, this exchange even results in a νe − ν̄x
spectral split, which replaces the νe − νx split in the
inverted hierarchy case. In fact, animations of the flavor
evolution we made also reveal that gþ ≠ 0 flavor evolution

starts from rapid synchronized oscillations of the spectra
with typical lengths of 10–100 m (in contrast to the no-
NSSI case, where the oscillation lengths are of the order of
10 km), which, in principle, agrees with our conclusions on
the fast/intermediate instabilities in Sec. III.
The effects do not drastically depend on the magnetic

moment, since it acts just as a seed for an exponentially
growing instability; deformation of the spectra can be

(a) (b)

FIG. 8. Impact of scalar-pseudoscalar NSSI with gþ ¼ 1 on the neutrino flavor evolution for L ¼ 1055 sec−1 and a very small
magnetic moment μ12 ¼ 10−24μB for the two mass hierarchies.

(a) (b) (c)

(d) (e) (f)

FIG. 7. The effect of the block-off-diagonal NSSI on the neutrino spectra for the neutrino magnetic moment μ12 ¼ 10−19μB and
different NSSI couplings gþ and luminosities L. The upper and the lower rows correspond to the normal and the inverted hierarchies,
respectively. The first [(a) and (d)] and the second [(b) and (e)] columns demonstrate the cases with luminosity L ¼ 1055 sec−1 and
different NSSI couplings; the last column [(c) and (f)] shows the results for L ¼ 3 × 1055 sec−1. Dashed lines sketch the initial spectra at
the neutrino sphere [Fig. 5(b)].
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observed even for μ12 ∼ 10−24μB (see Fig. 8).1 On the
other hand, the rates of instabilities resulting in nontrivial
NSSI signatures strongly depend on the degree of non-
linearity of the equations, i.e., on the luminosity, and
these signatures are virtually absent for L ¼ 1054 sec−1.
Let us now take a closer look at the development of

NSSI-induced instabilities for L ¼ 1055 sec−1 and
address the issue of their potential observability. First
of all, a natural parameter controlling these neutrino-
antineutrino instabilities is the ratio of the total neutrino
and antineutrino numbers nνðrÞ=nν̄ðrÞ obtained after
integration over the whole energy spectrum. This ratio
is conserved in the absence of magnetic moment μ12;
however, as we saw above, it is also conserved to a high
accuracy even when μ12 is nonzero, in both noncollec-
tive oscillations and collective oscillations without
NSSIs, neither of which contain neutrino-antineutrino
instabilities. Interestingly, Fig. 9(a) demonstrates that
when NSSIs come into play, the total neutrino and
antineutrino numbers rapidly reach an equilibrium pla-
teau. This phenomenon resembles a sort of equilibration
discussed in Ref. [27], but for a value of μ12B that is
many orders of magnitude smaller. The equilibrium
neutrino-antineutrino ratio is then conserved up to the
neutrino detector, so that antineutrino excess could, in

principle, serve as a signature of NSSIs mixing neu-
trinos with antineutrinos, such as scalar and pseudosca-
lar interactions.
Figure 9(a) also reveals a fast character of the instability,

as opposed to slow instabilities with growth scales of the
order of 10 km. To quantify this instability and the resulting
impact of the neutrino spectra, we introduce a spectral
residual as the relative integral deviation of the neutrino
flavor spectra from the no-magnetic-moment case, in which
the effect of NSSIs is absent

ΔðrÞ ¼
P

f

R jnfðE; rÞ − nð0Þf ðE; rÞjdEP
f

R
nð0Þf ðE; rÞdE

; ð95Þ

where nð0Þf ðE; rÞ correspond to the flavor-energy spectra
for μ12 ¼ 0 and the summation is performed over
both neutrino and antineutrino flavors. Now, Fig. 9(b)
clearly demonstrates a drastic difference between the
evolutions of neutrino spectra for gþ ≤ 0.3 and
gþ ≳ 0.5: in the latter case, the residuals ΔðrÞ rapidly
saturate to quite observable values of the order of 10−1

and keep this level during further evolution. Note that
the level Δ ∼ 0.01–0.1 corresponds, in fact, to quite a
large spectral distortion, such as those shown in Fig. 7.
Finally, the spectral residuals at the final point r ¼
250 km are shown in Fig. 10 versus the luminosity L
and the NSSI coupling gþ. One observes that at least
for L ≤ 1056 sec−1, one can probe the NSSI coupling
with the sensitivity around 0.25–0.4 in both mass
hierarchies. It is important, however, that this order of
sensitivity can be achieved for extremely small values of
the neutrino transition magnetic moments, comparable
with the figures predicted within the minimally extended
Standard Model with the standard, V–A structure of
weak interactions [23,43].

(a) (b)

FIG. 9. Impact of scalar-pseudoscalar NSSI on the neutrino flavor evolution for L ¼ 1055 sec−1 and μ12 ¼ 10−19μB for different NSSI
couplings and mass hierarchies: (a) evolution of neutrino-to-antineutrino number ratio; (b) evolution of spectral residuals (95).

1Interestingly, such a small value of the magnetic moment
does not lead to large roundoff errors in the numerical
integration, roughly speaking, coming from addition of “large”
and “small” matrices in expressions of the form ρðrþ ΔrÞ≈
ρðrÞ − iΔr½hðrÞ; ρðrÞ�. The reason is that during the early stages
of the evolution ρ is approximately block diagonal, so adding a
small but block-off-diagonal matrix −i½hAMM; ρ� to it does not
round the latter one down to zero: the large blocks are not
added to small blocks of the density matrix. During the later
stages, it is mainly the self-interaction and not the tiny
magnetic moment that drives the evolution of the density
matrix.
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V. DISCUSSION

The analysis given in the above sections has led us to a
number of interesting conclusions regarding the effect of
nonstandard, scalar and/or pseudoscalar four-fermion neu-
trino interactions on the collective oscillations taking place
during a supernova explosion. First, it turned out that such
NSSIs include the terms that mix neutrinos and antineu-
trinos, and these are able to open up a new channel of fast
neutrino-antineutrino instabilities considerably deforming
the neutrino flavor-energy spectra. In fact, these spectral
features, including nonstandard splits and chaotic-looking
patterns, need a seed to develop; however, a minuscule
transition neutrino magnetic moment μ12 ∼ 10−24μB proves
to be enough to trigger the effect via neutrino-antineutrino
(helicity flip) transitions in the stellar magnetic field.
Note that such a transition magnetic moment could be

generated even at the one-loop level of the Standard Model,
in which a Glashow-Iliopoulos-Maiani cancellation takes
place [23,43].
Second, the discussed type of ν − ν̄ instability is also

quite nonstandard in that the electron/neutron background
nontrivially affects the instability rates even for mono-
chromatic neutrinos and in that these instabilities survive in
the absence of antineutrinos (see Sec. III devoted to linear
stability analysis). From this analysis we also observed that,
quite as usual, a neutrino-antineutrino ratio close to unity
favors the development of instabilities.
Third, the sensitivity of (anti)neutrino spectra to the

NSSI coupling stays at the level of gþ ∼ 0.3 for neutrino
luminosities L≳ 1055 sec−1, notably, virtually regardless
of the (nonzero) value of the magnetic moment. Note that
the spectral residual Δð250 kmÞ chosen by us to quantify
the NSSI signatures in the neutrino spectra [see Eq. (95)]

(a) (b)

(c) (d)

FIG. 10. Sensitivity of collective neutrino oscillations to the NSSI coupling gþ in terms of the spectral residual Δð250 kmÞ, depending
on the coupling gþ and the luminosity L. The magnetic moment is set to μ12 ¼ 10−19μB and 10−24μB in the two upper and lower panels,
respectively.
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can change outside the r ¼ 250 km sphere, where collec-
tive oscillations are not important, while other effects, such
as the MSW effect in a turbulent medium, may come into
play [44]. Importantly, however, there is another natural
measure of scalar/pseudoscalar NSSI signatures in ques-
tion, which does not change under (conventional) non-
collective oscillations: the neutrino-antineutrino ratio
nν=nν̄. Both this ratio for neutrinos of a given energy E
and the one integrated over the whole energy spectrum are
almost conserved in noncollective oscillations (the mag-
netic moment has a negligible effect once the collective
oscillations are over), thus, the neutrino-antineutrino ratio
(see Fig. 9) should bring the information on the NSSI in
the innermost supernova layers to the neutrino detector.
Moreover, even though in the present paper we have
discussed the NSSI effect on collective oscillations within
a simplified picture not including angular degrees of
freedom, it is highly likely that the neutrino-antineutrino
ratio should depend on the “latitude,” i.e., on the angle
between the directions to the stellar magnetic pole and the
observer. Therefore, helicity-flipping scalar/pseudoscalar
NSSIs could manifest themselves in a periodic variation of
the neutrino-antineutrino flux ratio from an explosion of a
(rotating) supernova.
Finally, from our analysis, both numerical and analytical,

it inevitably turns out that within the framework with a
pure V–A interaction, the effective neutrino oscillation
Hamiltonian takes the form derived in Ref. [24], which is
unable to exponentially catalyze the growth of coherent
neutrino-antineutrino mixing initially introduced via the
transition magnetic moment. Note that the linear stability
analysis in Sec. III that led to this conclusion was not a
Lyapunov stability analysis of a necessarily stationary
solution, so it does not rely upon a “qualitatively right”
assumption of the vanishing vacuum mixing angle. As a
result, within the Standard Model extended with nonzero
Majorana neutrino masses, the effect of a small nonzero
magnetic moment is very unlikely to be observable.
A couple of words should also be said on what was left

beyond the present analysis. First of all, Dirac neutrinos
should probably have very similar block-off-diagonal terms
in the interaction Hamiltonian, if one introduces scalar
and/or pseudoscalar terms into the Lagrangian, while in this
case these blocks will describe superpositions of active,
left-handed neutrinos with “sterile,” right-handed neutrinos
rather than neutrino-antineutrino mixing. In the absence of
NSSIs, these blocks virtually vanish, so nothing is able to
catalyze the helicity-mixing effect introduced by a small
magnetic moment, analogously to the Majorana case [26].
Next, we have tested Majorana neutrinos with scalar/
pseudoscalar interactions for instabilities initiated by the
so-called induced magnetic moment [45], which physically
is a helicity-dependent Wolfenstein potential in a magnet-
ized medium, and found no new instabilities. Among other
possible reasons, this is definitely related to the fact that at

least for a nonmoving background medium, the induced
magnetic moment term in the Hamiltonian does not flip the
neutrino helicity. Last but not least, Fig. 9 tells us that
(pseudo)scalar NSSIs almost immediately affect the flavor
content of the neutrino fluxes, and it seems interesting to
analyze whether these fast flavor transformations are able
to modify the overall properties of a supernova explosion,
possibly leading to conclusions similar to those of
Ref. [35]. However, this, as well as other issues regarding
the effect of scalar and pseudoscalar nonstandard neutrino
self-interactions on the evolution of dense neutrino fluxes
require further study beyond the present paper.
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APPENDIX A: BILINEAR EXPRESSIONS FOR
MAJORANA NEUTRINOS

We list here the notations and relations for Majorana
spinors in the ultrarelativistic regime, which are used to
derive the effective Hamiltonian for collective oscillations
in Sec. II. We work in the spinor representation, with Dirac
matrices

γ0 ¼
�
0 1

1 0

�
; γ5 ¼ iγ0γ1γ2γ3 ¼

�−1 0

0 1

�
;

Σ ¼
�
σ 0

0 σ

�
; ðA1Þ

α ¼ γ5Σ ¼
�−σ 0

0 σ

�
; γ ¼ γ0α ¼

�
0 σ

−σ 0

�
;

ðA2Þ

σ being the Pauli matrices; the commutator of the gamma
matrices σμν ≡ i

2
½γμ; γν� has components σ0i ¼ iαi and

σij ¼ ϵijkΣk. In this representation, the ultrarelativistic
polarization bispinors uαðpÞ entering the neutrino field
operator (14) become chiral, taking the form

uþðpÞ ¼
�

0

χþðpÞ

�
; u−ðpÞ ¼

�
χ−ðpÞ
0

�
;

ucαðpÞ ¼ u−αðpÞ; ðA3Þ
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where the two-component helicity eigenvectors are defined
in the standard way:

ðσ · pÞχαðpÞ ¼ αjpjχαðpÞ; α ¼ �1; ðA4Þ

χ†αðpÞχβðpÞ ¼ δαβ; −iασ2χ�αðpÞ ¼ χ−αðpÞ: ðA5Þ

Now a straightforward matrix-vector multiplication,
together with the chirality properties of the polarization
bispinors, yield a set of bilinear expressions:

ūαðpÞuβðpÞ ¼ ūαðpÞγ5uβðpÞ ¼ 0; ðA6Þ

ūαðpÞγμuβðpÞ ¼ δαβð1; p̂Þ; ðA7Þ

ūαðpÞγμγ5uβðpÞ ¼ αδαβð1; p̂Þ; ðA8Þ

ūαðpÞγμLuβðpÞ ¼ δα;−δβ;−ð1; p̂Þ; ðA9Þ

ūαðpÞΣuβðpÞ ¼
ffiffiffi
2

p
δα;−βζβðpÞ; ðA10Þ

ūαðpÞαuβðpÞ ¼
ffiffiffi
2

p
βδα;−βζβðpÞ; ðA11Þ

where ūαðpÞ≡ u†αðpÞγ0 is a Dirac conjugate, p̂≡ p=jpj,
and a complex 3-vector ζβðpÞ is defined as

ζβðpÞ ¼
1ffiffiffi
2

p χ†−βðpÞσχβðpÞ: ðA12Þ

While a couple of properties of this vector follow directly
from the above definitions,

p · ζβðpÞ ¼ 0; ðA13Þ

jB · ζβðpÞj ¼
1ffiffiffi
2

p jB × p̂j; ðA14Þ

ζ�βðpÞ ¼ ζ−βðpÞ; ðA15Þ

ζ�βðpÞ · ζβðpÞ ¼ 1; ðA16Þ

others depend on the Uð1Þ phase ϕðpÞ in the definition of
the two-component helicity eigenstates. Fixing it as

χþðpÞ ¼ eiϕðpÞ=2
�
cos ϑ

2
e−iφ=2

sin ϑ
2
eiφ=2

�
;

χ−ðpÞ ¼ e−iϕðpÞ=2
�− sin ϑ

2
e−iφ=2

cos ϑ
2
eiφ=2

�
ðA17Þ

for the momentum vector p ¼ jpjðsin ϑ cosφ; sinϑ sinφ;
cosϑÞ leads to an explicit expression for the ζ vectors:

ζ�ðpÞ ¼
e�iϕðpÞffiffiffi

2
p ðcosϑ cosφ ∓ i sinφ;

cos ϑ sinφ� i cosφ;− sin ϑÞ: ðA18Þ

Now one can explicitly evaluate a scalar product entering
the effective Hamiltonian (see Sec. II),

ζ�ðpÞ · ζ�ðqÞ ¼ e�iΓðp̂;q̂Þ 1 − p̂ · q̂
2

; ðA19Þ

where Γðp̂; q̂Þ is another Uð1Þ phase. Even though this
phase obviously contains an additive term ϕðpÞ þ ϕðqÞ,
it is easy to see that the Γ phase cannot be eliminated
completely by a gauge transformation of ϕðpÞ.

APPENDIX B: AN ANALOG OF THE
WICK’S THEOREM

While the original Wick’s theorem relates the vacuum
expectation value of a product of field operators to a set of
pairwise contractions, the approximate theorem we have
used in Eqs. (30) and (46) is related to a state jΦi with
definite neutrino numbers Np. First of all, note that in a
correlator of four neutrino fields

hΦj∶φ̄iχjψ̄kωl∶jΦi; ðB1Þ

where i, j, k, l ¼ 1, 2, 3, 4 are spinor indices, every field
operator is a series of the form (14) over the neutrino
momentum, i.e., a sum of creation/annihilation operators

âð†ÞAp with certain coefficients. Therefore, the correlator itself
is a quadruple series of quartic expectation values of the
form

hΦj∶âð†ÞAp â
ð†Þ
Bqâ

ð†Þ
Cr â

ð†Þ
Ds∶jΦi; ðB2Þ

to prove the theorem, it is thus enough to relate the latter
expectation to pairwise contractions of â=â† operators.
Now, since jΦi is characterized by fixed neutrino numbers,
the above expectation vanishes unless there are exactly
two creation and two annihilation operators amongst the
four âð†Þs and the four momenta match each other, namely,
p ¼ q and r ¼ s, or p ¼ r and q ¼ s, or p ¼ s and q ¼ r.
If we neglect very “rare” terms with p ¼ q ¼ r ¼ s, then
(B2), if it does not vanish, represents an expectation value
of a product of two pairs of operators acting in different
momentum subspaces, which is a product of two quadratic
expectation values,D
∶âð†ÞAp â

ð†Þ
Bqâ

ð†Þ
Cr â

ð†Þ
Ds∶
E

≈
D
∶âð†ÞAp â

ð†Þ
Bq∶
ED

∶âð†ÞCr â
ð†Þ
Ds∶
E
þ
D
∶âð†ÞAp â

ð†Þ
Cr∶ih∶âð†ÞDs â

ð†Þ
Bq∶
E

−
D
∶âð†ÞAp â

ð†Þ
Ds∶
ED

∶âð†ÞCr â
ð†Þ
Bq∶
E
; ðB3Þ

EFFECTS OF NONSTANDARD NEUTRINO SELF-INTERACTIONS … PHYS. REV. D 103, 095004 (2021)

095004-21



where the approximate equality sign refers to the special case
with four equal momenta, in which the equality is wrong.
Now that we have established such an equality for â=â†

operators, we canwrite an analogous expression for the fields

ðB4Þ

with a contraction defined as . Note that

for Majorana neutrinos allowing for coherent neutrino-anti-
neutrino mixing, the second term on the rhs may not vanish.
Usually, the above expression is written in the form keeping
the original order of the four operators, but with an explicitly
specified contraction pattern,

ðB5Þ

APPENDIX C: NEUTRINO DENSITY MATRIX IN
THE FLAVOR BASIS

In the derivation of the effective Hamiltonian (57), the
density matrix ρABðpÞ was defined in terms of operators
related to neutrino mass states a, b [see Eq. (11)], however,
it is often handy to work in the flavor basis instead. Indeed,
neutrino flavor currents can be written in terms of aUð2NfÞ
transformed matrix ρðflÞff0 ðpÞ,

hΦj∶ν̄fðxÞγμLνf0 ðxÞ∶jΦi ¼
X
p

ð1; p̂Þ
V

U�
faUf0bðρb−;a−ðpÞ − ρaþ;bþðpÞÞ ¼

X
p

ð1; p̂Þ
V

ðρðflÞf0−;f−ðpÞ − ρðflÞfþ;f0þðpÞÞ; ðC1Þ

ρðflÞðpÞ ¼
�
U 0

0 U�

�
ρðpÞ

�
U† 0

0 UT

�
≡ UρðpÞU†: ðC2Þ

Since this transformation is unitary, it induces a unitary transformation of the Hamiltonian hðflÞðpÞ ¼ UhðpÞU†, and its
straightforward application to Eq. (57) yields

hðflÞðpÞ ¼
 
MðflÞ2=2jpj þGF

ffiffiffi
2

p ðnePðflÞ
e − nn1=2Þ −imðflÞB⊥ðpÞ

imðflÞ†B�⊥ðpÞ MðflÞ T2=2jpj −GF

ffiffiffi
2

p ðnePðflÞ
e − nn1=2Þ

!

þ GF

ffiffiffi
2

p

V

X
q

ð1 − p̂ · q̂ÞKðρðflÞðqÞÞ; ðC3Þ

KðρðflÞÞ≡ trðρðflÞGÞGþ ℘ðflÞdiag þ g−ðU�U†℘ðflÞUUTÞdiagT þ gþeiΓðp̂;q̂ÞGðU�U†℘ðflÞUUTÞoffdiag T; ðC4Þ

where MðflÞ2 ¼ UM2U†, ðPðflÞ
e Þff0 ¼ δf;eδf0;e, mðflÞ ¼ UmUT ¼ −mðflÞT, and the last term KðρðflÞÞ describes the self-

interaction in the flavor basis. One observes immediately that if the PMNS matrix U is real, i.e., no nontrivial CP or
Majorana phases are present, U�U† ¼ 1 and the interaction Hamiltonian retains its original, mass-basis form in the flavor
basis. In general, however, this is not the case. At the same time, it is interesting to note that in the two-flavor case,

m ¼ iμ12σ2 and the off-diagonal blocks ℘ðflÞ
∓� ¼ ρðflÞ∓� − ρðflÞT∓� are also proportional to σ2, so that simplifications take place

when multiplying by the mixing matrix U ¼ eiθσ2diagðeiα=2; 1Þ,

mðflÞ ¼ eiα=2m; ðU�U†℘ðflÞUUTÞoffdiag T ¼ eiαGð℘ðflÞoffdiagÞT; ðC5Þ

and the remaining Majorana phase α can be eliminated by a gauge transformation (58), i.e., by a rephasing of the two
helicity eigenstates. This is how one arrives at a real antisymmetric magnetic moment matrix in Eq. (68) and at a
conventional gþ NSSI term in the self-interaction Hamiltonian (69). Quite naturally, in the three-flavor case, this rephasing
is not enough to absorb the two Majorana and one CP phase.
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