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We present the first lattice-QCD determination of the form factors describing the semileptonic decays
A, = AN:(2595)¢70 and A, — A5(2625)¢7D, where the A(2595) and A%(2625) are the lightest charm
baryons with J¥ = %‘ and J* = %‘, respectively. These decay modes provide new opportunities to test

lepton flavor universality and also play an important role in global analyses of the strong interactions in
b — ¢ semileptonic decays. We determine the full set of vector, axial vector, and tensor form factors for
both decays but only in a small kinematic region near the zero-recoil point. The lattice calculation uses
three different ensembles of gauge-field configurations with 2 + 1 flavors of domain-wall fermions, and we
perform extrapolations of the form factors to the continuum limit and physical pion mass. We present
Standard Model predictions for the differential decay rates and angular observables. In the kinematic
region considered, the differential decay rate for the 5~ final state is found to be approximately 2.5 times

larger than the rate for the 5~ final state. We also test the compatibility of our form-factor results with

zero-recoil sum rules.

DOI: 10.1103/PhysRevD.103.094516

I. INTRODUCTION

Semileptonic b — c£~v decays are used to determine the
CKM matrix element V., and to search for deviations from
lepton flavor universality [1-3]. They also provide an
important testing ground for heavy-quark effective theory
[4]. In recent years, the operation of the Large Hadron
Collider has provided new opportunities for measurements
involving b baryons. The simplest baryonic b — ¢£7 v
process is A, — A.£~ D, in which both the initial and final
hadrons are the ground states with J* = %*. This mode has
been used in combination with A, — p£~v to determine
[Vus/Vepl [5,6] and offers the prospect of measuring the z-
versus-y ratio R(A.) and related observables [2,3]. The
baryonic decays can provide complementary information
on physics beyond the Standard Model when compared
with mesonic decays [7-17]. The A, — A, form factors
have been computed using lattice QCD [5,10,18,19], and
the lattice results predict a shape for the A, - Ay~ v
differential decay rate in the Standard Model that is
consistent with the LHCb measurement [20]. Heavy-quark
symmetry provides strong constraints on A, — A.u" 7, in
which the light hadronic degrees of freedom have total
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angular momentum zero. In the heavy-quark-effective-
theory (HQET) description of this decay, no subleading
order-Agep/m,, Isgur-Wise functions occur and only two
sub-subleading Isgur-Wise functions enter at order
A§cp/mZ; the available lattice and LHCb results are well

described by a fit of this order [21,22].

In addition to A, — A u~v, the LHCD detector has also
collected (and will continue to collect) large numbers of
Ay, — AL(2595)u D and A, — AL(2625)u~ b samples [20].
The A%(2595) and A (2625) are the lightest charm baryons
with J” =1= and J¥ =37, respectively, and are very
narrow resonances decaying to A.zz [23]. It has been
projected that R(A}) = B(A, = Az D)/B(A, — Aiu D)
can be measured using LHCDb data with approximately 17%
uncertainty at the end of LHC Run 3, and as low as 5%
uncertainty at the end of Run 6 [3]. To predict R(A}) in the
Standard Model and beyond, the A;, — A form factors are
needed. A calculation of these form factors may also
improve the control of the backgrounds in a measurement
of R(A.). Another potential impact will be on zero-recoil
sum rules [24,25] and on global analyses of b — ¢~ form
factors using dispersion relations [26]. The authors of
Ref. [26] wrote “Given the large fractional saturation of
the unitarity bounds by A, — A_, the inclusion of A, — A
could be particularly fruitful once such data is available.”
Finally, we note that there is significant interest in the
structure and strong decays of the A(2595) and A (2625),

in part due to the closeness of the ZS*)H thresholds [27-31].
In the limit of heavy charm quarks, the light degrees of
freedom in A%(2595) and A%(2625) have total angular

Published by the American Physical Society
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momentum | and these two baryons become degenerate.
Note that there is no heavy-quark spin-symmetry relation
between the A} and the A, due to the different quantum
numbers of the light degrees of freedom. This difference
also means that the normalization of the leading Isgur-Wise
function for A, — A} remains unconstrained in the heavy-
quark limit, and the matrix elements vanish at zero recoil
[32,33]. The HQET relations for the A, — A%(2595) and
A, — A5(2625) vector and axial vector form factors
including the subleading order-Aqgcp/m., contributions
were derived in Refs. [25,32,33]; the authors of the latter
reference specifically studied the possibility of using
HQET fits to LHCb data for the muonic decay A, —
A’p~D to make Standard Model predictions for R(A%). Tt is
still an open question how well HQET at this order can
describe these transitions.

Quark-model studies of the A, — A%(2595) and A, —
A%(2625) form factors can be found in Refs. [34-37]. In the
following, we present the first lattice-QCD determination
of these form factors. Our calculation follows that of the
A, = A*(1520) form factors in Ref. [38] and uses the same
ensembles of gauge-field configurations. We observe that
the A%(2595) and A%(2625) energy levels for our simu-
lation parameters are below all potential strong-decay
thresholds, although they come quite close at the lowest
pion mass. As in Ref. [38], we work in the rest frame of the
final-state baryon to avoid mixing between J =3 and J = {

We normalize the baryon states as

and between negative and positive parity. This again limits
the kinematic coverage to the region near g2,,.

Our definitions of the form factors are given in Sec. II.
Following a brief summary of the lattice parameters in
Sec. III, we discuss the baryon interpolating fields, two-
point functions, and the results for the masses in Sec. I'V. The
extraction of the form factors from three-point functions is
described in Sec. V, and their extrapolation to the physical
pion mass and continuum limit is discussed in Sec. VI. We
test the compatibility with zero-recoil sum rules in Sec. VII
and present the Standard Model predictions for A, —
A:(2595)¢7p and A, —» A5(2625)¢7 0 in Sec. VIIL Our
conclusions are given in Sec. IX, and the Appendix contains
relations to other form factor definitions used in the literature.

I1. DEFINITIONS OF THE FORM FACTORS

In the following, we denote the A%(2595) and A%(2625)
as A7, and Af;,, respectively. The masses and
total decay widths determined by experiments are
My, = 2592.25(28) MeV, My, = 2628.11(19) MeV,
FA?]/Z = 2.6(0.6) MeV, FA;M < 0.97 MeV (CL = 90%)
[23]. We neglect the decay widths throughout this work. In
our lattice calculations at heavier-than-physical pion
masses, the strong decays are in fact kinematically for-
bidden, except perhaps at the lightest pion mass; the hadron
masses we find on the lattice are given in Sec. IV.

(Ap(k. r)|Ap(p.5)) = 6,:2E,, (2m)8 (k — p), (1)
(AL (KL F)IAL H(P8T)) = 5r’s’2EA;.l/2(27[)353(k/ -p'), (2)
(N3 (K )N o (B 8) = 8002y (20) 3 (K =), (3)

and work with Dirac and Rarita-Schwinger spinors satistying

Zu(m,\b,p,s)b_t(m,\b,p,s) = my, +7. (4)

N

Zu(m/\j.l/z’ p/’ s')ﬁ(m,\j

! I\
_]/z,p,s) = Mp-

s

s

Zuﬂ (mAjm, p’, s')ﬂb (mA;m, p’, S/) = —(l/f’l/\js/2 + ﬁ) (gm,

ol

PR (5)

1 2 1
=37y~ Wp;pi =3 (rupl — 7/pr)> . (6)
A* .

¢3/2 c3/2

In the equations throughout this paper, Minkowski-space gamma matrices and the metric (g,,) = diag(1,—1,—1,—1) are
used, except where indicated otherwise. We introduce the notation

(AC12 (0 8)[C0bIA(p, ) = a(my: P, $)rsG ) [Tlu(my, . p.s), (7)
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(A2 3B ETBIA (B s)) = sy D5\ G Tu(my, . .. (8)
and
sy = (mp, £mp)? — g% )

where ¢ = p — p’. We use a helicity basis for all form factors. For the J” = 1~ final state, our definition follows the one
introduced previously for J© = %J’ final states [39] except for the changes resulting from the opposite parity [note the y5 in
Eq. (M]:

- . q"
g(% )[yﬂ] :f(()z )(m/\b =+ mszl/z)?
_ - * _ 2mp+
(% )mAb ’/nAf-l/2 u o 2 _ 2 iﬂ (% ) u Af»l/z "o 2mAb I
I S Pt pt = (my, mAi.l/z) 4 A s, P . P ) (10)
)t 1 — A5 g g Ma, TN P 2 » ¢
G rtys] = =gy rs(my, — mA:l/z) ? ~ 9+ YST p'+pt = (my, — mA;I/z)?
- 2mp- 2
~¢rs (7/” S p’”), (11)
E)Jigh O w2 — 2. 2 &) o PN, 2m,
g lic*q,) = —hy " —{ p*+ p¥ = (m}, = mA:yl/)? =i (my, = mpe )\ 7+ pr=——r). (12)
. 2 u - 2mp- 2
1-y1+ 37 4 q 73 A ma
G )lio"ysq,) = —h$ )753— <P” +pt = (m3 - mjz\j]/z)_2> - h(f )Vs(m/\b + mAj_]/z) (7” - = pt ’ /”)
+ q S+ S+

For the J¥ = %‘ final state, we use the definition introduced by us in Ref. [38], which reads

(mp, — ma:,, )p'q"

2

M A+
AC.S/Z

S+ q

Ma. + Mp-
(%_) mAf-,s/z ( Ap A(,;s/z
+ f7 R

2p*(mp, P + mp: P ))

G = f5

)P (@ (P + p*) = (my, —m3. )g")

c3/2

3y MA-
+ /1 )—s = <pi;f" -

S+

(14)

1) Mps 2piph 2pH(mp, P A mpe pF) g
+f(j/) sc,z/z <P'17” _ PP + b c3/2 + 9/1 >’

N S M A+
A(-,s/z + AL;3/2

) M (my, +mp-_ )p'q*

AC) [t ] — o 32 3/
g2 ytys] 0 15T 7
22 / 2 2

_ ggi)y my: ., (ma, — mA;_m)P (g (p" + p") = (m3, - mA;m)qM)

S oy
- : 2p*(my, p" = mp: | pH)

_ (%) mAc:B/Z Aol Ay AL.3/2

gi s —s+ P 5

- e 15
Ui o s (15)

. 2 A Wy pH
(%:) mAc.3/2 <p,{y’u + 2}:}5’ p/ﬂ + 2p (mAbp mAC.S/zp ) _ S+glﬂ > ,
A

* *
¢3/2 ¢3/2
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GO lioq,] = —ht

vy, P (P! A+ ") = (m}, = mi. | )g")

S_ Sy

l_m
i)

3 m
_h%/>

Aj»,}/z
S—(mA,,'f'mAjs/z) r

A
¢3/2 i T
P (m/\b + mAé_g/z) (p 14

pHg*(p* + p*) —

2p*(mp, p" +my: P ))

S+

2pipi 2pt(mp, p* 4 mp- p*) u
p p + b 3/2 + S—gi >’ (16)

M p= N M A=
Aosp + Alsp

2

2
Ly Mp (my, —m3-)q")
G ioq,rs) = ~h} ys— BT
S+ —
ey M 2p*(mp, p™* — mp- p*)
_ h(ﬁ >75 c3/2 (mAh —_— )(p/lyﬂ _ b c3/2 )
+ c3/2 S_
-y Mar 2ptp'H 2p*(my pH—mp pH) H
_h(f/>75 S (mp, = mpe )| P PP+ b ol ) 54 - (17)
+ ’ o mA:,s/z §- mAi.s/z

Only the vector and axial-vector form factors are needed to
describe A, — AU decays in the Standard Model, but
we also compute the tensor form factors. Above,
o =L (y*y’ —y*y*). Note that the overall sign of the
form factors for each decay mode depends on the phase
conventions of the states. This means that also the relative
overall sign between the two different final states is left
undetermined. Relations between our form-factor defini-
tions and alternative definitions used in the literature are
given in the Appendix.

III. LATTICE ACTIONS AND PARAMETERS

The lattice actions and parameters used in this work are
the same as in our calculation of A, — A*(1520) form
factors [38], except that here the valence strange quark is
replaced by a valence charm quark. For the latter, we
employ the same form of action and analogous tuning
conditions as for the bottom quark [40], i.e., an anisotropic

clover action with bare parameters am(c), ), cgg tuned to

obtain the correct D; meson kinetic mass, rest mass, and

TABLE L

hyperfine splitting (our notation for the bare parameters
follows Ref. [41], while Ref. [40] uses my = mg, { = v,
cp = cg = cp). The values of these parameters are given in
Table I. The gauge-field ensembles with 2 + 1 flavors of
domain-wall fermions were generated by the RBC and
UKQCD Collaborations [42,43]. For the up and down
valence quarks, we reuse the domain-wall propagators
computed for Ref. [38]. Our computation utilizes all-mode
averaging [44,45], in which unbiased estimates with small
statistical uncertainties are obtained at reduced cost by
combining “exact” and “sloppy” samples.

IV. TWO-POINT FUNCTIONS
AND HADRON MASSES

We now move to the discussion of the baryon inter-
polating fields, two-point functions, and results for the
masses. For the A, everything is identical to Ref. [38]. The
A%(2625) has the same isospin and spin-parity quantum
numbers as the A*(1520) (I =0, J* =37), but with a
charm quark instead of a strange quark. We therefore use
the interpolating field

Parameters of the lattice actions, lattice spacings, and numbers of exact (ex) and sloppy (sl) samples computed for the

correlation functions. The light-quark and gluon actions and the determination of the lattice spacings are described in Refs. [42,43]. The
form of the heavy-quark action is given in Ref. [40], where my = my, { = v, cp = cp = cp.

(b)

Label N3 x N, p a [fm] am,, amg amg (b cgg am'?) (©) c?B Nex Ny

Co1 243 x 64 2.13 0.1106(3) 0.01 0.04 7.3258 3.1918 4.9625 0.1541 12004 1.8407 283 9056
C005 24°x64 2.13 0.1106(3) 0.005 0.04 73258 3.1918 4.9625 0.1541 1.2004 1.8407 311 9952
FO04 323 x64 225 0.0828(3) 0.004 0.03 3.2823 2.0600 2.7960 —0.0517 1.1021 1.4483 251 8032
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TABLE II. Paramters of the quark-field smearing used in the baryon interpolating fields. See Ref. [38] for
explanations.
Up and down quarks Bottom quarks Charm quarks
NGauss GGauss/a NAPE QAPE NGauss GGauss/a NSLoul PStout NGauss GGauss/a NStnut PStout
Coarse 30 4.350 25 2.5 10 2.000 10 0.08 20 3.000 10 0.08
Fine 60 5.728 25 2.5 10 2.000 10 0.08 20 3.000 10 0.08

+ ﬁg(v ‘7);% da(v ”)305] (18)

which differs from Eq. (18) of Ref. [38] only by the
replacement s — c. As before, this form will work only at
zero momentum. The tilde indicates gauge-covariant
Gaussian smearing of the quark fields with the parameters
given in Table II. The field (18) actually has nonzero
overlap with both the A%(2595) and the A%(2625),

* 1 + Yo
<0|(0A:),’|AC,1/2(0’ s')) = Z/\:ivl/z TJ’jVS”(mAj_]/Zv 0.5,
(19)
. a(
(01(04) 1723200, 5")) = Zn: | 2 - uj(my: ,,0.5),
(20)
and we can isolate the J = and J = components using

the projectors

1
kj
P(l/z) g?’}” (21)

1, .
kj
P =9" = gykﬂ (22)
The zero-momentum A} two-point functions are defined
like those for the A* in Ref. [38], and after applying the
above projectors their spectral decomposition reads

Pl

@A, 1
apCu (1) =—5

2
+ (excited-state contributions), (23)

i =M\ * t
/2\;1/2(1 +}/0)717k€ Aeie

'At zero momentum, the continuum J? = i~ and JP =3~
irreducible representations subduce identically to the G} and H*
irreducible representations of the double cover of the cubic group
[46]; the next-higher Values of JF that subduce to the same cubic
irreps are %‘ and JP = 2 , respectively, and such states will have
higher energies. It is therefore safe to refer to only the continuum
quantum numbers in this case.

t

(2,A%) __l 2 J _l Jj A
Ci ()= 2ZAj_3/2(1+70)<gk 371 e e

+ (excited-state contributions). (24)

Jl
P

At this point the reader may wonder why we did not
analyze the A*(1405) with J” =1~ in Ref. [38], despite
being able to project to J© = 1~ W1th the available data. The
reason is that we do not trust the single-hadron/narrow-
width approximation for the A*(1405), which has a larger
decay width than the A*(1520) and likely a two-pole
structure [47].

The masses extracted from single-exponential fits to our

| /2)C(2 A and P(é /2>C(2*Af') in the plateau

regions are given in Table III, along with the masses of
potential decay products. The latter are not used in our
determination of the form factors but are included to assess
whether the A} baryons are stable under the strong
interactions for our quark masses. We find that both
ma: and My, are lower than all of the following:

results for P{

my, + m; + my, ms_+ mg, mp + my, although the differ-
ence my: =My, =My becomes consistent with zero for
c. ¢

the FOO4 ensemble within the statistical uncertainties. The
results are of course affected by the finite volume to
some degree, but it appears likely that both the A7,

and the AZ,3 /o are stable hadrons at least on the CO1 and

C005 ensembles, where the energies are well below all
thresholds.

We also performed simple chiral-continuum extrapola-
tions of Lo and LONIR of the form

2 2
M = Maphys d;a*A?

(47fr)?

hs

(25)

with fit parameters m(ph”

132 MeV, A =300 MeV. These fits yield mﬁ{lhy/s>
2693(43) MeV, mg’hj/; =2742(43) MeV. To estimate

systematic uncertainties associated with the choice of
fit model, we additionally performed higher-order fits of
the form

, ¢j, d;, and constants f, =

094516-5
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TABLE III.

Hadron masses in GeV. We did not compute X. two-point functions in this work and the . masses were estimated by

adding the £, — A, mass differences computed in Ref. [41] on the same ensembles with a slightly different tuning of the charm-quark

action to the A, masses computed here.

Label m

m (est)

i Mp My My, T, ma: mar,, Mpr,, —Mpr my,
C01 0.4312(13) 1.9119(54) 1.2647(51) 2.4652(82) 2.617(10) 2.882(12) 2.909(12) 0.0265(85) 5.793(17)
C005 0.3400(11) 1.8942(54) 1.1649(58) 2.4038(75) 2.565(12) 2.819(13) 2.839(13) 0.0185(97) 5.726(17)
F004  0.3030(12) 1.8880(70) 1.1197(59) 2.367(12) 2.550(19)  2.781(18)  2.815(18) 0.033(17) 5.722(23)
_ o [ Mg = M [23]. Plots of the extrapolations are shown in Fig. 1.
Mp:, = Mp: wo |1+ €rno (4nf,)? Note that we do not use the chiral-continuum extrapolations
; 3 " of the baryon masses in our determination of the form
Mz — M ohys 242 343 factors; we use the lattice baryon masses when computing

hyjuo ————5— + dypoa”\ a N, ’

T im0 (4nf,)> T érmo + grro the form factors on each ensemble, and then extrapolate

(26)

with Gaussian priors /; 3o = 0 £ 10 and g;yo = 0 + 10,
and computed the systematic uncertainties using

%m0 —a3l). (27)

where m, o, denote the central value and uncertainty
obtained using the parameter values and covariance matrix
of the nominal fit and myq, ng,HO denote the central value
and uncertainty obtained using the parameter values and
covariance matrix of the higher-order fit. In this way we
finally obtain

O syst — Max (|mHO —m

mgﬂhly;) = (2693 + 43, + 954) MeV,  (28)

mﬂ’fj/? — (2742 + 434, + 96,) MeV,  (29)

which are consistent with the experimental values of
my = 2592.25(28) MeV, my = 2628.11(19) MeV

3.1
*

3.0 Ac,l/ 2
% 2.9
o
L 2.8
4 -—a = 0.1106 fm
S 2.7 S a = 0.0828 fm

a=20
2.6 { X Experiment
2.5 : T T T T
0.00 0.05 0.10 0.15 0.20 0.25
m2 [GeV?]

only the form factors themselves. The mass extrapolations
merely provide a test of our methodology. Finally, in
Table III we also list the hyperfine splittings mx- T

LIS computed on each ensemble. Their relative uncer-
c,

tainties are too large to obtain a useful chiral-continuum
extrapolation, but the results are consistent within <2¢ with
the experimental value of 35.86(34) MeV on each
ensemble.

V. THREE-POINT FUNCTIONS
AND FORM FACTORS

As in Ref. [38], we compute forward and backward
three-point functions

3,fW —ip-(y—z
M (p.Lor ) = e PE((0,,) (0. X)

y.z
X Jr(xg =1+ 1.,5)(0,,)s(x0 — 1. 2)),
(30)
3.1
3.0
= 2.9
@]

: 2.8
2 --'a = 0.1106 fm
=2t e a = 0.0828 fm
> a=20
2.6 X Experiment
2.5 T T T T
0.00 0.05 0.10 0.15 0.20 0.25

m2 [GeV?]

FIG. 1. Chiral and continuum extrapolations of our results for the A7, , and A7 ; , masses. The inner error bands are statistical only
and the outer bands include estimates of the systematic uncertainties associated with these extrapolations. The experimental values from

Ref. [23] are also shown.
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TABLE IV. The values of the nonperturbative matching factors Z(‘fb) and Z(V“), determined using charge-

conservation from ratios of zero-momentum B, and D, two-point and three-point functions, as well as the values of
the O(a)-improvement coefficients, computed at tree level in mean-field-improved perturbation theory.

Zif)b) Zi/CC) d(lb) d§C>
Coarse lattice (CO1, C005) 9.0631(84) 1.35761(16) 0.0728 0.0412
Fine lattice (FO04) 4.7449(21) 1.160978(74) 0.0696 0.0301

™M p -7

) =Y e (04, )5(x0 + 1.2)
X J1(x0 +1.¥)(O;) j, (%0 X)),
(31)

where p is the A, momentum, I' is the Dirac matrix in the
b — ¢ weak current, 7 is the source-sink separation, and ¢ is
the current-insertion time. With both the » and ¢ quarks
implemented using anisotropic clover actions, the current
now includes O(a)-improvement terms for both quarks:

Je=pr\/ 22 @b+ ad\" ey Vb—ad\Ve V -y Th].

(32)
Here, y = (7}) = (—iy/) are the Euclidean spatial gamma
matrices, and V are the gauge-covariant symmetric lattice
derivatives. The overall matching factors in the current are
b) [48,49], where Zi,QQ) are the
matching factors for the flavor-conserving temporal vector

written as pr\/ 29z

nonperturbatively using the charge-conservation condition
for three-point functions with D and B, meson interpolat-
ing fields; the results are given in Table IV. With this
choice, the residual matching factors pr are equal to 1 at
tree level and can be computed in perturbation theory
without introducing large uncertainties. For the vector and
axial-vector currents, we use the one-loop results given in
Table III of Ref. [5]. Here we use more accurately tuned
parameters in the b- and c-quark actions, but we expect the
resulting change in the matching factors to be negligible.
For the tensor currents, one-loop results are not presently
available so we set Ps,, = 1 and estimate the resulting
systematic uncertainty at y =m, to be 4.04% as in
Ref. [10]. The values of the O(a)-improvement coefficients
for all currents are also computed at tree level and are given
in Table IV.
We generated data for the same two choices
of A, momenta as in Ref. [38], p=(0,0,2)3% and
= (0,0, 3) , and for slightly larger source-sink separa-
t10ns t/a= 6 .14 at the coarse lattice spacing and #/a =
8...16 at the fine lattice spacing. Here we project the A*

field in the three-point functions to both J = 3 and J=3
currents Qy°Q. We determined the values of ZE/QQ) and the spectral decompositions read
|
I 3. 1 L4+7y ;0 + ¢ —me (=) _p oy
Pél/z)c( Y(p.T,1,7) =048, rgeor }—( O+ ZOy0)e e et
+ (excited-state contributions), (33)
3f 1 1+ . 1 . 1 . 3 + ¢ —mpe (=) _p
Pg/z)c( Y(p.T.1r) = _FZA?s/z 2 (g _5717/1——7’90/1 Geor }—( Ay +ZA1”)7/0)€ Reap e BNy
+ (excited-state contributions), (34)
where v* = p#/m,, , and G)[r], ¢*a)[I contain the r* for X =1V,
form factors as explained in Se.c. IL Vs for X = A,
In the following, we introduce a label X & Iy =< ;w (35)
{V,A,TV,TA} denoting the type of weak current, such io**q,  for X =TV,
that the matrix I" in Eq. (32) is equal to io"q,ys for X =TA.
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We also introduce a label 1 € {0, +, L, L'} for the different helicities. As in Ref. [38], we compute the quantities

JhHx
P S t/2 P
Y (p, 1) = i B2 e ) (36)
A (‘] )Xref
Sﬂ (p9 Z Z/Z)

where J € {17,37} are the quantum numbers of the A}. Here, R( )Xot (p) denotes a constant fit at large ¢ to a ratio
R( Koot (p, 1) of three-point and two-point functions that is constructed such that at large ¢ it becomes equal to the square of

the form factor associated with current X .; and helicity 4.;. The quantities SEJP)X(p, t,1/2) are linear projections of the
three-point functions proportional to the form factor with current X and helicity A. In this way, the relative signs of the form

»
factors are preserved, and F /(1] ) X(p, t) becomes equal to the form factor of interest at large #, which is then extracted from a
constant fit. The choice of reference form factor (X ¢, A.r) is arbitrary in principle, and we select it based on the signal-to-
noise ratio and quality of the ground-state plateau.

3

The equations for J© = 5~ were given in Ref. [38] and we do not repeat them here. For J P = %‘, the construction of

1-
Rff )X(p, 1) is similar to that used previously for J* = 17 in Refs. [5,50]. We define

3.fw (3,bw) v nm
9,3, Tely Pl ) CO™ (T, 1, 0) (1 4+ PO (p, T 1,1 = £) P, 7]

R(%_)X , / , 37
o= Te[PY ) C™ (O]TH[(1 -+ H)CM) (. 1)] 7

li (3.,fw) U / (3.bw) v nm
R p.1.6) = 1 (1) (10 PR @ T L0+ ACTR T OPf ]

[P} o Cl ™ (O] Tr[(1 4+ $)CBN) (p, 1)

i 3.fw) 3bw v
Trly P€1/2>C< (p. T 1.0 )ysy (14 A)CE™ (p. Ty 1.1 - )Py Y51
k 2N}
e}, C (DITH(1 + #)CCA) (p, 1))

X@.1,0) = r,[(0,¢; x p)]r,[(0, ¢, x p)] ,

(39)

where

rln] =n- .2 q (40)

for any four-vector n, and e; denotes the three-dimensional unit vector in direction j. Above, repeated Greek indices are

summed over from O to 3, while Latin indices are summed only over the spatial directions. The ratios Rﬁ% )X(p, t, 1) are
equal to kinematic factors depending on the baryon energies times the squares of individual helicity form factors, up to
excited-state contamination that decays exponentially for 7 and 7 — ¢’ both large. We then set ¢ = ¢/2 [or average over
(t+a)/2 and (1 — a)/2 in the case of odd t/a] and divide out the kinematic factors to obtain

4E,,

3(my, + mAjvl/z)z(EAb —my,)

l—V l—V
RSV (p.1) = RE Y (p.1,1/2)

l_
=] féz )]2 + (excited-state contributions), (41)

4En,q" (v
_ RY 1,12
3(En, + ma, )2 (Ep, —my,)(ma, —mp- )2 (p.1.4/2)

c1/2

= %j}z + (excited-state contributions), (42)

E 1-
i RV (p.1.1/2)

ol
R} 1) =
L e 3(En, +mn,)*(Ex, —my,)

= (Ei)]z + (excited-state contributions), (43)
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()
R 2
V(En, +my,) °

(p.1.1/2)

= [g(()_ |? + (excited-state contributions),

4EAh q4
3(Ep, —ma,)*(En, + mp,)(mp, + mp )?

c.1/2
l_
= [gi& )]2 + (excited-state contributions),

1=y 1=y
R (p,1) = RE M (p.1.1/2)

EA/;
3(En, — mA,,)z(EA,, +my,)

l,
=] % )]2 + (excited-state contributions),

l*A %,A
R (p,1) = - R (p,1,1/2)

(l_)TV 4‘E‘A'7 (l—)TV
R (p1) = R:7(p.1.1/2)
- 3(Ey, + mA,,)z(EA,, —my,) "
= [hg>]2 + (excited-state contributions),
ATV EA,, G)TV
R (p,1t) = RET (p,t,t)2
L S (B, — ) m, — )
= [h%_)]z + (excited-state contributions),
()TA 4EAl7 (A
RE 75 (p.1) = R:7(p.11/2)
i 3(Ep, —ma,) (B, +ma,)
~(1-
= [hg& >]2 + (excited-state contributions),
()rA Ey, )7
RY " (p.t) =~ R:(p.t.1/2)
+ 3(Ey, — mAb)z(EAh +my, ) (ma, + my: )? -
c1/2
= [71%7)]2 + (excited-state contributions).
The linear projections of the three-point functions are constructed using
vy 2 pi 3w 1+¢
S o) = e P 0 0T ) .
(4)ATA D pil - B (I+74)
Sy (p.1.1') ="Tr |:75M/(4j)P{1/2)C§ )(PIZ,TA’ t.1) 7|

where

with the polarization vectors
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e =(q%q), € =(ql.(¢"/la))q),  e*) = (0,e; xq). (56)

To improve the signals, we use the average of the forward three-point function and the Dirac adjoint of the backward three-
point function instead of just CC™). We then divide out appropriate kinematic factors to obtain

1- E\m 1-
s (port) = - B —m)En f:m/:,)(mm ) S§ (p.1.1)
= fé%_)Z Ny (ZE\]b)m A, Zs\zb)E Ah)e_mAZ-l/z([_tl)e_EAb" + (excited-state contributions), (57)
STV (pnr) = - 2 s .11)
(Ep, — mAh)l/z(EAb + mAb)3/2(mAb - mA;]/z)
= f%i)Z A (ZE\lb)m A, T Zfb)E Ah)e_mA:vl/z(I_f)e_EAb’! + (excited-state contributions), (58)
EAbmAb

STV (port) = - ST (po1 1)

2(Ep, —my,)(En, +my,)

_ 4 (1) (2) —mpe (1) g,y . o
=f'Z A (Zy,mp, +Z), Ep)e  ev2 em™" + (excited-state contributions), (59)
0.06
1= 1~ -
004~ pG v (3 )V 3V
02— F | F I—I—E—I—I
+.sssl—l—!ﬂ |l =sss=s=>e=gy 0.5 () XXX
0.02 4
0,00 — v e 0.0 —resrrssrr
I I I I I I I I I I I I I I I
4 6 8 10 12 14 16 4 6 8 10 12 14 16 4 6 8 10 12 14 16
1.0 — 2 —
_ 0.4 —
1A (3 )A CRY!
F(z ) F 2 - F 2
—] — K
0.5 +"'I!§!ii 1 1l == 0.2 ( sssssesaw
e 0 e 0.0 —resrrsrr
I I I I I I I I I I I I I I I I I I
4 6 8 10 12 14 16 4 6 8§ 10 12 14 16 4 6 8 10 12 14 16
0.4 t/a
F(2 TV F(% )TV
0.2 — EE X E X E S 5 S 0.2 — |l === = >eeoau
0.0 e e
I I I I I I I I I I I
4 6 8 10 12 14 16 4 6 8 10 12 14 16
2
(7 )TA (37)TA
1 — F+:IIII—I—I—H 0.5 FJ_'S!I
e e
I I I I I I I I I I I I
4 6 8 10 12 14 16 4 6 8§ 10 12 14 16
t/a t/a

FIG. 2. Numerical results for the quantities Fg%_)x(p, t), defined in Eq. (36), as a function of the source-sink separation, for p =
1- 1-
(0,0,2) ZL—” and for the FO04 ensemble. Also shown is R(ﬁ W(p, t), which is used to extract the square of the reference form factor f (j ).

The horizontal lines indicate the ranges and extracted values of constant fits.
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7.5
- L Rt B 3 -
0.10 Em% Em% G WV @Ev
2 2 5.0 2
| Fy ss;.-—.—!—ﬂ 002 Fy 0.005 — RJ_’...:.-!—I—I—E F .,.II—I—I—H
0.05 Xy 95—
LX)
R —0.04 — 0.000 —J-rerersmesmessmesnsmesns e e
I T 1T 1 T 1T 1T T 1 I 1T 1T 1 1T 1T 1T T 1
4 6 8 10 12 14 16 4 6 8 10 12 14 16 4 6 8 10 12 14 16 4 6 8 10 12 14 16
6 — 6 — Tl 4 —]
374 (274 0.00 =gy | 54
4 — F(§ ) 4 — F 2 F 2 F(E )
+E=xxX l =xxX L E T 0.02 — OIIIE =1
2 — 2— —0.05 iy IIJ-J_
Q e ( e 010 0.00 — v
I 1T 1T 1 T 1T 1T T 1 1T 1T T 1 T 1T 1T T 1
4 6 8 10 12 14 16 4 6 8 10 12 14 16 4 6 8 10 12 14 16 4 6 8 10 12 14 16
0.075 - t/a
0.00 — - 0.00 = /
_ (3 )1V
0.050 F
—0.05 — l===x
0.025 — —0.02 —
~0.10 —
0.000 —-vrmrsesermsresesnsesnnen
[ [ T 1T T T 1 T 1T T T 1
4 6 8 10 12 14 16 4 6 8 10 12 14 16 4 6 8 10 12 14 16
6 — 0.4
3~ — 3 3
3974 5.0 (ET)TA (5 )TA
4 — (g ) 2
FJrltIIIiEE{ FJ_lsnli_qﬂ 0.2 — FJ_’::‘I:
o 2.5 I
O A OO A 00 A
I T 1T 1 1T 1T 1T T 1 I T 1T 1
4 6 8 10 12 14 16 4 6 8 10 12 14 16 4 6 8 10 12 14 16
t/a t/a t/a

3—
FIG. 3. Numerical results for the quantities F/(f )X(p, t), defined in Eq. (36), as a function of the source-sink separation, for p =

3- 3.
(0,0,2) ZL—” and for the FO04 ensemble. Also shown is R(f, W(p, t), which is used to extract the square of the reference form factor f 33, )
The horizontal lines indicate the ranges and extracted values of constant fits.

(1A , E\ my, (34 /
Sy " (p.1,1) = = S (.11
0 (EAb — mAb)(EAb + mAb)(mAb - mAz_l/z) 0
1- TN i !
_ g(()z )7 . (Z(Alij,, + 25\22 Ey e s t>e‘EAh’ + (excited-state contributions), (60)
ST t) = - Enin, s p.rr)
+ s s —_ + 9 9
(EA,, - mAb)3/2 (EAb + mAb)l/z(mAb + mAZ,]/z)
1- - * —1 !
_ g(+2 ) Zy.,, (Zf\l,,)m/\b + Z(Ai) Ey,)e A ’)e—EAb’ + (excited-state contributions), (61)
ST prr) = Enn, s o)
2(Ey, —my, )X (En, + my,)
1- - * —1 !
N . (ZE\I,,)mAb + Z(Ai) E,,)e T g 4 (excited-state contributions), (62)
S(%‘)TV(p 1) = En,ma, S(%‘)Tv(p 07)
+ s by - + L)
<EAb _ mAb)l/Z(EAb + mAb)3/2q2
1- —Mp* —1 7
_ h(Jf )Z/\*../z (ZE\I,,)m/\b + Zf\z,,)EA,,)e mAal/z(t t)e_EAbt + (excited-state contributions), (63)
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G)TV / EAb my, G)TV /
Sp (p.rt) = St (p..1)
* 2(En, = mp, ) (En, +mp, ) (my, = my: ) *
l_ - * _/ /
= h(ﬁ A At ]/Z(Zf\lb) my, + fozb) Ey,)e " t)e‘EAb’ + (excited-state contributions), (64)
S(%‘)TA(p b)) = — Ep,my, S(%‘)TA(p 61
’ o (En, +mp,) P (En, —ma, ) 2q* o
~ (1= —Mmpx -t ,
= hgz 'z A 1/2(25\117) my, + ZE\ZZ E,,)e M t)e‘E’\ht + (excited-state contributions), (65)
S(%f)TA(p ¢ [/) _ EA»mA» S(;)TA([) ¢ t/)
- o 2(Ep, +mp,)(Ep, —mp,)*(my, + m: ) * o
- E%_) Zn (Zs\lb) my, + Zﬁ\zh) En,) ¢ B (excited-state contributions), (66)

(1 2 T
such that the unwanted factors of Z - ” (Zy,ma, +Z), Ep)e o

P_1-
For J© =3

1-
for Fff )X(p, t) and our constant fits thereof are shown in
Fig. 2. For JP =37, we use Xyt =V, der = L' as in

3-
Ref. [38]. Sample results for F/(f )X(p, t) and our constant

fits thereof are shown in Fig. 3. The values of the form

, we use X s =V, dos = +. Sample results

(=) _g. v .
e "M" cancel in Eq. (36) at large ¢.

factors obtained from the constant fits are listed in Tables V
and VL. The fits were done individually for each form factor
and take into account the correlations between the data at
different . The values of y?/d.o.f. range between approx-
imately 0.5 and 1.0, where typically d.o.f. =4. The
correlations between the results for different form factors

TABLE V. Values of the A, — A7, form factors for each ensemble and for the two different A, momenta.

Form factor Ip|/(2z/L) Co1 C005 F004
£ 2 0.592(43) 0.550(54) 0.51038)
0 3 0.536(31) 0.496(38) 0.483(29)
f(%‘) 2 0.1843(51) 0.1743(59) 0.1804(47)
" 3 0.2005(68) 0.1887(80) 0.1990(65)
f(%f) 2 0.1728(39) 0.1692(47) 0.1748(37)
+ 3 0.1781(49) 0.1735(58) 0.1837(48)
g(%_) 2 0.2414(55) 0.2324(67) 0.2366(53)
0 3 0.2521(73) 0.2433(88) 0.2511(71)
g ) 2 0.624(38) 0.601(49) 0.549(36)
- 3 0.571(29) 0.542(35) 0.522(28)
g 5 2 1.35(11) 1.27(14) 1.14(10)
+ 3 1.205(80) 1.12(10) 1.063(72)
) 2 0.1935(42) 0.1896(52) 0.1956(40)
+ 3 0.1957(52) 0.1908(63) 0.2028(51)
h(%') 2 0.2065(50) 0.1955(59) 0.2013(47)
+ 3 0.2203(67) 0.2081(79) 0.2172(64)
;l(%f) 2 1.32(11) 1.24(14) 1.08(10)
* 3 1.182(82) 1.09(10) 1.011(74)
;) 2 0.576(39) 0.555(49) 0.513(36)
L 3 0.528(29) 0.503(35) 0.486(27)
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TABLE VI.  Values of the A, — A7 5, form factors for each ensemble and for the two different A;, momenta.

Form factor [p|/(2z/L) Co1 C005 F004
&) 2 5.24(40) 4.68(47) 4.28(35)

0 3 4.70(34) 4.05(35) 3.91(28)
£ 2 0.0784(45) 0.0670(50) 0.0711(40)

" 3 0.1074(72) 0.0904(76) 0.0949(60)
£ 2 —0.0127(79) —0.0295(90) —0.0280(72)

+ 3 0.046(10) 0.020(11) 0.0205(88)
£ 2 0.0708(24) 0.0693(28) 0.0682(20)

+ 3 0.0658(32) 0.0634(37) 0.0639(27)
o) 2 0.0305(41) 0.0194(48) 0.0216(38)

0 3 0.0605(60) 0.0451(65) 0.0454(52)
K2 2 4.41(36) 3.86(42) 3.50(32)

* 3 3.94(30) 3.33(32) 3.16(25)
e 2 4.34(36) 3.86(42) 3.50(31)

+ 3 3.90(29) 3.36(31) 3.19(24)
iy 2 —0.037(29) —0.048(31) —0.055(24)

+ 3 -0.029(21) —0.044(23) -0.041(17)
p) 2 —0.0609(81) —0.0733(93) —0.0776(74)

* 3 —0.004(10) —0.024(11) —0.0296(87)
p&) 2 0.0490(40) 0.0379(46) 0.0419(36)

+ 3 0.0784(62) 0.0621(66) 0.0652(52)
p&) 2 —0.01943(68) —0.01839(75) —0.01954(59)

L 3 —0.0188(10) —0.0172(10) —0.01925(87)
&) 2 4.43(36) 3.97(42) 3.60(32)

* 3 3.98(30) 3.45(31) 3.27(25)
) 2 4.64(37) 4.06(43) 3.75(32)

+ 3 4.16(31) 3.52(32) 3.40(25)
7&) 2 0.249(30) 0.223(31) 0.219(24)

L 3 0.237(25) 0.198(24) 0.218(20)

and different momenta on a given ensemble were evaluated
using bootstrap resampling.

w(g®) =v-v' =

2 2
my, +m/\; —-q

2

2mAbmA;

(68)

VI. CHIRAL AND CONTINUUM
EXTRAPOLATIONS OF THE FORM FACTORS

As in Ref. [38], we extrapolate the lattice results for the
form factors to the continuum limit and the physical pion
mass using the model

m2—m?
f(g?) =F' [1 + MT)EY + DfaZAZ]

: _ . m2—m> -

(67)

with fit parameters F/, A/, ¢/, D/, C/, D’ for each form
factor f, and using the kinematic variable

where my. = mas

final state considered. In the physical limit m, = m, ppy,
a = 0, the functions reduce to

or mp; =My depending on the

f(@?)=F +A'(w-1). (69)

This parametrization corresponds to a Taylor expansion of
the shape of the form factors around the end pointw = 1, 1i.e.,
an expansion in powers of (w — 1); because we have lattice
results for only two different kinematic points nearw = 1.01
and w = 1.03, we work only to first order, and we expect the
parametrization to become unreliable for large (w — 1). Our
results for F/ and A/ from fits using Eq. (67) are given in the
first two columns of Table VII, and the values and full
covariance matrices (evaluated using bootstrap) are also
provided as Supplemental Material [51]. As can be seen
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in Figs. 4-7, the lattice data are well described by the model.
The fits of the individual form factors have y?/d.o.f. in the
range from approximately 0.5 to 1.5, where we count F/, A/,

C/, and D/ as parameters that are primarily constrained by
the data, such that d.o.f. =6 -4 = 2.
|

2 2 3
2 _ f s Mz = Mg phys g Mz
fHO(‘I ) = Fyo [1 + Cho (47Tf,,)2 HO
2 2 3
My =My e = My

3
= M phys

(4rf,)*

Again following Ref. [38], to estimate systematic
uncertainties associated with the chiral and continuum
extrapolations, we also performed ‘higher-order” fits
including additional terms describing the dependence on
the lattice spacing and pion mass,

+ Dlya®A? + Elqah + Gﬁoa3A3}

+AI]:IO |:1 + CIGO (47Tf )2 HHO

No priors were used for the parameters F/, A/, Fl,,, Al
The Gaussian priors for the parameters describing the
lattice-spacing and pion-mass dependence were chosen
as in Ref. [38] except for E]’;O and E{IO' These coefficients
describe the effects of the incomplete O(a) improvement of
the weak currents in Eq. (32), and here we take the prior

widths for E{IO and Eﬂo to be two times larger than in
Ref. [38], based on the observation in Ref. [5] that these
effects may be larger for a heavy-to-heavy current than for a
heavy-to-light current. These widths allow for missing
O(a) corrections as large as 10% at the coarse lattice
spacing, motivated by the large b-quark momenta used
here. In the higher-order fits, we also multiplied the data for
each form factor with Gaussian random distributions of
central value 1 and appropriate widths to incorporate
estimates of systematic uncertainties associated with the
residual matching factors pr (2% for the vector and axial
vector currents, 4.04% for the tensor currents [10]) and
systematic uncertainties associated with neglecting the
down-up quark-mass difference and QED corrections
[O((my —m,)/A) ~0.8% and O(a, ) = 0.7%]. Further-
more, to include the scale-setting uncertainty, we also
promoted the lattice spacings to fit parameters with
Gaussian priors according to the values and uncertainties
shown in Table I. All of our lattice calculations were
performed with m L > 4, and we therefore expect finite-
volume effects to be negligible at least for the heavier pion
masses where the A} (2595) and A}(2625) are well below
strong-decay thresholds. However, we are unable to pro-
vide a quantitative estimate of finite-volume effects in the
extrapolated form factors.

In the physical limit, the higher-order fits reduce to the
same form as in Eq. (69) but with parameters F* {10 and Aﬂo.
Our results for these parameters are given in the last two
columns in Table VII and also in Supplemental Material
[51]. For any observable O, we evaluate the form-factor
systematic uncertainty using

00 syst — Max (|0HO -0, |020,HO - 020|>7 (71)

where O, o6, denote the central value and uncertainty
calculated using {F/, A/} and their covariance matrix, and

m3 - - ~

[

TABLE VII. The parameters describing the A, — A%(2595)
and A, — A%(2625) form factors at the physical pion mass and in
the continuum limit. The nominal parameters F/ and A/ are used
to evaluate the central values and statistical uncertainties, while

the “higher-order” parameters F{{o and Aﬁo are used in combi-
nation with the nominal parameters to evaluate systematic
uncertainties as explained in the main text. Files containing
the parameter values and the covariance matrices are provided as
Supplemental Material [51].

P e W Fo Ao
FE) 054564 -221(66)  0.546(75)  ~2.20(69)
@) 0.162890)  1.1631)  0.164(14)  1.17(33)
) 01690(79) 05725 0.16913)  0.58(26)
g:%w 0221(11)  094(33)  0.221(17)  0.9535)
G5 058264 -224(65)  0.584(76)  ~223(68)
G 12206 -61(19)  12208)  ~6.1(20)
i) 01908(89)  047(30)  0.191(14)  0.49(32)
pd) 01860093)  0.9828)  0.187015)  0.98(30)
) LIS16)  -58(18)  LIS18)  -57(19)
B 054362 -212(67)  0.544(75)  ~2.11(71)
FE)42067)  -273(87) 431075 -27.0(88)
@) 0.0498(70)  1.28(27)  0.0504(83)  1.29(29)
§> —0.073(14)  2.52(35)  —0.073(14)  2.54(39)
F) 0.0687(40)  -0.280(89) 0.0687(59)  ~0.279(89)
o) 00027(35)  12321)  0.0027(36)  1.23(23)
G5 346(8)  -247(81) 34764 -24.5(8.1)
G 34I6T) -226(78)  349(63)  ~224(79)
gD -0062(38)  06257)  -0.062(37)  0.62(57)
p) 0 0.124(16)  251(32)  -0.124(18)  2.52(37)
pE) 00208(53)  1.2223)  0.021060)  1.22(25)
pG) —00201(12)  0.04021)  -0.0201(19)  0.03921)
AT 35869 -237(81)  359(66)  -23.5(8.1)
B 3726 -251(82)  374(69)  -248(83)
RE) 0232(49)  -0.60(52)  0235(56)  ~0.60(56)
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FIG. 4. Chiral and continuum extrapolations of the A, — A%(2595) vector and axial vector form factors. The solid magenta curves
show the form factors in the physical limit a = 0, m, = 135 MeV, with inner light magenta bands indicating the statistical uncertainties
and outer dark magenta bands indicating the total uncertainties. The dashed-dotted, dashed, and dotted curves show the fit functions
evaluated at the lattice spacings and pion masses of the individual data sets CO1, C005, and FO04, respectively, with uncertainty bands

omitted for clarity.

Ono» 6pyo denote the central value and uncertainty

calculated using {F,,, A, } and their covariance matrix.
We find that the (vector and axial-vector) form-factor
systematic uncertainties result in an approximately 12 to
13% systematic uncertainty in the A, — A%(2595)u" 0
differential decay rate in the kinematic range shown in
Sec. VIII, and 14 to 18% for A, - A%(2625)u~b. Because
the decay rates depend quadratically on the form factors,
this corresponds to “average” systematic uncertainties of
around 6% in the A, — A%(2595) vector and axial-vector
form factors and around 8% for A, — A%(2625).

VII. COMPARISON WITH ZERO-RECOIL
SUM RULES

At zero recoil (w = 1), approximate sum-rule bounds on
the size of heavy-to-heavy form factors can be derived
using the operator product expansion and heavy-quark
effective theory [24,25,52-55]. In Ref. [24], it was found
that the lattice results for the A, — A, form factors with the
JP = %* final state (which constitute the “elastic”’ contri-
bution to the sum rule) almost completely saturate the
bounds derived through order 1/m?, apparently leaving
very little room for “inelastic” contributions from other
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a=0, m; =135MeV

FIG. 5.

final states such as the As considered here. However, in the
case of B-meson decays, the size of 1/m* and 1/m’
corrections has been found to be approximately 33% of
the size of the 1/m? and 1/m> terms [25,55]. Allowing for
effects of this size also for A, decays, the authors of
Ref. [25] then obtained estimates of the size of the inelastic
contributions, which are expected to be dominated by
A, = A5(2595) and A, — A%(2625).

When expressed in terms of our form-factor definitions
using the relations given in Appendix A 3, Egs. (46), (48),
(50), and (52) of Ref. [25] become

Firel12 = |f(+{) ot 2|f(fi) AR (72)

Fine13/2
1 (mAb + mA’; )2 (3—) (3—) (3—)
=5 (m,\——m,\*m)ﬂfﬁ PH20f PO
b

3/2 w=1
(73)

1, ¢
Ginet,1/2 = 3 |9(()2 ) izp (74)

1 (mA +mA*‘ )2 3-
R (75)

2 w=1"
M, — Mpx
b e.3/2)

Ginel,3/2 = 18 (

Like Fig. 4, but for the A, — A%:(2595) tensor form factors.

The zero-recoil sum-rule estimate obtained in Ref. [25] is
Finel172 + Finet 32 2 0.01 ltg.'ggslv (76)
Ginet,172 + Ginel 32 ® 004075055 (77)
Using our lattice-QCD results for the form factors, we find
Fine11/2 + Finer3/2 = 0.093 £0.009, £ 0.0124,  (78)

Gine1/2 + Giner 32 = 0.0162 + 0.00164, £ 0.0020,y;.
(79)
Thus, our result for the axial current falls within the range

given in Ref. [25], while our result for the vector current is
slightly above the upper limit.

VIIL. Ay, - A~ OBSERVABLES
The two-fold differential decay rates of A, —
A5(2595)¢7p and A, — A:(2625)¢70 in the Standard
Model can be written as

drv)

AW £ BW cosh, + CP)cos?d,. 80
idcos0, + cosf, + CYcos?0,,  (80)
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FIG. 6. Like Fig. 4, but for the A, — A%(2625) vector and axial vector form factors.
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FIG. 7. Like Fig. 4, but for the A, — A%(2625) tensor form factors.

where 0, is the helicity angle of the charged lepton and
AY) BY) V) are functions of ¢? only [25]. The J = 1.3
superscript is used to distinguish the Aj(2595) and
A:(2625) final states. The equations for AY), BY), and

CY) in terms of the form factors are given in Ref. [25]

(where AV) = Féf)a(fj) etc.) and can be converted to our
conventions using the relations in Appendix A 3. The
integral over cos 6, yields the ¢>-differential decay rate

drv) 2
e 24V) + 3 V), (81)

and we also consider two angular observables [25]: the
forward-backward asymmetry

0.40
~ (3
0.35 h(§ )
0.30 . L
025 fmim .. M 3
0204 | R Bt
0.15
0.10-
0.05
0.00 : I x I
1.00 1.01 1.02 1.03 1.04 1.05
w
()
w_ B
AFB - dF(J)/dqz (82)
and the “flat term”
24V + )
po) A+ CT) (83)

drt) /dg?

The Standard Model predictions for dI')/dg?/|V,|?
and for the angular observables using our form-factor
results are shown in Fig. 8. Note that at leading order in
heavy-quark effective theory, the differential decay rate for

the J = % final state would be a factor of 2 smaller than the

differential rate for J = %, and the lepton-side angular

observables considered here would be equal for both final
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FIG.8. A, — A%(2595)¢7 (left) and A, — A%(2625)¢~ D (right) observables in the high-g? region calculated in the Standard Model
using our form-factor results. From top to bottom: the differential decay rate divided by |V, |?, the forward-backward asymmetry, and
the flat term. In each case, we show results for £ = u and # = 7 (the results for £ = e would look the same as for £ = p in this kinematic
region). The bands indicate the total (statistical + systematic) uncertainties.

states [25,33]. In contrast, we find the J :% rate to be
approximately 2.5 times larger than the J = % rate, and we
find the forward-backward asymmetries to have opposite
signs at high ¢. Leading-order HQET is of course expected
to be inadequate for these decays, in which the light degrees
of freedom in the final state have a different angular
momentum than in the initial state. The forms of the

subleading corrections are known [25,33], but we have not
been able to obtain an acceptable HQET fit to the full set of
form factors even when including these corrections, sug-
gesting that sub-subleading terms may also be significant.

In Fig. 9 we additionally compare the A, — A%(2595)u~ 0,
and A, — A%(2625)u~ v differential decay rates with that of
Ay = A p~ 0, using the form factors from Ref. [5] for the
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FIG. 9. Comparison of the A, — A.u"0, A, = A5(2595)u~ D,
and A, — A%(2625)u" D differential decay rates just below g2,

calculated in the Standard Model using the form factors from
lattice QCD.

latter. For example, at g*> = g2, — 1 GeV?, the A, —
A%5(2595)u b differential decay rate is approximately 13
times smaller than the A, — Ay~ differential decay rate.

IX. CONCLUSIONS

The decays A, - Ai(2595)¢"0 and A, -
A%(2625)¢" v are interesting processes that deserve to be
studied in detail, both experimentally and theoretically, to
obtain a more complete picture of b — ¢£~v semileptonic
decays. This work contributes to this goal by providing the
first lattice-QCD determination of the complete set of form
factors, albeit only in the vicinity of ¢2,,,. The calculation
was made possible by the technology developed initially
for A, — A*(1520) [38]: working in the rest frame of the
A} to avoid mixing with unwanted quantum numbers, and
using an interpolating field with gauge-covariant spatial
derivatives to obtain a good overlap with the A}.

In nature, the A}(2595) and A (2625) are narrow reso-
nances decaying through the strong interaction to A .z,
with widths 0f 2.6(0.6) MeV and < 0.97 MeV, respectively
[23]. These values justify the use of the narrow-width
approximation. In our lattice calculation with three different
pion masses in the range from approximately 300 to
430 MeV, we find that the A} masses are below all possible
strong-decay thresholds, including 2.7z, except perhaps at
the lowest pion mass. Simple chiral-continuum extrapola-
tions of our lattice results for m-(2505) and m+(2625) yield
values in agreement with experiment once systematic
uncertainties are taken into account. The hyperfine splittings
Mpx(2625) — Maz(2595) are also found to be consistent with
experiment.

We use helicity-based definitions of the A, — A%(2595)
and A, — A}(2625) form factors. On each ensemble we
performed calculations for two different A, momenta
corresponding to w=1.01 and w=1.03, where

w = v - v'. The final results for the form factors, obtained
from extrapolations to the continuum limit and physical
pion mass, are parametrized as linear functions of w. These
parametrizations are expected to be accurate only near the
kinematic region where we have lattice data. Our results for
the form factors at w =1 are compatible (albeit only
marginally in the case of the vector form factors) with
the zero-recoil sum rules given in Ref. [25]. It will also be
interesting to see the impact on unitarity bounds in global
analyses of b — c£~v form factors [26].

Using our form-factor results, we evaluated the A, —
A:(2595)¢p and A, — AL(2625)¢ b differential decay
rates, forward-backward asymmetry, and flat term in
the Standard Model. We find the A, — A%(2595)¢ 0
rates to be approximately 2.5 times higher than the A, —
A%5(2625)¢7D rates (in the kinematic region considered),
which is opposite to the behavior predicted by leading-order
HQET but consistent with the expectation that subleading
contributions in HQET are important for these types of
decays. While not discussed in detail in this paper, we also
attempted HQET fits at order 1/m [25,33] to our form factor
results, but we did not obtain an acceptable description. We
expect that 1/m? corrections, which have not yet been
studied for these processes, are also large. This will make it
more challenging to combine experimental data for the
shapes of the muonic decay rates in the entire kinematic
range with the lattice results for the form factors near g2, to
obtain Standard Model predictions for R(A}) = B(A, —
At 0)/B(A, — Aiu~D). Lattice calculations at lower g2,
while still working in the A} rest frame, could be performed
using finer lattices or using a moving-nonrelativistic QCD
action [56] for the b quark. Alternatively, one could use
nonzero A} momenta and explicitly deal with the mixing of
quantum numbers by extracting multiple states using larger
operator bases, see for example Refs. [57,58].
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APPENDIX: RELATIONS BETWEEN DIFFERENT
FORM FACTOR DEFINITIONS

In this Appendix, we provide expressions for the A, —
ALy, and Ay — AL5 5 form factors in other definitions
used in the literature (for the vector and axial-vector
currents only) in terms of our form factors. Note that the
overall sign of the form factors for each decay mode
depends on the phase conventions of the states. Thus, in
the following relations, only the relative signs among the

To make this explicit, we introduce factors of o") below,
which can take on the values +1.

1. Definition used by Leibovich and Stewart as well as
Pervin, Roberts, and Capstick

We find that the A, — A7 P form factor definitions in
Ref. [33] are related to ours as

(57) #37)

form factors for a specific final state are well determined. dy, = o5 f1 (Al)
|
G My, TN g T T, m%\" B m?\*l/z 37 2mA*~1/z )
dv2 = _GLZS mAb {T’foz + - . <1 - qz . )fﬁ +Tfﬁ :|, (A2)
2 2
1- Mp, s ey M T MA, = MA: LN Lay 2my, ()
dy, = _O-Lzs)m/\jl/z {_ b = (12 f(()z g (12 <1 i = ,l/h)f_i ) - bfﬁf ]’ (A3)
— l_
dy, = o159} . (A4)
d G) My, TN, @y T TN 1 mf\h —mf\:_]/z G 2mA:.1/2 ) A5
el [ Bt B ]
) My, =Maz ) (o) Mg, +mAj_l/2 m?\,, TR ) 2my, (1
dp, = —ors mA*l/2|: 9% ~ ' (1 A ) it i ] (A6)
q S+
For A), — A:,s/z’ we find
@) A, Ay 3- )
Iy, = o5 — 2+ 70, (A7)
) A 3 _ 4 268) _ 3
v, = OLs m[(’mb —mp )8 fo T =2ma q*(f27 = f17)
3)
— (my, + mA:j/z)(m%\b - miﬁ.z/z -q*)f1l (A8)
@) "M &) @) &)
ly, = o1 5.5 [~ Als (myp, — ’”/\;3/2)5—f02 _ZmA,,mAj_3/2q2fﬁ +2q2(mA,,mA:_3/2 —s )fD
+ —
3—
oy (my, +ma mE, —mX. +g?)f ), (A9)
ER
ly, = o5 3 (A10)
3-) A, TN 3- 3
b, = oy ——2[ + 41, (A11)
&) m%bmA;s/z G SCD) @)
la, = o5 —5—[=(my, + mAj_3/2)s+go —amy: 4 (9% " —957)
q*s.s_ ,
3)
+ (my, — mAj_m)(m?\b - m%\;m -q’)g; ], (A12)
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1, = &) I, mpe (ma +mpe )sige ) 4 2my mye gt —2q2(mp mpe 45 )gE)
43 — ULS L]2S+S_ Alsp N Aty )S+90 M, 491 g \ma,my; -9
—m ( _ 2 _ 2 + 2) (%_> Al3
Aﬁ.m M, mAr-s/z)(mAh mA:,s/z )9+ ]’ ( )
3=y (3-

Pervin, Roberts, and Capstick [34] use the same definitions as Leibovich and Stewart, with the name replacements
dy, = F;, dy, = G; for the %‘ final state and [y, — F;, [, — G; for the %‘ final state.

2. Definition used by Gutsche et al.

We find that the form factor definitions used in Refs. [35,36] are related to ours as follows:

) _ )
1- v (mp, —mpe V(FE = f32) 1-
R o) e (Al5)
V(i) () mAb (mAb — M~ )(f%_> - f%_)>
F,) =og ‘;/2 , (A16)
G) 20G7) 2 7))
= oy mp (my, +mpe (s fg +q 77— (my, —mp- )2 fE7)
P _ ) M ¥ O T e 7 S (A17)
q*s_
- iy (mp, + mp- )2(9%7) —gg)) -
F‘?(E ) — O_g ) b c,1/2 _g% )’ (AIS)
S+
ma (my +my ) ) (%7))
FAE) g Ml T WL T 9 (A19)
2 G 5y .
A _ ™ (ma, — mae V=sidy =gl + (my, +ma )
1) = . : (A20)
q-s+
A =l f, (A21)
3 3y A, TN 3 3-
R =og = (A22)
\WES 3 2mA 3- 3- 3- 3-
Fy = Gg : o s - [_mAZW(mAb + mij/z)f(ﬁ Lt mAjm(mAb + mAj‘_m)(fo') +f5ﬁ )) - 5+f(f/ )], (A23)
- + - - ” ”
&) _ G A TA), B 6) _, 2 /3 3
4 =0g 2255 [(ma, AH/Z)S—fo my: .4 VAR AT
+ —
3)
~(my, e, ), = — )] (A24)
A = o gl (A25)
3- 3y A M 2 3-
F?(z ) _ U(Gz ) 'S ca/2 [g(f ) +g(j)], (A26)
+
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5 _ 2 o _ & )

P = o) Ry, (my, —mig, (6T = g8 =) 5T, (A27)
=54
FAG) (;_)mib Aesp 3 20 .G _ ()
4° = 0g 5.5 [=(ma, +ma: )si95 =2 Aoy (97 =95 ).
3)
+(ma, = ma, Jod, = =g, (A28)
3. Definition used by Boer et al.
Reference [25] also uses a helicity-based definition, F(1/2 R B%* 1 Sy f(l%’)’ ( A37)
which we find to be related to ours as ' 4\ my,m Ay

f &) T '“f (A29)
1/2,t — B mA* my, — N 0 >
l Ll/z
fi20 = o5 i, f+ . (A30)
b
1 1 3s 1-
fipl = 51(32 )5 mf(ﬁ g (A31)
b c1/2
e etk Eé ' (A32)
2 mAhmA* mAb +m A
(i 1 My, + M- 1-
Gij20 = oy 5 o mAI L (+ ) (A33)
b
1y ] 3s_ 1-
9121 = 1(3 )2”W9(ﬁ g (A34)
b c1/2
3y 1 3-
F(1/2,z) = 01(32 )4_1 Min My fé)2 >’ (A35)
b 3/2
3+ 1 s 3
Fijp0) = 0% >Z1 /mfﬁf L (a36)
b c3/2

eyl [ s @)

F(3/2,J_) = —032 4 ﬁfﬁ/ s (A38)
b
G [— T A39
(1/2,1) = UB 4 m/\,, ( )
@) @)

G(1)20) = oy o (A40)
G 47 (a4
(1/2,1) UB 4 m/\b ( )
G(3/2 1) gL/ . A42)

We also independently derived the Egs. (B6) of Ref. [25]
(arXiv version 2) which give the relations of the A, —
A§’3 P form factors as defined in Ref. [25] to the definition
used by Leibovich and Stewart [33]. We agree with seven
of the eight equations but find the opposite relative sign
for G 1/2.0-
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