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In this work we report on the Landau gauge photon propagator computed for pure gauge 4D compact
QED in the confined and deconfined phases and for large lattice volumes: 324, 484 and 964. In the confined
phase, compact QED develops mass scales that render the propagator finite at all momentum scales and no
volume dependence is observed for the simulations performed. Furthermore, for the confined phase the
propagator is compatible with a Yukawa massive type functional form. For the deconfined phase the photon
propagator seems to approach a free field propagator as the lattice volume is increased. In both cases, we
also investigate the static potential and the average value of the number of Dirac strings in the gauge
configurations m. In the confined phase the mass gap translates into a linearly growing static potential,
while in the deconfined phase the static potential approaches a constant at large separations. Results shows
that m is, at least, one order of magnitude larger in the confined phase and confirm that the appearance of a
confined phase is connected with the topology of the gauge group.
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I. INTRODUCTION AND MOTIVATION

The quest to understand quark confinement has, long ago,
lead to the formulation of QED on a hypercubic lattice [1] by
Wilson. Hewas able to show that the compact formulation of
QED has two phases. In the strong coupling limit, i.e., at low
β ¼ 1=e2 where e is the bare coupling constant, the theory is
confining in the sense that the static potential between
fermions grows linearly with the distance. In the weak
coupling regime, i.e., at large β values, it was argued that the
results of perturbation theory for the continuum formulation
should be recovered. These predictions for the phase
diagram of QED have been confirmed with numerical
simulations and by various theoretical analyses of the theory
[2–13]. In numerical calculations, they typically use a
mapping into its dual formulation associated with the Zn
symmetry group [14,15] instead of performing a sampling of
the compact formulation of QED directly.
For compact QED the transition between the confining

and the nonconfining phase occurs at β ¼ βc ≈ 1, see [7,16]
and references therein. For β < βc the static potential VðRÞ
is compatible with a Cornell type of potential

VðRÞ ¼ V0 þ
a
R
þ σR; ð1Þ

with the dimensionless string tension σ being a decreasing
function of β as its critical value is approached from below
[12]. Numerical simulations for β > βc suggest that the
theory contains a massless photon and reproduces the
behavior associated with a free field theory. However, in
the numerical simulations the reproduction of a free field
theory for β > βc is never perfect [9,17,18].
Compact QED, having a confined and a deconfined

phase, can also be viewed as a laboratory to try to
understand the differences between the two phases. In
3D, the confining mechanism is associated with the
presence of monopole configurations [19,20] at low β
values; see also [21,22] for numerical simulations.
However, in 4D these classical configurations or their
equivalent are not able to generate a linearly rising potential
at large separations and, therefore, cannot be at the origin of
the confining mechanism. It has been argued that a Cornell
potential type for the static potential is related to the
topology of the gauge group, see, e.g., [23] and references
therein.
The interest in compact QED is not limited to its phase

diagram [24]. For example, it is not yet clear if the
continuum limit of compact QED is a sensible theory. If
the fermion sector of the theory is ignored, its continuum
theory is a free field theory that one expects to recover for
sufficiently high β values. The simulations performed so far
suggest that this is the case, but full agreement with the
results of a free field theory has not been achieved. The
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transition of the confined phase to the deconfined phase
seems to be first order which, once more, raises the
question of how to take the continuum limit for compact
QED. Besides the question of the continuum limit, Uð1Þ
gauge theories are relevant to understand the Standard
Model, the comprehension of the Higgs sector, for simu-
lations of Abelian Higgs models, and to describe many
properties in condensed matter physics. Furthermore,
recently the lattice QCD community has started to compute
QED corrections to QCD and, certainly, a good under-
standing of lattice Abelian models is of paramount impor-
tance. Uð1Þ gauge theories are also a laboratory toward
building simulations of gauge theories on quantum
computers.
In the current work we are mainly interested in identify-

ing the differences between the confined and deconfined
phase by looking at the Landau gauge photon propagator in
momentum space for the two phases of compact QED in
the quenched approximation, i.e., for the compact U(1)
theory. The simulations described in this work do not take
into account the contribution of the fermionic degrees of
freedom to the dynamics. For the confined phase the theory
develops a mass scale and the photon propagator is finite
and, at least for the simulations discussed, the presence of
the mass scale prevents or reduces the finite volume effects.
On the other hand, in the deconfined phase the photon
propagator is compatible with a divergent 1=k2 or a higher
power of k behavior at low momenta k. Finite volume
effects are sizeable and the propagator approaches that of a
free field theory as the lattice volume is increased. We hope
that by studying the photon propagator one can arrive at a
better understanding of the confinement mechanism
for QCD.
The Landau gauge photon propagator for the confined

phase qualitatively follows the same type of behavior as the
Landau gauge gluon propagator in QCD for pure Yang-
Mills theories; see, for example, [25–31] for lattice sim-
ulations of the Landau gauge gluon propagator and [32–39]
for continuum estimations of the same correlation function
(see also the references therein). This suggests that the
confinement mechanisms for the gluon and the photon have
some similarities and, in particular, that the confining
theory is associated with dynamically generated mass
scales that make the propagator finite in the full momentum
range for compact QED and for QCD. For QED a photon
mass has been related to a meaningful physical value of the
expectation value of the vector potential squared, that is
connected with the existence of topological structures for
the theory [13].
Our work also aims to fill the gap in the literature [18,40]

and provide a large volume 4D lattice simulation of the
Landau gauge photon propagator in momentum space for β
below and above βc. The two phases are distinguished not
only by the qualitative behavior of the propagators but also
by their topological structures and the static potential as

computed from the Wilson loops. Our findings for the
topological structures and static potential confirm previous
results that can be found in the literature.
This work is organized as follows. In Sec. II we provide

the definitions used in our calculation ranging from the
Wilson action, the gauge fixing procedure, the definition of
the electromagnetic potential, the propagator and number
of Dirac strings crossing each plaquette. In Sec. III the
propagator and the static potential are discussed for the
confined phase, while in Sec. IV we discuss these proper-
ties for the deconfined phase. Finally, in Sec. V we
summarize our results and discuss the differences between
the two phases.

II. COMPACT QED: DEFINITIONS, LATTICE
SETUP, AND DETAILS OF THE SIMULATION

In the current work we will consider the compact version
of QED defined on an hypercubic lattice that is described
by the Wilson action which, in Euclidean space, is given by

SWðUÞ ¼ β
X
x

X
1≤μ;ν≤4

f1 −ℜ½UμνðxÞ�g; ð2Þ

where β ¼ 1=e2, with e being the bare coupling constant,
and the plaquette operator

UμνðxÞ ¼ UμðxÞUνðxþ aêμÞU†
μðxþ aêνÞU†

νðxÞ ð3Þ

is written in terms of the link fields

UμðxÞ ¼ exp

�
ieaAμ

�
xþ a

2
êμ

��
; ð4Þ

with a being the lattice spacing, êμ the unit vector along
direction μ and Aμ is the bare photon field. In the continuum
limit the plaquette operator (3) can also be written

UμνðxÞ ¼ exp

�
ie
I
C
AμðzÞdzμ

�
ð5Þ

where C is any closed curve around point x and infini-
tesimally close to it. On an hypercubic lattice, the term that
appears in the exponential is the change of the photon field
around a plaquette centered at xþ aðêμ þ êνÞ=2 and we
write

UμνðxÞ ¼ exp fieaðΔAμνðxÞÞg: ð6Þ

It follows from the definitions that everywhere in the lattice
−π ≤ eaAμ ≤ π and −π ≤ eaΔAμνðxÞ ≤ π, i.e., the quan-
tities eaAμ and eaΔAμν take values on compact spaces.
Note that, in general, eaΔAμν is not given by the sum of
eaAμ over each of the links that define the plaquette but,
instead,
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ΔAμνðxÞ ¼ Aμ

�
xþ a

2
êμ

�
þ Aν

�
xþ aêμ þ

a
2
êν

�

− Aμ

�
xþ aêν þ

a
2
êμ

�
− Aμ

�
xþ a

2
êν

�

þ 2πmμνðxÞ
ea

ð7Þ

where mμνðxÞ is an integer number that measures the
number of Dirac strings that cross the plaquette.1 The
integer field mμνðxÞ can be measured by combining
information on the links and plaquettes [41]. We will
not study mμνðxÞ in detail but will report on its mean
value over the lattice,2 i.e.,

m ¼ 1

6V

X
x;μ<ν

jmμνðxÞj ð8Þ

where V is the number of lattice points. Indeed, as
discussed below m can be used to distinguish between
the confined and deconfined phases, with the configura-
tions in the confined phase having a much larger mean
number of Dirac strings crossing each plaquette.
The generating functional of the compact QED Green’s

functions is given by

Z ¼
Z

DA exp f−SWðUÞg; ð9Þ

where SW is defined in Eq. (2). For the importance
sampling we rely on an implementation of the Hybrid
Monte Carlo method [42] based on QDP++ and Chroma
libraries [43].
The rotation of the links obtained by importance sam-

pling to the Landau gauge is formulated as an optimization
problem, over the gauge orbits. Setting the optimization
problem depends on the definition of the photon field.
The gauge field can be computed with a linear definition

that, for the Uð1Þ theory, reads

eaAμ

�
xþ a

2
êμ

�
¼ UμðxÞ − U†

μðxÞ
2i

: ð10Þ

If one relies on this definition the gauge fixing is performed
by maximizing the functional

F½U; g� ¼ 1

VD

X
x;μ

ℜ½gðxÞUμðxÞg†ðxþ aêμÞ�; ð11Þ

where V is the total number of lattice points and D the
Euclidean spacetime dimension. It can be shown, see, e.g.,
[44], that in this way the continuum Landau gauge
condition is reproduced up to corrections Oða2Þ. For the
Uð1Þ gauge theory there is no clear way to set the lattice
spacing and, therefore, this procedure can introduce sig-
nificant deviations of the continuum Landau gauge when
applied to the confined (β ≲ 1) or to the deconfined (β ≳ 1)
phase. The setup just described, that uses a linear definition
of the gauge field, is used for non-Abelian gauge theories
defined on a lattice from simulations that are close to
continuum physics. In a first step to define the Landau
gauge for the photon field, we used the above procedure
relying on a steepest descent algorithm with Fourier
acceleration, see [44] for details and references, and
controlling the approach to the Landau gauge with the
quantity

ΔðxÞ ¼
X
ν

½Uνðx − aêνÞ −UνðxÞ�; ð12Þ

a lattice version of −∂ · AðxÞ. The maximization was
stopped when

θ ¼ 1

V

X
x

jΔðxÞj2 < 10−15: ð13Þ

On the other hand, the Euclidean photon field can be
computed using a logarithmic definition

eaAμ

�
xþ a

2
êμ

�
¼ −i lnðUμðxÞÞ: ð14Þ

This is an exact definition, up to machine precision, that
does not call for the use of a small lattice spacing. Then,
following [45] adapted to the Abelian theory, the Landau
gauge condition is achieved by maximizing the functional

F̃½U; g� ¼ 1

VD

X
x;μ

�
1 − a2e2

�
AðgÞ
μ

�
xþ a

2
êμ

��
2
�

ð15Þ

over the gauge orbits. In the Eq. (15) the field eaAðgÞ is the
photon field given by Eq. (14) after the links UμðxÞ have
been gauge transformed by gðxÞ. The approach toward the
Landau gauge can be monitored using

Δ̃ðxÞ ¼ ae
X
ν

�
Aν

�
x −

a
2
êν

�
− Aν

�
xþ a

2
êν

��
; ð16Þ

once more a lattice version of −∂ · AðxÞ. In our computation
of the Landau gauge propagator, after the maximization

1In 3D, mμνðxÞ can be identified with the number of mono-
poles in the plaquette.

2Note that m is the mean value of jmμνðxÞj and not of mμνðxÞ.
The latter quantity is gauge invariant, while the first is not. The
rationale for using the absolute value instead ofmμνðxÞ being that
the mean value of mμνðxÞ is quite a small number since the
number of positive and negative values of mμνðxÞ is roughly
equal.
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problem associated with the functional given in Eq. (11), a
maximization of the functional (15) is also performed. In this
way one aims to reduce possible deviations of the continuum
Landau gauge for both phases of the theory. In this second
maximization we use again a steepest descent algorithmwith
Fourier acceleration and the gauge fixing was stopped when

θ̃ ¼ 1

V

X
x

jΔ̃ðxÞj2 < 10−15: ð17Þ

The definition of gauge field potential from the link
variables, its implications on the choice of the optimization
functional to define the Landau gauge on the lattice, how
the different definitions impact the gluon correlation
functions has been the subject of several studies, see,
e.g., [46–51] and references therein. These studies address
the problem for non-Abelian gauge theories and explore
essentially the linear definition given in Eq. (10) and its
variants. For the non-Abelian gauge theories the different
choices for the definition of the gauge potential lead to the
same propagators. However, as already stated, the linear
definition is possible due to asymptotic freedom of SUðNÞ
gauge theories. For a Uð1Þ gauge theory on the lattice there
is not a clear way of setting the physical scale and,
therefore, to define the lattice spacing that would allow
(or not) the use for the linear definition of the photon field.
In both stages the maximization of the gauge fixing

functional is done with a Fourier accelerated steepest
descent method that calls for the PFFT library [52] to
do the required fast Fourier transformations. The complete
numerical simulation, i.e., the importance sampling, the
gauge fixing and the computation of all quantities, were
performed in the Navigator cluster [53] of the University of
Coimbra.
The use of the Hybrid Monte Carlo to perform the

importance sampling can be questionable as, long ago
[54,55], very long-living metastable states were observed in
the Monte Carlo history of the system. In our study, the
Monte Carlo time evolution of the mean value of the
plaquette does not reveal metastable states. Indeed, at least
for the two values of β considered, that are far from the
transition between the two known phases, the Monte Carlo
history for the mean value of the plaquette show a initial
thermalization phase followed by a fluctuation pattern. No
sign of metastable states are found and we have considered
large Monte Carlo time histories. The time histories are
larger that those mentioned in [54] but our lattice sizes are
much larger than those considered there. However, the
good agreement between all the simulations for each of the
β values and the nonobservation of metastable states gives
confidence on the results of the simulation.
Another issue of concern connected with the computa-

tion of the photon propagator is the presence of Gribov
copies. In the lattice formulation of the compact Uð1Þ
gauge theory, the Gribov copies are associated with

different extrema of the maximization functional that
defines the lattice Landau gauge, see Eqs. (11) and (15).
The presence of the Gribov in the Landau gauge was also
studied long ago, see e.g., [56–58], with observed meas-
urable effects in the photon propagator. There are two
important differences between our implementation of the
Landau gauge and that used in the those earlier studies. The
first one is the precision on the definition of the lattice
version of ∂A ¼ 0 that differs by several orders of
magnitude. It well known that from the analysis of the
non-Abelian theories that a small value of θ of 10−12 or
smaller should be used to have a good implementation of
the Landau gauge on the lattice. The relaxation of θ toward
higher values affects mainly the low momentum region
propagator.3 The second difference is related to the defi-
nition of the gauge field. The previous studies use the linear
definition for the gauge field (10), while we use the
logarithmic definition (14). This does not eliminate the
problem of the Gribov copies but it is not obvious that
the observations reported in [56–58] apply in our formu-
lation. The studies of pure gauge non-Abelian gauge
theories, see e.g., [44], show that when θ ∼ 10−12 or smaller
and for statistics with similar number of gauge configura-
tions, typically, the effects of Gribov copies are diluted
within the statistical error. We hope the same applies to
compact Uð1Þ theory and, in the following, we will assume
that this is the case.
From the definition (14) for the Euclidean spacetime

photon field, the momentum space photon field is given by

AμðpÞ ¼
X
x

e−ip·ðxþa
2
êμÞAμ

�
xþ a

2
êμ

�
ð18Þ

and the Landau gauge propagator reads

hAμðp1ÞAμðp2Þi ¼ Vδðp1 þ p2ÞDμνðp1Þ ð19Þ

where h� � �i stands for the vacuum expectation value. In a
lattice simulation, the vacuum expectation values are
accessed via the generation of a set of configurations
sampled accordingly with the probability distribution (9)
and taking averages of the products of gauge fields, such as
those in Eq. (19), over the full set of gauge configurations.
For the analysis of the propagator, it will be assumed that
the propagator has the same tensor structure as the
continuum theory, i.e.,

3The optimizing functionals are equivalent to looking at the
extrema of

R
d4xjjAgjj2, where AðgÞ is the gauge transformed field

A, along the gauge orbits that in momentum space becomesR
dkdΩk3½AgðkÞ�2, where dΩ stands for the angular integration. It

follows that the lower momenta are more sensitive to the quality
of the gauge fixing.
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DμνðpÞ ¼
�
δμν −

pμpν

p2

�
Dðp̂Þ ð20Þ

where the function Dðp̂Þ, named propagator below, is a
function of the tree level improved momenta

p̂ ¼ 2

a
sin

�
π

L
nμ

�
;

nμ ¼ −
L
2
;−

L
2
þ 1;…; 0; 1;…;

L
2
− 1 ð21Þ

where L is the number of lattice points in each side of the
hypercubic lattice. The rationale to use p̂ instead of the
naive lattice momenta

p ¼ 2π

aL
nμ; ð22Þ

comes from lattice perturbation theory that requires p̂
instead of p. In the lattice evaluation of the gluon
propagator the improved momentum also helps to suppress
finite spacing effects in the propagator [59]. In order to
further suppress the effects due to the use of finite lattice
spacing we perform the conical and cylindrical cuts
introduced in [59] for momenta ap̂ > ΛIR and, following
the procedure devised in [25], below this threshold we
consider all the momenta available to get information on
the infrared region. The choice of the infrared thresholdΛIR
is a compromise between taking into account extra data,
allowing larger fluctuations, and resulting in a smooth
curve for Dðp2Þ. The choice of this threshold does not
change the overall behavior of the lattice data and ΛIR
will be chosen differently for each simulation. In the
following we use ΛIR ¼ 0.2 for the largest lattice volume
and ΛIR ¼ 0.4 for the two smallest lattices.
The description of the lattice propagator with the

continuum tensor structure as given by Eq. (20) is ques-
tionable, especially concerning the confined phase. Similar
studies for the gluon propagator [51] show that the lattice
propagator has other tensor structures not considered in
Eq. (20) and, in principle, they should also be considered
here. However, given that the definition of the lattice
Landau gauge returns a transverse gauge field, one expects
a gauge propagator that should also be transverse.
Furthermore, the studies performed for the gluon propa-
gator suggest that the introduction of momentum cuts
selects the set of momenta where the finite lattice effects
are minimized. This gives us confidence that the same
should apply to the photon propagator.
If one assumes a tensor structure as given by Eq. (20),

then the type of momentum considered in the projector is
irrelevant as long as one measures the propagator form
factor using

Dðp̂Þ ¼ 1

3

X4
μ¼1

DμμðpÞ: ð23Þ

We remind the reader that for zero momentum the propa-
gator is given by δμνDð0Þ and, therefore, the computation
of Dð0Þ requires a different normalization factor.
In the current work, we aim to see how the photon

propagator behaves in the confined and deconfined phases.
To achieve such a goal we perform Monte Carlo simu-
lations of the theory at β ¼ 0.8 (confined phase) and at
β ¼ 1.2 (deconfined phase). In order to check for finite
volume effects in both cases we perform simulations on
324, 484 and 964 hypercubic lattices. For each β value and
lattice volume, the propagators were computed using the
last (in the Markov chain) 200 gauge configurations. The
configurations used in the calculation of the propagator
have a separation of 10 trajectories for the smaller lattice
volume, for both β values considered herein, and also for
the 484 simulation in the confined phase (β ¼ 0.8). In the
remaining simulations we used a separation of 100 trajec-
tories in the corresponding Markov chain.
In Fig. 1 the mean values of the plaquette over the lattice

are shown for each of the Markov chains. In the simulations
the value of the plaquette at the end of each trajectory was
not always kept and, therefore, in the reconstruction of the
plaquette history we lost some of the data points. As the
figure shows, the mean value of the plaquette seems to be
independent of the lattice volume for each β and in the
deconfined region, i.e., for the simulation with β ¼ 1.2,
the plaquette is significantly larger. This result suggests that
the Uð1Þ links approach unity as β is increased.
For the computation of statistical errors for all the

quantities reported here, i.e., propagators, Wilson loops
and monopole densities, we rely on the bootstrap method
with a 67.5% confidence level. The quoted errors asso-
ciated with the fits assume Gaussian error propagation.

III. PHOTON IN THE CONFINED PHASE

The Landau gauge photon propagator for compact QED
in the confined phase with β ¼ 0.8 and for the various
lattice volumes can be seen in Fig. 2. The data does not
follow the behavior of a free particle propagator and
deviations from a 1=p2 functional form are clearly seen.
Indeed, the various datasets seem to be closer to the
qualitatively behavior of the QCD gluon propagator
[25,26,28]. Moreover, the propagator being finite over
the full range of momenta suggests that 4D compact
QED generates a mass gap dynamically, as is also observed
in 3D simulations [21,22]. The data for the various volumes
is compatible within one standard deviation and, therefore,
shows no volume dependence.
It seems that the presence of the mass gap is sufficient to

reduce the volume dependence of Dðp2Þ. This contrasts
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with what is observed for the propagator in the deconfined
phase; more on this topic later.
A possible way to identify the mass gap is by fitting the

lattice data to a given functional form. We found that, for all
volumes, the lattice data is well described by a Yukawa type
propagator

a2e2Dðp2Þ ¼ z0
p2 þm2

; ð24Þ

where z0, p2, and m2 are dimensionless quantities. The fits
using the full range of momenta result in a χ2=d:o:f: ¼ 1.57
for the data associated with the simulation using a 324 lattice,
1.31 for the 484 lattice data and 1.08 for the 964 lattice data.
The corresponding fitting parameters are z0 ¼ 21.37ð14Þ,
m2 ¼ 2.968ð38Þ, z0 ¼ 21.28ð10Þ, m2 ¼ 2.963ð24Þ,
z0 ¼ 21.399ð66Þ, m2 ¼ 2.978ð17Þ, respectively, and are
all compatible within one standard deviation. We have

observed that increasing ΛIR results in smaller values for
the χ2=d:o:f: in all cases. In Fig. 2 the solid black line
represents the functional form given in Eq. (24) with z0 and
m2 given by the estimation of the fit to the lattice data from
the largest volume. Similar curves using the other two sets of
parameters could be drawn but the curves are indistinguish-
able to the naked eye from the curve shown.
The low β phase of compact QED was investigated by

Wilson in [1], where he computed the static potential from
Wilson loops. Indeed, it was shown that, at low β, the
Wilson loop follows an area law and, therefore, the
associated static potential grows linearly with the distance
between sources. It is in this sense that compact QED at low
β values is a confining theory. This observation motivated
us to compute Wilson loops and we took only those loops
whose spatial part is along one of the lattice axis to measure
the static potential VðRÞ. The Wilson loop can be seen in
Fig. 3. Note that we use no trick to improve the signal to
noise ratio, the noise for WðR; TÞ is large for some cases
and increases with R. This is an indication that the static
potential grows with R given that

WðR; TÞ ¼ e−VðRÞT: ð25Þ

Further, it is clear from Fig. 3 that exponential behavior sets
in for quite small T. Then, from the data for WðR; TÞ one
can measure VðRÞ from

VðRÞ ¼ log

�
WðR; TÞ

WðR; T þ 1Þ
�

ð26Þ

and in Fig. 4 we show VðRÞ computed from taking
T ¼ 2 and T ¼ 3. The data in Fig. 4 should be regarded
as an upper bound on VðRÞ. The results summarized in
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FIG. 1. Mean value, over the lattice, of the plaquette for all
simulations. In the simulation we did not always keep the values
of the plaquette for all computed trajectories and, therefore, the
plots have regions with no data.
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Figs. 3 and 4 confirms that VðRÞ grows with R and suggest
that the data is compatible with linear behavior at large R.
In this sense the simulation confirms that compact QED is a
confining theory at low β values.
The static potential for 4D compact QED was computed

in [12,60,61] from Polyakov loops, exploring duality
transformations, and it was found that in the confined
phase VðRÞ grows linearly with the distance for sufficiently
large R as also found in our simulations.

IV. PHOTON IN THE DECONFINED PHASE

The nature of the photon propagator at large β is
expected to be rather different than that observed in
Fig. 2. Indeed, as can be seen in Fig. 5, for the deconfined
phase with β ¼ 1.2 the photon propagator seems to diverge
at zero momentum. Furthermore, if at low β the propagator

is blind to the finite volume effects, the data for the various
volumes in Fig. 5 are not compatible with each other within
one standard deviation. The propagator data for the smallest
volume 324 is above the other two sets of propagator data in
the mid range momenta, while the data associated with the
484 lattice is between the data computed with the smallest
and the largest lattice volumes. However, at zero momenta
the largest a2Dð0Þ is associated with the largest volume,
followed by the 484 data and by the 324 data in decreasing
order of values. For momenta such that ap≳ 2 all the data
sets seems to be compatible within one standard deviation,
see the inner plot in Fig. 5.
The data in Fig. 5 suggest that the photon propagator

diverges as momentum approaches zero. If the data is to be
associated with a free field theory, it should reproduce the
behavior of a free field propagator. However, in a finite
volume Monte Carlo simulation deviations from the con-
tinuum free field theory are expected as the simulation is
performed on a finite lattice. The approach to the con-
tinuum behavior can be tested by fitting the lattice data to
the functional form

a2Dða2p̂2Þ ¼ Z0

ðap̂Þ2 þ
Z1

ðap̂Þ4 : ð27Þ

If the theory reproduces a free field theory a Z1 ≠ 0 is a
manifestation of finite volume effects and one expects Z1 to
become smaller as the lattice volume is increased. The
direct fit using the full range of momenta and taking into
account the statistical errors of the lattice data returns
values of the χ2=d:o:f:≳ 12. For the smallest volume,
for ap̂ ≥ 0.6 the fit has a χ2=d:o:f: ¼ 1.74 with Z0 ¼
2.425ð14Þ and Z1 ¼ 0.986ð46Þ. For the 484 data and
for ap̂ ≥ 0.4 it follows that χ2=d:o:f: ¼ 1.01 with
Z0 ¼ 2.4057ð76Þ and Z1 ¼ 0.355ð13Þ. On the other hand
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FIG. 3. Wilson loop WðR; TÞ at β ¼ 0.8 and for L ¼ 96.
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FIG. 4. The static potential VðRÞ for β ¼ 0.8 and for L ¼ 96
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for the largest lattice volume, due to large fluctuations that
are observed at larger momenta, one can never achieve a
reasonable χ2=d:o:f. However, by doubling the statistical
errors on the definition of the χ2, the data becomes
compatible with (27) for ap̂ ≥ 0.15. In this case the
fit has χ2=d:o:f: ¼ 1.93 with Z0 ¼ 2.374ð13Þ and
Z1 ¼ 0.2958ð68Þ. Note that in all cases one has Z0 ≈ 2.4,
while Z1 decreases with the lattice volume.4

The lattice data together with the fits can be seen in
Fig. 6. In general and for the corresponding fitting ranges,
the curves overlap the Monte Carlo data. Further, the
coefficient Z0 ≈ 2.374ð13Þ, we are quoting the value of
the fit to the largest lattice volume, seems to be nearly
independent of the volume. The data in Fig. 6 suggest that
Z0 is independent of L, while Z1 is sensitive to L. Indeed
this coefficient goes from Z1 ¼ 0.986ð46Þ for the smallest
volume to Z1 ¼ 0.2958ð68Þ for the largest volume, which
is about 1=3 of the value for the smallest volume; note that
the inverse of the ratio of the lattice sizes is 1=3. This result
for Z1 suggests that the data for the propagator seems to
converge to the propagator of a free field theory in the
infinite volume limit. This statement has to be read with
care due to the use of 2σ in the definition of the minimizing
χ2 for the largest volume. That the fitting range does not
start at the smallest nonvanishing momentum for each
volume is not surprising, as finite volume effects, that
should appear at the smallest momenta, are to be expected.
We have also tried fitting the data with an almost free field
propagator, i.e., assuming Dðp2Þ ¼ Z0=ðp2Þα and leaving
Z0 and α as free parameters. The fits to this last functional
form have the same problems as those mentioned before
but it turns out that α ≈ 1, i.e., the lattice data for the
propagator follows closely the behavior of a free field
theory.5

The above analysis suggests that the Monte Carlo
propagator data almost reproduce a free field theory
propagator. Let us check the results for the static potential,
computed from Wilson loops as was done for the confined
phase. The Wilson loop for various values of R is given in
Fig. 7 for the largest lattice volume and it looks rather
different from the Wilson loop for the confined phase
reported in Fig. 3. If for the confined phase the slope

increases with R, for the deconfined phase the slope of the
logWðR; TÞ seems to be the same for all R. Indeed,
measuring VðRÞ from the effective mass and taking its
value for T ¼ 9, one gets the bottom plot of Fig. 7. The
large distance behavior of VðRÞ is sensitive to finite volume
effects and the slope of VðRÞ for large R becomes smaller
as L is increased. In Fig. 8 we show the string tension
measured by fitting VðRÞ in the range R ¼ 9–12 for the
various volumes. The corresponding χ2=d:o:f: for the
various fits are always below 0.5. The dashed blue line
connects the origin with the result for the largest volume,
while the shaded region takes into account the one standard
deviation on σa2 for L ¼ 96. Our results seems to be
compatible with a vanishing string tension in the infinite
volume limit.
The short distance behavior of VðRÞ is difficult to

understand from the computed Wilson loop directly. The
Monte Carlo data for the photon propagator is compatible
with free field propagator behavior at high p and approach-
ing 1=p2 as the volume is increased and, therefore, one
expects to have, in the infinite volume limit, VðRÞ ∝ 1=R at
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FIG. 6. The Landau photon propagator in the deconfined phase
and the fits to Eq. (27).

4The data for Z0 and Z1 in Fig. 6 suggest that Z0 approaches its
infinite volume limit linearly. A linear extrapolation toward L →
∞ results in Z0 ¼ 2.352ð10Þ. On the other hand, Z1 clearly does
not follow a linear behavior toward the infinite volume limit.
Given that our simulations only considered three different
volumes it is not possible to estimate Z1ðL → ∞Þ.

5In order to quantify the typical values of α let us report on its
values given by fitting to the propagator data replacing σ by 2σ in
the definition of the minimising χ2. Demanding that the
χ2=d:o:f: ≤ 2, it follows that for the smallest lattice volume
the fitting range starts at ap̂ ¼ 0.6 and has α ¼ 1.095ð10Þ, the
fitting range for the 484 data starts at ap̂ ¼ 0.4 and has
α ¼ 1.0529ð60Þ, while for the largest volume the fitting range
starts at ap̂ ¼ 1 and has α ¼ 0.9977ð74Þ.
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short distances. We have tried to disentangle the short
distance behavior from the VðRÞ Monte Carlo data but the
results were inconclusive.
Our simulations for the deconfined phase of compact

QED suggest that for the β considered here, the finite
volume effects are still not negligible even for a lattice
volume as large as 964.

V. SUMMARY AND CONCLUSION

In the current work the Landau gauge photon propagator
is investigated for compact QED in the strong coupling
(confining) and weak coupling (free field theory) regimes
and for various lattice volumes. By computing the static
potential, our simulation confirms that at low β the theory is
confining and the behavior of the photon propagator in
momentum space follows closely a Yukawa type of
propagator, i.e., 4D compact QED has a mass gap.
Moreover, in the confining phase the theory develops a
mass scale that makes the photon propagator finite in the
full momentum range.
For the deconfined phase, the photon propagator seems

to approach a free field type of propagator as the infinite
volume is approached. We have observed that the matching
with a free field theory is not perfect with both the photon
propagator and the static potential showing some deviations
from the expected behavior, that we interpreted as being
due to finite volume effects. Indeed, the deviations from a
free field theory are reduced, in all the computed quantities,
as the lattice volume is increased. Given that at low
momenta the propagator of a free field theory diverges
and the lattice regularizes both the UVand IR divergences,
in a sense the deviations from the free field theory results
are not unexpected.
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FIG. 9. Average Dirac string density over the lattice as given by
Eq. (8) for the confined (top) and deconfined (bottom) phases for
the thermalized Landau gauge configurations. The horizontal axis
refers to the configuration number.

FIG. 8. The string tension as a function of 1=L. The lines are
connect the origin where σa2 ¼ 0 with the value found for the
largest lattice volume. The shaded region represents the one
standard deviation on the result for σa2 from the largest volume.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

T

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00
W

(R
,T

)
R = 1
R = 2
R = 3
R = 4
R = 5
R = 6
R = 7
R = 8
R = 9
R = 10
R = 11
R = 12
R = 13
R = 14
R = 15
R = 16
R = 17
R = 18
R = 19
R = 20

Deconfined Phase (96
4
 - β = 1.2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
R

0.15

0.20

0.25

0.30

0.35

0.40

V
(R

)

96
4

48
4

32
4

Deconfined Phase (β = 1.2)

FIG. 7. The Wilson loop (top) for L ¼ 96 and the static
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Comparing the confined and deconfined phase results, it
seems that it is the generation of a mass gap that occurs for
the confined phase that turns the propagator essentially
independent of the lattice volume. This is a situation that is
also seen in the simulations for QCD.
If the phase diagram for compact QED as a function of

β has two different phases, one can ask how can one
distinguish them. According to [19] the appearance of
the confining phase for the 3D theory is due to the
presence of monopole configurations. The monopoles
are connected with the topology of the gauge group and
they become irrelevant for the dynamics at large β values.
The 4D equivalent to the monopole configurations are
Dirac strings that should be seen on a finer analysis of the
gauge configurations. In Fig. 9 we report on the average
number of Dirac strings over the lattice, computed with
the definitions (7) and (8), for all the lattices. The plots
show that m is independent of L for the confined phase
(β ¼ 0.8), with m having larger fluctuations in the
smaller lattices. For the deconfined phase (β ¼ 1.2) m
decreases with the lattice volume and the results suggest,

once more, that in the simulations performed in the
deconfined phase the infinite volume limit is not yet
realized, despite the large volume considered.
Furthermore, m is about a factor of fifty larger in the
confined phase when compared to its value in the
deconfined phase. This result suggests that, indeed,
the Dirac strings are responsible for the confined phase
in 4D compact QED in agreement with the suggestion of
[19]. However, further studies are required to draw firm
conclusions.

ACKNOWLEDGMENTS

This work was partly supported by the FCT—Fundação
para a Ciência e a Tecnologia, I. P., under Projects
No. UIDB/04564/2020 and No. UIDP/04564/2020.
P. J. S. acknowledges financial support from FCT
(Portugal) under Contract No. CEECIND/00488/2017.
The authors acknowledge the Laboratory for Advanced
Computing at the University of Coimbra [57] for providing
access to the HPC resource Navigator.

[1] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
[2] T. Banks, R. Myerson, and J. B. Kogut, Nucl. Phys. B129,

493 (1977).
[3] J. Glimm and A. M. Jaffe, Commun. Math. Phys. 56, 195

(1977).
[4] E. H. Fradkin and L. Susskind, Phys. Rev. D 17, 2637

(1978).
[5] M. Creutz, L. Jacobs, and C. Rebbi, Phys. Rev. D 20, 1915

(1979).
[6] A. H. Guth, Phys. Rev. D 21, 2291 (1980).
[7] B. E. Lautrup and M. Nauenberg, Phys. Lett. B 95, 63

(1980).
[8] J. Fröhlich and T. Spencer, Commun. Math. Phys. 83, 411

(1982).
[9] B. Berg and C. Panagiotakopoulos, Phys. Rev. Lett. 52, 94

(1984).
[10] J. B. Kogut, E. Dagotto, and A. Kocic, Phys. Rev. Lett. 60,

772 (1988).
[11] J. Jersak, C. B. Lang, and T. Neuhaus, Phys. Rev. D 54,

6909 (1996).
[12] M. Panero, J. High Energy Phys. 05 (2005) 066.
[13] F. V. Gubarev, L. Stodolsky, and V. I. Zakharov, Phys. Rev.

Lett. 86, 2220 (2001).
[14] R. Balian, J. M. Drouffe, and C. Itzykson, Phys. Rev. D 10,

3376 (1974).
[15] J. M. Drouffe, C. Itzykson, and J. B. Zuber, Nucl. Phys.

B147, 132 (1979).
[16] G. Arnold, B. Bunk, T. Lippert, and K. Schilling, Nucl.

Phys. B, Proc. Suppl. 119, 864 (2003).
[17] P. Coddington, A. Hey, J. Mandula, and M. Ogilvie, Phys.

Lett. B 197, 191 (1987).

[18] A. Nakamura andM. Plewnia, Phys. Lett. B 255, 274 (1991).
[19] A. M. Polyakov, Phys. Lett. 59B, 82 (1975).
[20] A. M. Polyakov, Nucl. Phys. B120, 429 (1977).
[21] M. N. Chernodub, E. M. Ilgenfritz, and A. Schiller, Phys.

Rev. D 67, 034502 (2003).
[22] B. L. G. Bakker, M. N. Chernodub, and A. I. Veselov, Phys.

Lett. B 502, 338 (2001).
[23] J. Greensite, Lect. Notes Phys. 821, 1 (2011).
[24] J. Jersak, arXiv:hep-lat/0010014.
[25] D. Dudal, O. Oliveira, and P. J. Silva, Ann. Phys. (Amsterdam)

397, 351 (2018).
[26] A. G. Duarte, O. Oliveira, and P. J. Silva, Phys. Rev. D 94,

014502 (2016).
[27] A. Cucchieri, D. Dudal, T. Mendes, and N. Vandersickel,

Phys. Rev. D 93, 094513 (2016).
[28] O. Oliveira and P. J. Silva, Phys. Rev. D 86, 114513

(2012).
[29] D. Dudal, O. Oliveira, and N. Vandersickel, Phys. Rev. D

81, 074505 (2010).
[30] I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker, and

A. Sternbeck, Phys. Lett. B 676, 69 (2009).
[31] A. Cucchieri and T. Mendes, Proc. Sci., LATTICE2007

(2007) 297 [arXiv:0710.0412].
[32] M. Q. Huber, Phys. Rev. D 101, 114009 (2020).
[33] M. Q. Huber, Phys. Rep. 879, 1 (2020).
[34] A. K. Cyrol, L. Fister, M. Mitter, J. M. Pawlowski, and N.

Strodthoff, Phys. Rev. D 94, 054005 (2016).
[35] C. S. Fischer, A. Maas, and J. M. Pawlowski, Ann. Phys.

(Amsterdam) 324, 2408 (2009).
[36] A. C. Aguilar, D. Binosi, and J. Papavassiliou, Phys. Rev. D

78, 025010 (2008).

LOVERIDGE, OLIVEIRA, and SILVA PHYS. REV. D 103, 094519 (2021)

094519-10

https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1016/0550-3213(77)90129-8
https://doi.org/10.1016/0550-3213(77)90129-8
https://doi.org/10.1007/BF01614208
https://doi.org/10.1007/BF01614208
https://doi.org/10.1103/PhysRevD.17.2637
https://doi.org/10.1103/PhysRevD.17.2637
https://doi.org/10.1103/PhysRevD.20.1915
https://doi.org/10.1103/PhysRevD.20.1915
https://doi.org/10.1103/PhysRevD.21.2291
https://doi.org/10.1016/0370-2693(80)90400-1
https://doi.org/10.1016/0370-2693(80)90400-1
https://doi.org/10.1007/BF01213610
https://doi.org/10.1007/BF01213610
https://doi.org/10.1103/PhysRevLett.52.94
https://doi.org/10.1103/PhysRevLett.52.94
https://doi.org/10.1103/PhysRevLett.60.772
https://doi.org/10.1103/PhysRevLett.60.772
https://doi.org/10.1103/PhysRevD.54.6909
https://doi.org/10.1103/PhysRevD.54.6909
https://doi.org/10.1088/1126-6708/2005/05/066
https://doi.org/10.1103/PhysRevLett.86.2220
https://doi.org/10.1103/PhysRevLett.86.2220
https://doi.org/10.1103/PhysRevD.10.3376
https://doi.org/10.1103/PhysRevD.10.3376
https://doi.org/10.1016/0550-3213(79)90418-8
https://doi.org/10.1016/0550-3213(79)90418-8
https://doi.org/10.1016/S0920-5632(03)01704-3
https://doi.org/10.1016/S0920-5632(03)01704-3
https://doi.org/10.1016/0370-2693(87)90366-2
https://doi.org/10.1016/0370-2693(87)90366-2
https://doi.org/10.1016/0370-2693(91)90247-N
https://doi.org/10.1016/0370-2693(75)90162-8
https://doi.org/10.1016/0550-3213(77)90086-4
https://doi.org/10.1103/PhysRevD.67.034502
https://doi.org/10.1103/PhysRevD.67.034502
https://doi.org/10.1016/S0370-2693(01)00180-0
https://doi.org/10.1016/S0370-2693(01)00180-0
https://doi.org/10.1007/978-3-642-14382-3
https://arXiv.org/abs/hep-lat/0010014
https://doi.org/10.1016/j.aop.2018.08.019
https://doi.org/10.1016/j.aop.2018.08.019
https://doi.org/10.1103/PhysRevD.94.014502
https://doi.org/10.1103/PhysRevD.94.014502
https://doi.org/10.1103/PhysRevD.93.094513
https://doi.org/10.1103/PhysRevD.86.114513
https://doi.org/10.1103/PhysRevD.86.114513
https://doi.org/10.1103/PhysRevD.81.074505
https://doi.org/10.1103/PhysRevD.81.074505
https://doi.org/10.1016/j.physletb.2009.04.076
https://arXiv.org/abs/0710.0412
https://doi.org/10.1103/PhysRevD.101.114009
https://doi.org/10.1016/j.physrep.2020.04.004
https://doi.org/10.1103/PhysRevD.94.054005
https://doi.org/10.1016/j.aop.2009.07.009
https://doi.org/10.1016/j.aop.2009.07.009
https://doi.org/10.1103/PhysRevD.78.025010
https://doi.org/10.1103/PhysRevD.78.025010


[37] P. Boucaud, J. P. Leroy, A. Le Yaouanc, J. Micheli, O. Pene, and
J. Rodriguez-Quintero, J. High Energy Phys. 06 (2008) 099.

[38] D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel, and
H. Verschelde, Phys. Rev. D 78, 065047 (2008).

[39] R. Alkofer, W. Detmold, C. S. Fischer, and P. Maris, Phys.
Rev. D 70, 014014 (2004).

[40] A. Nakamura and R. Sinclair, Phys. Lett. B 243, 396 (1990).
[41] T. A. DeGrand and D. Toussaint, Phys. Rev. D 22, 2478

(1980).
[42] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth,

Phys. Lett. B 195, 216 (1987).
[43] R. G. Edwards, and B. Joó (SciDAC, LHPC, and UKQCD

Collaborations), Nucl. Phys. B, Proc. Suppl. 140, 832 (2005).
[44] P. J. Silva and O. Oliveira, Nucl. Phys. B690, 177 (2004).
[45] E. M. Ilgenfritz, C. Menz, M. Muller-Preussker, A. Schiller,

and A. Sternbeck, Phys. Rev. D 83, 054506 (2011).
[46] L. Giusti, M. L. Paciello, S. Petrarca, B. Taglienti, and M.

Testa, Phys. Lett. B 432, 196 (1998).
[47] A. Cucchieri and T. Mendes, arXiv:hep-lat/9902024.
[48] A. Cucchieri and F. Karsch, Nucl. Phys. B, Proc. Suppl. 83,

357 (2000).
[49] H. Nakajima, S. Furui, and A. Yamaguchi, arXiv:hep-lat/

0007001.

[50] I. L. Bogolubsky and V. K. Mitrjushkin, arXiv:hep-lat/
0204006.

[51] G. T. R. Catumba, O. Oliveira, and P. J. Silva, Phys. Rev. D
103, 074501 (2021).

[52] M. Pippig, SIAM J. Sci. Comput. 35, C213 (2013).
[53] http://www.uc.pt/lca.
[54] V. Grosch, K. Jansen, J. Jersak, C. B. Lang, T. Neuhaus, and

C. Rebbi, Phys. Lett. B 162, 171 (1985).
[55] W. Kerler, C. Rebbi, and A. Weber, Phys. Lett. B 348, 565

(1995).
[56] V. G. Bornyakov, V. K. Mitrjushkin, M. Muller-Preussker,

and F. Pahl, Phys. Lett. B 317, 596 (1993).
[57] I. L. Bogolubsky, V. K. Mitrjushkin, M. Muller-Preussker,

and P. Peter, Phys. Lett. B 458, 102 (1999).
[58] I. L. Bogolubsky, L. Del Debbio, and V. K. Mitrjushkin,

Phys. Lett. B 463, 109 (1999).
[59] D. B. Leinweber, J. I. Skullerud, A. G. Williams, and C.

Parrinello (UKQCD Collaboration), Phys. Rev. D 60,
094507 (1999); 61, 079901(E) (2000).

[60] T. A. DeGrand and D. Toussaint, Phys. Rev. D 24, 466
(1981).

[61] G. Cella, U. M. Heller, V. K. Mitrjushkin, and A. Vicere,
Phys. Rev. D 56, 3896 (1997).

LATTICE LANDAU GAUGE PHOTON PROPAGATOR FOR 4D … PHYS. REV. D 103, 094519 (2021)

094519-11

https://doi.org/10.1088/1126-6708/2008/06/099
https://doi.org/10.1103/PhysRevD.78.065047
https://doi.org/10.1103/PhysRevD.70.014014
https://doi.org/10.1103/PhysRevD.70.014014
https://doi.org/10.1016/0370-2693(90)91403-X
https://doi.org/10.1103/PhysRevD.22.2478
https://doi.org/10.1103/PhysRevD.22.2478
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1016/j.nuclphysbps.2004.11.254
https://doi.org/10.1016/j.nuclphysb.2004.04.020
https://doi.org/10.1103/PhysRevD.83.054506
https://doi.org/10.1016/S0370-2693(98)00631-5
https://arXiv.org/abs/hep-lat/9902024
https://doi.org/10.1016/S0920-5632(00)91672-4
https://doi.org/10.1016/S0920-5632(00)91672-4
https://arXiv.org/abs/hep-lat/0007001
https://arXiv.org/abs/hep-lat/0007001
https://arXiv.org/abs/hep-lat/0204006
https://arXiv.org/abs/hep-lat/0204006
https://doi.org/10.1103/PhysRevD.103.074501
https://doi.org/10.1103/PhysRevD.103.074501
https://doi.org/10.1137/120885887
http://www.uc.pt/lca
http://www.uc.pt/lca
http://www.uc.pt/lca
https://doi.org/10.1016/0370-2693(85)91081-0
https://doi.org/10.1016/0370-2693(95)00188-Q
https://doi.org/10.1016/0370-2693(95)00188-Q
https://doi.org/10.1016/0370-2693(93)91378-Z
https://doi.org/10.1016/S0370-2693(99)00575-4
https://doi.org/10.1016/S0370-2693(99)00968-5
https://doi.org/10.1103/PhysRevD.60.094507
https://doi.org/10.1103/PhysRevD.60.094507
https://doi.org/10.1103/PhysRevD.61.079901
https://doi.org/10.1103/PhysRevD.24.466
https://doi.org/10.1103/PhysRevD.24.466
https://doi.org/10.1103/PhysRevD.56.3896

