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1 < 2 processes of a sterile neutrino around the electroweak scale
in a thermal plasma
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In this paper, we apply the Goldstone equivalence gauge to calculate the 1 <> 2 processes of a sterile
neutrino in a thermal plasma below the standard model (SM) critical temperature 7. =~ 160 GeV. The
sterile neutrino’s mass is around the electroweak scale, 50 GeV < my < 200 GeV, and the acquired
thermal averaged effective width I, does not depend on the gauge selection and is continuous around the
crossover. We also apply our results to perform a preliminary calculation of leptogenesis.
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I. INTRODUCTION

Sterile neutrinos interacting with the plasma background
of the early Universe can become a potential solution to
some cosmological particle physics problems. A prominent
example is leptogenesis [1]. The CP-violation effects
of sterile neutrino interactions with light leptons give rise
to the lepton-number asymmetry in the plasma, and the
baryon-number asymmetry accordingly appears through
the sphaleron effects (for some early works, see
Refs. [2-6], and see Refs. [7—10] for reviews). The sterile
neutrino can also become a portal to dark matter. Being a
variation of a secluded dark matter model, a “sterile-
neutrino-philic dark matter” model [11-18] gives a differ-
ent relic density result when compared with the standard
weakly interacting massive particle (WIMP) models [19].
In Ref. [20], we also studied a feebly interacting massive
particle (FIMP) [21] version of such a model. Sometimes,
sterile neutrinos themselves can also become the dark
matter candidate. In all these examples, a reliable calcu-
lation of the sterile neutrino’s interaction with the thermal
plasma is crucial for precise predictions of the related
physical observables compared with the experimental data.

When my > T, ~ 160 GeV, where my is the sterile
neutrino mass and 7. is the electroweak crossover temper-
ature [22], there are plenty of reliable discussions in
the literature to calculate the sterile neutrino’s production
[23-31]. Since the crucial temperature 7 ~ my is well
above the crossover temperature, only the Higgs doublet
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and the active leptons participate in the 1 <> 2 processes.
The Higgs components receive a universal thermal mass
correction, which is easily calculated. For lighter sterile
neutrinos, successful leptogenesis can also be acquired
through the resonant effects [32-38]. When my < T, at
T~my <T,. the thermal mass terms can be safely
neglected, since the vacuum expectation value (VEV) of
the Higgs boson becomes fairly close to the zero-temper-
ature value ~246 GeV, and the boson’s behaviors are
similar to those in the zero-temperature situation [39].

In the literature, there seems to be a gap where my ~ T ...
In this range, the calculation is plagued by the intricate
thermal corrections to the gauge and Higgs sectors. In
Ref. [40], the authors estimated the U(1), x SU(2), gauge
boson contributions by replacing them with the Goldstone
degrees of freedom artificially assigned with the similar
mass of the Higgs boson. We also applied this method in
the corresponding calculations of our papers [12,20]. Such
an ansatz might be inspired by the famous “Goldstone
equivalence theorem” at zero temperature, which requires
more investigation in the thermal plasma case. A safe
procedure is to return to the original form of the finite-
temperature propagators to integrate all the branch cuts and
poles that may appear, as described in Ref. [41-44].
However, the procedures to follow there are formidable,
and the relationship between the Goldstone and gauge
boson becomes more obscure. Another problem is that the
invariant squared mass of the sterile neutrino, which is
denoted by K? in Refs. [41—44], had been neglected around
T. there, so their method is not suitable to our K2 =
m% ~ T? range of interest.

In Ref. [45], we proposed a method to decompose the
massive gauge boson propagators in the thermal plasma
with the Goldstone equivalence gauge. Poles indicating the
“transverse” and “longitudinal” degrees of freedom arise as
usual, and a branch cut which closely resembles two
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massless poles was identified as the Goldstone boson’s
fragment. When T > T, such a branch cut fragments into
two actual poles corresponding to the Goldstone boson
particles, and when 7 = 0, this branch cut completely
disappears. In the finite-temperature case, the longitudinal
polarization is also some intermediate state between the
so-called “plasmon” and the Goldstone equivalent state. We
made an analogy that the longitudinal polarization will
“spew out” a fraction of the Goldstone boson in the finite-
temperature environment. This helps us to include all the
contributions from the transverse, longitudinal, Higgs, and
Goldstone degrees of freedom correctly, and it helps us to
clarify the relationship between the Goldstone and the
gauge bosons in the plasma. We note that Ref. [45] also
provides a typical R; method, which is equivalent to our
Goldstone equivalence gauge results if the gauge vertex
hard thermal loop (HTL) corrections denoted in Eq. (A4)
are included. We will consider these corrections in our
Egs. (17) and (32) for the gauge independent results.

In this paper, with the method we have developed in
Ref. [45], we will calculate the sterile neutrino 1 <> 2
processes near the electroweak crossover temperature
my ~T ~T,.. We will also roughly discuss the leptogenesis
induced by these processes. A complete calculation of the
sterile neutrino’s interaction in the early Universe should
also include the more complicated 2 <> 2 scattering proc-
esses. In many cases, when T > my, and when the [-H-N
Yukawa couplings are sufficiently large, yy = 1078, the
thermal equilibrium of the sterile neutrino does not require
a detailed calculation. When the temperature drops down to
the T ~ my scale, the out-of-equilibrium effects start to
arise, and these 2 <> 2 processes are usually suppressed
rapidly due to an additional number-density factor com-
pared with the 1 <> 2 processes. With these considerations,
we leave the 2 <> 2 processes to future study and do not
consider their contributions at this stage. For brevity and
simplicity, we also do not consider the contributions
resumming the interchange and emission of the soft bosons
[46-48] (sometimes called the LPM resummation) in
this paper.

We enumerate the channels and list the basic formulas in
Sec. II. Details on phase space and thermal integrals are
presented in Sec. III. Numerical results and a preliminary
calculation of leptogenesis are displayed in Sec. IV.
We summarize this paper in Sec. V.

I1. BASIC CONCEPTS AND CHANNEL
ENUMERATION

The Lagrangian for sterile neutrinos is the standard one:
LD Loy + Lnkin + LnNmass — \/EYNUHLN; +H.c., (1)

where H is the Higgs doublet; L;, with i = 1, 2, 3, are the
lepton doublets of three generations; and N; are the sterile

neutrinos. N; can be either Majorana or (pseudo-)Dirac
spinors, and the corresponding kinematical and mass terms
Lnin + Lxmass differ by a factor of % For simplicity, here
we only study the one Dirac sterile neutrino case. The
interaction only involves one massless lepton. A general
situation can be inferred from our results by simply
multiplying some factors. Therefore, the Lagrangian we
are relying on is given by

LD Loy + iNPN — myNN — 2y HIN +He., (2)

where my is the mass of the sterile neutrino.

Above the standard model (SM) critical temperature of
the crossover T > T, =~ 160 GeV, the 1 <> 2 processes of
the sterile neutrino have nothing to do with the W/Z boson.
Only the Higgs doublets including the Goldstone compo-
nents participate in the couplings. The whole process is
quite standard: the thermal effects correct the effective
Higgs mass term

2
6m%~1,thermal = (g% + 39% + 4yt2 + 8&) % ’ (3)
where g, g, are the electroweak gauge coupling constants;
v, is the top Yukawa coupling constant; and 4 is the four-
Higgs coupling constant. Leptons also receive thermal
mass corrections. In the thermal plasma, each pole in the
leptonic propagators is split into two objects, called a
“particle” and a “hole.” In Ref. [23], both of these two
objects are combined into one single particle with the
universal thermal mass correction to estimate the phase
space. In this paper, we abandon this approximation, and
we earnestly sum over each contribution from these two
degrees of freedom.
Below the critical temperature 7 < T,, the vacuum
expectation value (VEV) is estimated to be o(7T) =

94/ 1 — %’ where v, = 246 GeV. This opens the sterile

neutrino’s oscillation into a highly off-shell active neutrino,
and then it decays into a W/Z gauge boson plus a charged
lepton/active neutrino. An on-shell W/Z boson can also
decay into a pair of leptons, and the active neutrino product
can also oscillate into a sterile neutrino through the VEV.

The dispersion relations (or the “on-shell” equation)
of the W/Z bosons below the critical temperature are
complicated. Together with the dispersion relations of the
leptons and the conservation of energy and momentum
equations, we have four equations to solve the phase space.
Three of them are transcendental equations. Later, we are
going to describe the details to solve them.

In this paper, we rely on the Goldstone equivalent gauge
[49] to calculate the sterile neutrino’s productions in the
thermal plasma [45] below the critical temperature T ..
Within this framework, each Goldstone degree of freedom
is attributed to two parts: one is hidden inside the extended
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polarization vector of a longitudinal vector boson, while the
other behaves like a massless particle during the calcu-
lations and is regarded independently as a Goldstone
boson’s fraction. We enumerate and include all of the
gauge polarizations and the Goldstone boson fraction’s
contributions. In the Appendix, we will also show the
equivalence between this gauge and the usually familiar
R; gauge.

In the following subsections, we will describe the details
for each channel. Before starting them, we also note that we
ignore some of the subdominant tachyonic branch cuts in
the bosonic propagators, as illustrated in our Ref. [45]. As
in Ref. [23], the subdominant branch cuts in the leptonic
propagators are also neglected.

A. W channels

The Feynmann diagram of a sterile neutrino N decaying
into a W boson and a charged lepton [~ is illustrated in
Fig. 1. Since we are discussing a Dirac N, it is possible to
invert the arrows there to reformulate it into an N-decay
diagram. We neglect the antisterile neutrino’s decay in our
paper, since the results are completely symmetric, by
neglecting the CP effects. The momentum flows are
also defined in Fig. 1 and are defined relative to the
plasma background reference—i.e., the plasma’s four-
vector velocity

w = (1,0,0,0). (4)

When, e.g., p¥ < 0, the same diagram can also be inter-
preted as a charged lepton’s fusion with the sterile neutrino
to generate a W boson, which is the dual process of a W+
decaying into a N, [T pair. This is the “inverse decay”
process of a W boson, and we denote it with “ID” for
abbreviation later. The thermal equilibrium condition
guarantees the equality of the results from both aspects
of the “decay” and “inverse decay” processes of a W boson.
Therefore, Fig. 1 can summarize all the possible 1 < 2
processes of an (anti)sterile neutrino.

FIG. 1. N — W'~ 1 <> 2 channel. Since we have applied the
Goldstone equivalence gauge, the Goldstone contribution is
explicitly contained in the polarization vector, so we also need
to calculate the Goldstone part of the diagrams.

The dispersion relation of a W boson is given by

FW,(L,T)(p2> = P% - [mW(T)]Z - H{V,T(Pz) =0, (5)

for transverse and longitudinal polarizations, respectively,
where

2m2 p2 pO pO
Y (ps) = - 22 2(1 —2Q0<—2>),

3 152l 2\l
1
Hyvy(l’z) = ) (2’"%22 - H{V(Pz))’ (6)
and
1, x+1
:—1 _, 7
Qo(x) > (7)

The VEV-dependent W-boson mass is given by

_ 9v(T)

(1) =225, (8)

where ¢, is the weak coupling constant, and the Debye
thermal mass my, takes the form

11
m%z = 6 Q%Tz- )

Ignoring the lepton’s VEV-dependent mass, since it is
much smaller than the thermal mass term, the thermal-
corrected dispersion relation of the active lepton is given
(see p. 140 in Ref. [50]) by

Fi(p1) = [A(p)A-(p2)] "' = 0. (10)

where

As(py) = (p? = 17|

m> 0 0 13 -1
" [(1 :F&) 1np;)+7|{’1|i2}> .
2|pi| |P1] pi— Pl
(11)

Here,

2 2
g1 +392 T2. (12)

Generally, there are four solutions to Eq. (10). When
2

pi > mj, this means a “particle” for p} >0 and an
“antiparticle” for p) < 0. When pi < m7, this indicates
a “hole” for p? > 0 and an “antihole” for p? < 0.

The energy and momentum conservation laws are
given by
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P’ =pY+pd. (13)

2

p3 = P>+ pi —2|pl|p1| cos 6, (14)

where 6, is the angle between p and P1. The subscript “p”
denotes the plasma, which means that this is the angle
measured in the plasma rest frame. Given the sterile
neutrino’s energy and momentum p°, p, and fixing the
6,, there are four unknown parameters—p?, p3, |pil,
|Po|—in just four equations: (5), (10), (13), and (14).
Solving these equations might give a set of solutions. If p{
or p9 is smaller than zero, it means that a lepton or a W
boson becomes an initial-state particle. We need to find all
of the solutions to sum over all their contributions to the
“interaction rate” yy.

With the acquired p; and p,, we can then calculate
the amplitude. In the Goldstone equivalence gauge, the
“polarization vector” of a gauge boson is extended to a
five-component vector €’} (p,) = €V (p2), n = p. 4,
to include the Goldstone component (where n = 4 denotes
the Goldstone component). When contracting the indices,
the metric tensor [¢"] = diag[l,—1,—1,—1] is also
extended to [¢""] = diag[l,—1,—1,—1,—1]. The trans-

verse polarization is the same as in the R, gauge with

eV (py) = e¥%(p,) =0, and €V (p,)pa; = 0. The longi-

tudinal polarization €}\"™*(p,) = e}'" (p,) is given by

_/P
W _ nypy 12 15
€Lout<p2) - _l'mw(T) > ( )

P

where n = (1, - A ‘) for the convention of (k*) = (k°, l_c')

for any four-dimensional momentum k.

For the lepton spinors, we need to define
p=n(1x ), (16)
: < D1

where for a “particle™—i.e., pi > mj—the “+” sign is

9

adopted, and for a “hole”—i.e., p} < mj—the sign is
adopted. When p{ > 0, a lepton (either a “particle” or a
“hole”) is created, and a &*(p,) appears in the amplitude.
When p? < 0, an antilepton (either an “antiparticle” or an
“antihole”) is destroyed, and a ?*(—p;) appears in the
amplitude.

The amplitude of the gauge component, as denoted in the
left panel of Fig. 1, then becomes

Ly —w(p),

iMhy, = —yyu(T )j_‘ @ (p)lr + 1" (p. pIPL I

(17)

when p? > 0 for the decay channel. I'**(p, p;) is the HTL
correction on the gauge vertex introduced for a gauge-
invariant result. Its definition is given in Eq. (A4), followed
by the detailed evaluation processes in the Appendix.
If p? <0, we only need to change #*(p;) into 7°(—p,)
for the W boson’s inverse-decay channel. The Goldstone
component of the amplitude, as denoted in the right panel
of Fig. 1, is written to be

iMiy, = —V2yyit* (1) Pru’ (). (18)
Again, when p? <0, #(p;) needs to be replaced with
7(—p1). In the above equations, P “FTV, and the

definition of p;r is
pir = (Piy: Pir)

_(<l_%)po,<1+@>ﬁ), (19

where

R

=——In —. (20)
2(pl" p° - 1Pl
The complete amplitude should take the form
el (P2) (IMG). (1)

where n =0, 1, 2, 3, 4, t = &+, Lout. The squared ampli-
tude should also take the statistic factor and the “renorm-
alization constant.” The complete result is

AWt - Z Mn M*melnetm*fF< )

r.s=1.2

xfB( )z,<p1>zm<p2> (22)

where t = +, Lout indices are not summed by the Einstein
sum rule, and

e)C
= , 23
f F(x) e+ 1 ( )
ex
=|—, 24
Fale) = = (24)
and the “renormalization factors” are
2p9
ZW(T.L) (Pz) = m, (25)
2 oY
0V2 _ =2
pPi)"—p
Zi(py) = P2 (26)
myg
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B. Z/y channels

Since W and B bosons receive different thermal correc-
tions, this disturbs the mixing angle for the “on-shell” Z/y
bosons. The mixing angles of the on-shell Z/y bosons
depend on their energy and momentum, so it is difficult to
identify which is the Z or y degree of freedom. The
corresponding diagram including both Z/y and the neutral
Goldstone contributions are presented in Fig. 2.

The VEV-dependent mass matrix for the B/ W3 field, or
Z/y particle, is as usual:

(v(7))? < i

. _glgz). (27)

-919 B

Thermal effects correct the B and W? mass terms, respec-
tively, and therefore the thermal mass matrix is given by

Z/y H?,L(p2) 0
77 (pa) = ( 0 Y, () ) . (28)

where IT}Y, (p,) has already been given by Eq. (6). 1%,
changes the mpg, in Eq. (6) into mg;,

, 11,

mg; = 6 91 T2 (29)

The dispersion rate of this mixed Z/y is given by the
“secular equation,”

7! (py)) =0,
(30)

Fzy,r.0)(P2) = det(p3lry, — m%/y(T)

for a transverse/longitudinal Z/y vector boson. I, is the
2 x 2 identity matrix. For a given p, as a solution of

~m3,(T) =TI7/{ (p2) has a
zero eigenvalue, and the corresponding eigenvector is

denoted by x = (}!), where xi+x3=1. In the zero-

temperature case, x7 = —sinfy, x5 = cosfy for the Z

boson, and x| = cos Oy, x;, = sin @y for the photon, where
Ow 1s the Weinberg angle. Since the neutrino does not
interact with a pure photon, we can calculate the inner
product x - x? = —x; sin@y, + x, cos @y, to extract the Z
part of the “on-shell” mixed boson to calculate its inter-
actions with the leptons. The dispersion relation of a lepton
and the energy-momentum conservation law is exactly
the same as with Egs. (10), (13), and (14) in Sec. IT A.
Solving these equations with Eq. (30), we then acquire all
the “on-shell” p; and p,.

The transverse polarization vectors of a Z/y boson
Z/yn
€y

Eq. (30), the matrix p3l,,,

are the same as those of the W boson " to satisfy

pzﬂei/ ™ =0, = 0, and pye”/"" = 0. The longitudinal

polarization vector is given by

V4 V4
e (p2) = €Ll (pa)
v !’% Y2
— - = n2
— ny-pa ) (31)

—i "\’?%) (—x; sin By + x, cos Oy)

Compared with Eq. (15), the extra (—x; sinfy + x, cosOy )
factor in the Goldstone component indicates that only the Z
component of the vector boson has “eaten” some Goldstone
boson; the photon part of this vector boson has not
devoured any Goldstone boson’s fraction.

Then, we are ready to write the amplitudes:

. B
lMlZl/y = _YN”(T)ﬁ“‘ (P1)Ir" +T¥(p. p1)]PL
w
X ——u"(p)(=x, sin By + x, cos Oy ), (32)
Pir
iMy,, = —yni* (1) Pru’(p). (33)

The total result of the squared amplitude is

Azfya = z M3, §7y€tzn/y %”fF( >
r,s=1.2
0
xfB( )zxpl)zm,(pz) (34)

where the “renormalization constant” Zz,z/rou)(P2) 18
calculated to be

2p)

Zzpyrn)(P2) = Z/7.on shell g (35)
2T
Zly
and H(ZT/Q‘)’LE}"SH( ps) = 7 M o ff’ )%, so that
oMz 1 (p2) Iy, (p2)
HZ/}/.OH She]l(pz) — xz T,.L xz T.L . (36)
T.L 1 ap(z) 2 8p(2)

C. Goldstone channels

Besides the Goldstone components in the Z; and W,
polarization vectors, the Goldstone boson’s fragments also
contribute to the 1 <> 2 rate. Rigorously speaking, these
remains are no longer a “particle,” since they are “branch
cuts” rather than “poles.” However, since the imaginary
parts peak significantly at pJ = +|p5|, we can apply the
approximation to regard them as massless bosons. The
corresponding Feynman diagrams are the same as the
second panels in Figs. 1 and 2, with the only difference
being that the Goldstone boson’s components are no longer
bounded with the longitudinal polarizations of the W and Z
bosons.
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FIG. 2. N — (Z/y)v1 < 2 channel.

The dispersion relation of a “massless” Goldstone boson
is simple:

=(p3)* - p3=0. (37)

Other equations are the same as in the previous subsections.
After solving Egs. (10), (13), and (14) with Eq. (37), we
then write down the final result of the squared amplitude

FG(Pz)

_ V
N N
~h
N
N\
pz\ N
FIG. 3. N — hvl < 2 channel.

P\, (P
Ags = Z My M fr (7])}03 (%) Zi(p1)Zs=(p2)

rs=12
(38)

for the charged Goldstone channel, where Zg;:(p,) is
calculated and defined by

P = [mw(T)* =1} (py) + i€ p5 + ie
and the final result
Ao = 3 My M g o(2 )f( )zmp])zGo(pz) (40)
for the neutral Goldstone channel, where
Zeo(ps) = 2|p2| i+ { (p3 =TI + ie)(p3 — 112 + i€) — (T1;?)* i (1)
= [mz (1)) =1} + ie)(p5 — P + ie) — (MI%)* p5 + ie
A+
Here, T) = Y2228 (7)), and T2 — T2
my(T) = Y52 0(T) mi(T) = (g} + 393 +4y7 + 81) <. (44

I} = 2 sin? 0y + 1)) cos? Oy,
117% = 112 cos? Oy, + 1YY sin? Oy,

12 = Y cos Oy sin Oy, — IT2 cos Oy sin Oy, (42)

D. Higgs channels

The Higgs channel, as illustrated in Fig. 3, is quite
straightforward, since the Higgs boson only receives a
trivial mass correction from the thermal environment.
Below the T, m;,(T) « v(T), so

mh(T) =myoy/ 1 — ﬁ (43)

and above the T, m,(T) becomes

16

where my,, = 125 GeV. Therefore, the dispersion relation
of a Higgs boson is simply

Fu(p2) = P% - mh(T)2 =0. (45)

Again solving Egs. (10), (13), and (14) with Eq. (45) for the
valid p; and p,, we then write down the amplitude,

iM,, = iyyit* (p1)Pru’(p). (46)

The total result of the squared amplitude is

= > MyM;fr <pl)f3 <p2> Z(p1)- (47)

r,s=1,2
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II1. PHASE SPACE AND THERMAL AVERAGE INTEGRATION

In the thermal background, the Lorentz invariance is broken, so we cannot directly “boost” the center-of-momentum
reference frame to calculate the 1 <> 2 processes of a sterile neutrino at rest. We can only rely on the definition of a width at

an arbitrary reference frame:

1/d3ﬁ1d3132 Ax
I

209 (20)f

2p))(2p9)

(272)*6*(p — p1 — p2)

1 &*p, Ay
_ 2V4S(p0 — pO — pO
575 | Gt 200 = =

1 [2xsin6,p3d|p|do,

Ax

- 2p0 (27)°

where X = [W, (T, Lout)|, [Z/y, (T, Lout)], G*, G°, h.
Note that in the thermal plasma rest frame, there is still
the symmetry of the system rotating along the p axis, so the
¢ parameter of the spherical coordinate is eliminated and
replaced with a 2z factor. To integrate out the 6 function,
we calculate

opY | opy _ Py . 9ps 0P| (49)
o|pi| 8|p1\ a‘Pl| 9|p>| 0|l

B, - .
6};?} is extracted from the momentum conservation law

[Eq. (14)], and the result is

o|p Pl — |p|cos@
9| p| | P2

ap? apl .
Tgil and ng\ can be extracted from the corresponding

dispersion relations [Egs. (5), (30), (37), and (45)].
Generally, if the dispersion relation of a momentum py
is written as Fy(py) =Fx(p},|py|) =0, where X = [, [W,
(T, Lout)], [Z/y,(T, Lout)], G, H, then

OFx(py)
s T (51)
opyl  2alp)”

Y

Therefore, Eq. (49) can be reduced to

1 / 27sin0,p3d0, Ay
I’

2p° @2r)°  (2p)(2pY)
(27)*
OF(p1) IFx(p2) R N (52)
TR |P1]=[p|cos 8,
9F () T OFx(po) 7]
(')p(l) i)pg

The thermal average integration is then simple:

IS (27)*5(p° — p§ — pY). (48)
|
35 0
Yx = /(6217’;36_%130 (53)

This yx will enter the Boltzmann equation.

Straightforwardly applying Eqs. (52) and (53) raises a
problem. For each 6,, sometimes there are multiple
solutions for the pY, pi, p9, P, values. One reason is that
when a particle decays to every direction in its center-of-
momentum frame, and while boosted to the plasma-
reference frame, one angle can pick up multiple different
momenta. To address this problem, one can adjust the
integration order to perform the calculation in the (inverse)
decayed particle’s rest frame.

For example, for a sterile neutrino’s decay process, we
rely on the N-rest frame by boosting p;, p, into py, pan-
We then use p;,y as the input parameters to solve the
various dispersion relations. We next need to calculate the
Jacobian and delta function’s factors in the new py, pan
parameters. We take the x axis along the p direction, and
without loss of generality, let p; be located in the x-y plane,
and we have

Py = 1(p) = Plp1| cos b)), (54)
[PinlcosOy = y(|p1| cos 8, — BpY). (55)
|PinlsinOy =[p;|sin6,, (56)
where f = %, y = 11 = A tedious calculation finally
shows that
@:% %819(1) 90x 0lp| (57)
g, 00, 0poo, 0|p| 00, "

where

095003-7



JIANG, TANG, YU, and ZHANG

PHYS. REV. D 103, 095003 (2021)

TABLE I. Channels to be plotted and their meanings.
Alias Meaning Alias Meaning
WTD N < WEi™ ZyLID Nv < Z;/yL
WTID NIt < Wf G*D N < G'I~
WLD N < Wil G*ID NG < [I",NI" - G
WLID NIt < W} G°D NG’ < v, Nv < G°
ZyTD N < Zy/yrv - GYID NG® < v, No < G°
ZyTID  No < Zy/yr HD N < hv
ZyLD N < Z [rv HID Nh < v, No < h
89N o 1_5%7(_|l_51| +p(1)ﬁcosep) Sinep 1
- - = . 3 . 9
90, [*(P}f —1Pi|cosd,)* + pisin® 6,]: (=siny)
(58)
Oy —pipysin® 0, 1
ap(l) [72(p(1)ﬂ_ |[_51|C059p)2 +ﬁ% sin2 ep]% (_ SinHN) ’
(59)
00y _ pY|B1|py sin? 0, 1
0Pl (P38 — Pilcos,)> + pisin? 0,2 (—sinfy)’
(60)
90, opdi= | o= | L opl = ’
o= (g(}‘ |1 —(cl%g”l’z +%§>‘|P|0059p
op pl|pi|sin@
e
P =Py _OTJ‘EO\ﬁiI |P2| + |p| cos @,
and % has been already calculated in Eq. (51). Then

we can replace the d@, with doy % in Eq. (52) to calculate

this integral.

Inverse-decay processes are similar. For example, if we
calculate the W boson’s inverse decay process NIT — W,
we need to adjust the integration order of Egs. (52) and (53)
to integrate out the d°p and d°p, phase space at first, and
finally to calculate the d° p, integration. We boost the W+’s
rest frame to transfer to py, p,w integration by replacing
the corresponding indices in Egs. (54)—(62) to calculate the
similar Jacobian and delta function’s factors. With this
method, all the 1 <> 2 channels can be computed.

Let us summarize the numerical algorithm processes.
To calculate one channel—e.g., N <> W/—one needs to
follow these steps:

(1) Fixing p°, p, and @y, solve pQy, pSy. Pin. and poy.

The equations to be solved are Egs. (5), (10), (13),
and (14). They are defined with the parameters p(l),

P, P1. P> and 6, and these two sets of parameters
are mediated by Egs. (54)—(56).
(2) With the acquired numerical solution of p;, p,,
and 6, calculate the total squared amplitude through
Eq. (22).
(3) Changing 0y, utilize Egs. (52) and (57) to com-
pute FW,T /L+
(4) Change p to calculate Eq. (53).
To calculate, e.g., the NI <> W channel, we first need to
integrate out p and p;. Thus, we exchange p and p, in the
above items, and we also change the subscript N to W.
Therefore, we are also able to calculate the inverse decay
rate of a W boson below its threshold.

IV. NUMERICAL RESULTS

We have scanned the my € [50,200] GeV range by an
interval of 1 GeV. For the leptonic sector, both the
“particle” and “hole” channels have been included. For
the bosonic sector, all the transverse and longitudinal vector
bosons, and the Goldstone and Higgs channels have been
considered. We have enumerated all the 1 <> 2 possibil-
ities; however, it is unnecessary to plot all of them. We sum
over the results into 14 channels, and we show their
meanings in Table I. Notice that the channel N(W/Z) <>
[~ /v is kinematically forbidden in our interested parameter
space, so it is neglected. Compared with the production rate
Yx, it is more convenient to use the averaged decay width

&b
P ONTx J e
TR oM ey
N 2 272 K2<T)

0
P
TFX

(63)

where gy is the degree of freedom of the sterile
neutrino, and it is canceled by the same factor in ny/.

The comparison of this parameter with the Hubble constant
H ~1.66,/9, [6—21 can help us judge whether the sterile
P

neutrino starts to deviate from the thermal equilibrium
conveniently.

In Fig. 4, we have selected the masses my = 50, 100,
150, and 200 GeV to plot their thermal averaged widths
normalized by W depending on the temperature 7". Just

below the critical temperature 100 GeV <T < T, the
longitudinal W/Z and the Goldstones play crucial roles.
These two kinds of channels are complementary, and they
can be compared with the corresponding parts of Fig. 1 in
Ref. [40], in which large areas had been kinematically
forbidden within the 100 GeV < T < T, and 50 GeV <

~ < 100 GeV ranges. Our calculations do not give such a
remarkable suppression. To show this clearly, we also plot a
total thermal-averaged width [, = >_, I'y in Fig. 5. There
we can see a similar suppression of the total thermal-
averaged width when 7 > T, compared with Fig. 1 in
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FIG. 4. Thermal averaged widths plot normalized by |
illustrated in Table I.

Ref. [40], while when T < T, only a slight and obscure
suppression appears in roughly the same area.

In the rest of this section, we show a preliminary
calculation of leptogenesis with all the results above.

. WTID
N WLD

. . WLID 4
N Z4TD
Z4TID
Z/LD
ZHLID |}
N , G*D
G*ID
"""\ \ ’ G'D
GID

HD
HID
total

10° b

% /GeV

=
e
n

IA‘X/ lyn |
S

10'3 L 1 1

. I
300 500

T/GeV

. .
100 200 600

for my = 50, 100, 150, 200 GeV masses. The meanings in the legends are

the baryon-number asymmetry through the sphaleron
effects. To explain the observed ratio of baryon asymmetry

normalized by the photon number density |17z —M
V

— \n —ng|
Above the sphaleron decoupling temperature—i.e., when ~ 0% 10 ' in our current Universe, 5, is then
T > Ty, =131.7 GeV [51]—the B+ L number is not  calculated to be 2.47 x 1078 [37] at T =Ton =
conserved, so the lepton-number asymmetry generated 131.7 GeV. Including the 2 <> 2 washout terms, the
from the sterile neutrino 1 <> 2 processes is ported to  Boltzmann equations are given by
|
n,Hy dn n
T (1 - N)[ YD+ 2(rus + 7as) + 4(ra + a0l
z dz ny
n,Hy dn n 2 4 Y
e K = l)ecp(Z) - —m} — - [2(7% +7a0) + -5 (Vs +7a5) | (64)
z dz Ny 3 3 eq

where ny = o "oz =", and yp = ) xyx is the summation
over all the 1'< 2 channels defined in Eq. (53). We shall
neglect the 2 <> 2 contributions yy; y, 4.4, in this paper,

[

since we only calculate the situation in which the sterile
neutrino is initially in thermal equilibrium with the plasma
when T > my. When T ~my or T < my, such that the
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500 Thermal Averaged Widths

180
160 04
140 -0.8
120
100

“ -2.0

50 100 150 200 250 300 350 400 450 500

T/GeV

my /GeV
2 /GeV

lg(f‘tot/ |yN |

FIG. 5. T\ = >.xT'x normalized by b Iz’ depending on the
temperature 7 and the sterile neutrino mass my. To keep the
image contrast in the other areas where the 1 <> 2 processes are

not suppressed kinematically, we just keep lyf[‘:“z >1.0x1073 GeV

in this image. Therefore, most of the red parts in this image are
actually much smaller than those plotted here.

deviation from the thermal equilibrium becomes signifi-
cant, the 2 <> 2 processes are usually suppressed by an
additional ny’, factor compared with y,. The CP-source
parameter ecp(z) originates from the one-loop interference
with the tree-level amplitudes [32,36] and should depend
on z. The identification of this parameter is beyond the
scope of this paper. We only follow Sec. II of Ref. [40] to
regard ecp as a constant parameter to present our results for
successful leptogenesis in Fig. 6. Studies at some proposed

future leptonic colliders, with the aid of secondary vertex

. lgecp for the successful leptogenesis.

180 A

160 -

140 A

mp/GeV

FIG. 6. lgecp needed to obtain successful leptogenesis. The
sterile neutrinos are initially in thermal equilibrium with the
plasma.

detection and the sensitivity to yy at ILC [52-56], CEPC
[57,58], and FCC-ee [59] can be significantly improved.
References [60-64] have discussed the corresponding
searches at these colliders, Refs. [65,66] have also dis-
cussed the proposals at the LHeC [67,68], and Ref. [69] has
discussed the similar parameter space at the LHC and
beyond. Their results can roughly verify the parameter
space within 50 GeV < my <90 GeV and 7z 2 1 eV. Our
contours differ significantly from Fig. 3 in Ref. [40],
especially for the 1eV<m<10°eV and 40 GeV <
my < 110 GeV area there, where quite a large void appears
due to the absence of the y, kinematically forbidden below
T. in their Fig. 1. In our paper, this area is filled up with the
N < G*(I"Jv), N <> Wi, I~, or N <> Zy ;v channels,
so that no significant distortions of the contours appear.

V. SUMMARY

We have calculated the 1 <> 2 processes of a sterile
neutrino interacting with the gauge/Higgs bosons and
leptons in the thermal plasma. We applied the Goldstone-
equivalence gauge to evaluate the processes below the
critical temperature 7.~ 160 GeV, and our method is
suitable for the sterile neutrino’s mass my ~ T.. Although
a particular gauge was applied, the results are independent on
gauge selections, since we have included the Eq. (A4) terms.
The results can be utilized in studies involving the sterile
neutrinos, and we have preliminarily calculated the lepto-
genesis as an example. Compared with Ref. [40], the results
had been significantly changed due to the different kinematic
threshold understandings in this paper. 1 <> 2 results are
usually sufficient to study the processes in a temperature that
is roughly of the same magnitude of the sterile neutrino’s
mass if one assumes an initially thermal equilibrium. Yet the
nonperturbative corrections, in which the leptons and bosons
interchange soft particles with the plasma and with each
other, have not been included. To carry forward our research
to a wider temperature scale and to a more precise
calculation, we will include all these effects in our further
studies.
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APPENDIX: ASPECT FROM THE R; GAUGE

The advantage of the Goldstone equivalent gauge is the
anatomy of the longitudinal polarization and the remaining
Goldstone degrees of freedom contributions, which make it
convenient for one to follow a “tree-level” methodology.
The result should be numerically equivalent to the tradi-
tional aspect in order to calculate the imaginary part of the
one-loop propagators. In fact, we showed in Ref. [45] that
similar “tree-level” logic can also be applied in the standard
R; gauge if only the remaining Goldstone degree of
freedom is replaced by a “vector boson” with the polari-
zation vector « p, where p is the vector boson’s momen-
tum. The equivalence of the results with different gauges is
guaranteed by the Ward-Takahashi identity in the broken
phase [70]:

PiMy, = imy(T) M, (A1)
where V =Z/W, my(T) is the gauge boson’s mass
originating from the VEV, and M3 is the amplitude with
the corresponding gauge boson replaced by a Goldstone
external leg. For the W boson, we just notice the relation-
ship between the polarization vectors under two gauges:

&)
72
w o _ W 2
€L,R5 €L1n + lmW(T) ’ (A2)
P

where EXV-Rg is the familiar polarization vector in the R;

gauge. One immediately finds that the contribution from
the difference between these two polarization vectors
should always vanish according to the Ward-Takahashi
identity in the broken phase.

For the mixing Z/y case, things are a little bit compli-
cated. Notice that in Eq. (32), the mixing parameter’s
—x; sin @y, + x, cos Oy, factor is in the vertex term, while in
Eq. (31), exactly the same thing is attributed to the
polarization vector. Remember also that for a pure y, it
does not receive any mass from the VEV, so its amplitude
completely disappears when dotted by the p’. Factoring out
the common —x; sin @y + x, cos Oy, term, one finds that
the contribution from the difference between the two
polarization vectors,

Py

2

21 _ Elr _ P
LRE Lin — (T)

—i(—x; sin Oy + x, cos Oy) mlﬁ
P

(A3)

still vanishes in the amplitude, which is also guaranteed
by Eq. (Al).

The above discussions only involve the longitudinal
polarizations of the vector bosons. For the Goldstone
channels, we have pointed out in Ref. [45] that these
Goldstone external legs can be replaced by a ‘“vector
boson” with the polarization vector %, equivalent to
picking up the “quasipoles” corresponding to the o p5 ph
terms in the R: propagator.

One might notice that the Ward-Takahashi identity is not
rigorously satisfied perturbatively if one only keeps the
tree-level part in Egs. (17), (18), (32), and (33). This can be
fixed if we introduce the hard thermal one-loop corrections
to the gauge vertices (see p. 161 in Ref. [50]),

r(pp)—mz/ i S
I 1 — ~ A s
g T Ja. 4x (p-k)(p:-k)

where m; is again given by Eq. (12), and k=1, k) and
k k = 1. The recovery of Eq. (A1) can be seen by dotting

the p, = p— p; into [';:
dQ- Z{ k
o Bk
(p = p1) - T(p, p1) = mj o 37 LpE p-
=X(p1) - Z(p), (A5)

where X(p) is the hard thermal one-loop correction on a
fermionic propagator of the active neutrino or a charged
lepton These two X’s will help cancel the denominators in
‘/ propagators on both sides of the gauge vertex,

1

thus resumlng the Ward-Takahashi identity in the bro-
ken phase.

To analytically calculate Eq. (A4), we define the dimen-
sionless K, by

y(a b) mz'K v<a7ﬂ7 gab)yy
L(p.p1) = ;K =L . (A6)
p° p1 P P
where
a :%= (1,05@),
p P
b="1 = <1,ﬂ&),
P 1Pl
P Di
gab: prg— (A7)
1Pl p1]
Therefore,
Kuu(ap0u) = | KLk (AS)
v av sYa - ~ ~
’ " Ja Ar (a-R)(b- )
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Obviously, K, = K,,, and K}, = 0. It is then convenient to decompose K, into a combination of the tensor basis:

Ku(@B.04) = Atyt, + B(t,a, + t,a,) + C(1,b, + 1,b,) + Da,a, + Eb,b, + F(a,b, + a,b,) + GL,1,. ~(A9)

-

Here t = (1, 0,0, 0) is the reference frame vector of the plasma, and [ = (0, %) which is the unit vector perpendicular

to the two input momenta. One might consider extra bases such as 7,/,, a,l,, etc. However, if we rotate to the frame in

which /= (0,1,0,0), a = (1,0,0,a), b = (1,0, psinb,,, fcosb,,), we find that the ¢,/,, etc., factors all contain
a9 ii . R
integrals like [, ff (k‘l{;‘zzi), with an integrand which is odd under the transformation k; — —k;. Therefore, all these
3 ak)(b:

terms vanish.

We then contract the K, with ¢,¢,, t,a,, t,b,, a,a,, b,b,, a,b,, and 1,1, to determine the A-G coefficients. Together with
the traceless condition K,’f = 0, the expressions are

Q- 1
K,,:K,wrﬂrvz/ ke = A+2B+2C+D+E+2F,
o. 47 (a-k)(b- k)

szl
K, =K, t"a" = ke = A+ (2-0%)B+ (2-apcosl,,)C
o= Kt = [ LA @B - apoosty)

+(1 =)D+ (1 —apcosb,,)E+ (2—a* —afcos,,)F,

dQs 1
Ky = K, D" = / ‘
Q

s 477.' a ]%
+ (1 =apcosBy,)D+ (1 =E+ (2 - > —apcosh,,)F,

dQ]’—;»a.]}

K, =K, a'a" = [zk yp b-lAc:A+2(1 —a?)B +2(1 —apcosb,,)C

=A+(2-apcosb,,)B+ (2-p)C

+(1=a®)’D+ (1 —apcosf,,)’E +2(1 —a?)(1 — afcosb,,)F,

dQ-p . 7
Kbb:Km,b"b”:[Q it ]f:A+2(1—aﬁcos9ab)B+2(1—ﬂz)c

AT a-k
k

+ (1 =afcosB,,)?D + (1 =p*)?E+2(1 =) (1 —afcos,,)F,

K, = K, a'b" = / dQ:. = A+ (2—a®>—apcosf,,)B+ (2—p*—apcosb,,)C
Q@
+(1=a*)(1 =apcosO,,)D + (1 = p)(1 —apcosb,,)E
+[(1=a®)(1 = 52) + (1 - apcos 0,,)*F,
dQs (1. k)(1-k)
— | Z— k—:
K, =K, —Lz i% (@ D)b-h)

Kt =A+2B+2C+ (1-a®)D+ (1 - )E + (2 —2afcos6,,)F — G = 0. (A10)

It is convenient to calculate all the integrals in Eq. (A10) within the [=(0,1,0,0), a = (1,0,0,a), b=
(1,0,bsind,,, bcosb,,) framework. We list the results below:
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(I—apcosb,,) \/(12+/}2—(12[)’2 “+afp cos 0, (af cos 0,,—2)

2
artanh

1+a?+p>—4ap cos 8, +a’ > cos 26 ,,

|72

artanhf artanha

K[a = ) Ktb = ’
s a

(f — acos B, )artanhf + af cos 0,
K. = ﬁz

(a — pcosB,,)artanha + aff cos 0,
Ky, = o
Kab - 1,

2/ + * — > + afcos O, (af cos O, — 2) '

I .
a?f*sin’0,,,

Ko — artanhf3(ff — acos 8,;,) + artanha(a — fcos @)

+ artanh

(afcos Oy, — 1)\/4a? + 4> — 202 + 2af(aff cos 20, — 4 cos ;)

1+ + > + af(af cos 20,, — 4 cos 0,)

" V4a? + 4B = 2022 + 2ap(af cos 20, — 4 cosb,,)

402 *sin?0,,

By plugging Eq. (A11) into Eq. (A10), we acquire eight
equations with seven unknown parameters. We can solve
seven of them to acquire the values A-G, and then
K, (a,p,0,,) is determined through Eq. (A9).

When, however, p and p, are nearly parallel to each
other, or when one of them is extremely small, the above
method suffers from instability due to the near degeneration
of the matrix corresponding to the linear equations in
Eq. (A10). To cure this problem, when p and p, are
nearly parallel to each other, we estimate K, by taking the
0., — 0 limit,

artanha — artanhf?

K 1,0,,—0 —

a—pf ’
© (o2 = )partanha — @*(f* = 1)artanhfp 1
a0 207 (@~ ) 2ap
(A12)

or by taking the 0,, — =« limit,

artanha + artanhf?
Kttﬂab—m = 0{—1—/3 s
© _ (a? = 1)p*artanha + a* (B> — 1)artanhp 1
W 20°F(a + ) 20"
(A13)

Then K, can be expressed as

. (A1)

|

Ko 515, (@ 8. 0u,) = Kyt + Kyl 1y + Kyly,lo,
F K (a—1),(a—1),

K, -K

PR (= ), + (0= 1))

(Al14)

where [, and [, are two unit vectors perpendicular to p
without the time component, and also /; 1[,. K| = 2K —
K ,; due to the traceless condition. When, in the other case,
and without loss of generality, @ > f and f# <« 1, we can
estimate K, by taking the f# — 0O limit to acquire

artanha
Ktt,ﬂ—>0 = a )
a+ (a® = 1)artanh(a
Kippr = CHE DA )

and again

Ky po(@.B.0u) = Kut't" + Kyly, by, + Kylyyly,
+Ki(a=1),(a-1),
K,—K
+ % [(@a=1),t,+ (a=1),1,]

(A16)

If one wants a gauge-invariant result whenever the HTL
corrected dispersion relations are considered, Eq. (A4)
should be included. We can estimate its contributions through
a power-counting consideration. Neglecting Eq. (A4) will

2
introduce a relative error of ~m—§ in the final results.
N
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:—% < linduces my < 0.15T, since the W/Z/y channels open

up at 7 < T,, and 0.15T . = 24 GeV. Therefore, our inter-
ested range, my > 50 GeV, is sufficiently safe if we neglect
the vertex thermal correction terms.

The above discussions depend on the assumption that
K,, ~ 1. However, the artanh functions in Eq. (A10)
diverge when a, f — 1. This can be realized by observing
the denominator of Eq. (A8), which can be close to zero
when a and f approach 1. Fortunately, this usually happens
when a largely boosted “hole” is created. The divergence is
significantly suppressed by the “renormaliztion factor”

—p?

_ (P)-R e -
Zi(p1) = —+xe"/ in Eq. (26). Therefore, the final

2mj
integrated rate nearly remains intact, although in this paper
we still reckon according to the Eq. (A4) terms.
In fact, our practical evaluation shows that the simpler
tree-level vertex method gives a final result not much
different from the gauge independent data shown in this

paper. The Goldstone equivalence gauge also displays
another advantage in the tree-level vertex approximation:
If we fix on the R: gauge, it might introduce a discontinuity
of the total effective decay rate over the crossover temper-
ature 7. up to tree level. Notice that below T, the
Goldstone boson fraction’s contributions are collected
within the p5p} terms in the gauge boson components,
while when 7 > T., all the Goldstone contributions
originate from the Yukawa couplings. A continuous tran-
sition between these two coupling formalisms requires
Eq. (A4), and neglecting this will introduce a discontinuity.
Therefore, we can see that attributing all of the “Goldstone
contribution” of a vector boson to the Goldstone Yukawa
couplings, just as we did in the Goldstone equivalence
gauge, will automatically include the key part of the
[Eq. (A4)] corrections to connect the two parts.
Therefore, compared with the R: gauge, the Goldstone
equivalence gauge includes more hard thermal loop cor-
rections on vertices up to a tree-level evaluation.
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