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Path integral contour deformations have been shown to mitigate sign and signal-to-noise problems
associated with phase fluctuations in lattice field theories. We define a family of contour deformations
applicable to SU(N) lattice gauge theory that can reduce sign and signal-to-noise problems associated with
complex actions and complex observables. For observables, these contours can be used to define deformed
observables with identical expectation value but different variance. As a proof-of-principle, we apply

machine learning techniques to optimize the deformed observables associated with Wilson loops in two
dimensional SU(2) and SU(3) gauge theory. We study loops consisting of up to 64 plaquettes and achieve

variance reduction of up to 4 orders of magnitude.
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I. INTRODUCTION

In order to test the Standard Model and search for new
physics in experiments involving hadrons and nuclei,
precision calculations of Standard Model observables are
required. To achieve this, Monte Carlo (MC) calculations
of lattice-regularized path integrals for quantum chromo-
dynamics (QCD) have been used to make precise predic-
tions for many phenomenologically relevant quantities in
the meson and nucleon sectors; for recent reviews see
Refs. [1-5]. Lattice QCD calculations using MC methods
are performed in Euclidean spacetime where the action
S(U) is typically a real function of the discretized gauge
field U, , € SU(3) and an ensemble of gauge fields can be
generated with probability distribution proportional to
e~S(W)_ Predictions for the expectation values of observ-
ables O are then obtained by averaging the results for O(U)
obtained for each gauge field configuration.

For correlation functions describing nucleons, nuclei,
and most mesons, O(U) is complex and includes a gauge-
field-dependent phase [6,7]. Phase fluctuations grow more
rapid with increasing Euclidean time separation and lead to
a “signal-to-noise (StN) problem” in which the StN for
a fixed size statistical ensemble decreases exponentially
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with increasing time separation [6—12]. Alternatively,
multinucleon systems can be probed by including non-
zero quark chemical potential in the action. In this case,
¢S is not real and positive definite and cannot be
interpreted as a probability distribution and the theory is
said to have a “sign problem.” If ¢ R*5(V) is used to define
a probability distribution in this case, e=™S(V) leads to
rapid phase fluctuations of path integrands and the
appearance of a StN problem that is exponential in the
spacetime volume [13-19].

A generic method for taming sign and StN problems in
path integrals has recently emerged. This method involves
deforming the manifold of integration of the path integral
into a complexified field space. If the path integrand is a
holomorphic function of the field variables, then a multi-
dimensional version of Cauchy’s integral theorem ensures
that expectation values of the corresponding observable is
unchanged by the manifold deformation. Manifold defor-
mation may, however, change the values of observables on
individual field configurations and therefore modify the
severity of phase fluctuations and associated sign/StN
problems. Several methods for finding useful manifolds
have been proposed and successfully applied in lattice field
theories as well as nonrelativistic quantum mechanical
theories relevant for condensed matter physics [20-46].
For a recent review see Ref. [47]. Although most applica-
tions have focused on improving sign problems in theories
with complex actions, an analogous method for improving
StN problems for complex observables in theories with real
actions was introduced in Ref. [48].
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The focus of this work is on addressing sign/StN
problems in QCD-like theories; in this setting, path integral
contour deformations have so far been restricted to solving
sign problems in simple contexts. Thermodynamic observ-
ables at nonzero quark chemical potential have been
computed in (0+ 1)D QCD, a theory with a single link
variable, using Lefschetz thimble methods [49] and the
generalized thimble method [50], while preliminary results
using neural-network manifolds were obtained in [51]. In
higher dimensions, Lefschetz thimbles were used to ana-
lyze finite-density observables for one- and two-site sys-
tems in the heavy-dense limit in Ref. [52], and this study
predicted that the number of relevant Lefschetz thimbles
would grow exponentially with the number of lattice sites
for larger systems. Very recently a method for computing in
Yang-Mills theories with complex gauge couplings was
proposed then applied to (1 + 1)D U(1) gauge theory [53].
The task of computing noisy observables in non-Abelian
lattice gauge theories for larger spacetime volumes and
higher spacetime dimensions has remained challenging.

This paper introduces a simple yet expressive family of
complexified manifolds for taming sign/StN problems in
SU(N) gauge theory using path integral contour deforma-
tions. The Jacobians required for calculations using this
family of deformations are shown to be triangular matrices
whose determinants can be computed with a cost that scales
linearly with the spacetime volume. This family of mani-
folds can be applied to all theories involving SU(N) gauge
fields, including gauge theories coupled to matter fields,
although their practical utility for improving sign/StN
problems is only explored here for pure gauge theory.

The deformed observable method introduced in Ref. [48]
relates path integrals over deformed contours to path
integrals written in terms of modified observables on
undeformed contours, enabling improvement in the StN
of observables without the need to modify MC sampling.
We apply the method here to calculations of Wilson loops
in SU(2) and SU(3) gauge theory, in which Wilson loops
are known to have an exponentially severe StN problem
and have been used to study other StN improvement
methods [54]. Calculations are performed in (14 1)D as
a proof of concept, as it is possible to compare with exact
StN results derived analytically and to use specialized
approaches for efficient Monte Carlo ensemble generation
for (14 1)D gauge theories. Results are obtained for a
range of Wilson loop areas and lattice spacings including
areas of up to 64 lattice units at the finest lattice spacing. The
variances of Wilson loops with largest areas are reduced by
factors of 10° — 10*, demonstrating that deformed observ-
ables can dramatically improve StN problems in SU(N)
lattice gauge theory. The linear scaling with spacetime
volume of these contour deformations suggests that it should
be computationally feasible to explore the application of
analogous contour deformations to (3 + 1)D lattice gauge
theory in future work.

The remainder of this paper is organized as follows.
Section II describes our approach to contour deformations
for SU(N) variables, including a family of complex
manifolds for integration over sets of SU(N) variables,
and reviews the deformed observables method introduced
in Ref. [48]. Section IIl presents analytical results for
expectation values and variances of observables in
(1+1)D SU(N) lattice gauge theory. Results for MC
calculations of deformed observables for Wilson loops are
presented for SU(2) gauge theory in Sec. IV and for SU(3)
gauge theory in Sec. V. A summary of results and
consideration of future work is found in Sec. VI.

II. GENERAL FORMALISM

Cauchy’s integral theorem implies that the contour of a
complex line integral can be deformed without changing
the integral value if the integrand is holomorphic in the
intervening region and the endpoints are held fixed." When
multidimensional integration is performed, the full theorem
can be generalized if the integral is describable as iterated
complex line integrals or by a technical extension to the full
multivariate setting [55]. For the purpose of contour
deformations, however, only a weaker form of the theorem
(equivalent to Stokes’ theorem) is required. Specifically, a
contour deformation from manifold M4 to M leaves the
integral value unchanged if M, U M bounds a region in
which the integrand is holomorphic; see Ref. [47] for a
simple proof. To implement such contour deformations and
confirm holomorphy of an integrand throughout the rel-
evant region of configuration space, a coordinate para-
metrization is useful. We discuss such parametrizations and
contour deformation for SU(N) groups and SU(N) gauge
theory in the following sections.

A. Contour deformations of angular parameters

A general formalism for applying path integral contour
deformations to SU(N) group integrals can be obtained by

using manifold coordinates that map subsets of RN o
SU(N). For any N, the group manifold can be given explicit
global coordinates using N?> — 1 angular variables [56].
These variables can be divided into azimuthal angles
¢1,...,¢;€[0,27] and zenith angles 0, ...,0k € [0, /2],
where J=(N2+N-2)/2 and K= (N?-N)/27°
The azimuthal angles are periodic, such that ¢; =0 is
identified with ¢; = 2z, while the zenith angles have
distinct endpoints. We define the combined coordi-
nate Q = (¢y, ..., 45,01, ...,0k).

'For periodic functions this condition on the endpoints can be
relaxed, as discussed in Sec. IT A.

This is not the only possible assignment of angular coor-
dinates to the manifold. For example, Appendix B explores an
alternative parametrization for SU(2).
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A generic integral over group-valued variable U €
SU(N) can be written as

7= / dUf(U). (1)

where the Haar measure dU is defined to be the
unique measure that satisfies d(VU) = d(UV) = dU for
V € SU(N). We choose the conventional normalization
condition [dU = 1. Using the coordinates introduced
above, the integral can immediately be cast as integration
over a subdomain of RV~!,

7= H [ I dqs,} 11 { I dek] HQSUQ), ()

J k=1

where h(Q) is the Jacobian factor associated with the
change of measure from dU to dQ = []; d¢; [ [, d0y, and
U(Q) is the group element at the manifold coordinate €.
The specific forms of 4(Q) and U(Q) for the groups SU(2)
and SU(3) are presented in Sec. IVA and VA.

From Eq. (2), it is clear that each 6, can be deformed
into the complex plane holding the endpoints 0 and z/2
fixed. Each ¢; can be deformed under the weaker con-
straint that the endpoints remain identified, as shown
in Fig. 1. This can be seen by noting that the endpoints of
the shifted contour can be connected to the original
endpoints using a pair of segments parallel to the
imaginary axis; these segments differ by a real 2z shift
and a change of orientation so that integrals of periodic
functions along these segments exactly cancel. This
approach to deforming periodic variables with identified
endpoints has previously been applied to path integrals
involving U(1) variables [48,57-59]. If the integrand
h(Q)f(U(Q)) is a holomorphic function of all compo-
nents of Q, the value of the integral is unchanged by the
deformations described above. We can define a deformed

identified

invalid 6(6)

valid ¢(¢)

valid ()

FIG. 1. Left: schematic depiction of valid and invalid contour
deformations, defined by the mapping () from base coordinates
to the manifold, when the original domain is a finite interval.
Right: schematic depiction of additional allowed deformations
(shifts) when endpoints are identified; these shifts are applicable
to U(1) variables or azimuthal angles ¢ in SU(N) manifolds.

integration contour by the maps q?ﬁj = q?bj(Q) € C and
0; = 0,(Q) € C; for conciseness the collective set of
deformed coordinates can be written as a function of
original coordinates Q = (¢, ....¢,. 0. ....0k) = Q(Q).
The value of the integral is unchanged by this
deformation,

- / dUI(U)F(D). 3)

Above, U= U(Q) is the deformed group element,
J(Q) = det
the measure dQ of the base contour to the measure dQ
of the deformed contour, and the Jacobian factor relating

the Haar measure dU between the original and deformed
contours is given by

gg; is the (complex) Jacobian factor relating

J(U) = J(Q)h(Q)/h(Q). 4)

For any concrete map U(Q), the deformed group
element is given by simply applying the map to the
complexified coordinate Q. Any real Lie group has a
unique complexification and the space in which U lives
is well understood. In particular, the complexification of
SU(N) is SL(N,C) [60]. This is easy to see on intuitive
grounds, as SU(N) matrices are specified by unit-norm
eigenvalues with determinant 1 and the effect of complex-
ifying the group is to allow arbitrary nonzero eigenvalues
while preserving the determinant constraint, resulting in the
group SL(N,C).

Though the deformation is defined in terms of the
manifold coordinates, we can see in the last line of
Eq. (3) that this new integral can be written independently
of the coordinates, using the modified integrand
J(U)f(U(U)). This form suggests a coordinate-indepen-
dent definition of a holomorphic integrand and contour
deformation. Such a general approach is beyond the scope
of this work, but we note that a deformation can be applied
in any coordinate system so long as the integrand can be
shown to be holomorphic in some coordinate system. The
angular coordinates for SU(N) are sufficient to show that
all components of the matrix representation of U are
holomorphic (i.e., the Wirtinger derivatives U (Q)/0Q;
are zero [55]). The components of U~ are holomorphic
whenever U is invertible, as can be seen by starting with the
definition of the inverse, U~'U = 1, applying Wirtinger
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derivatives to both sides, d(U~'U)/Q; =0, and using
holomorphy of U to obtain OU~!/0Q; = 0.

The general construction so far is valid for collections
of SU(N) group variables, and is therefore applicable to
SU(N) lattice gauge theory. Standard pure-gauge actions
for SU(N) lattice gauge theory can be written as holomor-
phic functions of the variables U and their inverses, if we
replace instances of U" with U~!, and are thus holomorphic
throughout the SL(N,C) domain of each complexified
group variable. This fact has previously been recognized
in complex Langevin approaches to extensive sign prob-
lems in lattice gauge theory [61-63]. Similarly, (unrooted)
fermionic determinants can be written as polynomials
in components of gauge links and are therefore holomor-
phic [36], and many observables can be analyzed in the
same way.

B. Vertical contour deformations

We define a family of deformed manifolds for an SU(N')
variable in terms of the angular parametrization by

Q=Q+if(Qily), (5)

where f(Q;4.y) € RV'=!. This family of vertical defor-
mations inspired by Refs. [57,64] is not fully general as it
only includes contour deformations describable by verti-
cally shifting each point purely in the imaginary direction,
and in particular it does not include any deformations with
ReQ(Q) = ReQ(Q') for some Q # €. The Jacobian of any
deformation in this family is straightforward to compute as

O0f (54, 1)

0Q
J(Q) = det—=* = det |5, , (6
( ) € 3!2/; € a/}+l agﬁ ( )
where a,f =1,...,N*> —1 index the angular parameters

Q = (¢1’ LR ¢j’ 91, ""GK)'
The function f can further be expanded in terms of
Fourier modes,

A
F@ax) =Y > AT Qxtsnid),  (7)
{n,v}:O{mj =1

where I = (n,...n,,my...my), and

a b
T/ (Q: .. x%) = H sin(¢;n; + x') H sin(20;m;),  (8)
i=1 =1

which provides a complete basis for vertical contour
deformations in the limit A — oo. Including successively
more Fourier modes by increasing the Fourier cutoff A
systematically improves the flexibility of the function f. In
our applications to SU(N) gauge theories in (14 1)D
below, Fourier cutoffs A € {0,1,2} are explored. It is

noteworthy that the sum over azimuthal Fourier modes
includes the constant mode as well as phase offsets y;
because azimuthal angles can be deformed without fixing
their endpoints as discussed above. These constant modes
are essential for the sign/StN problem reduction achieved in
(14 1)D examples below.

C. Path integral deformations for noisy observables

We next review the deformed observable approach
presented in Ref. [48], in which contour deformations of
lattice field theory path integrals are used to define
modified observables with improved noise properties and
unchanged expectation value. We focus here on SU(N)
lattice gauge theory path integrals, which are high-
dimensional integrals over a collection of group-valued
degrees of freedom U, , € SU(N). Here, x specifies a site
on the discrete spacetime lattice and u € {1, ..., N} is any
of the N, spacetime directions on the lattice. The integrals
under study take the form

(0) = % / DU O(U)e=SV), )
where
Z:/DUfWU (10)

and the action S(U) € R is a function of all gauge links.
Details on the construction of lattice gauge theory are
presented in Sec. III.

It is possible to deform the integration contour of an
SU(N) lattice gauge theory path integral by individually
deforming each group-valued variable U, , using the
formalism presented above. In principle the deformed link,
Ux./v could be a function of all other links on the lattice.
However, evaluating the Jacobian factor arising from such
an arbitrary deformation would require O(V?) operations,
where V is the number of sites of the lattice. For state-of-
the-art lattice field theory calculations, this is intractable.
A similar obstacle is encountered in the application of
normalizing flows to sampling probability distributions in
image or lattice data analysis, see, e.g., Ref. [65] for a
review, where it is avoided by explicitly restricting to
triangular Jacobians for which the determinant factor is
efficiently calculable from the diagonal elements. In this
work, we similarly restrict to triangular Jacobians by
allowing deformations of each variable to depend only
on previous variables in a canonical ordering, described
in detail for our particular studies of SU(2) and SU(3) in
the following sections. Exploring other options is an
interesting possibility for future work; for example, trans-
formations built from a composition of multiple triangular
transformations may allow more general spacetime depend-
ence without significant increase in cost, whereas other
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alternatives based on convolutions may scale supra-linearly
as the volume is increased.

Given a deformed manifold M with tractable Jacobian
factor, a deformed integral can be constructed to compute
the same expectation value defined by Eq. (9),

() :%/M DU O({7)e=50). (11)

The above equality holds if the original manifold can be
deformed to M without encountering any nonholomorphic
regions of the integrand, i.e., if the integrand is holomor-
phic in the region bounded by the union of M and the
original manifold. The abstract manifold M can be
specified by a map U(U), which then gives a concrete
prescription for computing Eq. (11),

() :% / DUIU)OD(U))e-SO@) . (12)

In contrast to Eq. (9), the path integral in Eq. (12) involves a
generically complex-valued action, S(U(U)) € C, and a
different observable J(U)O(U(U)) written in terms of the
(efficiently computed) Jacobian factor J(U). Cauchy’s
theorem implies that these modifications conspire to cancel
and result in an identical expectation value.

It is useful to further rewrite Eq. (12) as a path integral
with respect to the original action,

(©) = [ PUU@WIO@(U)e U5
E%/DU Q(U)e=5V) = (Q). (13)

In this rewriting, it is clear that the deformed path integral is
still accessible by performing Monte Carlo sampling with
respect to the original action S(U) and estimating the
sample mean of Q(U ) These methods can therefore be
applied at the measurement step, after an ensemble of field
configurations has been sampled. In essence, the deformed
path integral defines a new observable Q(U) that has
provably identical expectation value to the original observ-
able O(U). Notably, this new observable generically has
very different structure from O, as it may be nonlocal and
depends on the structure of the action.

The variance of Q(U) can, however, be vastly different
from the variance of O(U). For most observables, samples
of O(U) are complex-valued, and the variance of the real
and imaginary components are given by

1

VarRe 0] = 2 (|02 + 1 Re(0®) ~ [Re(O)]"

Var[Im O] =

N = 1]

(10%)) ~ 3 Re(©®) ~ Im(O)F. (14

These are not generically identical to the variance of ReQ
and ImQ,

Var[Re Q] = = (|Q?|) +%R€(QZ> - [Re(Q)J%,

| =

Varllm Q] = 2 (|0%)) ~ 5 Re(Q%) - Im(Q)P.  (19)

The final term is unchanged because (O) = (Q), but the
first two terms in both lines of Eq. (15) are not generically
equal to the corresponding terms in Eq. (14). Explicitly,
those terms are given by

122 = / DUW(U)O(D(U)) e 2ReSTW)+5W),
() = / DUI(UROD(U))2e ST (16)

Extra factors of S(U) persist in both expressions in Eq. (16),
and a nonholomorphic absolute value appears for (|Q?|),
preventing identification with the terms in Eq. (14). It can
thus be fruitful to look for a modified observable QO for
which the terms in Eq. (16) are minimized and the statistical
noise is less than that of the original observable.

Given an explicit parametrization of the deformed
contour, standard gradient-based optimization methods
can be applied to find the parameters that minimize the
terms in Eq. (16). Since the parameters only affect the
observable itself (the sampling weight is always e=5(V)),
the gradient of the variance with respect to the parameters
can be written as an expectation value under the original
Monte Carlo sampling. In this work, minimization of
Eq. (16) is performed using stochastic gradient descent
over the deformed contour parameters, which approxi-
mately converges to a local minimum of the variance under
mild assumptions [66—69], and starting at the original
manifold ensures that the result improves relative to (or
at worst is equivalent to) the original variance.

A potential obstacle to the deformed observable method
is that some contour deformations could lead to a severe
overlap problem between probability distributions propor-

tional to e=5(¥) and ¢ RelS(UW))] that could make estimates
of deformed observable variances from finite Monte Carlo
ensembles unreliable. The possibility of constructing
deformed observables with severe overlap problems can
be mitigated, however, by constructing deformed observ-
ables that minimize the variance of Q since large fluctua-

tions of e=S{UW)+SW) will tend to increase the variance of
Q. Overlap problems could still arise due to overfitting to
the sample variance of a Monte Carlo ensemble that does
not sample the field configurations associated with large
fluctuations of e=SUUNTSW): practical strategies to avoid
such overfitting problems are discussed in Sec. IV C below.

The terms to minimize in Eq. (16) are specific to a

particular observable O. There is no reason to expect a
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single manifold deformation to be optimal for all possible
observables, but one does expect similar observables to be
highly correlated, and thus to receive similar variance
improvements from the same deformation. This suggests
two useful practical improvements:

(1) Optimal manifolds can be found for a few repre-
sentative observables and can be reused for other
similar observables.

(2) When optimizing manifold parameters, the optimal
parameters for a similar observable can be used to
initialize the search.

In our studies of SU(2) and SU(3) lattice gauge theory in
Sec. IV and Sec. V, the initialization approach was found
to significantly reduce the number of steps required for
optimization.

D. Rewriting observables before deformation

It is often the case that the expectation value of an
observable O has multiple equivalent path integral repre-
sentations, for example when a theory possesses a gauge or
global symmetry that modifies O but leaves the action and
expectation values of observables invariant. In addition to
the freedom of choosing the parametrization of contour
deformations for a given path integral discussed above, the
application of contour deformations to observables
includes the freedom of choosing which path integral
representation to deform.

Simple examples of this freedom arise in two-dimen-
sional U(1) Euclidean lattice gauge theory. For instance,
path integral representations of Wilson loops with unit area
in this theory are proportional to

ﬂdd) 1 cos ¢
2 €T = 1B,

(17)

which is an integral representation of the modified Bessel
function of the first kind 7,,(), with n = 1, written in terms

100

Lol

10

Lol

IR

0.10

Varg[Re(e'?)]/Vars[ReQ.]

Ll

0.01 - T T T
—0.5 0.0 0.5 1.0

f

|
=
o

of the field variable ¢. The integrand appearing can be
interpreted as a product of an observable O = ¢ and an
e~ factor for the Euclidean action S = —fcos¢. This
theory has a charge conjugation symmetry that acts on the
integrand of Eq. (17) by ¢p — —¢, which leaves the action
invariant but modifies the observable e — e~¢. An
equally valid integral representation of /,(f) is obtained
by averaging the observable and its charge conjugate as

1) = [ cos(geres. (18)

x &

The choice of integrand in Eq. (17) or Eq. (18) is irrelevant
for Monte Carlo calculations using the integration contours
shown because the Monte Carlo estimator used in the first
case is Ree’® = cos ¢p. However, the ability of path integral
contour deformations to reduce the variance of a
Monte Carlo calculation does depend on the representation.
In particular, the variance of a Monte Carlo evaluation of
Eq. (17) can be significantly reduced by contour deforma-
tions while the variance of a Monte Carlo evaluation of
Eq. (18) cannot, as discussed below and shown in Fig. 2.

Reference [48] demonstrated that the variance of two-
dimensional U(1) Wilson loops can be significantly
reduced using contour deformations of the representation
given in Eq. (17); we review the analytical derivation here.
Denote averaging of O(¢) with respect to the path integral
of the theory with action —f cos ¢ by

b4 d¢

O(g)el >, (19)

o= [ s

where the modified Bessel function with rank n = 0 is used
to normalize the distribution. In general, the modified

Bessel functions of the first kind are given by I,(f) =
7,42 ¢ind eF o3 and will be used throughout the following

100
’_U‘ |
Qo
2 ]
£ 104
= 3
= E
>
>~
s 13
=
&
8 ]
§ 0.10
= ]
001 T T T T
—1.0 —0.5 0.0 0.5 1.0
f

FIG. 2. Ratios of the variance of observable Re(e'?) = cos(¢) to the variance of deformed observables obtained by applying the
transformation ¢ — ¢ + if to the integrand e’® (left) or cos(¢) (right) in the one-dimensional path integral with Euclidean action
—p cos ¢ discussed in the main text. Gray hatching indicates the region in which the variance of the deformed observable is higher than

the original (i.e., there is no improvement).
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derivation. Further denoting the corresponding variance of
O given f3 by Var[O], the variance of Re ¢’ = cos ¢ can
be computed to be

Varg[Re ] = (cos'(4), — ()3

=+ [

2
} . (20)
The constant vertical deformation
b ) =¢+if (21)
leads to a deformed observable

Q,(¢) = ) ePeos(d()~peosis) (22)

satisfying (Q,); = (/). Using ReQ, as a Monte Carlo
estimator instead of Re ¢’? results in variance

vaReo| e [FEL v - R ey
where
el =1\ L,(p\/5 — 4cosh
V(ﬂ, f) _ (e_f _2%> (ﬁ ZIO(ﬁC;OS (f)) ,

For positive §, Vars[ReQ,] generically has a minimum at
some strictly positive f that defines the optimal contour for
reducing the variance of Q,. Using deformed observables
associated with this optimal contour rather than the original
contour leads to variance reduction whose significance is
larger than an order of magnitude for f = 4 as shown in
Fig. 2. Larger variance reductions can be obtained for
multidimensional generalizations of Eq. (17) associated
with larger U(1) Wilson loops [48].

Applying the same constant vertical deformation to the
representation in Eq. (18) leads to an alternative deformed
observable

Q. () = cos(p(g))el PN Feosd)(25)

satisfying (Q.); = (¢*?),. The real part of this alternative
deformed observable has variance

Vary[ReQ.] = 2 e VIp. ) + 5 V()

I (ﬂ)} 2
Lip)]

3RO - |

This expression is symmetric under f — —f and its
gradient with respect to f therefore vanishes at f =0,
which can be verified to be the minimum of f. The
deformed observable Q.. associated with integrating along
the real axis is thus the choice with lowest variance, while
increasing |f| away from zero always leads to increased
variance as illustrated for several choices of f in Fig. 2.
The qualitative features of these results can be under-
stood from the behaviors of magnitude and phase fluctua-

tions of deformed observables. The magnitude of ¢ is
reduced for all ¢ by a constant vertical deformation with
f > 0. To preserve the results of the holomorphic integral
in Eq. (17) under this deformation, cancellations from
phase fluctuations must correspondingly be less severe
and sign/StN problems should therefore be improved. On
the other hand, the magnitude of cos(q?)) always satisfies
| cos(¢)| > | cos(¢h)| and therefore can only be increased by
applying a vertical contour deformation. This suggests that
phase fluctuations must become more severe to preserve
deformation-invariant integral results and that sign/StN
problems will be worsened. This argument applies to
nonconstant vertical deformations and suggests that it is
generically difficult to construct a contour deformation
of Eq. (18) that leads to a deformed observable with
variance comparable to the observable Q, obtained by
deforming Eq. (17).

In the non-Abelian gauge theories that are focus of this
work, the traces of Wilson loops define gauge invariant
observables related to the potential energies of static quark
configurations analogous to ¢ in U(1) gauge theory. The
eigenvalues of Wilson loops in U(N) or SU(N) gauge
theories can be expressed as e/, where ¢p; €R for j =
1,...,N and for the case of SU(N) the phases satisfy

j\':l ¢; =0 mod 2z. The trace of the Wilson loop is
given by >, ei. For SU(N) gauge theory, the unit
determinant condition therefore results in analogous
obstacles to improving the variance of the trace of
Wilson loops if the observable is not first rewritten using
symmetries.

For the case of SU(2), there is a precise correspondence
between Wilson loop traces and Eq. (18). The unit
determinant condition requires the Wilson loop eigenvalues
to be of the form ¢’? and e~ and the trace appearing in
both the observable and the Wilson action [70] (discussed
below in Sec. IV) are proportional to cos(¢). It is therefore
similarly impossible to improve the variance of a unit area
SU(2) Wilson loop trace using constant vertical deforma-
tions, and the previous analysis suggests it is difficult to
make significant variance improvements to traces of SU(2)
Wilson loops of general area using vertical contour
deformations. However, this analysis also indicates that
e? could provide a suitable starting point for defining
deformed observables. The gauge invariant component of
the Wilson loop eigenvalue e’® is cos(¢) making this a
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suitable rewriting of the observable that does not affect the
expectation value but enables variance improvements by
contour deformation.’

In the case of SU(N) with N > 3, complex eigenvalues
are not guaranteed to come in complex conjugate pairs, but
the unit determinant condition still guarantees that any
vertical deformation of the eigenvalue phases will increase
the magnitude of at least one ¢’% phase factor. In the sum
over eigenvalues defining the trace of a Wilson loop, the
largest eigenvalue magnitude will set the typical observable
magnitude on generic gauge fields in the integration
domain. Given that one eigenvalue is always boosted in
magnitude, on average the deformed integrand has to
oscillate faster than the undeformed integrand to ensure
an expectation value which is overall unchanged (as
guaranteed by Cauchy’s theorem). What results is a StN
problem even worse than before. If one instead chooses the
nongauge-invariant integrand e’?' to measure the same
expectation value, the determinant constraint does not
prevent exponentially decreasing the magnitude throughout
the integration domain using contour deformations. For
example, one can choose the shift

b1 = b =) +if
¢2—’§772:¢2—if/2
b3 —’553:¢3—if/2 (27)

which has the effect of reducing the observable magnitude
by e~/ on every gauge field in the integration domain.
Rewriting Wilson loop observables based on eigenvalues
requires diagonalization, and a more practical alternative is
to use the (1,1) component of the (matrix-valued) Wilson
loop as another nongauge-invariant function with the same
expectation value as the trace divided by N. The phase of
this (or any other) single color component of the Wilson
loop is not constrained by the unit determinant condition
and therefore one expects that a suitable parametrization
can be found in which vertical deformations can be applied
to the phase of the (1,1) component of the Wilson loop
analogously to e’?. Such parametrizations are given for
SU(2) in Sec. IV and for SU(3) in Sec. V following
Ref. [56] and are used as starting points for defining

*We could instead use linearity of the expectation value to start
from an explicitly gauge-invariant observable and rewrite
(cos(¢p)) =1 (') +1(e™ ). Most generally, we could then
apply distinct deformations to each expectation value on the
right-hand-side of this expression, and in particular applying
constant imaginary shifts with opposite signs will result in the
same StN improvement for both terms. In this example, the two
expectation values can be equated using charge conjugation
symmetry, which allows the exact rewriting (cos(¢)) = (e?),
but the technique of splitting the expectation value using linearity
and applying independent deforms may be useful where such a
symmetry is not present.

deformed observables with reduced variance in calculations
of Wilson loop expectation values. An alternative para-
metrization of SU(2) in which the real part of the (1,1)
component of the Wilson loop is expressed as cos(a/2) is
explored in Appendix B; as expected, vertical contour
deformations do not improve the variance of unit area
Wilson loops and less (though still significant) variance
reduction is found for larger area Wilson loops with this
alternative parametrization.

III. NOISE PROBLEMS IN SU(N) LATTICE
GAUGE THEORY

A simple setting for analyzing SU(N) lattice gauge
theory is obtained by considering (1 + 1)D Euclidean
spacetime with open boundary conditions. In this spacetime
geometry, much like in (3 + 1) dimensions, the theory
features confinement of static test charges and an exponen-
tially severe StN problem associated with static quark
correlation functions, which can be identified with
Wilson loops [70]. Numerical calculations of Wilson loop
expectation values can be performed at much lower
computational cost in (1 + 1)D than (3 + 1)D, facilitating
a first exploration of path integral contour deformations
applied to non-Abelian gauge theory observables on non-
trivial lattices. Analytic results for (1 + 1)D observables
such as Wilson loops are also known [71,72] and can be
used to verify the correctness of numerical results. These
results are extended to analytic results for the variances of
(1 +1)D Wilson loops below, which are then used in
Secs. IV=V to verify the correctness and study the
effectiveness of contour deformations applied to Wilson
loops. In particular, analytic results can be used to
determine the StN gains obtained by using deformed
observables even when the corresponding undeformed
observables are too noisy to be determined reliably.

A. SU(N) lattice gauge theory in (1+1)D

Lattice gauge theory in (1 4 1)D is defined on a set V
of Euclidean spacetime points x arranged in a discrete
two-dimensional lattice, with vectors 1 and 2 giving the
displacement in lattice units between neighboring lattice
sites along the two Euclidean spacetime axes. The discre-
tized gauge field is represented by group-valued variables on
each link of the lattice, with U, , denoting the variable
associated with link (x, x 4 f2). The physical content of the
theory is encoded in the (discretized) action. We consider
the Wilson action for SU(N) lattice gauge theory [70], given
for a (1 + 1)D Euclidean spacetime volume by

1
S=-5Y (P, + P, (28)
g xey

where ¢ is the bare gauge coupling and each plaquette
P, € SU(N) is defined as
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P,=U,U,.;,U (29)

x+2,1 x2
Writing the action and plaquettes using inversion rather than
Hermitian conjugation allows the relevant integrands to be
interpreted in the following sections as holomorphic func-
tions of integration variables throughout the complexified
domain. For SU(N) elements these operations are equiv-
alent, but analytically continuing the action to SL(N,C)
requires the use of the inverse [61-63].

Expectation values of operators O(U) in the lattice
regularized theory are defined by specializing Eqgs. (9)—(10)
to the particular case of SU(N) lattice gauge theory

1
= / DU O(U)eSW), (30)
where the Euclidean partition function Z is defined by

= / DU e-5W) (31)

and DU =[], ,dU,, in terms of the Haar measure dU,,
of SU(N).

With open boundary conditions in (1 + 1)D, the parti-
tion function defined by this action factorizes into a product
of independent integrals over each P,. To exploit this
factorization in (1 + 1)D, a gauge fixing prescription can
be applied in which U, , = 1forall x and U, ; = 1 for sites
with x, = 0 (a maximal tree gauge). In this gauge,

P, =U, UL, (32)

which can be easily inverted to obtain

xo—1 -1
Ux,l = |:H Px+kﬁ:| . (33)
k=0

The variables P, are therefore in one-to-one correspon-
dence with the remaining nongauge-fixed U, ;. The Haar
measure is invariant under this change of variables, and the
path integral defining the partition function factorizes as

z=][z=7"". (34)

xeV

where V' C V is the subset of lattice points with uncon-
strained U, ; in this gauge (those for which x, # 0) and z is
the contribution to the partition function from a single
plaquette,

/ ap ", (35)

The calculations of z and similar single-variable SU(N')
integrals are presented in Appendix A.

Wilson loops are defined by the matrix-valued quantity

IT ves (36)

XHEOA

where [, ,c94 Ux, represents an ordered product of links
along the boundary 0.A of the two-dimensional region A
with area A. The expectation value of the gauge-invariant
observable + tr(W 4) probes the interaction between a pair
of static quarks if the region A is taken to be rectangular.
Inserting Eq. (33) into Eq. (36) gives4

%tr (W) :—tr<HP ) (37)

xeA

Using linearity of expectation values and factorization of
path integrals analogous to Eq. (34), the expectation values
of Wilson loops can be related to products of (matrix-
valued) single-variable expectation values,

<11,tr(WA)> = %U (g(Px>)' (38)

Each single-variable expectation value is given by
(PPy = (y,)6%, allowing the traced Wilson loop to be
written as a product of scalars,

<1 tr(W ) > 1;[4@ (39)

where we have introduced the single-variable normalized
expectation value of the group character function

x1(P) = te(P),

1 1 Ltr(P+P1)

(== [ apyu(@)e™ T (40

whose value is computed in Appendix A.

Equation (39) implies that Wilson loop expectation
values follow area law scaling, (tr(W 4)/N) ~e~?4, and
SU(N) gauge theory in (1 + 1)D confines for all values of
the coupling, with a separation-independent force between
static test charges given by the string tension

az—jimaAanA:—ln()m). (41)

Although (y,) is in general given by a convergent infinite
series in Eq. (A6), in the case of SU(2) a simpler form can
be found in terms of modified Bessel functions,

*For simplicity we restrict to rectangular Wilson loops with
one corner at the origin.
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TABLE 1. The couplings used in our numerical studies of
SU(2) and SU(3) lattice gauge theory. The dimensionless
quantity oV is fixed to 6.4 while ¢ and V are individually varied.
The conventional Wilson action parameter = 2N/g” is also
reported.

SU(2) SU(3)
o \4 g B g p
0.4 16 0.98 42 0.72 11.7
0.2 32 0.71 8.0 0.53 21.7
0.1 64 0.51 15.5 0.38 41.8
1,(4/ ¢
SSUC) = 1n<—1( / 92)), (42)
12<4/9 )

which goes to zero as g> — 0. This observation can be
generalized to all SU(N) groups, and the lattice-units string
tension goes to zero while the static quark correlation
length grows to infinity in the limit of g> — 0 in all cases.
We can consider this to be the naive continuum limit of the
theory, though the correlation lengths of dynamical quan-
tities such as plaquettes or localized Wilson loops remain
finite by the factorization of the path integral. When
investigating the approach to the continuum in Sec. IV
and V, we should decrease the coupling while fixing the
dimensionless quantity oV, where V is the total number of
plaquettes; the particular choices of couplings and V used
in our numerical studies are reported in Table I. Results are
plotted versus A when comparing quantities at fixed
physical separation is important.

B. Noise and sign problems in the Wilson loop

Although the expectation value (tr(W 4)/N) is real, the
integrand tr(W4)/N has fluctuating signs (for N = 2)
or fluctuating complex phases (for N > 3) across the
domain of integration. These fluctuations result in a
sign/StN problem for this observable. The sample mean
of Retr(W 4)/N gives an estimator for (tr(W 4)/N), and
the variance of this estimator can be directly computed,

Var[Re tr(W 1) /N] = % (Retr(W 4)?) — %Re(tr(WA»z

=532 (|er(W 4)?|) + ﬁ (tr(W.4)?)

—%Re(tr(WA»z. (43)

The expectation values in the first and second terms
in the variance can be factorized analogously to the
Wilson loop expectation value, and are shown in
Appendix A to be

(e(W.20) = 1+ (V2 = 1) 71,1
(r(w ) = VI gy M2 o 4

in terms of the single-site integrals (y; _1), (v2), and (y; 1),
defined in Egs. (A9) and (A13). In total, the variance is

1 O(e=A
Var[Re tr(W 4)/N] :2—Nz+ (2N2 )

—e724 (45)

where c¢ is a constant. The fact that (y,) < 1 for nontrivial
irreps  (assuming that ¢ is finite) [73] implies that ¢ > 0
and therefore that the variance is asymptotically constant
as A - oo,

Var[Re tr(W ;)/N] ~ ﬁ . (46)

The signal-to-noise ratio for n samples can be written
exactly in terms of Egs. (43), (44), and (39), but for this
analysis it is sufficient to identify the asymptotic behavior
from Egs. (45) and (39), giving

(3 1r(W4))
\/%Var[Reﬁtr(WA)]

~NV2ne 4, (47)

StN[Retr(W 4)/N| =

which degrades exponentially with area A. For the esti-
mator Re tr(W 4)/N, the analysis above shows that this can
only be counteracted by exponentially increasing the
number of samples n. Equations (44) and (45) also make
clear that the leading asymptotic behavior of the variance is
due to the typical magnitude-squared of the observable,
(Jr(W 4)?|/N?), which remains O(1) for all areas.
Cancellations due to phase fluctuations are required to
reproduce the exponentially small Wilson loop expectation
values predicted for large areas, confirming that the StN
problem can be related to a sign problem in the Wilson loop
observable.

Attributing the StN problem to O(1) magnitudes for
individual samples of the Wilson loop observable at all
areas also inspires our deformations of the Wilson loop
observable in the following sections. The quantity
{|tr(W 4)?|/N?) can be written as an integral of a non-
holomorphic integrand which will generically be modified
by contour deformations of the path integral. If we choose
contour deformations that reduce the average magnitude
of the observable, this quantity, and thus the leading term of
the variance, will be reduced. The observable mean is
unchanged and the StN ratio will thus increase under such a
deformation.

For SU(2), the single-site integrals can be evaluated
straightforwardly (see Appendix A) and the SU(2)
variance is
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Var[Retr( )/N] = ! _|_§ (M)A _ e_zz,sL/(z)A7

474\ (/)

(48)
where 6°U(?) is given in Eq. (42). The StN of SU(2) Wilson
loops in (1 + 1)D can therefore be explicitly calculated,

\/ﬁe_asu(z)A
\/1 + 3 ’3 4/9 —4de .
4/9

StN[Re tr(WA

(49)

Using numerical evaluation of the corresponding single-site
integrals for SU(N) Wilson loops yields theoretical curves
for the variance and signal-to-noise for general N. In the
studies below, we choose to deform the (1,1) component of
the Wilson loop, W , instead of trW 4/N following the
reasoning of Sec. 11 D The variance of Wﬂ can be related
to the variance of tr(W,)/N and is compared to
Monte Carlo results in the following sections.

IV. SU(2) PATH INTEGRAL CONTOUR
DEFORMATIONS

As a proof-of-principle, we apply path integral contour
deformations to Wilson loop calculations in SU(2) lattice
gauge theory in (1 + 1)D with open boundary conditions.
An identical setting with gauge group SU(3) is investigated
in the following section.

A. Gauge field parametrization

There are many possible parametrizations of the SU(2)
group manifold, any of which can be used to define valid
path integral contour deformations. We argue above that it
is advantageous to consider a single component of the
Wilson loop, taken without loss of generality to be W/ A 8s
the observable whose path integral contour is deformed in
order to calculate (W) = (tr(W ) /N) Contour defor-
mations that reduce the magnitude of W 4 in generic gauge
field configurations while preserving (WY) can be
expected to reduce phase fluctuations and therefore the
variance of WJ141. The angular parametrization of each
plaquette P, € SU(2) is useful for this purpose, and is
explicitly defined by

P! =sin@, e,

P12 = cos O e,

P2l = —cos @ e,

P2 = sin@ e itx, (50)

following the generalized SU(N) angular parametrization
given in Ref. [56]. The azimuthal angles satisfy

¢L, ¢> € |0,2x], with endpoints identified, while the angle
0, spans the finite interval [0, z/2]. The normalized Haar
measure can be written in these coordinates as

P, = h(Q,)dQ, = %ﬂzsin(wx)dexdfﬁidq’ﬁ. (51)

We begin by considering the effects of simple deforma-
tions using these parameters. In the simplest case of a
region A with area A = 1, the Wilson loop consists of a
single plaquette, W' = Pl where the loop starts and ends
at site x. The magnitude of W/ can be reduced by e~ by
deforming ¢! — ¢! + il analogously to the approach
described for e integrals above. In the case of A =2,
the Wilson loop can be written in terms of the product of
two plaquettes, W!! = (P,P,)'!. In the angular paramet-
rization, the Wilson loop is a sum of two terms

(P.P,)!" = sin@, sin 0.0 _ cos B, cos Oy
(52)

The first term involves products of diagonal entries whose
magnitude can be reduced by e~ by taking ¢! — ¢l + il
or qﬁ}c, - ¢}C, + i and the second term involves off-diago-
nal components whose magnitude can be reduced analo-
gously by taking 2 — ¢* — (¢2 — ¢?) + il. For A > 2, it
can be seen similarly that shifting ¢! — ¢! + il and
(92 —¢2.)) = (7 — ¢2.,) + iAfor all x leads to suppres—
sion of the magnitudes of all terms appearing in W'} e

A family of contour deformations capable of expressing
these constant imaginary shifts to the phases of all elements
of P, can therefore be expected to reduce phase fluctuations
and the variance of WJ141. Such a family of contour defor-
mations is parametrized below as a subset of the vertical
deformation expanded in a Fourier series in Egs. (5)—(8).

An alternative parametrization of SU(2) is explored in
Appendix B, in which it is found that imaginary shifts along
these lines are more difficult to express and orders of
magnitude less variance reduction is achieved when applying
the same optimization methods. This exploration suggests
that a choice of parametrization that allows the observable to
be expressed in the form e'? is important for variance
reduction in observables afflicted with a sign problem.

It is also possible to directly parametrize the gauge field
U,, € SU(2) using Eq. (50). This alternative parametriza-
tion may be useful in more than two spacetime dimensions,
where Gauss’ law constraints imply that not all plaquettes
are independent and a path integral change of variables
from U, , to P{* cannot be performed straightforwardly.

B. Fourier deformation basis

In our study of SU(2) gauge theory, we optimize over a
family of vertical contour deformations expressed in terms
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of a Fourier series truncated above a specific cutoff mode.
To avoid a costly Jacobian calculation, each plaquette
variable P, is deformed conditioned on plaquettes P, at
sites earlier in the product defining W 4 in Eq. (37), which
we write as y < x. This family of deformations is given by

éx = ex + lzf6(6y7¢l7 };;ny7/1X)y’nxy7},/xy7ny)a

y<x

in = ¢)l( + lKg ¢1 + lzfgﬁl (gy’¢)l”¢§;’(xy’ﬂxy’nxy’)(xy,ny),

y<x
¢X+1K0¢ +lZf¢z O,y b33 A Y, EY),
y<x
(53)
in terms of parameters &%, A%, 7, ¥, and {*. The

functions fy, fy, and fp compute the shift in the
imaginary direction of the angular parameters of P,
conditioned on Py, and their decomposition in terms of
Fourier modes is detailed below. For this ordered depend-
ence on previous sites, the Jacobian determinant factorizes
into a product of block determinants per lattice site

A

fo= ZK’,‘,,; sin (2m#),)

m=1

n=1

Ko sin(2n6,) +

ZK’ sin(mey + g {1+i Arin

J =110 1. 0%). (54)

where

90,  opy Iy
. af 0 Of 1 Of
PO bl d?) =det| 5= G Gk | (55)
fp Ofp Ofp
0,  opl  0g?

The structure of the deformation in Eq. (53) therefore
bypasses the need for expensive Jacobian determinant
calculations involving matrices whose rank grows with
the spacetime volume and is inspired by analogous meth-
ods to simplify Jacobian determinant calculations in nor-
malizing flows [65]. Note that an absolute value is not taken
over the determinant in Eq. (55).

The vertical deformation in Eq. (53) can be expanded in
a multiparameter Fourier series as

{1 + Z n’r‘,ing"’ sin(ngy + 00! ) + 1t o sin(n¢; e )]},

\¢ P* sm(nqﬁf +)(ﬁl}n¢ @9? )]}’

A
fop= Z 20 sin( (mg3 + i {1 + Z ’”4’ ¥ §in(2n0 )+i7,y¢ a sin(né, + ! )]} (56)

n=1

where A is a hyperparameter that sets the maximum Fourier
mode to include and controls the total number of free
parameters. As the zero modes have trivial y dependence,
we have collected them in Eq. (53) into the y-independent
terms KS’/’ and Kg‘/’ . The included Fourier terms are
defined to satlsfy the constraints 8,(0) =0, 8,(z/2) =
7/2, pL(0) = ¢ (27), and $2(0) = $2(2x), which together
ensure that the endpoints of both the zenith and azimuthal
integration domains are appropriately handled as described
in Sec. I A. The derivatives needed for the Jacobian in
Eqgs. (54)—(55) can be calculated straightforwardly by differ-
entiating Eq. (56). The additional factor describing the
change in the Haar measure needed to compute the Jacobian
of the group measure is given in these coordinates as

h(Q,)  yr[sin(26,)
ey =11 Lin@ex)] ' 57)

Combining the results of Eq. (50) and Egs. (53)—(57),
the expectation value of any holomorphic observable

O({P,}) is equal to the expectation value of the deformed
observable

e=SUPY) sin
0P = 0P oy T g« 9

where

Px:<

If the plaquettes are sampled in the matrix representation
for Monte Carlo evaluation, computing the observable Q
in Eq. (58) requires converting to the angular represen-
tation before deforming and evaluating. This conversion
is given by

. ~ =71
sin@ e cosf, e

) €SL(2,C).  (59)

~ 272
—cosB.e" " gind e i
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).

0, = arcsin(|P!
¢r = arg(P'),
¢7 = arg(P:?), (60)

and can be done when evaluating the observable
Q({P,}). Though these functions are not entire, the
conversion used here does not determine whether the
integrand itself is a holomorphic function of these angular
parameters.

C. Optimization procedure

This contour deformation expanded in a Fourier series
provides a means of exploring deformed observables with
potentially reduced variance. It is shown above that simple
deformations within this family are possible to construct by
hand and are already sufficient to reduce the average
magnitude of Wilson loop observables. However, these
deformations are restricted to zero modes of the Fourier
expansion and rely on construction based on intuition. To
maximize the variance reduction, we explore numerical
optimization of the deformation parameters «, A, 7,
x¥, and ¥ as discussed in Sec. II C. We are interested in
Re W}41 , for which the terms of Eq. (43) that can be modified
by contour deformation are

£=(Re0.)%) = 5 (103 +5(0%). (6]

where Q 4 is the deformed observable associated with the
Wjél'. The first term in Eq. (61) is manifestly nonholomor-
phic due to the absolute value over a complex-valued
observable, while the second term includes squared
reweighting factors of the original and deformed action
which prevent identification as a deformation of ((W})?).
These terms together define the loss function L that we aim
to minimize as a function of the deformation parameters.

This loss function is written as an expectation value in
terms of sampling from the original Monte Carlo weights
eSUP:) and its gradient can similarly be written as an
expectation value,

The term VReQ , can be expanded using the explicit
form of Q4 given in Eq. (58), as well as the forms of
the observable W'! and the action S in terms of {P,} in
Sec. I A. For this study, the gradient VReQ, was
computed explicitly and cross-checked using automatic
differentiation available in the JAX library [74].
Equation (62) can be stochastically estimated using an
(undeformed) ensemble of n configurations {Pi},
i €[l,...,n], drawn proportional to the weight e=S{P:}),

n

VL~ [PReQU(PVRQA(PDL. (63)

i=1

In all experiments below, we used the Adam optimizer
[75] to iteratively update parameters based on these
stochastic gradient estimates. Each gradient estimate was
computed using 1/100th of the generated ensemble;
empirically, this small subset of the data was sufficient
to learn useful manifold parameters with significant vari-
ance reduction. The optimizer was configured with default
hyperparameters, except for a dynamically scheduled step
size. Stochastic noise on gradient estimates and large
optimizer step size can either slow convergence or result
in unstable training dynamics, while step sizes that are too
small waste computation as parameters fail to move quickly
along precisely estimated gradients. We thus used a
dynamic schedule that reduced the step size over time.
In particular, our step size schedule started with an initial
step size sy and then permanently reduced the step size by a
factor of F (i.e., s,,1 = s;/F) each time the loss function
failed to improve over a window of W steps. The schedule
halted training after the step size was reduced N, times.
We used the parameters F = 10, W =50, N, =2, and
5o = 1072 for both SU(2) and SU(3) gauge theory.

In preliminary investigations, we found that naive
manifold optimization resulted in overtraining, i.e., over-
fitting parameters to the specific training data available
[76-78]. In the context of manifold optimization, this
corresponds to minimizing a finite-ensemble variance
estimator rather than minimizing the true variance of
ReQ 4. In practice this produced deformed observables
with higher variance when measured on a different ensem-
ble than the training set.

To mitigate overtraining in the final results, we reserved
a “test set” of configurations, independent of the training
data, on which the loss function was periodically measured
[79]; the reserved test set of configurations was chosen to
have the same size as the training set. The step size
schedule was configured to use loss measurements based
on this test set, ensuring that training was slowed and halted
before significantly overfitting. We further used a mini-
batching technique, in which a set of m < n configurations
are resampled from the training set to estimate Eq. (63), asa
means of avoiding overtraining [69]. The minibatch size
was chosen to be equal to the size of the full training set
(i.e., m = n), thus minibatch evaluation in this context was
just a resampling operation, giving variation in gradient
estimates over multiple evaluations. The fluctuations in
these gradient estimates are on the order of the uncertainty
of the variance estimator, preventing overfitting below this
uncertainty. For each observable Wﬂ we also found it
important to restrict to deforming only the plaquettes
within the region A. Though including extra degrees of
freedom cannot make the optimal variance any higher (the
optimization steps could always leave those plaquettes
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starting with the undeformed manifold (left) or starting with the deformed manifold calculated for area A — 1 (right). The loss curves are
averaged over blocks of 25 iterations for clarity. In each case, the training is halted based on the plateau criterion described in the main
text, resulting in traces of different lengths. For Wilson loops with larger areas, the final loss value is substantially lower when initialized
from optimal manifold parameters at a A — 1, despite using nearly four times fewer training iterations.

undeformed), in practice we found that including such
degrees of freedom allowed the deformed manifold to
rapidly overtrain, resulting in worse performance overall.
Appendix C details further possible approaches to avoiding
overfitting and overlap problems using a regularizing term
added to the loss function. These approaches were found to
be unnecessary for our final results.

Finally, making a good choice of initial manifold param-
eters yielded practical improvement in training time and
quality. On one hand, initializing the manifold parameters to
zero ensures that gradient descent starts from the original
manifold, and the optimization procedure should find a local
minimum with variance no higher than the original manifold
(up to noise from stochastic gradient estimates). However,
correlations in sign and magnitude fluctuations of observ-
ables with similar structure, such as Wilson loops Wjéll and
Wi with overlapping areas A and A’, suggest that the
variance reduction from contour deformations will be
correlated as well. Though the optimal manifold for one
observable will not generically be optimal for the other, it
can serve as a better starting point than the original manifold.
In our study of Wilson loops, we initialized manifold
parameters for each Wilson loop of area A using the optimal
parameters for the Wilson loop of area A — 1, when the
Fourier cutoff A = 0, or using the optimal parameters for the
Wilson loop of area A and cutoff A —1, when A # 0.
Figure 3 shows the improvement in optimization time and
quality using this method for manifold deformations with
A = 0. While this approach sacrifices the guarantee that the
local minimum obtained corresponds to a deformed observ-
able with variance no higher than the original observable (in
the limit of infinitely precise gradient estimates), in practice
we find that this property is not violated. We also note that
this property can be easily checked after optimization, and if
the variance were found to increase with respect to the
original observable training could instead be started from the
original manifold to recover the guarantee.

D. Monte Carlo calculations

We investigated the practical performance of these contour
deformations on the three sets of SU(2) parameters detailed
in Table I. These parameters correspond to variation in the
string tension by a factor of 4. At each choice of parameters,
n = 32000 configurations were generated, exploiting the
factorization of the path integral to draw samples of each
plaquette P, independently from the marginal distribution,

p(P ) ~ e—g‘—ztr(PX+P;1)

(64)
Plaquette samples were generated using Hybrid Monte Carlo
[80] with parameters tuned to maintain autocorrelation
times of order 1-2,> and these individual plaquettes were
then arranged into lattices consisting of V sites each. A
random shuffle was applied to the collection of plaquettes
prior to this assignment to avoid spurious spatial correlations,
ensuring an asymptotically vanishing bias in the limit of
infinite ensemble size.

On each ensemble, we performed a study of deforma-
tions with Fourier cutoff A fixed to zero. For all three
choices of parameters, training on a subset of 320 con-
figurations was sufficient to converge to manifolds with
variance reduction up to four orders of magnitude
when comparing the largest deformed observables to the
original Wilson loop observables. An additional subset of
320 configurations was reserved as the test set during
optimization, and the remaining 31360 configurations were
used to measure results. Measurements of Q 4 were found
to be consistent with the exact results given in Sec. III A
and with the Monte Carlo results for W}L} in the region

>For SU (2) gauge theory it is also possible to apply a heat bath
algorithm to directly draw samples. However, more complicated
variants are required for SU(3) [81-83] and hybrid Monte Carlo
was selected for simplicity.
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FIG. 4. SU(2) Wilson loop expectation values and variances for ensembles with three different values of the gauge coupling g = 0.98,
0.71, 0.51 (top to bottom). Red lines indicate analytical results for (W'{) = (tr(W_4)/2) (left plots) and for Var(ReW'') (right plots).
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where the estimates of WL‘I were reliable. The variance of
ReW!! is dominated by ((ReW!!)?), which is positive-
definite for all gauge field configurations. It was therefore
possible to precisely measure the variance without a sign/
StN problem, and the expected agreement with analytical
results was reproduced. In particular, O(1) scaling at large
area can be clearly seen. In contrast, we found that the
variance of Q4 for manifolds optimized as above falls
exponentially at large area, giving exponential improve-
ments in the signal-to-noise. These results are presented for
all three ensembles in Fig. 4.

Improvements from contour deformation were also found
to be similar for Wilson loops with fixed physical area cA
across the three values of the lattice spacing. Figure 5
compares the improvement in the Wilson loop variance
versus the dimensionless scale oA across all three ensembles,
and the three curves can be seen to nearly collapse at small
areas, though there are differences of roughly a factor of 4 at
the largest areas. Despite this variation, the variance of the
Wilson loop with largest area is reduced by more than 103
even for the finest ensemble. Analogous results were
observed for (1 + 1)D U(1) gauge theory in Ref. [48].

For A =0, there are few enough parameters that it is
possible to investigate the optimal parameters found by the

. . . . !
optimization procedure. Figure 6 depicts the values of K8’¢

and KS;{ﬁZ when optimized to reduce variance of Q 4 at three
choices of the loop area. It is argued in Sec. IV A that the
magnitude of Q 4 can be reduced on each sample if ¢! and
the differences ¢2 — ¢, | are shifted by a positive imaginary
constant. This manifold is approximately discovered by the
optimization procedure: the final parameters are a positive,

nearly constant K‘S;¢I , corresponding to a positive imaginary
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FIG. 5. SU(2) Wilson loop variance ratios of standard observ-
ables to deformed observables for ensembles with three different
values of the gauge coupling g, corresponding to three different
values of lattice spacing.
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FIG. 6. The manifold parameters found by optimizing the
variance of the deformed Wilson loop observable Q 4 at three
different choices of area A on the ensemble with total volume
V =32 and f = 8.0. Optimization at each A was initialized using
the parameters found for the observable with area A —1, as
detailed in the main text.

shift applied to ¢!, and a decreasing K‘g;(ﬁz, corresponding to a
positive imaginary shift applied to each difference
¢% — @2, . Only these relative differences between neigh-
boring ¢? have an effect on the value of Q 4, thus the overall

shift on the collection of KS;"&Z is irrelevant.

We further optimized manifold parameters using Fourier
cutoffs A = 1, 2 on the ensemble with coupling g = 0.71 to
investigate gains from including higher Fourier modes.
Including Fourier modes larger than the constant term
enables more complex deformations of each angular
parameter, and introduces possible dependence on pla-
quettes at sites y < x when deforming P,.. Despite this
increased expressivity, these additional parameters did not
provide significantly larger StN improvements compared to
using only constant terms, as shown in Fig. 7. In some
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FIG. 7. SU(2) Wilson loop variance ratios of standard observ-

ables to deformed observables for ensembles with g = 0.71 and
three different values of the manifold parametrization cutoff.
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cases, the optimized manifold with larger cutoff resulted in
higher variance (lower variance ratio) than the optimized
manifold with cutoff A = 0. The manifolds with larger
cutoffs include all possible manifolds with smaller cutoffs,
thus this is necessarily a training effect, likely due to noisier
gradients and less stable training dynamics. We did not
pursue noise reduction and alternative approaches to train-
ing (such as iteratively including higher A) as these
manifolds with higher cutoffs did not produce significant
improvements at any value of the area.

V. SU(3) PATH INTEGRAL CONTOUR
DEFORMATIONS

We further investigated the ability of contour deforma-
tions to reduce the variance of Wilson loops in SU(3)
gauge theory in (1 + 1)D with open boundary conditions.
This setting is identical to the previous section, except for
the use of SU(3) rather than SU(2) gauge field variables.
Suitable parametrizations for contour deformations of
SU(3) gauge fields are discussed below.

A. Gauge field parametrization and contour
deformation

For the SU(3) gauge group, we use the angular para-
metrization constructed in Ref. [56]. The components of a
single plaquette P, € SU(3) are parametrized as

P = cos 0! cos e,

P12 = sin@lei?r,

P13 = cos 0! sin §2e?:

P2' = sin 62 sin P e~ (#i+40)
— sin 0! cos 02 cos GR!0

P2
P2? = cos 6. cos Blei?r,

P23 = —cos 62 sin Qe {(#:+4)
— sin 0} sin 62 cos el (Fi~F+40)
. . 43445
P3! = —sin 6! cos 62 sin @3¢/ (i=93+40)

in terms of the three zenith angles 0 < 81,602,603 < /2 and
the five azimuthal angles 0 < ¢!, ..., <2z for each
plaquette. We collect these angles into a variable Q, =
6, ....03,¢L,....¢7) for ease of notation. The Haar

measure is related to the measure of Q by [56]

I . . .
dpP, = 5,580 6! (cos 01)? sin 2 cos 62 sin 63 cos 63

x dO\d6PdOPde! ...dgS. (66)

To compute deformed observables from Monte Carlo
samples in the matrix representation, an inverse map of
(65) is needed and for example can be specified by

0! = arcsin(|P1?|),
02 = arccos (|PL!|/ cos(6)),

63 = arccos (|P2?|/ cos(6})),

by = arg(Py),
¢i = arg(P?),
¢x = arg(PP),
¢y = arg(PP),
¢s = arg(PY) (67)

An SU(3) field configuration in (1 + 1)D with open
boundary conditions is defined by a collection of angular
variables Q, associated all plaquettes P, on the lattice. The
ath component of the deformed angles at site x is denoted
by (Q,),, and for vertical deformations expanded in Fourier
modes is specified by

Bl =i+ iks” + 1Y fye( Qi A Y ),

— sin 62 cos P e~ i) y<x
P32 = cos Ol sin @3¢} 0 =0+ izf(’” (€32, A ). (68)
X X X ’ <x
P = cos 62 cos e~ (B t)
— sin 0! sin 62 sin @3¢~ (1= Ai=dD) (65)  where
|
A
foo = Z Kn * sin(2mo4) { Z[ Auin' sin(2n6}) + Zr] *sin(ngy —1—;5;1‘"”)] },
n=1 r#a

r=1

w

s=1

A
foe = Z K sin(mg§ + &) {1 + Z [Z Jonn sin(2n6}) + Z Hon - sin(ngy —1—;(%,,‘”)} } (69)

n=1

s#a

s=1
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Deformed observables analogous to Eq. (58) can be
constructed for the SU(3) case using this parametrization
and ratios of the deformed and undeformed Haar measure
factors obtained from Eq. (66).

B. Results

Practical performance of these deformations was inves-
tigated by optimizing Wilson loop variance using the three
sets of SU(3) parameters detailed in Table I as in the SU(2)
case. The couplings were tuned to match the string tensions
used for SU(2) gauge theory and correspond to lattice
spacings varying by a factor of 4. For each choice of
parameters, an ensemble of n = 32000 configurations was
generated using the factorized HMC method discussed in
Sec. IV D. Figure 8 shows variance reduction for Wilson
loops of all possible sizes for the three lattice spacings
studied. At the largest loop areas, we found variance
reduction of greater than three orders of magnitude.
Across all three ensembles, analytical results for the
Wilson loop expectation values and variances were repro-
duced by the undeformed Monte Carlo estimates. The
expectation value of the deformed observable is consistent
with the analytical and original Monte Carlo results, while
the variance of the deformed observable exponentially
decreases with increasing cA.

Figure 9 compares the variance reduction achieved at
all three lattice spacings versus physical loop area cA. We
found approximately equivalent improvement in the vari-
ance at the two coarser lattice spacings (¢ = 0.72 and
g =0.53), and a small, yet significant, decrease in the
variance improvement achieved at the finest lattice spacing
(g = 0.38). Despite this, the variance was reduced by three
orders of magnitude at the largest area on the finest lattice
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FIG. 9. SU(3) Wilson loop variance ratios of standard observ-
ables to deformed observables for ensembles with three different
values of the gauge coupling that correspond to g = 0.72, 0.53,
0.38 (top to bottom).

by using an optimized deformed observable, and at all three
couplings variance improvements are consistent with
exponential in the physical loop area. The number of
parameters to be optimized grows with the volume in
lattice units, and the analogous results observed for SU(2)
gauge theory suggest that the results at finer lattice spacings
could be partially explained by increased difficulty in
training the larger number of parameters.

The A =0 manifold parametrization involves few
enough parameters that it is possible to investigate the
structure of the optimal parameters similarly to the case of
SU(2) gauge theory. As shown in Fig. 10, we found that the
optimized values of K'Sﬁ and K8;4 decrease with x, while K‘S;l
and Kf‘)‘z appear to converge toward approximately constant
positive and negative values, respectively. The final param-
eter x)° fluctuates in both the positive and negative
directions. These results can be qualitatively explained
by expanding the (1,1) component of the Wilson loop for
small area. For A = 1 the Wilson loop is equivalent to P,,
for which the (1,1) component is

Pl = cos 6! cos B2ei?:. (70)
The magnitude of this quantity can be reduced by shifting
' — $. = ¢! +il, which is consistent with the positive
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FIG. 10. The parameters of the optimal manifold for Wilson
loop Q 4 at three different areas A, as determined on the ensemble
with total volume V = 32 and g = 0.53. Optimization for each
Q4 was initialized using the parameters for optimal Q 4 with
region A’ of area A — 1, as detailed in the main text.
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Ky values obtained after optimization shown in Fig. 10.
Extending the analysis to the A = 2 Wilson loop, the (1,1)
component is given by

11 _ igrtig! 1 1 2 2
(PyPy)'! =e' "%y cosBycos, cosbicostr,

a0 43 3 . .
— Pt PPy g 6% cos?, sin@! sin6),

_ih2 (A _ 4 . .
— ¢ HP) cog 0! cos6?, sin6?sin6?,

sgd o sl g3 s hS . . .
— P00 o501 cos 62, sin 6, sind2sind,

+e P in 6l sin62 sin 6, (71)
The magnitude of the first, second, and fourth terms are
reduced by shifting ¢! — ¢l +il and ¢l — ¢l + ik
with 4 > 0. The magnitude of the second and third terms
can be reduced by shifting ¢} — ¢, — @3 — ¢, + i5 and
dt— Y > ¢t — ¢* + i5 with 5 > 0; this is also consistent
with a positive imaginary shift of i5 in ¢3 —¢? and
¢t — ¢>, reducing the magnitude of the fourth and fifth
terms. These deformations result in reduced magnitude and
correspondingly lower variance. Deformations with these
qualitative features are reproduced in the optimized mani-
folds found for A = 0. Finally, we note that 4)}%, appears in
the exponent with opposite signs in the second and third
terms, and similarly for ¢ in the fourth and fifth terms, so
there is no constant vertical deformation of these terms that
will reduce the overall magnitude.

Analogously to the case of SU(2) gauge theory, no
significant StN improvements were obtained by including
higher Fourier modes. Figure 11 directly compares opti-
mized manifolds for A <2 at the coarsest lattice spacing,
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FIG. 11. SU(3) Wilson loop variance ratios of standard

observables to deformed observables for ensembles with g =
0.53 and three different values of the manifold parametrization
cutoff.

showing that the variance improvement was unchanged
by including higher Fourier modes. Constant vertical
deformations therefore appear to saturate the StN benefits
achieved by general Fourier series parametrizations for
deformed Wilson loops in (1 + 1)D. More complicated
parametrizations of contour deformations may prove
more useful in (3 + 1)D; however, numerical studies of
deformed observables in (3 + 1)D lattice gauge theory are
left to future work.

VI. CONCLUSIONS

In this work, we have defined a family of complex
manifolds for path integral deformations in SU(N) lattice
field theories. The manifolds introduced here are described
in terms of an angular parametrization of each SU(N)
variable, with dependence between variables at differing
spacetime sites restricted to enforce a triangular Jacobian.
We find that choosing a parametrization in which the
observable of interest can be written as O = ¢’X is a useful
practical choice, allowing constant shift deformations in the
parameter 6 to make substantial progress in reducing noise.
Choosing a spacetime dependence of the deformation
that gives rise to a triangular Jacobian is key to ensuring
the deformed integral can be computed efficiently, as the
Jacobian determinant can then be evaluated with cost linear
in the number of spacetime lattice sites.

This manifold parametrization can be combined with the
method of deformed observables introduced in Ref. [48] to
reduce noise in observables. This approach is applicable
when the action is real and the Boltzmann weight e~ can
be treated as a probability measure. We stress that this
method of deformed observables does not require changing
the Monte Carlo sampling, despite being based on an
analysis of contour deformation of the entire path integral,
and can be thought of as an approach to analytically relate
observables with identical expectation values and different
variance. Keeping the Monte Carlo weights unchanged
allows manifold optimization using estimates of the
deformed observable variance computed with respect to
a fixed Monte Carlo ensemble. There is a tradeoff between
the cost of optimizing manifold parameters and the stat-
istical precision gained. In practice, we find that initializing
manifold parameters from optimal parameters for similar
observables significantly reduces the associated cost.

This method was shown in Sec. IV and V to improve the
variance of Wilson loop observables in (1 + 1)D SU(2)
and SU(3) lattice gauge theory by orders of magnitude. For
the original Wilson loop observables, the signal-to-noise
ratio decreases exponentially with area. The deformed
observables mitigate this StN problem, and in particular
we find that the improvements are consistent with an
exponential in the physical Wilson loop area, with the
most significant reduction in noise for Wilson loops of the
largest area. The improvement in variance was empirically
found to be similar at three different lattice spacings,
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though less of an improvement was seen at the finest lattice
spacing for SU(3); the achieved improvements in the
continuum limit and for other theories is thus an interesting
subject of future investigation. However, we stress that
making any gains at finite lattice spacing is still a
significant step forward due to the convenience of the
method: optimizing a deformation on a fixed ensemble
quickly gives new observables that encode the same
physical content while having significantly reduced noise.

In demonstrating the method, we focused here on a
particular deformation of the angular parameters based on a
Fourier series expansion and shift in the imaginary direc-
tion only. Writing the observable phase fluctuations in
terms of these periodic angular parameters that can be
shifted by a constant in the imaginary direction led to
deformed observables with significant StN improvement.
The surprising result that zero-mode terms alone signifi-
cantly reduce noise, with neither dependence between
plaquettes at different spacetime sites nor dependence on
the values of the angular parameters themselves, suggests
that the majority of the StN problem in these (1 + 1)D
theories arises from independent local fluctuations of
SU(N) angular parameters.

Complications are expected in higher dimensions, as
Gauss’ law implies that plaquettes at differing spacetime
locations and orientations must satisfy many independent
constraints. Deformations thus cannot independently
address fluctuations in each plaquette included in a
Wilson loop, or more generally in each fundamental degree
of freedom included in an observable. It is therefore an
interesting line of future work to determine how best to
incorporate this spacetime dependence in higher dimen-
sional applications of path integral contour deformations.
The approach employed here is one of many possible
approaches to creating expressive transformations with
efficiently computable Jacobians. This issue has been
explored in some depth in normalizing flows for sampling
in many contexts, including image generation and ensem-
ble generation for lattice field theory; see Refs. [65,84] for
recent reviews. Similar techniques may prove more fruitful
in future applications of path integral contour deformations
to observables of phenomenological interest in (3 4 1)D
lattice gauge theories.
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APPENDIX A: SINGLE-VARIABLE SU(N)
INTEGRALS

The calculation of z for SU(N) can be performed
analogously to the U(N) case considered in Refs. [71,72]
with further details for the SU(N') case given in Ref. [73]. In
the eigenbasis of P, the Haar measure is given by

o =il 1[52 10 e

J<I

x Z 2n5<29K+27m>]

n=—oo

(A1)

where the o-function enforces the unit determinant condition
of SU(N). Using the Fourier series representation of the
S-function for the compact variable > ¥_, O, this can be
expressed as

[se]

dP = H {d@, H‘eze, _ eie,|2 Z

e"q(’l}. (A2)
g=—0

The product of €' — ¢ factors can be expressed in terms
of the determinant of a Vandermonde matrix [71,72].
The SU(N) Haar measure is given by a sum of similar
determinants, and z can be expressed as [73]

7= 2‘0: det(27),

g=-c0

(A3)

where the entries of the matrix Z9 are given by

do ) 2
2?15/2” ilg+1-110, 5 cos =1, <?> (A4)

where 1,,(x) is a modified Bessel function. For example, in
the SU(2) case z is given explicitly by

- ZHEI)G)

A simpler but equivalent form z5Y 92 1,(4/4%) can also
be derived using the parametrization 1ntr0duced in Sec. IV.
From this, we can derive an expression for (y,) from taking
derivatives of z

3

0
logz =——-—-logz = (y1) =e™.

4N dg (A6)

9
d(2N/g*)
Similar to (tr(W 4)/N), we can factorize (|tr(W 4)?|/N?)

and (tr(W 4)*/N?) into integrals of character functions over
single-elements of SU(N) using an identity [85]
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T Il
/dQle‘Q le/zgkzlz
1
= N2 (511116/1k151212512k2 + 551125/1]‘26[2115]21‘ )
1
- N(NZ ) (511126 1k15i21|5j2k2 + 5i1115 kzélzlzélzk )

(A7)

From Table II, we recognize that (|tr(W 4)?/N?|) is related
to y;_1(P,). Thus, applying Eq. (A7) we can derive that

/ dQy,_(AQPQB) = tr(AB)tr(BT A" )(;(1,_1>

+r(AA"B' B) (1= {1-1) -
= [r(AB)tr(B W) 1{r1.-1)
=x1-1(AB){x1-1) (A8)
where
=1 [ dP @ ()
Iterating this identity within (|tr(W 4)?|) gives
([er(W.0)%1)
— N2 A _ o ((-n) — 1\
-+ 0= Y (B5)
=1+ N =) -0 (A10)

Since tr(W 4)? is not a character y,, attempting to factorize
it generates new terms. Specifically, in addition to tr(W 4)?
one finds tr(W?%,) for A’ C A Instead, a basis involving
x2(P) and y; _;(P) can be constructed from linear combi-
nations of these traces and satisfies

/dgﬂ(z(AQPQTB) = m%z(AB)%)» (A1)
and
/dQZl.l(A'QP‘Q'TB) = ﬁ)ﬁ,lmm@m), (A12)

where as in Eq. (A9) we have factorized using the
expectation values of the characters

=< o

i) =- [ dpP
z

1(P) qutr(PJrP*)

’

2 Lte(P+P")

m)ﬁ 1(P) (A13)

TABLE II. Properties of group representations: the dimension
d, and the character y,. We have followed the normalizations in
Table 14 of Ref. [73].

r d, Xr

{1} N trU

{2} NiL) LU + wU?)
{1.1} Ny-1) LU - uwU?)
{1,-1} N? -1 |wrU)? -1

Putting these together and iterating gives

N(N +1) NN -1)
2

(tr(W 4)?) :f@ﬁ/‘ )t (A14)
Combining Egs. (A10) and (Al4) gives the general

expression for variance of the SU(N) Wilson loop

Var[Retr( ) /N]

=2iN2<|tr<wA>2|> (W 0)2) = 05 (W )2

1
o
=g |1+ O = D+ T g

N(N

-1
MO g ] = e, (A15)

The character expectation values can be obtained for
general SU(N) gauge groups by numerically evaluating
the integrals in Eq. (A13).

For SU(2), it is straightforward to analytically evaluate
the character expectation values appearing in Eq. (A13).
Not all representations of SU(2) are independent using the
enumeration in Table II, and in particular y,(P) = y; _;(P)
and y(P) = yo(P) = 1. After removing the redundant
characters, the remain integrals y;(P) can be solved using
expression of the characters in terms of angles [73]

sin([j + 1/2]a)
= Al6
/ sin(a/2) (A16)
where j = 0,1 5.1+ index the unique characters of SU (2)
and r = {1,—1} equals j = 1. With these, one has

1 1 Te(P+PY) I2j+1(4/92)
DP P === Al7
z/ d%( ) 11(4/92) ( )
From which we derive
Var[Re tr(WiU(z) )/N]
1 1;(4/¢° )) 265U 4
+ — 204 (A18)
T4 4( 1,(4/¢%)
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APPENDIX B: ALTERNATIVE SU(2)
COORDINATES

As an alternative to the parametrization presented in
Sec. IVA, plaquettes P, € SU(2) can be represented as

P.=e LI —cos( %) +isin( 2 )a, -5
c=exp (o) = 5 isin{ =" |- 6.

(BI)
The 81(2) unit vector 71, can be further parametrized as
(B2)

iy = (cos ¢, sinf,,sin ¢, sinf,,cosb,),

and a general SU(2) group element P, can be parametrized
in terms of the three angles

0<a, <27, 0<¢ <2z, 0<6, <z (B3)

The Haar measure is given in these coordinates as

1
dp, — o sin2 <‘;> da,sin6.d0.dp,,  (B4)

The inverse map needed to obtain these angular parameters
for an SU(2) matrix P, is given by

1
a, = 2arccos {E (P + Pﬁz)}

Pll _ P22
0. = X X
x T ATECos [21’ sin(ax/Z)]
e
S Earg [Plz] : (B5)

As with Eq. (60), these are not entire functions of P, but
this is not an obstacle for contour deformation because it is
only the parametrization given by Eqs. (B1) and (B2) that
determines whether path integrands can be interpreted as
holomorphic functions of the angles {a,, 6., ¢, } associated
with P,.

Deformed observables starting with the (1,1) component
of SU(2) Wilson loops can be defined using this para-
metrization. A family of vertical deformations for
{a,, 0., ¢.} can be defined analogously to the deformation
described in Sec. IVB. Since a, and 0, have fixed
(nonidentified) integration contour endpoints, a constant
vertical deformation can only be applied to ¢,. For A =1
in particular, Tr(P,) = cos(a,/2), and the trace is inde-
pendent of the only constant vertical deformation that can
be applied. Neither this constant vertical deformation
nor nonconstant vertical deformations corresponding to
Fourier basis cutoffs A = 1, 2 lead to statistically signifi-
cant variance reduction with A = 1. As shown in Fig. 12,
for A > 1 deformed observable results using this

4 11§ Main text ] ;
10953 4 =0.98 [Euler] e
{ ¢ =0.71 [Euler] i; i«}i:*i
< § g=o051 [Euler] ] i{»i h}*.
S 108 4 'k
=t E i} ﬁhi*
® [0
> .8 3
= 1 * P s i:!é
=< 10% A gzﬁﬁ !tii!!
= E gty tae ;’ﬁiﬂ
> ]
e ] ;{»}*:: ¢ @l
= !;.n 3
§ 101 ? *‘lgi H []
3 ’Qd T4 !
1 a8E ?
109 3 zli
R T T T T T T T
0 1 2 3 4 5 6
cA

FIG. 12. Colored points SU(2) Wilson loop variance ratios
using the alternative gauge field parametrization defined in
Eq. (B1). Gray points show analogous variance ratios using
the parametrization defined in Sec. IV A for comparison and are
identical to the results in Fig. 5.

parametrization with A = 0 do lead to significant variance
reduction when compared to undeformed contour results.
However, orders of magnitude less variance reduction is
obtained for large area Wilson loops using optimized
deformed observables with this parametrization when
compared to results using the parametrization explored
in Sec. IVA. The fact that the parametrization in Eq. (B1)
leads to less variance reduction than the parametrization in
Sec. IVA can be intuitively explained by the inability of
constant vertical deformations to decrease the magnitudes
of the (1,1) components of (products of) SU(2) matrices
using the parametrization Eq. (B1). The significance of the
difference between the results demonstrates the utility of
rewriting observables before deformation in achieving
practical StN improvements, as discussed in Sec. IID.

APPENDIX C: REGULARIZATION TERMS
TO AVOID OVERTRAINING AND
OVERLAP PROBLEMS

When ReS is significantly different from S, we can
encounter an overlap problem for training and evaluation;

both processes involve factors of e™R5+S that can have very
large magnitude fluctuations in this situation. To mitigate
this problem, it is helpful to include regularization terms in
the loss function £. These terms may bias the exact loss
minimum away from the optimal, but allow closer con-
vergence to that optimal solution given finite statistics
estimates of L. The strength of these terms is controlled by
a small parameter e.

We discuss two possible terms here. First, an L2
regularizer [86] may be used, which simply ensures the
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parameters controlling the deformation all remain close to
zero. Generically labeling those parameters as 4;, this loss
term can be written

(C1)

Ly, = €Z|f1i|2-

In the limit of ¢ — oo, the parameters 4; are forced to zero
and the optimization procedure must remain at the original
manifold. A smaller choice of ¢ mildly biases the opti-
mization procedure toward the original manifold, such that
the loss function and gradients remain feasible to estimate
with finite statistics. An alternate approach is to directly
penalize distance between ReS and S using a regularization
term,

Lo = eé/ dx e=50|S(x) — ReS(x)|. (C2)

This term is minimized when S = Re S, providing a bias
toward remaining close to the original manifold. Though
written as a path integral, this quantity can be estimated
using the original samples, much like the main loss
function and gradients. Both of these regularizer terms
were explored, however no severe overlap problem was
observed during training when deformation parameters
were restricted to those contained within the target

1.0 4 l‘llllt:}l:'"11'1':ll:lgll"'=ll
0.8
0.6
2
wn
=
0.4
0.2
t 9=051[5U(2)]
I g=038[SU(3)]
0.0 = T T T T T T
0 1 2 3 4 5 6
oA
FIG. 13. Plot of the effective sample size (ESS) for the inter-

mediate lattice spacing for both the SU(2) and SU(3) gauge groups.
The ESS remaining close to unity indicates that no substantial
overlap problem is induced upon manifold deformation.

Wilson loop observables. This is indicated in Fig. 13,
where the effective sample size is shown for the inter-
mediate lattice spacings in SU(2) and SU(3). Final results
are based on training without either regularizer term.
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