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In this paper, we apply the Goldstone equivalence gauge to calculate the 1 ↔ 2 processes of a sterile
neutrino in a thermal plasma below the standard model (SM) critical temperature Tc ≈ 160 GeV. The
sterile neutrino’s mass is around the electroweak scale, 50 GeV ≤ mN ≤ 200 GeV, and the acquired
thermal averaged effective width Γ̄tot does not depend on the gauge selection and is continuous around the
crossover. We also apply our results to perform a preliminary calculation of leptogenesis.
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I. INTRODUCTION

Sterile neutrinos interacting with the plasma background
of the early Universe can become a potential solution to
some cosmological particle physics problems. A prominent
example is leptogenesis [1]. The CP-violation effects
of sterile neutrino interactions with light leptons give rise
to the lepton-number asymmetry in the plasma, and the
baryon-number asymmetry accordingly appears through
the sphaleron effects (for some early works, see
Refs. [2–6], and see Refs. [7–10] for reviews). The sterile
neutrino can also become a portal to dark matter. Being a
variation of a secluded dark matter model, a “sterile-
neutrino-philic dark matter” model [11–18] gives a differ-
ent relic density result when compared with the standard
weakly interacting massive particle (WIMP) models [19].
In Ref. [20], we also studied a feebly interacting massive
particle (FIMP) [21] version of such a model. Sometimes,
sterile neutrinos themselves can also become the dark
matter candidate. In all these examples, a reliable calcu-
lation of the sterile neutrino’s interaction with the thermal
plasma is crucial for precise predictions of the related
physical observables compared with the experimental data.
When mN ≫ Tc ≃ 160 GeV, where mN is the sterile

neutrino mass and Tc is the electroweak crossover temper-
ature [22], there are plenty of reliable discussions in
the literature to calculate the sterile neutrino’s production
[23–31]. Since the crucial temperature T ∼mN is well
above the crossover temperature, only the Higgs doublet

and the active leptons participate in the 1 ↔ 2 processes.
The Higgs components receive a universal thermal mass
correction, which is easily calculated. For lighter sterile
neutrinos, successful leptogenesis can also be acquired
through the resonant effects [32–38]. When mN ≪ Tc, at
T ∼mN ≪ Tc, the thermal mass terms can be safely
neglected, since the vacuum expectation value (VEV) of
the Higgs boson becomes fairly close to the zero-temper-
ature value ∼246 GeV, and the boson’s behaviors are
similar to those in the zero-temperature situation [39].
In the literature, there seems to be a gap where mN ∼ Tc.

In this range, the calculation is plagued by the intricate
thermal corrections to the gauge and Higgs sectors. In
Ref. [40], the authors estimated the Uð1ÞY × SUð2ÞL gauge
boson contributions by replacing them with the Goldstone
degrees of freedom artificially assigned with the similar
mass of the Higgs boson. We also applied this method in
the corresponding calculations of our papers [12,20]. Such
an ansatz might be inspired by the famous “Goldstone
equivalence theorem” at zero temperature, which requires
more investigation in the thermal plasma case. A safe
procedure is to return to the original form of the finite-
temperature propagators to integrate all the branch cuts and
poles that may appear, as described in Ref. [41–44].
However, the procedures to follow there are formidable,
and the relationship between the Goldstone and gauge
boson becomes more obscure. Another problem is that the
invariant squared mass of the sterile neutrino, which is
denoted byK2 in Refs. [41–44], had been neglected around
Tc there, so their method is not suitable to our K2 ¼
m2

N ∼ T2
c range of interest.

In Ref. [45], we proposed a method to decompose the
massive gauge boson propagators in the thermal plasma
with the Goldstone equivalence gauge. Poles indicating the
“transverse” and “longitudinal” degrees of freedom arise as
usual, and a branch cut which closely resembles two
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massless poles was identified as the Goldstone boson’s
fragment. When T > Tc, such a branch cut fragments into
two actual poles corresponding to the Goldstone boson
particles, and when T ¼ 0, this branch cut completely
disappears. In the finite-temperature case, the longitudinal
polarization is also some intermediate state between the
so-called “plasmon” and the Goldstone equivalent state. We
made an analogy that the longitudinal polarization will
“spew out” a fraction of the Goldstone boson in the finite-
temperature environment. This helps us to include all the
contributions from the transverse, longitudinal, Higgs, and
Goldstone degrees of freedom correctly, and it helps us to
clarify the relationship between the Goldstone and the
gauge bosons in the plasma. We note that Ref. [45] also
provides a typical Rξ method, which is equivalent to our
Goldstone equivalence gauge results if the gauge vertex
hard thermal loop (HTL) corrections denoted in Eq. (A4)
are included. We will consider these corrections in our
Eqs. (17) and (32) for the gauge independent results.
In this paper, with the method we have developed in

Ref. [45], we will calculate the sterile neutrino 1 ↔ 2
processes near the electroweak crossover temperature
mN ∼ T ∼ Tc. Wewill also roughly discuss the leptogenesis
induced by these processes. A complete calculation of the
sterile neutrino’s interaction in the early Universe should
also include the more complicated 2 ↔ 2 scattering proc-
esses. In many cases, when T ≫ mN , and when the l-H-N
Yukawa couplings are sufficiently large, yN ≳ 10−8, the
thermal equilibrium of the sterile neutrino does not require
a detailed calculation. When the temperature drops down to
the T ∼mN scale, the out-of-equilibrium effects start to
arise, and these 2 ↔ 2 processes are usually suppressed
rapidly due to an additional number-density factor com-
pared with the 1 ↔ 2 processes. With these considerations,
we leave the 2 ↔ 2 processes to future study and do not
consider their contributions at this stage. For brevity and
simplicity, we also do not consider the contributions
resumming the interchange and emission of the soft bosons
[46–48] (sometimes called the LPM resummation) in
this paper.
We enumerate the channels and list the basic formulas in

Sec. II. Details on phase space and thermal integrals are
presented in Sec. III. Numerical results and a preliminary
calculation of leptogenesis are displayed in Sec. IV.
We summarize this paper in Sec. V.

II. BASIC CONCEPTS AND CHANNEL
ENUMERATION

The Lagrangian for sterile neutrinos is the standard one:

L ⊃ LSM þ LNkin þ LNmass −
ffiffiffi
2

p
yNijHl̄iNj þ H:c:; ð1Þ

where H is the Higgs doublet; Li, with i ¼ 1, 2, 3, are the
lepton doublets of three generations; and Nj are the sterile

neutrinos. Nj can be either Majorana or (pseudo-)Dirac
spinors, and the corresponding kinematical and mass terms
LNkin þ LNmass differ by a factor of 1

2
. For simplicity, here

we only study the one Dirac sterile neutrino case. The
interaction only involves one massless lepton. A general
situation can be inferred from our results by simply
multiplying some factors. Therefore, the Lagrangian we
are relying on is given by

L ⊃ LSM þ iN̄=∂N −mNN̄N −
ffiffiffi
2

p
yNHl̄N þ H:c:; ð2Þ

where mN is the mass of the sterile neutrino.
Above the standard model (SM) critical temperature of

the crossover T > Tc ≈ 160 GeV, the 1 ↔ 2 processes of
the sterile neutrino have nothing to do with theW=Z boson.
Only the Higgs doublets including the Goldstone compo-
nents participate in the couplings. The whole process is
quite standard: the thermal effects correct the effective
Higgs mass term

δm2
H;thermal ¼ ðg21 þ 3g22 þ 4y2t þ 8λÞT

2

16
; ð3Þ

where g1, g2 are the electroweak gauge coupling constants;
yt is the top Yukawa coupling constant; and λ is the four-
Higgs coupling constant. Leptons also receive thermal
mass corrections. In the thermal plasma, each pole in the
leptonic propagators is split into two objects, called a
“particle” and a “hole.” In Ref. [23], both of these two
objects are combined into one single particle with the
universal thermal mass correction to estimate the phase
space. In this paper, we abandon this approximation, and
we earnestly sum over each contribution from these two
degrees of freedom.
Below the critical temperature T < Tc, the vacuum

expectation value (VEV) is estimated to be vðTÞ ¼
v0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − T2

T2
c

q
, where v0 ¼ 246 GeV. This opens the sterile

neutrino’s oscillation into a highly off-shell active neutrino,
and then it decays into a W=Z gauge boson plus a charged
lepton/active neutrino. An on-shell W=Z boson can also
decay into a pair of leptons, and the active neutrino product
can also oscillate into a sterile neutrino through the VEV.
The dispersion relations (or the “on-shell” equation)

of the W=Z bosons below the critical temperature are
complicated. Together with the dispersion relations of the
leptons and the conservation of energy and momentum
equations, we have four equations to solve the phase space.
Three of them are transcendental equations. Later, we are
going to describe the details to solve them.
In this paper, we rely on the Goldstone equivalent gauge

[49] to calculate the sterile neutrino’s productions in the
thermal plasma [45] below the critical temperature Tc.
Within this framework, each Goldstone degree of freedom
is attributed to two parts: one is hidden inside the extended
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polarization vector of a longitudinal vector boson, while the
other behaves like a massless particle during the calcu-
lations and is regarded independently as a Goldstone
boson’s fraction. We enumerate and include all of the
gauge polarizations and the Goldstone boson fraction’s
contributions. In the Appendix, we will also show the
equivalence between this gauge and the usually familiar
Rξ gauge.
In the following subsections, we will describe the details

for each channel. Before starting them, we also note that we
ignore some of the subdominant tachyonic branch cuts in
the bosonic propagators, as illustrated in our Ref. [45]. As
in Ref. [23], the subdominant branch cuts in the leptonic
propagators are also neglected.

A. W channels

The Feynmann diagram of a sterile neutrino N decaying
into a Wþ boson and a charged lepton l− is illustrated in
Fig. 1. Since we are discussing a Dirac N, it is possible to
invert the arrows there to reformulate it into an N̄-decay
diagram. We neglect the antisterile neutrino’s decay in our
paper, since the results are completely symmetric, by
neglecting the CP effects. The momentum flows are
also defined in Fig. 1 and are defined relative to the
plasma background reference—i.e., the plasma’s four-
vector velocity

uμ ¼ ð1; 0; 0; 0Þ: ð4Þ

When, e.g., p0
1 < 0, the same diagram can also be inter-

preted as a charged lepton’s fusion with the sterile neutrino
to generate aWþ boson, which is the dual process of aWþ

decaying into a N, lþ pair. This is the “inverse decay”
process of a Wþ boson, and we denote it with “ID” for
abbreviation later. The thermal equilibrium condition
guarantees the equality of the results from both aspects
of the “decay” and “inverse decay” processes of aW boson.
Therefore, Fig. 1 can summarize all the possible 1 ↔ 2
processes of an (anti)sterile neutrino.

The dispersion relation of a W boson is given by

FW;ðL;TÞðp2Þ ¼ p2
2 − ½mWðTÞ�2 − ΠW

L;Tðp2Þ ¼ 0; ð5Þ

for transverse and longitudinal polarizations, respectively,
where

ΠW
L ðp2Þ ¼ −

2m2
E2p

2
2

p⃗2
2

�
1 −

p0
2

jp⃗2j
Q0

�
p0
2

jp⃗2j
��

;

ΠW
T ðp2Þ ¼

1

2
ð2m2

E2 − ΠW
L ðp2ÞÞ; ð6Þ

and

Q0ðxÞ ¼
1

2
ln
xþ 1

x − 1
: ð7Þ

The VEV-dependent W-boson mass is given by

mWðTÞ ¼
g2vðTÞ

2
; ð8Þ

where g2 is the weak coupling constant, and the Debye
thermal mass mE2 takes the form

m2
E2 ¼

11

6
g22T

2: ð9Þ

Ignoring the lepton’s VEV-dependent mass, since it is
much smaller than the thermal mass term, the thermal-
corrected dispersion relation of the active lepton is given
(see p. 140 in Ref. [50]) by

Flðp1Þ ¼ ½Δþðp1ÞΔ−ðp2Þ�−1 ¼ 0; ð10Þ

where

Δ�ðp1Þ ¼
�
p0
1 ∓ jp⃗1j

−
m2

f

2jp⃗1j
��

1 ∓ p0
1

jp⃗1j
�
ln
p0
1 þ jp⃗1j

p0
1 − jp⃗1j

� 2�
�

−1
:

ð11Þ

Here,

m2
f ¼ g21 þ 3g22

32
T2: ð12Þ

Generally, there are four solutions to Eq. (10). When
p2
1 > m2

f, this means a “particle” for p0
1 > 0 and an

“antiparticle” for p0
1 < 0. When p2

1 < m2
f, this indicates

a “hole” for p0
1 > 0 and an “antihole” for p0

1 < 0.
The energy and momentum conservation laws are

given by

FIG. 1. N → Wþl− 1 ↔ 2 channel. Since we have applied the
Goldstone equivalence gauge, the Goldstone contribution is
explicitly contained in the polarization vector, so we also need
to calculate the Goldstone part of the diagrams.
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p0 ¼ p0
1 þ p0

2; ð13Þ

p⃗2
2 ¼ p⃗2 þ p⃗2

1 − 2jp⃗jjp⃗1j cos θp; ð14Þ

where θp is the angle between p⃗ and p⃗1. The subscript “p”
denotes the plasma, which means that this is the angle
measured in the plasma rest frame. Given the sterile
neutrino’s energy and momentum p0, p⃗, and fixing the
θp, there are four unknown parameters—p0

1, p0
2, jp⃗1j,

jp⃗2j—in just four equations: (5), (10), (13), and (14).
Solving these equations might give a set of solutions. If p0

1

or p0
2 is smaller than zero, it means that a lepton or a W

boson becomes an initial-state particle. We need to find all
of the solutions to sum over all their contributions to the
“interaction rate” γN .
With the acquired p1 and p2, we can then calculate

the amplitude. In the Goldstone equivalence gauge, the
“polarization vector” of a gauge boson is extended to a
five-component vector ϵWn

�;Linðp2Þ ¼ ϵWn�
�;Loutðp2Þ, n ¼ μ; 4,

to include the Goldstone component (where n ¼ 4 denotes
the Goldstone component). When contracting the indices,
the metric tensor ½gμν� ¼ diag½1;−1;−1;−1� is also
extended to ½gmn� ¼ diag½1;−1;−1;−1;−1�. The trans-
verse polarization is the same as in the Rξ gauge with
ϵW4
� ðp2Þ ¼ ϵW0

� ðp2Þ ¼ 0, and ϵWi
� ðp2Þp2i ¼ 0. The longi-

tudinal polarization ϵWn�
Lin ðp2Þ ¼ ϵWn

Loutðp2Þ is given by

ϵWLoutðp2Þ ¼

0
B@−

ffiffiffiffi
p2
2

p
n2·p2

nμ2

−i mWðTÞffiffiffiffi
p2
2

p

1
CA; ð15Þ

where nμ2 ¼ ð1;− p⃗2

jp⃗2jÞ for the convention of ðkμÞ ¼ ðk0; k⃗Þ
for any four-dimensional momentum k.
For the lepton spinors, we need to define

p̃1 ¼ p0
1

�
1;� p⃗1

jp⃗1j
�
; ð16Þ

where for a “particle”—i.e., p2
1 > m2

f—the “þ” sign is
adopted, and for a “hole”—i.e., p2

1 < m2
f—the “−” sign is

adopted. When p0
1 > 0, a lepton (either a “particle” or a

“hole”) is created, and a ūsðp̃1Þ appears in the amplitude.
When p0

1 < 0, an antilepton (either an “antiparticle” or an
“antihole”) is destroyed, and a v̄sð−p̃1Þ appears in the
amplitude.
The amplitude of the gauge component, as denoted in the

left panel of Fig. 1, then becomes

iMμ
W ¼ −yNvðTÞ

g2ffiffiffi
2

p ūsðp̃1Þ½γμ þ Γμðp; p1Þ�PL
i
=plT

urðpÞ;

ð17Þ

when p0
1 > 0 for the decay channel. Γμðp; p1Þ is the HTL

correction on the gauge vertex introduced for a gauge-
invariant result. Its definition is given in Eq. (A4), followed
by the detailed evaluation processes in the Appendix.
If p0

1 < 0, we only need to change ūsðp̃1Þ into v̄sð−p̃1Þ
for the W boson’s inverse-decay channel. The Goldstone
component of the amplitude, as denoted in the right panel
of Fig. 1, is written to be

iM4
W ¼ −

ffiffiffi
2

p
yNūsðp̃1ÞPRurðpÞ: ð18Þ

Again, when p0
1 < 0, ūðp̃1Þ needs to be replaced with

v̄ð−p̃1Þ. In the above equations, PL;R ¼ 1∓γ5

2
, and the

definition of plT is

plT ¼ ðp0
lT ; p⃗lTÞ

¼
��

1 −
m2

fL

p0

�
p0;

�
1þm2

fð1 − p0LÞ
p⃗2

�
p⃗
�
; ð19Þ

where

L ¼ 1

2jp⃗j ln
p0 þ jp⃗j
p0 − jp⃗j : ð20Þ

The complete amplitude should take the form

ϵWðtÞnðp2ÞðiMn
WÞ; ð21Þ

where n ¼ 0, 1, 2, 3, 4, t ¼ �; Lout. The squared ampli-
tude should also take the statistic factor and the “renorm-
alization constant.” The complete result is

AW;t ¼
X

r;s¼1;2

Mn
WM

�m
W ϵWtnϵ

W�
tm fF

�
p0
1

T

�

× fB

�
p0
2

T

�
Zlðp1ÞZWtðp2Þ; ð22Þ

where t ¼ �; Lout indices are not summed by the Einstein
sum rule, and

fFðxÞ ¼
ex

ex þ 1
; ð23Þ

fBðxÞ ¼
���� ex

ex − 1

����; ð24Þ

and the “renormalization factors” are

ZWðT;LÞðp2Þ ¼
2p0

2

2p0
2 −

∂ΠW
T;Lðp2Þ
∂p0

2

; ð25Þ

Zlðp1Þ ¼
ðp0

1Þ2 − p⃗2
1

2m2
f

: ð26Þ
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B. Z=γ channels

Since W and B bosons receive different thermal correc-
tions, this disturbs the mixing angle for the “on-shell” Z=γ
bosons. The mixing angles of the on-shell Z=γ bosons
depend on their energy and momentum, so it is difficult to
identify which is the Z or γ degree of freedom. The
corresponding diagram including both Z=γ and the neutral
Goldstone contributions are presented in Fig. 2.
The VEV-dependent mass matrix for the B=W3 field, or

Z=γ particle, is as usual:

m2
Z=γðTÞ ¼

ðvðTÞÞ2
4

�
g21 −g1g2

−g1g2 g22

�
: ð27Þ

Thermal effects correct the B and W3 mass terms, respec-
tively, and therefore the thermal mass matrix is given by

ΠZ=γ
T;Lðp2Þ ¼

�ΠB
T;Lðp2Þ 0

0 ΠW
T;Lðp2Þ

�
; ð28Þ

where ΠW
T;Lðp2Þ has already been given by Eq. (6). ΠB

T;L

changes the mE2 in Eq. (6) into mE1,

m2
E1 ¼

11

6
g21T

2: ð29Þ

The dispersion rate of this mixed Z=γ is given by the
“secular equation,”

FZ=γ;ðT;LÞðp2Þ ¼ detðp2
2I2×2 −m2

Z=γðTÞ − ΠZ=γ
T;Lðp2ÞÞ ¼ 0;

ð30Þ

for a transverse/longitudinal Z=γ vector boson. I2×2 is the
2 × 2 identity matrix. For a given p2 as a solution of
Eq. (30), the matrix p2

2I2×2 −m2
Z=γðTÞ − ΠZ=γ

T;Lðp2Þ has a
zero eigenvalue, and the corresponding eigenvector is
denoted by x ¼ ðx1x2Þ, where x21 þ x22 ¼ 1. In the zero-

temperature case, xZ1 ¼ − sin θW , xZ2 ¼ cos θW for the Z
boson, and xγ1 ¼ cos θW , x

γ
2 ¼ sin θW for the photon, where

θW is the Weinberg angle. Since the neutrino does not
interact with a pure photon, we can calculate the inner
product x · xZ ¼ −x1 sin θW þ x2 cos θW to extract the Z
part of the “on-shell” mixed boson to calculate its inter-
actions with the leptons. The dispersion relation of a lepton
and the energy-momentum conservation law is exactly
the same as with Eqs. (10), (13), and (14) in Sec. II A.
Solving these equations with Eq. (30), we then acquire all
the “on-shell” p1 and p2.
The transverse polarization vectors of a Z=γ boson

ϵZ=γn� are the same as those of the W boson ϵWn
� to satisfy

p2μϵ
Z=γν
� ¼ 0, ϵZ=γ4� ¼ 0, and p2iϵ

Z=γi
� ¼ 0. The longitudinal

polarization vector is given by

ϵZ=γ�Lin ðp2Þ ¼ ϵZ=γLoutðp2Þ

¼

0
B@ −

ffiffiffiffi
p2
2

p
n2·p2

nμ2

−i mZðTÞffiffiffiffi
p2
2

p ð−x1 sin θW þ x2 cos θWÞ

1
CA: ð31Þ

Compared with Eq. (15), the extra ð−x1 sinθWþx2cosθWÞ
factor in the Goldstone component indicates that only the Z
component of the vector boson has “eaten” some Goldstone
boson; the photon part of this vector boson has not
devoured any Goldstone boson’s fraction.
Then, we are ready to write the amplitudes:

iMμ
Z=γ ¼ −yNvðTÞ

g2
2 cos θW

ūsðp̃1Þ½γμ þ Γμðp; p1Þ�PL

×
i
=plT

urðpÞð−x1 sin θW þ x2 cos θWÞ; ð32Þ

iM4
Z=γ ¼ −yNūsðp̃1ÞPRurðpÞ: ð33Þ

The total result of the squared amplitude is

AZ=γ;t ¼
X

r; s¼1;2

Mn
Z=γM

�m
Z=γϵ

Z=γ
tn ϵZ=γ�tm fF

�
p0
1

T

�

× fB

�
p0
2

T

�
Zlðp1ÞZZ=γtðp2Þ; ð34Þ

where the “renormalization constant” ZZ=γðT=LoutÞðp2Þ is
calculated to be

ZZ=γðT;LÞðp2Þ ¼
2p0

2

2p0
2 − ΠZ=γ;on shell

ðT;LÞ;p0
2

ðp2Þ
; ð35Þ

and ΠZ=γ;on shell
ðT;LÞ;p0

2

ðp2Þ ¼ xT
∂ΠZ=γ

T;Lðp2Þ
∂p0

2

x, so that

ΠZ=γ;on shell
T;L ðp2Þ ¼ x21

∂ΠB
T;Lðp2Þ
∂p0

2

þ x22
∂ΠW

T;Lðp2Þ
∂p0

2

: ð36Þ

C. Goldstone channels

Besides the Goldstone components in the ZL and WL
polarization vectors, the Goldstone boson’s fragments also
contribute to the 1 ↔ 2 rate. Rigorously speaking, these
remains are no longer a “particle,” since they are “branch
cuts” rather than “poles.” However, since the imaginary
parts peak significantly at p0

2 ¼ �jp⃗2j, we can apply the
approximation to regard them as massless bosons. The
corresponding Feynman diagrams are the same as the
second panels in Figs. 1 and 2, with the only difference
being that the Goldstone boson’s components are no longer
bounded with the longitudinal polarizations of theW and Z
bosons.
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The dispersion relation of a “massless” Goldstone boson
is simple:

FGðp2Þ ¼ ðp0
2Þ2 − p⃗2

2 ¼ 0: ð37Þ

Other equations are the same as in the previous subsections.
After solving Eqs. (10), (13), and (14) with Eq. (37), we
then write down the final result of the squared amplitude

AG� ¼
X

r;s¼1;2

M4
WM

�4
WfF

�
p0
1

T

�
fB

�
p0
2

T

�
Zlðp1ÞZG�ðp2Þ

ð38Þ

for the charged Goldstone channel, where ZG�ðp2Þ is
calculated and defined by

ZG�ðp2Þ ¼
2jp⃗2j
π

Z jk⃗jþδ

0

Im

�
i

p2
2 − ΠW

L ðp2Þ þ iϵ
p2
2 − ½mWðTÞ�2 − ΠW

L ðp2Þ þ iϵ
i

p2
2 þ iϵ

�
dk0; ð39Þ

and the final result

AG0 ¼
X

r;s¼1;2

M4
Z=γM

�4
Z=γfF

�
p0
1

T

�
fB

�
p0
2

T

�
Zlðp1ÞZG0ðp2Þ ð40Þ

for the neutral Goldstone channel, where

ZG0ðp2Þ ¼
2jp⃗2j
π

Z jk⃗jþδ

0

Im

�
i

ðp2
2 − Π11

L þ iϵÞðp2
2 − Π22

L þ iϵÞ − ðΠ12
L Þ2

ðp2
2 − ½mZðTÞ�2 − Π11

L þ iϵÞðp2
2 − Π22

L þ iϵÞ − ðΠ12
L Þ2

i
p2
2 þ iϵ

: ð41Þ

Here, mZðTÞ ¼
ffiffiffiffiffiffiffiffiffi
g2
1
þg2

2

p
2

vðTÞ, and

Π11
L ¼ ΠB

L sin
2 θW þ ΠW

L cos2 θW;

Π22
L ¼ ΠB

L cos
2 θW þ ΠW

L sin2 θW;

Π12
L ¼ ΠW

L cos θW sin θW − ΠB
L cos θW sin θW: ð42Þ

D. Higgs channels

The Higgs channel, as illustrated in Fig. 3, is quite
straightforward, since the Higgs boson only receives a
trivial mass correction from the thermal environment.
Below the Tc, mhðTÞ ∝ vðTÞ, so

mhðTÞ ¼ mh0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T2

T2
c

s
; ð43Þ

and above the Tc, mhðTÞ becomes

m2
hðTÞ ¼ ðg21 þ 3g22 þ 4y2t þ 8λÞT

2 − T2
c

16
; ð44Þ

where mh0 ¼ 125 GeV. Therefore, the dispersion relation
of a Higgs boson is simply

FHðp2Þ ¼ p2
2 −mhðTÞ2 ¼ 0: ð45Þ

Again solving Eqs. (10), (13), and (14) with Eq. (45) for the
valid p1 and p2, we then write down the amplitude,

iMh ¼ iyNūsðp̃1ÞPRurðpÞ: ð46Þ

The total result of the squared amplitude is

Ah ¼
X

r;s¼1;2

MhM�
hfF

�
p0
1

T

�
fB

�
p0
2

T

�
Zlðp1Þ: ð47Þ

FIG. 3. N → hν1 ↔ 2 channel.

FIG. 2. N → ðZ=γÞν1 ↔ 2 channel.
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III. PHASE SPACE AND THERMAL AVERAGE INTEGRATION

In the thermal background, the Lorentz invariance is broken, so we cannot directly “boost” the center-of-momentum
reference frame to calculate the 1 ↔ 2 processes of a sterile neutrino at rest. We can only rely on the definition of a width at
an arbitrary reference frame:

ΓX ¼ 1

2p0

Z
d3p⃗1d3p⃗2

ð2πÞ6
AX

ð2p0
1Þð2p0

2Þ
ð2πÞ4δ4ðp − p1 − p2Þ

¼ 1

2p0

Z
d3p⃗1

ð2πÞ6
AX

ð2p0
1Þð2p0

2Þ
ð2πÞ4δðp0 − p0

1 − p0
2Þ

¼ 1

2p0

Z
2π sin θpp⃗2

1djp⃗1jdθp
ð2πÞ6

AX

ð2p0
1Þð2p0

2Þ
ð2πÞ4δðp0 − p0

1 − p0
2Þ; ð48Þ

where X ¼ ½W; ðT; LoutÞ�; ½Z=γ; ðT; LoutÞ�; G�; G0; h.
Note that in the thermal plasma rest frame, there is still
the symmetry of the system rotating along the p⃗ axis, so the
ϕ parameter of the spherical coordinate is eliminated and
replaced with a 2π factor. To integrate out the δ function,
we calculate

∂p0
1

∂jp⃗1j
þ ∂p0

2

∂jp⃗1j
¼ ∂p0

1

∂jp⃗1j
þ ∂p0

2

∂jp⃗2j
∂jp⃗2j
∂jp⃗1j

: ð49Þ

∂jp⃗2j∂jp⃗1j is extracted from the momentum conservation law

[Eq. (14)], and the result is

∂jp⃗2j
∂jp⃗1j

¼ jp⃗1j − jp⃗j cos θp
jp⃗2j

: ð50Þ

∂p0
1∂jp⃗1j and ∂p0

2∂jp⃗2j can be extracted from the corresponding

dispersion relations [Eqs. (5), (30), (37), and (45)].
Generally, if the dispersion relation of a momentum pY

is written as FXðpYÞ¼FXðp0
Y; jp⃗Y jÞ¼0, where X ¼ l; ½W;

ðT; LoutÞ�; ½Z=γ; ðT; LoutÞ�; G;H, then

∂p0
Y

∂jp⃗Y j
¼ −

∂FXðpYÞ∂jp⃗Y j
∂FXðpYÞ

∂p0
Y

: ð51Þ

Therefore, Eq. (49) can be reduced to

ΓX ¼ 1

2p0

Z
2π sin θpp⃗2

1dθp
ð2πÞ6

AX

ð2p0
1Þð2p0

2Þ

×
ð2πÞ4���� ∂Flðp1Þ

∂jp⃗1 j∂Flðp1Þ
∂p0

1

þ
∂FX ðp2Þ∂jp⃗2 j∂FX ðp2Þ

∂p0
2

jp⃗1j−jp⃗j cos θp
jp⃗2j

����
: ð52Þ

The thermal average integration is then simple:

γX ¼
Z

d3p⃗
ð2πÞ3 e

−p0

T ΓX: ð53Þ

This γX will enter the Boltzmann equation.
Straightforwardly applying Eqs. (52) and (53) raises a

problem. For each θp, sometimes there are multiple
solutions for the p0

1, p⃗1, p0
2, p⃗2 values. One reason is that

when a particle decays to every direction in its center-of-
momentum frame, and while boosted to the plasma-
reference frame, one angle can pick up multiple different
momenta. To address this problem, one can adjust the
integration order to perform the calculation in the (inverse)
decayed particle’s rest frame.
For example, for a sterile neutrino’s decay process, we

rely on the N-rest frame by boosting p1, p2 into p1N , p2N .
We then use p1;2N as the input parameters to solve the
various dispersion relations. We next need to calculate the
Jacobian and delta function’s factors in the new p1N, p2N
parameters. We take the x axis along the p⃗ direction, and
without loss of generality, let p⃗1 be located in the x-y plane,
and we have

p0
1N ¼ γðp0

1 − βjp⃗1j cos θpÞ; ð54Þ

jp⃗1N j cos θN ¼ γðjp⃗1j cos θp − βp0
1Þ; ð55Þ

jp⃗1N j sin θN ¼jp⃗1j sin θp; ð56Þ

where β ¼ jp⃗j
p0 , γ ¼ 1ffiffiffiffiffiffiffiffi

1−β2
p . A tedious calculation finally

shows that

dθN
dθp

¼ ∂θN
∂θp þ ∂θN

∂p0
1

∂p0
1

∂θp þ ∂θN
∂jp⃗1j

∂jp⃗1j
∂θp ; ð57Þ

where
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∂θN
∂θp ¼ p⃗2

1γð−jp⃗1j þ p0
1β cos θpÞ sin θp

½γ2ðp0
1β − jp⃗1j cos θpÞ2 þ p⃗2

1 sin
2 θp�32

1

ð− sin θNÞ
;

ð58Þ

∂θN
∂p0

1

¼ −p⃗2
1βγ sin

2 θp

½γ2ðp0
1β − jp⃗1j cos θpÞ2 þ p⃗2

1 sin
2 θp�32

1

ð− sin θNÞ
;

ð59Þ

∂θN
∂jp⃗1j

¼ p0
1jp⃗1jβγ sin2 θp

½γ2ðp0
1β − jp⃗1j cos θpÞ2 þ p⃗2

1 sin
2 θp�32

1

ð− sin θNÞ
;

ð60Þ

∂p0
1

∂θp ¼ jp⃗jjp⃗1j sin θp
− ∂jp⃗1j

∂p0
1

jp⃗1

���� − ∂jp⃗2j
∂p0

2

jp⃗2

����þ ∂jp⃗1j
∂p0

1

jp⃗j cos θp
; ð61Þ

∂p⃗1

∂θp ¼ jp⃗jjp⃗1j sin θp
−p⃗1 −

∂p⃗2

∂p0
2

∂p0
1∂jp⃗1j jp⃗2j þ jp⃗j cos θp

; ð62Þ

and ∂jp⃗ij
∂p0

i
has been already calculated in Eq. (51). Then

we can replace the dθp with dθN
dθp
dθN

in Eq. (52) to calculate
this integral.
Inverse-decay processes are similar. For example, if we

calculate theW boson’s inverse decay process Nlþ → Wþ,
we need to adjust the integration order of Eqs. (52) and (53)
to integrate out the d3p⃗ and d3p⃗1 phase space at first, and
finally to calculate the d3p⃗2 integration. We boost theWþ’s
rest frame to transfer to p⃗W , p⃗1W integration by replacing
the corresponding indices in Eqs. (54)–(62) to calculate the
similar Jacobian and delta function’s factors. With this
method, all the 1 ↔ 2 channels can be computed.
Let us summarize the numerical algorithm processes.

To calculate one channel—e.g., N ↔ Wl—one needs to
follow these steps:
(1) Fixing p0, p⃗, and θN , solve p0

1N , p
0
2N , p⃗1N , and p⃗2N .

The equations to be solved are Eqs. (5), (10), (13),
and (14). They are defined with the parameters p0

1,

p0
2, p⃗1, p⃗2 and θp, and these two sets of parameters

are mediated by Eqs. (54)–(56).
(2) With the acquired numerical solution of p1, p2,

and θp, calculate the total squared amplitude through
Eq. (22).

(3) Changing θN , utilize Eqs. (52) and (57) to com-
pute ΓW;T=L.

(4) Change p to calculate Eq. (53).
To calculate, e.g., the Nl ↔ W channel, we first need to
integrate out p⃗ and p⃗1. Thus, we exchange p and p2 in the
above items, and we also change the subscript N to W.
Therefore, we are also able to calculate the inverse decay
rate of a W boson below its threshold.

IV. NUMERICAL RESULTS

We have scanned the mN ∈ ½50; 200� GeV range by an
interval of 1 GeV. For the leptonic sector, both the
“particle” and “hole” channels have been included. For
the bosonic sector, all the transverse and longitudinal vector
bosons, and the Goldstone and Higgs channels have been
considered. We have enumerated all the 1 ↔ 2 possibil-
ities; however, it is unnecessary to plot all of them. We sum
over the results into 14 channels, and we show their
meanings in Table I. Notice that the channel NðW=ZÞ ↔
l−=ν is kinematically forbidden in our interested parameter
space, so it is neglected. Compared with the production rate
γX, it is more convenient to use the averaged decay width

Γ̄X ¼ gNγX
neqN

¼
R d3p⃗

ð2πÞ3 e
−p0

T ΓX

2
m2

NT
2π2

K2ðmN
T Þ

; ð63Þ

where gN is the degree of freedom of the sterile
neutrino, and it is canceled by the same factor in neqN .
The comparison of this parameter with the Hubble constant
H ≃ 1.66

ffiffiffiffiffi
g�

p T2

Mpl
can help us judge whether the sterile

neutrino starts to deviate from the thermal equilibrium
conveniently.
In Fig. 4, we have selected the masses mN ¼ 50, 100,

150, and 200 GeV to plot their thermal averaged widths
normalized by 1

jyN j2 depending on the temperature T. Just

below the critical temperature 100 GeV≲ T < Tc, the
longitudinal W=Z and the Goldstones play crucial roles.
These two kinds of channels are complementary, and they
can be compared with the corresponding parts of Fig. 1 in
Ref. [40], in which large areas had been kinematically
forbidden within the 100 GeV≲ T < Tc and 50 GeV≲
mN ≲ 100 GeV ranges. Our calculations do not give such a
remarkable suppression. To show this clearly, we also plot a
total thermal-averaged width Γ̄tot ¼

P
X Γ̄X in Fig. 5. There

we can see a similar suppression of the total thermal-
averaged width when T > Tc compared with Fig. 1 in

TABLE I. Channels to be plotted and their meanings.

Alias Meaning Alias Meaning

WTD N ↔ Wþ
T l

− ZγLID Nv̄ ↔ ZL=γL
WTID Nlþ ↔ Wþ

T G�D N ↔ Gþl−
WLD N ↔ Wþ

L l
− G�ID NG− ↔ l−, Nlþ ↔ Gþ

WLID Nlþ ↔ Wþ
L G0D NG0 ↔ ν, Nν̄ ↔ G0

ZγTD N ↔ ZT=γTν G0ID NG0 ↔ ν, Nν̄ ↔ G0

ZγTID Nν̄ ↔ ZT=γT HD N ↔ hν
ZγLD N ↔ ZL=γLν HID Nh ↔ ν, Nν̄ ↔ h
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Ref. [40], while when T < Tc, only a slight and obscure
suppression appears in roughly the same area.
In the rest of this section, we show a preliminary

calculation of leptogenesis with all the results above.
Above the sphaleron decoupling temperature—i.e., when
T > Tsph ¼ 131.7 GeV [51]—the Bþ L number is not
conserved, so the lepton-number asymmetry generated
from the sterile neutrino 1 ↔ 2 processes is ported to

the baryon-number asymmetry through the sphaleron
effects. To explain the observed ratio of baryon asymmetry

normalized by the photon number density jηB0j¼ jnB−nB̄j
nγ

≈

6×10−10 in our current Universe, jηLj¼ jnL−nL̄j
nγ

is then

calculated to be 2.47 × 10−8 [37] at T ¼ Tsph ¼
131.7 GeV. Including the 2 ↔ 2 washout terms, the
Boltzmann equations are given by

nγHN

z
dηN
dz

¼
�
1 −

ηN
ηeqN

�
½γD þ 2ðγHs þ γAsÞ þ 4ðγHt þ γAtÞ�;

nγHN

z
dηL
dz

¼ γD

��
ηN
ηeqN

− 1

�
ϵCPðzÞ −

2

3
ηL

�
−
4

3
ηL

�
2ðγHt þ γAtÞ þ

ηN

ηNeq
ðγHs þ γAsÞ

�
; ð64Þ

where ηN ¼ nN
nγ
, z ¼ nN

T , and γD ¼ P
X γX is the summation

over all the 1 ↔ 2 channels defined in Eq. (53). We shall
neglect the 2 ↔ 2 contributions γHs;Ht;As;At in this paper,

since we only calculate the situation in which the sterile
neutrino is initially in thermal equilibrium with the plasma
when T ≫ mN . When T ∼mN or T ≲mN, such that the

FIG. 4. Thermal averaged widths plot normalized by 1
jyN j2 for mN ¼ 50, 100, 150, 200 GeV masses. The meanings in the legends are

illustrated in Table I.
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deviation from the thermal equilibrium becomes signifi-
cant, the 2 ↔ 2 processes are usually suppressed by an
additional neqA;H;… factor compared with γD. The CP-source
parameter ϵCPðzÞ originates from the one-loop interference
with the tree-level amplitudes [32,36] and should depend
on z. The identification of this parameter is beyond the
scope of this paper. We only follow Sec. II of Ref. [40] to
regard ϵCP as a constant parameter to present our results for
successful leptogenesis in Fig. 6. Studies at some proposed
future leptonic colliders, with the aid of secondary vertex

detection and the sensitivity to yN at ILC [52–56], CEPC
[57,58], and FCC-ee [59] can be significantly improved.
References [60–64] have discussed the corresponding
searches at these colliders, Refs. [65,66] have also dis-
cussed the proposals at the LHeC [67,68], and Ref. [69] has
discussed the similar parameter space at the LHC and
beyond. Their results can roughly verify the parameter
space within 50 GeV < mN < 90 GeV and m̃≳ 1 eV. Our
contours differ significantly from Fig. 3 in Ref. [40],
especially for the 1 eV≲ m̃≲ 105 eV and 40 GeV≲
mN ≲ 110 GeV area there, where quite a large void appears
due to the absence of the γD kinematically forbidden below
Tc in their Fig. 1. In our paper, this area is filled up with the
N ↔ Gþ;0ðl−=νÞ, N ↔ Wþ

T;Ll
−, or N ↔ ZT;Lν channels,

so that no significant distortions of the contours appear.

V. SUMMARY

We have calculated the 1 ↔ 2 processes of a sterile
neutrino interacting with the gauge/Higgs bosons and
leptons in the thermal plasma. We applied the Goldstone-
equivalence gauge to evaluate the processes below the
critical temperature Tc ≈ 160 GeV, and our method is
suitable for the sterile neutrino’s mass mN ∼ Tc. Although
a particular gaugewas applied, the results are independent on
gauge selections, since we have included the Eq. (A4) terms.
The results can be utilized in studies involving the sterile
neutrinos, and we have preliminarily calculated the lepto-
genesis as an example. Compared with Ref. [40], the results
had been significantly changed due to the different kinematic
threshold understandings in this paper. 1 ↔ 2 results are
usually sufficient to study the processes in a temperature that
is roughly of the same magnitude of the sterile neutrino’s
mass if one assumes an initially thermal equilibrium. Yet the
nonperturbative corrections, in which the leptons and bosons
interchange soft particles with the plasma and with each
other, have not been included. To carry forward our research
to a wider temperature scale and to a more precise
calculation, we will include all these effects in our further
studies.
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FIG. 5. Γ̄tot ¼
P

X Γ̄X normalized by 1
jyN j2, depending on the

temperature T and the sterile neutrino mass mN . To keep the
image contrast in the other areas where the 1 ↔ 2 processes are

not suppressed kinematically, we just keep Γ̄tot
jyN j2 ≥1.0×10−3 GeV

in this image. Therefore, most of the red parts in this image are
actually much smaller than those plotted here.

FIG. 6. lg ϵCP needed to obtain successful leptogenesis. The
sterile neutrinos are initially in thermal equilibrium with the
plasma.
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APPENDIX: ASPECT FROM THE Rξ GAUGE

The advantage of the Goldstone equivalent gauge is the
anatomy of the longitudinal polarization and the remaining
Goldstone degrees of freedom contributions, which make it
convenient for one to follow a “tree-level” methodology.
The result should be numerically equivalent to the tradi-
tional aspect in order to calculate the imaginary part of the
one-loop propagators. In fact, we showed in Ref. [45] that
similar “tree-level” logic can also be applied in the standard
Rξ gauge if only the remaining Goldstone degree of
freedom is replaced by a “vector boson” with the polari-
zation vector ∝ p, where p is the vector boson’s momen-
tum. The equivalence of the results with different gauges is
guaranteed by the Ward-Takahashi identity in the broken
phase [70]:

pμ
2MVμ ¼ imVðTÞMGS; ðA1Þ

where V ¼ Z=W, mVðTÞ is the gauge boson’s mass
originating from the VEV, and MGS is the amplitude with
the corresponding gauge boson replaced by a Goldstone
external leg. For the W boson, we just notice the relation-
ship between the polarization vectors under two gauges:

ϵWL;Rξ
¼ ϵWLin þ

0
B@

pμ
2ffiffiffiffi
p2
2

p

−i mWðTÞffiffiffiffi
p2
2

p

1
CA; ðA2Þ

where ϵWL;Rξ
is the familiar polarization vector in the Rξ

gauge. One immediately finds that the contribution from
the difference between these two polarization vectors
should always vanish according to the Ward-Takahashi
identity in the broken phase.
For the mixing Z=γ case, things are a little bit compli-

cated. Notice that in Eq. (32), the mixing parameter’s
−x1 sin θW þ x2 cos θW factor is in the vertex term, while in
Eq. (31), exactly the same thing is attributed to the
polarization vector. Remember also that for a pure γ, it
does not receive any mass from the VEV, so its amplitude
completely disappears when dotted by the pμ

2. Factoring out
the common −x1 sin θW þ x2 cos θW term, one finds that
the contribution from the difference between the two
polarization vectors,

ϵZ=γL;Rξ
− ϵZ=γLin ¼

0
B@

pμ
2ffiffiffiffi
p2
2

p

−ið−x1 sin θW þ x2 cos θWÞ mZðTÞffiffiffiffi
p2
2

p

1
CA;

ðA3Þ

still vanishes in the amplitude, which is also guaranteed
by Eq. (A1).

The above discussions only involve the longitudinal
polarizations of the vector bosons. For the Goldstone
channels, we have pointed out in Ref. [45] that these
Goldstone external legs can be replaced by a “vector

boson” with the polarization vector pμ
2

imV
, equivalent to

picking up the “quasipoles” corresponding to the ∝ pμ
2p

ν
2

terms in the Rξ propagator.
One might notice that the Ward-Takahashi identity is not

rigorously satisfied perturbatively if one only keeps the
tree-level part in Eqs. (17), (18), (32), and (33). This can be
fixed if we introduce the hard thermal one-loop corrections
to the gauge vertices (see p. 161 in Ref. [50]),

Γμðp; p1Þ ¼ m2
f

Z
Ωˆk⃗

dΩˆ
k⃗

4π

k̂μ=̂k

ðp · k̂Þðp1 · k̂Þ
; ðA4Þ

where mf is again given by Eq. (12), and k̂ ¼ ð1; ˆk⃗Þ and
ˆk⃗ · ˆk⃗ ¼ 1. The recovery of Eq. (A1) can be seen by dotting
the p2 ¼ p − p1 into Γμ:

ðp − p1Þ · Γðp; p1Þ ¼ m2
f

Z
Ωˆk⃗

dΩˆk⃗

4π

�
=̂k

p1 · k̂
−

=̂k

p · k̂

�

¼ Σðp1Þ − ΣðpÞ; ðA5Þ

where ΣðpÞ is the hard thermal one-loop correction on a
fermionic propagator of the active neutrino or a charged
lepton. These two Σ’s will help cancel the denominators in
the i

=pð1Þ−Σðpð1ÞÞ
propagators on both sides of the gauge vertex,

thus resuming the Ward-Takahashi identity in the bro-
ken phase.
To analytically calculate Eq. (A4), we define the dimen-

sionless Kμν by

Γμðp; p1Þ ¼
m2

fKμνða; bÞγν
p0p0

1

¼ m2
fKμνðα; β; θabÞγν

p0p0
1

; ðA6Þ

where

a ¼ p
p0

¼
�
1; α

p⃗
jp⃗j

�
;

b ¼ p1

p0
1

¼
�
1; β

p⃗1

jp⃗1j
�
;

θab ¼
p⃗ · p⃗1

jp⃗jjp⃗1j
: ðA7Þ

Therefore,

Kμνðα; β; θabÞ ¼
Z
Ωˆk⃗

dΩˆ
k⃗

4π

k̂μk̂ν
ða · k̂Þðb · k̂Þ : ðA8Þ
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Obviously, Kμν ¼ Kνμ, and Kμ
μ ¼ 0. It is then convenient to decompose Kμν into a combination of the tensor basis:

Kμνðα; β; θabÞ ¼ Atμtν þ Bðtμaν þ tνaμÞ þ Cðtμbν þ tνbμÞ þDaμaν þ Ebμbν þ Fðaμbν þ aνbμÞ þ Glμlν: ðA9Þ

Here t ¼ ð1; 0; 0; 0Þ is the reference frame vector of the plasma, and l ¼ ð0; p⃗×p⃗1

jp⃗jjp⃗1jÞ, which is the unit vector perpendicular
to the two input momenta. One might consider extra bases such as tμlν, aμlν, etc. However, if we rotate to the frame in
which l ¼ ð0; 1; 0; 0Þ, a ¼ ð1; 0; 0; αÞ, b ¼ ð1; 0; β sin θab; β cos θabÞ, we find that the tμlν, etc., factors all contain

integrals like
R
Ωˆk⃗

dΩˆk⃗
4π

k̂1k̂0;2;3
ða·k̂Þðb·k̂Þ, with an integrand which is odd under the transformation k̂1 → −k̂1. Therefore, all these

terms vanish.
We then contract the Kμν with tμtν, tμaν, tμbν, aμaν, bμbν, aμbν, and lνlν to determine the A–G coefficients. Together with

the traceless condition Kμ
μ ¼ 0, the expressions are

Ktt ¼ Kμνtμtν ¼
Z
Ωˆk⃗

dΩˆk⃗

4π

1

ða · k̂Þðb · k̂Þ ¼ Aþ 2Bþ 2CþDþ Eþ 2F;

Kta ¼ Kμνtμaν ¼
Z
Ωˆk⃗

dΩˆ
k⃗

4π

1

b · k̂
¼ Aþ ð2 − α2ÞBþ ð2 − αβ cos θabÞC

þ ð1 − α2ÞDþ ð1 − αβ cos θabÞEþ ð2 − α2 − αβ cos θabÞF;

Ktb ¼ Kμνtμbν ¼
Z
Ωˆk⃗

dΩˆ
k⃗

4π

1

a · k̂
¼ Aþ ð2 − αβ cos θabÞBþ ð2 − β2ÞC

þ ð1 − αβ cos θabÞDþ ð1 − β2ÞEþ ð2 − β2 − αβ cos θabÞF;

Kaa ¼ Kμνaμaν ¼
Z
Ωˆk⃗

dΩˆ
k⃗

4π

a · k̂

b · k̂
¼ Aþ 2ð1 − α2ÞBþ 2ð1 − αβ cos θabÞC

þ ð1 − α2Þ2Dþ ð1 − αβ cos θabÞ2Eþ 2ð1 − α2Þð1 − αβ cos θabÞF;

Kbb ¼ Kμνbμbν ¼
Z
Ωˆ

k⃗

dΩˆ
k⃗

4π

b · k̂

a · k̂
¼ Aþ 2ð1 − αβ cos θabÞBþ 2ð1 − β2ÞC

þ ð1 − αβ cos θabÞ2Dþ ð1 − β2Þ2Eþ 2ð1 − β2Þð1 − αβ cos θabÞF;

Kab ¼ Kμνaμbν ¼
Z
Ωˆk⃗

dΩˆ
k⃗
¼ Aþ ð2 − α2 − αβ cos θabÞBþ ð2 − β2 − αβ cos θabÞC

þ ð1 − α2Þð1 − αβ cos θabÞDþ ð1 − β2Þð1 − αβ cos θabÞE
þ ½ð1 − α2Þð1 − β2Þ þ ð1 − αβ cos θabÞ2�F;

Kll ¼ Kμνlμlν ¼
Z
Ωˆk⃗

dΩˆ
k⃗

4π

ðl · k̂Þðl · k̂Þ
ða · k̂Þðb · k̂Þ ¼ G:

Kμ
μ ¼ Aþ 2Bþ 2Cþ ð1 − α2ÞDþ ð1 − β2ÞEþ ð2 − 2αβ cos θabÞF −G ¼ 0: ðA10Þ

It is convenient to calculate all the integrals in Eq. (A10) within the l ¼ ð0; 1; 0; 0Þ, a ¼ ð1; 0; 0; aÞ, b ¼
ð1; 0; b sin θab; b cos θabÞ framework. We list the results below:
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Ktt ¼
artanh

�
2ð1−αβ cos θabÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2þβ2−α2β2þαβ cos θabðαβ cos θab−2Þ

p
1þα2þβ2−4αβ cos θabþα2β2 cos 2θab

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2 − α2β2 þ αβ cos θabðαβ cos θab − 2Þ

p ;

Kta ¼
artanhβ

β
; Ktb ¼

artanhα
α

;

Kaa ¼
ðβ − α cos θabÞartanhβ þ αβ cos θab

β2
;

Kbb ¼
ðα − β cos θabÞartanhαþ αβ cos θab

α2
;

Kab ¼ 1;

Kll ¼
artanhβðβ − α cos θabÞ þ artanhαðα − β cos θabÞ

α2β2sin2θab

þ artanh

�ðαβ cos θab − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2 þ 4β2 − 2α2β2 þ 2αβðαβ cos 2θab − 4 cos θabÞ

p
1þ α2 þ β2 þ αβðαβ cos 2θab − 4 cos θabÞ

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α2 þ 4β2 − 2α2β2 þ 2αβðαβ cos 2θab − 4 cos θabÞ

p
4α2β2sin2θab

: ðA11Þ

By plugging Eq. (A11) into Eq. (A10), we acquire eight
equations with seven unknown parameters. We can solve
seven of them to acquire the values A–G, and then
Kμνðα; β; θabÞ is determined through Eq. (A9).
When, however, p⃗ and p⃗1 are nearly parallel to each

other, or when one of them is extremely small, the above
method suffers from instability due to the near degeneration
of the matrix corresponding to the linear equations in
Eq. (A10). To cure this problem, when p⃗ and p⃗1 are
nearly parallel to each other, we estimate Kμν by taking the
θab → 0 limit,

Ktt;θab→0 ¼
artanhα − artanhβ

α − β
;

Kll;θab→0 ¼
ðα2 − 1Þβ2artanhα − α2ðβ2 − 1Þartanhβ

2α2β2ðα − βÞ −
1

2αβ
;

ðA12Þ

or by taking the θab → π limit,

Ktt;θab→π ¼
artanhαþ artanhβ

αþ β
;

Kll;θab→π ¼
ðα2 − 1Þβ2artanhαþ α2ðβ2 − 1Þartanhβ

2α2β2ðαþ βÞ þ 1

2αβ
:

ðA13Þ

Then Kμν can be expressed as

Kμν;p⃗kp⃗1
ðα; β; θabÞ ¼ Ktttμtν þ Klll1μl1ν þ Klll2μl2ν

þ K⊥ða − tÞμða − tÞν
þ Ktt − Kta

α2
½ða − tÞμtν þ ða − tÞνtμ�;

ðA14Þ

where l1 and l2 are two unit vectors perpendicular to p⃗
without the time component, and also l1⊥l2. K⊥ ¼ 2Kll −
Ktt due to the traceless condition. When, in the other case,
and without loss of generality, α > β and β ≪ 1, we can
estimate Kμν by taking the β → 0 limit to acquire

Ktt;β→0 ¼
artanhα

α
;

Kll;β→0 ¼
αþ ðα2 − 1ÞartanhðαÞ

2α3
; ðA15Þ

and again

Kμν;β→0ðα; β; θabÞ ¼ Ktttμtν þ Klll1μl1ν þ Klll2μl2ν

þ K⊥ða − tÞμða − tÞν
þ Ktt − Kta

α2
½ða − tÞμtν þ ða − tÞνtμ�:

ðA16Þ

If one wants a gauge-invariant result whenever the HTL
corrected dispersion relations are considered, Eq. (A4)
should be included.We can estimate its contributions through
a power-counting consideration. Neglecting Eq. (A4) will

introduce a relative error of ∼
m2

f

m2
N

in the final results.
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m2
f

m2
N
≲ 1 inducesmN ≲ 0.15T, since theW=Z=γ channels open

up at T < Tc, and 0.15Tc ¼ 24 GeV. Therefore, our inter-
ested range,mN > 50 GeV, is sufficiently safe if we neglect
the vertex thermal correction terms.
The above discussions depend on the assumption that

Kμν ∼ 1. However, the artanh functions in Eq. (A10)
diverge when α, β → 1. This can be realized by observing
the denominator of Eq. (A8), which can be close to zero
when α and β approach 1. Fortunately, this usually happens
when a largely boosted “hole” is created. The divergence is
significantly suppressed by the “renormaliztion factor”

Zlðp1Þ ¼ ðp0
1
Þ2−p⃗2

1

2m2
f

∝ e
−p⃗2

m2
f in Eq. (26). Therefore, the final

integrated rate nearly remains intact, although in this paper
we still reckon according to the Eq. (A4) terms.
In fact, our practical evaluation shows that the simpler

tree-level vertex method gives a final result not much
different from the gauge independent data shown in this

paper. The Goldstone equivalence gauge also displays
another advantage in the tree-level vertex approximation:
If we fix on the Rξ gauge, it might introduce a discontinuity
of the total effective decay rate over the crossover temper-
ature Tc up to tree level. Notice that below Tc, the
Goldstone boson fraction’s contributions are collected
within the pμ

2p
ν
2 terms in the gauge boson components,

while when T > Tc, all the Goldstone contributions
originate from the Yukawa couplings. A continuous tran-
sition between these two coupling formalisms requires
Eq. (A4), and neglecting this will introduce a discontinuity.
Therefore, we can see that attributing all of the “Goldstone
contribution” of a vector boson to the Goldstone Yukawa
couplings, just as we did in the Goldstone equivalence
gauge, will automatically include the key part of the
[Eq. (A4)] corrections to connect the two parts.
Therefore, compared with the Rξ gauge, the Goldstone
equivalence gauge includes more hard thermal loop cor-
rections on vertices up to a tree-level evaluation.
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