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In this paper we consider the influence of relativistic rotation on the confinement-deconfinement
transition in gluodynamics within lattice simulation. We perform the simulation in the reference frame
which rotates with the system under investigation, where rotation is reduced to external gravitational field.
To study the confinement-deconfinement transition, the Polyakov loop and its susceptibility are calculated
for various lattice parameters and the values of angular velocities that are characteristic for heavy-ion
collision experiments. Different types of boundary conditions (open, periodic, Dirichlet) are imposed in
directions, orthogonal, to rotation axis. Our data for the critical temperature are well described by a
simple quadratic function TcðΩÞ=Tcð0Þ ¼ 1þ C2Ω2 with C2 > 0 for all boundary conditions and all
lattice parameters used in the simulations. From this we conclude that the critical temperature of the
confinement-deconfinement transition in gluodynamics increases with increasing angular velocity. This
conclusion does not depend on the boundary conditions used in our study and we believe that this is
universal property of gluodynamics.
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I. INTRODUCTION

Recently the study of various physical systems under
rotation has become relevant and extremely interesting
research area. Rotating physical systems frequently appear
in astrophysics [1,2]. Relativistic fermions with angular
momentum can be realized in condensed matter physics
[3,4]. It is believed that rapidly rotating quark-gluon plasma
is created in heavy-ion collision experiments [5–8]. In the
last example noncentral heavy ion collisions generate
nonzero angular momentum. Partly this angular momen-
tum is taken away by spectator partons, but considerable
part is transferred to quark-gluon plasma, created in the
collision. The experimental results for Λ, Λ̄ baryons
polarization confirm this expectation and give the following
average value for the angular velocity Ω ∼ 6 MeV [8].
Hydrodynamic simulations of heavy-ion collisions predict

even larger magnitudes of the angular velocity Ω ∼
ð20–40Þ MeV [5]. These values of angular velocity lead
to relativistic rotation of quark-gluon plasma.
Rotation gives rise to lots of interesting phenomena

which can be observed in heavy-ion collision experiments.
For instance, chiral vortical effect [9–12] and polarization
of different particles [13,14] are examples of such phenom-
ena. In addition, relativistic rotation is believed to influence
phase transitions in QCD what also can be observed in the
experiments.
There are a lot of theoretical papers dedicated to the

phase transitions in rotating QCD matter (see, for instance,
[15–22]). Mostly these studies are carried out within
Nambu-Jona-Lasinio model (NJL) [23,24] and they are
focused on influence of rotation on the chiral symmetry
breaking/restoration transition in QCD. Despite variety of
details and results of there papers, there is one common
result: rotation suppresses the chiral condensate, which
leads to the decrease of the critical temperature with
rotation. An interesting physical explanation of this sup-
pression was proposed in paper [17]. The idea is that
rotation induces a polarization effect which aligns all
microscopic angular momenta along the total angular
momentum. So the states with nonzero angular momen-
tum/spin are more preferred than the states with zero
angular momentum/spin which results into the suppression
of the chiral condensate exposed to the rotation.
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An important disadvantage of all works based on the NJL
model is that they take into account only the quark degrees of
freedom whereas the gluon sector of the theory, which is
responsible for the confinement, is integrated out. For
this reason it is difficult to study confining properties as
well as confinement-deconfinement transition within such
approaches. For QCD matter under rotation this disadvant-
age might be crucial since gluons have spin-1 and one can
expect that relativistic rotation induces polarization of
gluons. The properties of QCDmatter with polarized gluons
might be different as compared to that without polarization.
In particular, rotation can affect the confinement-deconfine-
ment transition. So, in order to understand the impact of
rotation to the phase transitions in QCDmatter, one needs to
apply an approach which takes into account both quark and
gluon degrees of freedom. The papers [20–22] are focused
on the confinement-deconfinement transition in rotating
QCD. The authors of [21] applied holographic approach.
The author of [20] studied rotating compact QED which
also possesses confinement-deconfinement transition. The
hadron resonance gas model was adopted in paper [22]. The
results of these works indicate that the critical temperature
decreases with the angular velocity. Although the results of
different phenomenological studies give interesting insights
into QCD properties, we believe that lattice simulation of
QCD is themost appropriate to study how rotation influences
the confinement-deconfinement transition.
This paper is devoted to the study of SU(3) gluody-

namics properties under rotation within lattice simulation.
In particular, we are going to address the question how
rotation affects the confinement-deconfinement transition
in gluodynamics. It is worth mentioning that the first lattice
study of rotating QCD matter was carried out in [25], but
the impact of rotation on QCD phase transition was not
considered in this paper. In our paper we will use lattice
formulation of rotating gluodynamics developed in [25].
We would like also to note that our first results devoted to
thermodynamic properties of rotation gluodynamics were
published in [26]. In this paper we continue our study.
This paper is organized as follows. Next section is

devoted to the theoretical background of our study. In
particular, we discuss Yang-Mills theory in external gravi-
tational field, write its discretized action and describe
boundary conditions used in our study. In Sec. III the
results of our study obtained with different boundary
conditions are presented. In last section we discuss the
results and draw a conclusion. In addition, in Appendix A,
the influence of finite volume effects on thermodynamic
properties of gluodynamics is studied. In Appendix B, we
show lattice parameters used in our simulations.

II. THEORETICAL BACKGROUND

A. Thermodynamic ensemble in presence of rotation

To study the influence of rotation on gluodynamics
properties we are going to use the approach proposed in

papers [15–19,25]. The idea is to carry out the study in the
reference frame which rotates with the system. Below it
will be assumed that the system rotates around the z axis. In
this reference frame there appears an external gravitational
field with the well-known metric tensor

gμν ¼

0
BB@

1 − r2Ω2 Ωy −Ωx 0

Ωy −1 0 0

−Ωx 0 −1 0

0 0 0 −1

1
CCA; ð1Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the distance to the axis of rotation.

All components of the metric tensor (1) do not depend on
time coordinate t. As the result, the Hamiltonian of the
system, which is given by the expression

H¼
Z

dV
ffiffiffiffiffiffi
g00

p
ϵðr⃗Þ

¼ 1

2g2

Z
d3x

ffiffiffi
γ

p ffiffiffiffiffiffi
g00

p ½Fa
txFa

txþFa
tyFa

tyþFa
tzFa

tz

þFa
xyFa

xyþFa
xzFa

xzþFa
yzFa

yz

−ΩðxFa
txFa

xy−xFa
tzFa

yzþyFa
tyFa

xyþyFa
tzFa

xzÞ�; ð2Þ
is conserved. Here the Greek letters correspond to the
Lorentz indices while Latin letters correspond to the color
ones. The dV ¼ d3x

ffiffiffi
γ

p
is the three dimensional volume in

our coordinate system, g is strong coupling constant and ϵðr⃗Þ
is energy density. Notice that towrite conserved quantity it is
important to multiply the energy density ϵðr⃗Þ by additional
contribution of the gravitational field

ffiffiffiffiffiffi
g00

p
.

Given the Hamiltonian (2), it is straightforward to
construct the partition function of the system under study

Z ¼ Tr exp½−βĤ�: ð3Þ
Here one comment is in order. One can introduce the
notation TðrÞ ¼ 1=β

ffiffiffiffiffiffi
g00

p
, which brings the expression (3)

to the from

Z ¼ Tr exp

�
−
Z

dV
ϵ̂ðrÞ
TðrÞ

�
: ð4Þ

The effective TðrÞ is the temperature which depends on the
position in space and satisfies the expression TðrÞ ffiffiffiffiffiffi

g00
p ¼

1=β ¼ const. Last equation describes Ehrenfest-Tolman
effect which states that in gravitational field the temperature
is not constant in space in thermal equilibrium. For the
rotation one has TðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ω2r2

p
¼ 1=β ¼ Tðr ¼ 0Þ. So,

one can conclude that rotation effectively heats the system
from the rotation axis to the boundaries TðrÞ > Tðr ¼ 0Þ.
In what follows the temperature at the rotation axis
Tðr ¼ 0Þ ¼ 1=β will be referred to as T.
The calculation of the Tr exp½…� in formula (3) can be

carried out through the standard procedure. Applying it, the
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partition function of the gluodynamics in external gravi-
tational field can be written in the following form [25]

Z ¼
Z

DA exp ð−SGÞ: ð5Þ

In last formula the integration over gluon degrees of
freedom is carried out. The SG is the Euclidean action
of the gluodynamics in external gravitational field, which
can be written as

SG ¼ 1

4g2

Z
d4x

ffiffiffiffiffi
gE

p
gμνE gαβE Fa

μαFa
νβ: ð6Þ

The Euclidean metric tensor ðgEÞμν in last formula can be
obtained from (1) by Wick rotation t → iτ. As in usual path
integral for the partition function the Euclidean time τ
varies in the region τ ∈ ð0; βÞ and the gluon degrees of
freedom satisfy periodic boundary conditions in temporal
direction Aμð0;xÞ ¼ Aμðβ;xÞ.
Substituting the ðgEÞμν to formula (6) we get the

following expression for the Euclidean action

SG ¼ 1

2g2

Z
d4x ½ð1 − r2Ω2ÞFa

xyFa
xy þ ð1 − y2Ω2ÞFa

xzFa
xz

þ ð1 − x2Ω2ÞFa
yzFa

yz þ Fa
xτFa

xτ þ Fa
yτFa

yτ

þ Fa
zτFa

zτ − 2iyΩðFa
xyFa

yτ þ Fa
xzFa

zτÞ
þ 2ixΩðFa

yxFa
xτ þ Fa

yzFa
zτÞ − 2xyΩ2Fa

xzFa
zy�: ð7Þ

It is seen from this formula that the action is a
complex function that leads to the sign problem.
Unfortunately, a direct Monte Carlo simulation of this
system is impossible today. To overcome this problem
instead of the real angular velocity Ω, we are going to
conduct Monte Carlo simulations with the imaginary
angular velocity ΩI ¼ −iΩ. The results obtained in this
way will be expanded in the ΩI and then analytically
continued to real angular velocity.

B. Lattice formulation for rotating gluodynamics

In order to conduct lattice simulation of rotating gluo-
dynamics, one has to discretize action (7). In this paper we
are going use the lattice action proposed in [25], which can
be written as

SG¼ 2Nc

g2
X
x

�
ð1þ r2Ω2

I Þ
�
1−

1

Nc
ReTr Ūxy

�
þð1þy2Ω2

I Þ
�
1−

1

Nc
ReTr Ūxz

�
þð1þx2Ω2

I Þ
�
1−

1

Nc
ReTr Ūyz

�
þ3

−
1

Nc
ReTr ðŪxτþ Ūyτþ ŪzτÞ−

1

Nc
ReTrðyΩIðV̄xyτþ V̄xzτÞ−xΩIðV̄yxτþ V̄yzτÞþxyΩ2

I V̄xzyÞ
�
; ð8Þ

where the Ūμν denotes clover-type average of four pla-
quettes (see Fig. 1). In the flat metric case, the use of
clovers instead of plaquettes would lead to the same action
after summation. However, in the case of nonuniform
metric, the clover-type average allows one to build local
expressions for the Fμν and reduce discretization errors.
In order to implement the terms FμαFαν on the lattice one

uses the antisymmetric chair-type average V̄μνρ of eight
chairs (see Fig. 2). The intuition for such a term in a
discretized action may be understood as follows: we have
terms of the form FμνFνρ in the action, and loop in the μν
(νρ) plane gives, respectively, FμνðFνρÞ. The simplest
gauge invariant object has to reside in μν and νρ plane
and thus involves at least six links.
We have performed numerical simulation on lattices

Nt×Nz×Nx×Ny ¼Nt×Nz×N2
s (Ns ¼ Nx ¼ Ny), such

that sizes in spatial directions, orthogonal to the rotation
axis z, are equal and may differ from size along the rotation

axis and temporal direction. The axis z is in the middle
of xy plane. For the all sizes considered, the restriction,
following from causality: (ΩNsa=

ffiffiffi
2

p
< 1) holds. And in

the most cases we have ΩNsa=
ffiffiffi
2

p
≪ 1.

C. Boundary conditions

It is clear that rotating reference frame cannot be
extended to arbitrary large distances from the rotation
axis, since at distances Ωr ≥ 1 the g00 becomes negative
and such rotating system cannot be realized by real
bodies. For this reason in the simulations one has to
impose boundary conditions (BC) on our system. Here we
would like to stress that BC are important part of all
approaches aimed at studying of rotating quark-gluon
plasma rather than a lattice artifact. The results obtained
within any approach depend on BC. In order to study
this dependence in our paper we applied a series of
different BC.

FIG. 1. The clover-type average of four plaquettes.
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For all BC used in our paper we apply periodic boundary
conditions for gluon fields in z and τ directions. What
concerns the x and y directions we used the following BC
(1) Open boundary conditions (OBC). For this type of

boundary conditions the sum in action (8) is taken
over plaquettes and chair-type products of link
variables which belong to the lattice volume under
investigation. If either plaquette or chair goes be-
yond the lattice volume it is excluded from the
action. No additional restrictions are put on the link
variable located on the boundary. Similar conditions
were used in Refs. [27,28] for temporal direction and
in Ref. [29] for one of spatial directions, where
topological susceptibility was investigated.1

Here we would like to mention that OBC do not
violate the Z3 symmetry and we do not see explicit
incompatibility of OBCwith the field of velocities of
rotating body. For this reason, we believe that OBC
are the most appropriate for the lattice simulation of
rotating gluodynamics.
The exclusion of the plaquettes outside the stud-

ied lattice volume from the action can be considered
as if one puts these plaquettes to unity what leads to
zero lattice action. So, physically, OBC can be
interpreted as if the studied volume is attached to
classical (without quantum fluctuations) zero tem-
perature Yang-Mills theory. Lattice study of non-
rotating lattice with OBC confirms this physical
picture (see Appendix A).

(2) Periodic boundary conditions (PBC) for gluon
fields in x and y directions. This type of BC is not
compatible with the velocity distribution in the rotat-
ing body, but it respects theZ3 symmetry of the action.

(3) Dirichlet boundary conditions (DBC). In this case
we set all links which lie on the boundary to unit
matrix: UμðxÞ ¼ 1. The links sticking out from the
lattice volume are not included in the lattice action.
DBC were used in Ref. [25] to study rotating QCD.
In the continuum limit this corresponds to

Aμðx⃗; τÞjx¼�R=2 ¼ 0; μ ¼ 0; 2; 3; ð9aÞ

Aμðx⃗; τÞjy¼�R=2 ¼ 0; μ ¼ 0; 1; 3; ð9bÞ

where R is the size of lattice in the directions x and y.
We do not see incompatibility of DBC with the

field of velocities of rotating body, but DBC break
the Z3 symmetry of the action. In principle, without
rotation, this explicit violation of theZ3 symmetry is
finite-volume effect which disappears in the infinite
volume limit (see Appendix A). However, as ex-
plained above, one cannot take infinite volume limit
for the x and y directions in the rotating reference
frame. So, in the rotating reference frame, the
violation of the Z3 symmetry might play an im-
portant role.
It is interesting to note that physically DBC can be

considered as if one fixes high temperature on the
boundary of the volume under investigation. This
can be understood as follows. In DBC the Polyakov
loop on the boundary equals three; i.e., the Z3

symmetry of lattice gluodynamics is explicitly
broken on the boundary. In gluodynamics breaking
of Z3 symmetry is the property of high temperature
phase. For this reason in DBC the boundary plays a
role of a seed of high temperature phase or, in other
words, this can be considered as if there is a high
temperature on the boundary. From this perspective
DBC is opposite to OBC with low temperature
outside the lattice volume and it is particularly
interesting to compare the results obtained with
OBC and DBC. Numerical simulations of non-
rotating lattice confirms the physical picture of
high effective temperature on the boundary (see
Appendix A).

One can expect that BC incompatible with the properties
of rotating body might lead to unphysical behavior of the
system. Consequently, the approach applied in this paper
might become inapplicable to study rotating gluodynamics.
The results obtained in this paper allow us to state that for
sufficiently large lattice volumes and small angular veloc-
ities BC do not change bulk properties of rotating gluody-
namics considerably. We believe this fact can be explained

FIG. 2. The antisymmetric chair-type average of eight chairs.

1Notice that in papers [27–29] the plaquettes on the boundary
were accounted in the action with the weight 1=2. We studied this
variant of OBC for nonrotating lattice and did not found mean-
ingful difference between these two approaches.
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as follows. For sufficiently large volume and small angular
velocity it becomes energetically favorable for the system
to screen BC incompatible with the bulk properties of
rotating body and the bulk properties start to dominate over
the screened boundary. The screening of the boundary is
well seen in Figs. 6 and 14.

D. Measurement of the critical temperature

The main question to be addressed in this paper is
how rotation influences confinement-deconfinement phase
transition in gluodynamics. Commonly in nonrotating
gluodynamics one exploits the Polyakov loop as an order
parameter for this transition. Lattice expression for the
Polyakov loop can be written as

Lðx⃗Þ ¼ Tr

�YNt−1

τ¼0

U4ðx⃗; τÞ
�
; ð10Þ

where U4ðx⃗; τÞ is the gauge link variable in the temporal
direction.
In nonrotating gluodynamics the Polyakov loop can be

used as an order parameter since lattice action of gluody-
namics is invariant under the multiplication of the U4 link
elements in some time slice by center elements of the
SUð3Þ group (Z3 symmetry). At the same time the
Polyakov loop is not invariant under this transformation.
From the symmetry perspective, the confinement is a Z3

symmetric phase with hLi ¼ 0, whereas in the deconfine-
mentZ3 symmetry is broken and hLi ≠ 0. If we now turn to
the rotating gluodynamics, it is clear that the action (8)
possesses Z3 symmetry and above arguments on treating
the Polyakov loop as an order parameter persist.
In our paper we are going to use the Polyakov loop to

label the phases of rotating gluodynamics. In addition to a
local Polyakov loop at point x⃗, we are going use a spatially
averaged Polyakov loop

L ¼ 1

N2
sNz

X
x⃗

Lðx⃗Þ; ð11Þ

The critical temperature of the confinement-deconfinement
transition will be determined from the Polyakov loop
susceptibility

χ ¼ N2
sNzðhjLj2i − hjLji2Þ; ð12Þ

which has a peak at the critical temperature. We use the
Gaussian fit over a set of points near the susceptibility peak
to calculate the critical temperature from obtained data

χðTÞ ¼ Aþ B exp

�
−
ðT − TcÞ2
2δT2

�
: ð13Þ

One might assume that due to boundary conditions and
inhomogeneity of rotating gluodynamics the Polyakov loop

and its susceptibility are not appropriate for finding the
critical temperature. However we believe that these observ-
ables can be used to study confinement-deconfinement
transition for the following reasons:

(i) In the gluodynamics with OBC (both with and
without rotation) observables can depend on the
coordinate, because these boundary conditions
break translational symmetry. However, since
OBC respect Z3 symmetry, in the confinement
phase the Polyakov loop is zero and does not
depend on the spatial coordinate (see Fig. 6). In
the deconfinement phase, the Polyakov loop is not
zero, and the dependence on spatial coordinate
appears. From these facts it is clear that the
spatially averaged Polyakov loop (11) and its
susceptibility (12) can be used to detect the critical
temperature. In Appendix A it is shown that in the
infinite volume limit the critical temperatures in
nonrotating gluodynamics with OBC and PBC
agree with each other as it should be.

(ii) DBC also break translational symmetry. At the same
time these boundary conditions, contrary to OBC
and PBC, break Z3 symmetry even at zero temper-
ature: the Lðx⃗Þ ¼ 3 on the boundary, and, as the
result, it is not zero in the bulk. Under these
circumstances the Polyakov loop becomes an
approximate order parameter. Still it is possible to
detect the pseudocritical temperature of this cross-
over through the peak of the susceptibility (12). For
nonrotating gluodynamics the first order phase
transition and its critical temperature is recovered
in the infinite volume limit Nz → ∞; Ns → ∞ (see
Appendix A). Unfortunately for rotating gluody-
namics the limit Ns → ∞ cannot be taken and the
confinement-deconfinement transition remains a
crossover even in the limit Nz → ∞.

(iii) For all BC in rotating gluodynamics the Polyakov
loop acquires additional dependence on spatial
coordinate due to the rotation. Because of Z3

symmetry, for the PBC and OBC the Polyakov loop
is zero and independent on the space coordinate in
the confinement phase (see Figs. 10 and 6). In
deconfinement, the Polyakov loop is nonzero and
depends on the spatial coordinate. So, the spatially
averaged Polyakov loop (11) and its susceptibility
(12) can be used to detect the critical temperature
even in rotating gluodynamics. As was explained
above, for DBC the Polyakov loop is an approximate
order parameter, but its susceptibility can be used to
find the pseudocritical temperature for rotating
gluodynamics.

(iv) The strategy used in this work is to carry out
simulations at imaginary angular velocity and ana-
lytically continue the results to real angular velocity.
In view of this it is important to argue that analytic
continuation is reliable approach. Our study is
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conducted in finite lattice volume and the integration
over gluon fields is taken over compact manifold.
These facts allow us to state that thermodynamic
functions, like, for instance, the partition function,
the Polyakov loop, its susceptibility and etc., are
analytic functions of angular velocity in finite
volume. So, the procedure of analytic continuation
is justified at finite volume. If we further consider
infinite volume limit Nz → ∞, possible singularities
in these functions might spoil analytic continuation.
However, this is not the case for the critical
temperature, what can be explained as follows.
The confinement-deconfinement transition be-
comes the first order phase transition in the infinite
volume limit for OBC and PBC. In this case the
critical temperature at finite volume TðVÞ deviates
from the critical temperature at infinite volume
Tð∞Þ by amount which scales as TðVÞ − Tð∞Þ ∼
1=V [30]. So, one can conduct analytic continu-
ation at finite volume and then take infinite volume
limit without facing with singularities. For DBC the
simulation is even simpler. In this case the confine-
ment-deconfinement transition is a crossover for
any Nz; i.e., there is no singularities and problems
with analytic continuation.

At the end of this section we would like to note that
for all BC used in this paper the value of the critical
temperature TcðΩIÞ contains finite volume effects which
depend on the lattice size Ns (see the discussion in the
Appendix A). In order to account for these effects below
our results for the critical temperature will be presented in
terms of the ratio TðΩIÞ=Tcð0Þ. Finally, we would like to
mention that the detailed description of used lattice
parameters for all the BC is presented in the Appendix B.

III. THE RESULTS OF THE CALCULATION

A. Open boundary conditions

We believe that OBC are the most appropriate for the
lattice study of the rotating matter. For this reason we start
the discussion of the lattice results with OBC.
The Polyakov loop and the Polyakov loop susceptibility

as functions of the ratio T=Tcð0Þ for various values of
(imaginary) angular velocity ΩI for the lattice size 8 ×
24 × 492 are shown in Fig. 3. The confinement-deconfine-
ment phase transition manifests itself as a rapid growth of
the Polyakov loop and correspondingly as a peak in the
susceptibility. One can easily read from Fig. 3 that the
phase transition is shifted to lower temperatures when
the (imaginary) angular velocity ΩI grows. To make
quantitative predictions, we fit several points in the tran-
sition region for the Polyakov loop susceptibility with
Gaussian function (13). The χ2=ndof of the fit is ∼0.7–3 for
all angular velocities ΩI. The ratios TcðΩIÞ=Tcð0Þ as
functions of Ω2

I are presented in the Fig. 4(a). It is also
instructive to introduce the (imaginary) linear velocity vI at
the points with the coordinates x ¼ �R=2, y ¼ 0, which
are located on the boundary: vI ¼ ΩIðNs − 1Þa=2 and to
present the ratios TcðvIÞ=Tcð0Þ as functions of vI [see
Fig. 4(b)].2 In order to assess systematic effects, in Fig. 4
we present the results for various lattice sizes.
Based on the results, presented in Figs. 3 and 4, one can

draw the following conclusions:
(i) The Tc decreases with increasing ΩI. We have

found that for the studied parameters the dependence

(a) (b)

FIG. 3. The Polyakov loop (a) and the Polyakov loop susceptibility (b) as a function of temperature for different values of imaginary
angular velocity ΩI. The results are obtained on the lattice 8 × 24 × 492 with OBC. The lines for the Polyakov loop (a) are drawn to
guide the eye. The Polyakov loop susceptibilities (b) are fitted in the vicinity of the phase transition by a Gaussian function (13).

2Note that to determine vI we used the lattice spacing a ¼
aðβcÞ at the critical temperature.
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of the TcðΩIÞ on the imaginary angular velocity ΩI
can be described by a simple quadratic function
(χ2=ndof ∼ 0.4–2)

TcðΩIÞ
Tcð0Þ

¼ 1 − C2Ω2
I : ð14Þ

This confirms that the angular velocities used in the
simulation are indeed small and one can expand the
critical temperature in a series over ΩI. Upon
analytical continuation to real angular velocity
ΩI → iΩ, which is legitimate for small angular
velocities, one gets the following dependence of
the critical temperature on the value of the Ω:

TcðΩÞ
Tcð0Þ

¼ 1þ C2Ω2: ð15Þ

Our results indicate that the C2 > 0, which leads to
the following conclusion: with OBC the critical
temperature of the confinement-deconfinement
phase transition grows with increasing angular
velocity.

(ii) In order to study the dependence of our results on the
Nz lattice size we calculated the critical temperature
on the lattices 8 × Nz × 252; Nz ¼ 20, 24, 30. The
results obtained on these lattices agree within the
uncertainty [see Fig. 4(a)]. In order to study dis-
cretization effects, we conducted our study on the
lattices 8 × 24 × 252; 10 × 30 × 312; 12 × 30 × 372

where the physical sizes are kept fixed. As can be
seen from Fig. 4(a), the ratio TcðΩIÞ=Tcð0Þ shows
almost no dependence on the lattice spacing a. Next
we proceeded to the dependence of the results on

size in the transverse directions Ns. To do this we
fixed theNt andNz sizes and varied theNs. It is seen
from Fig. 4(a) that our data are split into lines with
different slopes. The dependence of these slopes
(different C2 constants) on the lattice sizes Ns is
quite significant.

This phenomenon can be understood in the
following way. Increasing lattice size in directions,
orthogonal to the rotation axis, leads to the increase
of the linear velocity on the boundary of the rotating
lattice. Since this linear velocity ∼rΩ enters the
metric tensor, the action and the expressions for
local temperature TðrÞ ¼ 1=β

ffiffiffiffiffiffi
g00

p
, it is reasonable

to assume that the Tc is a function of some
“velocitylike” parameter ∼rΩ, not an (imaginary)
angular velocity itself. In order to check this
assumption, in Fig. 4(b) we present the ratio
TðvIÞ=Tcð0Þ as a function of linear velocity v2I on
the boundary. Quite remarkably on this figure all
points show a clear tendency to lie on one line. Data
can be well described by a simple quadratic function

TcðvIÞ
Tcð0Þ

¼ 1 − B2

v2I
c2

; ð16Þ

which corresponds to the following relation for real
rotation:

TcðvÞ
Tcð0Þ

¼ 1þ B2

v2

c2
: ð17Þ

We present the values of B2 for several sets of
parameters in Fig. 5. The coefficient B2 has a mild

(a) (b)

FIG. 4. The ratios Tc=Tcð0Þ determined from the peak of the Polyakov loop susceptibility as a function of the imaginary angular
velocity squaredΩ2

I (a) and the linear boundary velocity squared v
2
I (b). Results are presented for several lattice sizes Nt × Nz × N2

s with
OBC. Lines correspond to simple quadratic fits TcðΩIÞ=Tcð0Þ ¼ 1 − C2Ω2

I and TcðvIÞ=Tcð0Þ ¼ 1 − B2v2I =c
2
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dependence on the parameters of the system. It does
not change upon changing the lattice spacing a and
slightly grows with increasing lattice extent Ns in x
and y directions. It is reasonable to assume that for
sufficiently large Ns and small angular velocity the
bulk dominates over the boundary, i.e., the role of
the boundary becomes less important. We believe
that this property manifests itself when the B2 goes
to the plateau in Fig. 5 for Ns=Nt > 4. So, our
second conclusion is this: the dependence of the
critical temperature on the linear velocity at the
boundary v has the form (17), with weak depend-
ence of the B2 on the lattice parameters. For lattices
with sufficiently large Ns and OBC the coefficient
is B2 ∼ 0.7.

(iii) For OBC the confinement-deconfinement transition
becomes true phase transition only in the infinite
volume limit. In our lattice geometry one can only
take Nz → ∞ while keeping Ns fixed. Since our
results for the critical temperature do not depend on
the Nz size within the uncertainty, one concludes
that the critical temperature obtained in our study is
close to the infinite volume limit in the sense we
have mentioned above. This also implies that the
coefficients C2 and B2 do not depend on the Nz size
and they are close to the infinite volume limit. Notice
that the same is true for the PBC and DBC (see
Secs. III B and III C). In the latter case the confine-
ment-deconfinement transition remains a crossover
even in the limit Nz → ∞, but the formulas (15) and
(17) for the crossover temperature remain to be true.
The coefficients C2 and B2 do not depend on the Nz
size and they are close to the infinite volume limit as
well (see Sec. III C).

(iv) It is instructive to study how the Polyakov loop
depends on the spatial coordinate. Since BC and
rotation break translational invariance in the x and y
directions, but preserve the invariance in the z
direction, we introduce the local Polyakov loop in
the x, y plane

Lðx; yÞ ¼ 1

Nz

X
z

Lðx; y; zÞ; ð18Þ

where Lðx; y; zÞ ¼ Lðx⃗Þ is defined by Eq. (10) and
study its ensemble average. In Fig. 6 we present the
Polyakov loop jhLðx; y ¼ 0Þij as a function of the
coordinate x for the lattice 8 × 24 × 492. The results

FIG. 5. The coefficient B2 in Eq. (16) versus the ratioNs=Nt for
several lattice sizes with OBC.

(a) (b)

FIG. 6. The Polyakov loop jhLðx; y ¼ 0Þij as a function of coordinate x for OBC and ΩI ¼ 0 MeV (a), ΩI ¼ 24 MeV (b). The results
were obtained on the lattice 8 × 24 × 492 for two temperatures: T=Tcð0Þ ¼ 0.76 in the confinement phase and T=Tcð0Þ ¼ 1.21 in the
deconfinement phase.
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are shown for two temperatures: T=Tcð0Þ ¼ 0.76 in
the confinement phase and T=Tcð0Þ ¼ 1.21 in the
deconfinement phase. In addition we plot data for
the lattice without rotation ΩI ¼ 0 MeV [Fig. 6(a)]
and with ΩI ¼ 24 MeV [Fig. 6(b)].
Figure 6 illustrates the features of Polyakov loop

discussed in Sec. II D. One sees that the Polyakov
loop jhLðx; yÞij is zero for all spatial points in the
confinement phase, both without rotation and with
nonzero angular velocity. It confirms, that for OBC
the average Polyakov loop still acts as the order
parameter of confinement-deconfinement phase tran-
sition. In the deconfinement phase one sees nontrivial
coordinate dependence of Polyakov loop.Mainly this
dependence can be attributed to the influence of
OBC. When one moves from the boundary to the
bulk, one observes that in the deconfinement phase
the boundary is screened.

B. Periodic boundary conditions

In this section we present the results of our study of the
confinement-deconfinement phase transition for rotating
gluodynamics with PBC. Although PBC are commonly
used in lattice simulations, they might not be physical for
the simulation of rotating medium. Nonetheless, we believe
that they can be used to check the robustness of our
predictions against changing the boundary conditions.
In Fig. 7 we present the Polyakov loop and the Polyakov

loop susceptibility with respect to the temperature for
various values of (imaginary) angular velocity ΩI for the
lattice size 8 × 24 × 492. It is clearly seen that the behavior
of the critical temperature is the same as for OBC: it
decreases with growing imaginary angular velocity.

To determine the critical temperature we fitted the
susceptibility in the vicinity of the peak by the Gaussian
function (13). In Fig. 8 we present the obtained dependence
of the ratios Tc=Tcð0Þ on the imaginary angular velocityΩI

[Fig. 8(a)] and the corresponding linear boundary velocity
vI [Fig. 8(b)] for several lattice sizes.
In general, the behavior of the confinement-deconfine-

ment phase transition in the rotating gluodynamics with
PBC is very similar to the case with OBC. In particular, it is
worth to mention the following:

(i) In Fig. 8(a) we present the dependence of the
ratio TcðΩIÞ=Tcð0Þ on the imaginary angular veloc-
ity ΩI. One can easily see that with good accuracy it
can be described by the same formula, as for OBC:
TcðΩIÞ=Tcð0Þ ¼ 1 − C2Ω2

I , with C2 > 0. After ana-
lytical continuation we draw a conclusion that
with PBC the critical temperature of the confine-
ment-deconfinement transition increases with angu-
lar velocity.

(ii) Analogously to OBC, with PBC we have performed
simulations for several lattice sizes, in order to
estimate systematic uncertainties. It is seen that
uncertainties of the calculation for PBC are smaller
than that for OBC.

By looking at the results of the simulations
with lattice sizes 10 × Nz × 312, Nz ¼ 24, 30, 36
we conclude that effects of finite lattice size in z
direction are small. From the results obtained on the
lattice sizes 8 × 24 × 252, 10 × 30 × 312, and 12 ×
36 × 372 with fixed physical volumes one can
read off, that the dependence on the lattice spacing
is rather weak. However, it can be easily seen
that when one varies lattice size Ns, the ratio

(a) (b)

FIG. 7. The Polyakov loop (a) and the Polyakov loop susceptibility (b) as a function of temperature for different values of imaginary
angular velocity ΩI. The results are obtained on the lattice 8 × 24 × 492 with PBC. The lines for the Polyakov loop (a) are drawn to
guide the eye. The Polyakov loop susceptibilities (b) are fitted in the vicinity of the phase transition by the Gaussian function (13).
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TcðΩIÞ=Tcð0Þ changes significantly. Again, similarly
to OBC, this dependence can be absorbed by looking
at the TcðvIÞ=Tcð0Þ versus the linear boundary
velocity squared v2I [see Fig. 8(b)]: TcðvIÞ=Tcð0Þ ¼
1 − B2v2I =c

2.
We present the results for the coefficient B2 in

Fig. 9. It is worth noting, that the values of the
coefficient B2 forNt ¼ 8 are slightly larger, then for
Nt ¼ 10 and 12, which almost do not differ with
each other within error bars. It may be attributed to
finite lattice spacing effects. For the Nt ¼ 8 lattices
the dependence of the B2 on Ns is either very
slowly rising with Ns or constant within the un-
certainty. While for the Nt ¼ 10, 12 lattices there is
no such dependence within the uncertainty of the

calculation. We thus conclude, that for PBC the
relation between the critical temperature and the
linear boundary velocity also has the form (17)
with B2 ∼ 1.3.

(iii) Similarly to Fig. 6, in Fig. 10 we present the
Polyakov loop jhLðx; y ¼ 0Þij as a function of
the coordinate x for the lattice 8 × 24 × 492 with
PBC. The results are shown for two temperatures:
T=Tcð0Þ ¼ 0.73 in the confinement phase and
T=Tcð0Þ ¼ 1.20 in the deconfinement phase. In
addition we plot data for the lattice without rotation
ΩI ¼ 0 MeV [Fig. 10(a)] and with ΩI ¼ 24 MeV
[Fig. 10(b)]. With and without rotation Polyakov
loop is zero in the confinement phase, whereas it
develops nonzero values in the deconfinement
phase. Comparing Figs. 10(a) and 10(b), it is seen
that the Polyakov loop acquires weak dependence on
the coordinate due to the rotation.

C. Dirichlet boundary conditions

In this section we present the results for the phase
diagram of the rotating gluodynamics with DBC. These
boundary conditions explicitly break Z3 symmetry what
leads to additional lattice artifacts, which disappear only in
the thermodynamic limit (see Appendix A). As a conse-
quence of the explicit center symmetry breaking, it is
natural to expect that they make the phase transition
smoother. In order observe good peak in the susceptibility
of the Polyakov loop one has to conduct lattice simulations
on the lattices with much larger spatial volumes as
compared to OBC and DBC. For this reason DBC are
more expensive from computational point of view and we
made an exploratory study of these BC with few inves-
tigated lattice sizes.

(a) (b)

FIG. 8. The ratios Tc=Tcð0Þ determined from the peak of the Polyakov loop susceptibility as a function of the imaginary angular
velocity squaredΩ2

I (a) and the linear boundary velocity squared v
2
I (b). Results are presented for several lattice sizes Nt × Nz × N2

s with
PBC. Lines correspond to simple quadratic fits TcðΩIÞ=Tcð0Þ ¼ 1 − C2Ω2

I and TcðvIÞ=Tcð0Þ ¼ 1 − B2v2I =c
2.

FIG. 9. The coefficient B2 in Eq. (16) versus the ratioNs=Nt for
several lattice sizes with PBC.
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In Fig. 11 we present the Polyakov loop and its suscep-
tibility as functions of the ratio T=Tcð0Þ for the lattice
size 8 × 24 × 492. One important difference between
DBC and other two boundary conditions is that the
Polyakov loop does not go to zero in the confinement
phase: it is a consequence of the explicit symmetry breaking.
Nevertheless, there is a clear inflection point for the
Polyakov loop, as well as the peak for the susceptibility.
Using the standard Gaussian fit (13) we determine the
critical temperature from the Polyakov loop susceptibility
peak, which is shown in Fig. 12(a). In Fig. 12(b) we present,

similarly to other BC, the ratioTcðvIÞ=Tcð0Þ as a function of
the (imaginary) boundary velocity vI.
The behavior of the critical temperature Tc in rotating

gluodynamics with DBC is completely analogous to OBC
and PBC:

(i) The ratio TcðΩIÞ=Tcð0Þ is described with good
accuracy by a function TcðΩIÞ=Tcð0Þ¼ 1−C2Ω2

I ,
with C2 > 0. After analytical continuation we draw
a conclusion that with DBC the critical temperature
of the confinement-deconfinement transition in-
creases with angular velocity.

(a) (b)

FIG. 10. The Polyakov loop jhLðx; y ¼ 0Þij as a function of coordinate x for PBC andΩI ¼ 0 MeV (a),ΩI ¼ 24 MeV (b). The results
were obtained on the lattice 8 × 24 × 492 for two temperatures: T=Tcð0Þ ¼ 0.73 in the confinement phase and T=Tcð0Þ ¼ 1.20 in the
deconfinement phase.

(a) (b)

FIG. 11. The Polyakov loop (a) and the Polyakov loop susceptibility (b) as a function of temperature for different values of imaginary
angular velocity ΩI. The results are obtained on the lattice 8 × 24 × 492 with DBC. The lines for the Polyakov loop (a) are drawn to
guide the eye. The Polyakov loop susceptibilities (b) are fitted in the vicinity of the phase transition by the Gaussian function (13).
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(ii) The coefficient C2 has very weak dependence on the
lattice spacing and lattice size Nz but significantly
changes with the size Ns. If one takes instead ΩI the
linear boundary velocity vI: TcðvIÞ=Tcð0Þ ¼
1−B2v2I , the ratio TcðvIÞ=Tcð0Þ exhibits signifi-
cantly smaller dependence on the lattice size Ns
[see Fig. 12(b)]. Looking at Fig. 12(b) one can see
that due to large uncertainties the divergence of
lines with different Ns is quite significant. The
coefficient B2 is presented in Fig. 13. From this
figure it is seen that similarly to OBC, for suffi-
ciently large Ns the contribution of the boundary

is suppressed and the B2 goes to plateau with the
value B2 ∼ 0.5.

(iii) In Fig. 14 we show the dependence of the Polyakov
loop on the spatial coordinate for the angular
velocities ΩI ¼ 0, 24 MeV. The results are shown
for two temperatures: T=Tcð0Þ ¼ 0.70 in the con-
finement phase and T=Tcð0Þ ¼ 1.27 in the decon-
finement phase.

DBC fix the value of the Polyakov loop Lðx; yÞ ¼
3 on the boundary. Similarly to OBC, the effect of
boundary conditions is screened and at sufficiently
large distances from the boundary the Polyakov loop
tends to a constant, which is zero in the confinement
phase and nonzero for the deconfinement. Compar-
ing Figs. 14(a) and 14(b) one can notice that rotation
induces additional inhomogeneity of Polyakov loop
but its influence is much weaker as compared to that
due to the BC.

IV. DISCUSSION AND CONCLUSION

In this paper we addressed the question how rotation
influences the confinement-deconfinement transition in
gluodynamics within lattice simulation. We perform the
simulation in the reference frame which rotates with the
system under investigation. In this reference frame rotation
is reduced to external gravitational field. Having con-
structed the action of lattice gluodynamics in external
gravitational field we found that this action is spoiled by
sign problem and direct application of Monte Carlo impor-
tance sampling is not possible. To overcome this problem
we conducted our study for sufficiently small imaginary
angular velocities ΩI and the results were analytically

(a) (b)

FIG. 12. The ratios Tc=Tcð0Þ determined from the peak of the Polyakov loop susceptibility as a function of the imaginary angular
velocity squaredΩ2

I (a) and the linear boundary velocity squared v
2
I (b). Results are presented for several lattice sizes Nt × Nz × N2

s with
DBC. Lines correspond to simple quadratic fits TcðΩIÞ=Tcð0Þ ¼ 1 − C2Ω2

I and TcðvIÞ=Tcð0Þ ¼ 1 − B2v2I =c
2

FIG. 13. The coefficient B2 in Eq. (16) versus the ratio Ns=Nt
for several lattice sizes with DBC.

BRAGUTA, KOTOV, KUZNEDELEV, and ROENKO PHYS. REV. D 103, 094515 (2021)

094515-12



continued to real values of angular velocity Ω. Our results
suggest that this approach is applicable for the values of
angular velocity which are characteristic for heavy-ion
collision experiments.
Because of the causality, the simulation of rotating

gluodynamics has to be carried out with BC. It is
important to stress that BC are important part of all
approaches aimed at studying of rotating quark-gluon
plasma rather than a lattice artifact. The results obtained
within any approach depend on BC. In order to study this
dependence in our paper we applied various BC. In
particular, our simulations were carried out with OBC,
PBC, and DBC. In our paper we are mainly focused on the
influence of rotation on the critical temperature of the
confinement-deconfinement transition. The critical tem-
perature was determined from the peak of Polyakov loop
susceptibility.
The results obtained in our work allow us to state that

after the analytical continuation the TcðΩÞ can be well
described by a simple quadratic function

TcðΩÞ
Tcð0Þ

¼ 1þ C2Ω2; ð19Þ

with C2 > 0 for all BC and all lattice parameters used in the
simulations. From this result we draw the main conclusion
of our paper the critical temperature of the confinement-
deconfinement phase transition grows with increasing
angular velocity. This conclusion does not depend on
BC and we believe that this is universal property of
gluodynamics.
The magnitude of the coefficient C2 depends on BC. For

each boundary condition used in the simulations, the C2

does not depend on the lattice size along the rotation axis

Nz, has weak dependence on the lattice spacing, but it
has strong dependence on the lattice size perpendicular to
the rotation axis Ns ¼ Nx ¼ Ny. The leading dependence
of formula (19) on the Ns can be captured if one rewrites it
in terms of the linear velocity v on the boundary v ¼
ΩðNs − 1Þa=2 as follows

TcðvÞ
Tcð0Þ

¼ 1þ B2

v2

c2
: ð20Þ

In last formula the coefficient B2 weakly depends on Ns.
We believe the possibility to describe our results for all Ns
by universal formula (20) rather than formula (19) origi-
nates from the following fact. For the thermodynamics of
rotating system the most important physical object is the
field of velocities and how close this field approaches the
speed of light. This property is determined by the product
ΩaðNs − 1Þ=2 but not the Ω alone. In addition we also
found that for OBC B2 ∼ 0.7, for PBC B2 ∼ 1.3 and for
DBC B2 ∼ 0.5. So, although the values of the B2 are close
to each other, we still see the dependence of our quanti-
tative results on BC.
One might suspect that raise of the critical temperature

with rotation is related to space-dependent temperature due
to Ehrenfest-Tolman effect. However, we believe that this is
not the case. On the contrary Ehrenfest-Tolman effect
would lead to decrease of the critical temperature with
rotation. This can be seen as follows. When one moves
from the rotation axis to to the boundary, the space-
dependent temperature increases as compared to the rota-
tion axis. As the result one needs lower temperature at the
rotation axis to realize the confinement-deconfinement
transition. Notice that this conclusion is in agreement with
the result of papers [20], where the dependence of the

(a) (b)

FIG. 14. The Polyakov loop jhLðx; y ¼ 0Þij as a function of coordinate x for DBC and ΩI ¼ 0 MeV (a), ΩI ¼ 24 MeV (b). The
results were obtained on the lattice 8 × 24 × 492 for two temperatures: T=Tcð0Þ ¼ 0.70 in the confinement phase and T=Tcð0Þ ¼ 1.27
in the deconfinement phase.
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critical temperature on the angular velocity was linked to
the Ehrenfest-Tolman effect. However, our results demon-
strate the opposite behavior: we observe the increase of the
critical temperature with rotation.
In Ref. [20] it was proposed that rotation might lead to

mixed inhomogeneous phase when the matter is in the
confinement phase close to the center of rotation whereas
the deconfinement takes place close to the boundary.
Unfortunately for lattice parameters used in our study
we have not found such state. Probably a more thorough
study is required to answer the question whether such a
phase is realized in rotating gluodynamics.
The authors of papers [20–22] studied the confinement-

deconfinement transition in rotating QCD within phenom-
enological models. The results of these works indicate that
the critical temperature decreases with the angular velocity,
which is in disagreement with the results of our work. The
origin of this disagreement is not yet clear, in the future we
plan further investigation of this problem.
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APPENDIX A: FINITE VOLUME EFFECTS ON
THE LATTICES WITH DIRICHLET AND OPEN

BOUNDARY CONDITIONS

In this section we are going to address the question how
the BC considered in this paper influence the critical
temperature for gluodynamics without rotation. For all
BC used in our paper we apply periodic boundary con-
ditions for gluon fields in z and t directions. What concerns
the x and y directions we used PBC, DBC, and OBC (see
Sec. II B for details). Since PBC are common for lattice
simulations, there are a lot of papers where the volume
dependence of critical temperature within PBC was studied
(see, for instance, [31]). For this reason, in Appendix we are
going to focus on DBC and OBC only.

1. Open boundary conditions

In this section we consider OBC. The critical temper-
ature is determined from the peak of the Polyakov loop
susceptibility (12). The results of this calculation for
different lattices can be found in Table I. It is seen that
for all lattices presented in this table the critical temperature
for OBC is larger than that in gluodynamics with PBC

Tc=
ffiffiffi
σ

p ¼ 0.6383ð55Þ [31].3 This feature of OBC can be
understood as follows. In OBC the plaquettes outside the
lattice volume are excluded. This can be considered as if
one puts these plaquettes to a unity that leads to zero lattice
action. So, physically this can be interpreted as if the
studied volume is attached to classical (without quantum
fluctuations) zero temperature Yang-Mills theory. From this
perspective the regions near the boundary have lower
temperature than the regions remote from the boundary.
So, in order to observe confinement-deconfinement tran-
sition with OBC one has to heat the system to larger
temperature as compared to homogeneous gluodynamics.
To study the infinite volume limit we fit our data for the

lattices 8 × N3
s by the function

TcðNs=NtÞ ¼ T0 þ AðNt=NsÞ3; ðA1Þ

where T0 corresponds to the infinite volume limit. The fit
gives T0=

ffiffiffi
σ

p ¼ 0.6420ð18Þ. This value is in reasonable
agreement with that obtained in the infinite volume limit for
the PBC: T0=

ffiffiffi
σ

p ¼ 0.6383ð55Þ [31].
From these results one can draw a conclusion that finite

volume effects for OBC enhance the critical temperature.
As one increases the volume, the effect of BC becomes
screened and the critical temperature for OBC approaches
to its acknowledged value [31]. The screening of the
boundary is well seen in Fig. 6(a).

2. Dirichlet boundary conditions

In this section we consider DBC. The results for the
critical temperature calculation with DBC for different
lattices can be found in Table I. It is seen that for all lattices
presented in this table the critical temperature for DBC is
smaller than that in gluodynamics with PBC [31]. In this
sense OBC and DBC influence to the system in the
opposite way. The decrease of the critical temperature in
DBC as compared to PBC gluodynamics can be understood

TABLE I. The critical temperature for non-rotating lattices
with OBC and DBC. These results to be compared with the
critical temperature of gluodynamics with PBC: Tc=

ffiffiffi
σ

p ¼
0.6383ð55Þ [31].
Lattice OBC Tc=

ffiffiffi
σ

p
DBC Tc=

ffiffiffi
σ

p

8 × 403 0.6983(10) 0.5764(8)
8 × 483 0.6755(6) 0.5886(9)
8 × 563 0.6623(10) 0.5940(11)
8 × 643 0.6537(10) 0.6021(9)

3Notice that in this and next section we compare our results for
the critical temperatures with the result obtained in the infinite
volume limit on the lattices with PBC and Nt ¼ 8 [31]. This is
because in this Appendix we do not take continuum limit and
conduct the simulations on Nt ¼ 8 lattices.
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as follows. The link variables on the boundary in DBC
equal unity, i.e., after taking the trace over colors, the
Polyakov loop on the boundary equals 3. So, the Z3

symmetry of lattice gluodynamics is explicitly broken on
the boundary. In gluodynamics breaking of Z3 symmetry is
the property of high temperature phase. For this reason in
DBC the boundary can be considered as a seed of high
temperature phase. On these grounds, one can expect that
the confinement-deconfinement transition takes place at
smaller critical temperature.
To study the infinite volume limit we fit our data for the

lattices 8 × N3
s by the same function (A1), where T0

corresponds to the infinite volume limit. The fit gives
T0=

ffiffiffi
σ

p ¼ 0.6086ð22Þ. This value is in reasonable agree-
ment with that obtained in the infinite volume limit for
PBC: T0=

ffiffiffi
σ

p ¼ 0.6383ð55Þ [31].
So, finite volume effects in DBC decrease the critical

temperature which approaches to that of PBC gluodynam-
ics [31] for sufficiently large volume. Similarly to OBC this
behavior can be explained by screening of the boundary
which is well seen on Fig. 14(a). From this figure one can
note that the Polyakov loop increases as one approaches to
the boundary. This can be interpreted as increase of
effective temperature of the regions close to the boundary.

To summarize of both sections of this Appendix, our
results allows us to state that for sufficiently large volume
bulk properties of the system cannot be considerably
modified by either OBC or DBC. We believe that this
conclusion remains to be true even for rotating gluody-
namics if the angular velocity is not too large.

APPENDIX B: LATTICE PARAMETERS USED IN
THE SIMULATIONS

In our paper we performed numerical simulations for
the lattice sizes and values of imaginary angular velocity
listed in Table II. For each lattice size and angular velocity
we changed the temperature through the variation of
the β. To set the physical scale we used the relation
between lattice spacing and inverse lattice coupling
ða ffiffiffi

σ
p ÞðβÞ from Ref. [32] (with the value of string tensionffiffiffi
σ

p ¼ 440 MeV). Simulations are performed with the use
of a Monte Carlo algorithm, each sweep consists of one
heatbath update and two steps of the overrelaxation
updates. For each set of parameters, the typical statistics
are about 6000–12000 configurations, separated by 20
sweeps. The statistical errors were estimated using a
jackknife method.
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