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The low-lying spectrum of the massless overlap Dirac operator coupled to Abelian fields in three
dimensions with three different measures are shown to exhibit two phases: a strong coupling gapped phase
and a weak coupling gapless phase. The vanishing of the gap from the strong coupling side with a Maxwell
and a conformal measure is governed by a Gaussian exponent. Contrary to this result, the vanishing of the
gap from the strong coupling side with a compact Thirring measure is not consistent with a Gaussian
exponent. The low-lying spectrum with a noncompact Thirring measure does not exhibit a simple
nonmonotonic behavior as a function of the lattice size on the weak coupling side. Our combined analysis
suggests exploring the possibility of a strongly coupled continuum theory starting from a compact lattice
Thirring model where a compact U(1) gauge field with a single link action is coupled to even number of
flavors of massless overlap Dirac fermions.

DOI: 10.1103/PhysRevD.103.094514

I. INTRODUCTION

Strongly coupled theory of massless fermions interacting
with an Abelian gauge field in three dimensions (two space
and one Euclidean time) has been studied over several
decades both analytically and numerically [1–17] and has
attracted recent attention due to its relevance in condensed
matter physics and three-dimensional duality [18–26].
Another possibility for a theory of strongly interacting
fermions in three dimensions is the Thirring model which is
shown to be renormalizable in the limit of large number of
flavors [27–31] and a quest to find a strongly interacting
continuum theory away from the limit of large number of
flavors has been underway for several decades [32–47].
Unlike QED3, the Thirring model after one converts the
four-Fermi interaction into a bilinear with an auxiliary
vector field is not gauge invariant. The interaction between
fermions and the vector field is formally gauge invariant
before regularization and one could perform an integral
over all gauge transformations of the action for the vector
field, namely, ðR d3xA2

kðxÞÞ, and enforce gauge invariance
of the action by stating that only gauge invariant observ-
ables will be computed. Such a condition is usually not
imposed when one converts the continuum action to a
lattice regulated action for numerical analysis. At the

outset, all recent numerical analysis to date [41–47] assume
that fermions couple to a noncompact vector field with two
different approaches treating the noncompact vector field
on a site [41,42,46] or a link [43–45,47]. Recent numerical
analysis of QED3 has shown that theory remains scale
invariant for all even number of flavors [12,13] as long as
monopoles remain irrelevant. There is evidence for a
critical number of flavors in the Thirring model [44,47]
if one uses domain wall fermions [48,49] to regulate the
fermions on the lattice and place the vector field on links.
On the other hand, there is no evidence for symmetry
breaking for any even number of flavors if one uses SLAC
fermions to regulate the fermions on the lattice and place
the vector field on sites [42,46]. Current conservation was
used to show that all divergences in the N flavor Thirring
model up to order 1

N can be removed by standard renorm-
alizations there by rendering it finite [31]. This motivated
us to see the effects of lattice regularization that preserves
gauge invariance of the fermionic determinant. Toward that
end we only focus on fermionic observables in a pure gauge
measure, otherwise referred to as the quenched limit. The
quenched limit of the Thirring model has been studied
before [44] where evidence for symmetry breaking is found
at sufficiently strong coupling but a possible transition to an
unbroken phase at weak coupling was not fully explored
since this limit is not physically interesting. Nevertheless, it
is interesting from the view point of the studying the effects
of different approach to lattice regularization. We will differ
from [44] in one key aspect—the lattice fermion operator
will couple to the compact vector field thereby making it a
gauge covariant interaction. We will use the overlap Dirac
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operator [13,50] which is just a limit of the domain wall
operator used in [44].
Consider the spectrum of the three-dimensional

Euclidean Dirac operator

D ¼ σkð∂k þ iAkÞ; σ1 ¼
�
0 1

1 0

�
;

σ2 ¼
�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
; ð1Þ

averaged over some measure, PðAkÞ. Since the spectrum is
invariant under the gauge transformation,

Ak → Ak þ ∂kχ; ð2Þ

we can assume that the measure is also gauge invariant. We
will also assume that the measure is invariant under parity,
AkðxÞ → −Akð−xÞ, and we will not concern ourselves with
the parity anomaly. The following three choices of the
measure are of relevance in the context of QED3 and
Thirring model:

(i) The Maxwell measure is given by

PMðAÞ ¼ exp

�
−
β

4

Z
d3xF2

jk

�
;

Fjk ¼ ∂jAk − ∂kAj: ð3Þ

The spectrum is relevant in the quenched limit of
QED3 where the spectral density, ρðλÞ, attains a
nonzero value, ρð0Þ, in the continuum limit, β →
∞ [14].

(ii) The conformal measure is given by

PCðAÞ ¼ exp

�
−
β

4

Z
d3xFjk

1ffiffiffiffiffiffiffiffi
−∂2

p Fjk

�
: ð4Þ

The spectrum at various values of βðNÞ can be
matched with that of continuum parity invariant
QED3 with 2N flavors [17].

(iii) The Thirring measure is given by

PTðAÞ ¼ exp

�
−
β

2

Z
d3xA2

k

�

⇒
gaugeaveraging

exp

�
−
β

4

Z
d3xFjk

1

−∂2
Fjk

�
: ð5Þ

Analysis of the spectrum as a function of β will shed
some light into the existence of a strongly coupled
theory in the continuum, albeit, in the quenched limit.

Our primary aim in this paper is to compare the spectrum
of the overlap Dirac operator on the lattice for the above
three measures suitably discretized on the lattice. On the
one hand, the Maxwell measure is reasonably well

understood due to the existence of a well-defined con-
tinuum theory in the β → ∞ limit. In addition, the behavior
of the conformal theory with the conformal measure has
been matched with the behavior of QED3 with varying
number of flavors [17]. A comparison of the behavior with
the Thirring measure with the other two measures can be
used to explore the existence of a strongly interacting
continuum theory at a finite value of β.
Denoting the lattice link variables on a site of length a

by θkðxÞ ¼ aAkðxÞ, the lattice overlap Dirac operator will
couple to the compact variable, UkðxÞ ¼ eiθkðxÞ. It is
natural to use a noncompact measure on the lattice for
the Maxwell and the conformal case in order to suppress
the presence of monopoles in the continuum theory. But,
we will consider the above Thirring measure and a variant
since we are interested in eventually studying a field
theory defined at a finite value of β. Noting that fermions
couple to UkðxÞ, we rewrite the normalized measure for
each θkðxÞ as [51]

ffiffiffiffiffiffi
β

2π

r Z
∞

−∞
dθkðxÞe−

β
2
θ2kðxÞ

¼
ffiffiffiffiffiffi
β

2π

r Z
π

−π
dθkðxÞ

� X∞
n¼−∞

e−
β
2
ðθkðxÞþ2nπÞ2

�

¼
Z

π

−π
dθkðxÞ

� X∞
n¼−∞

e−
n2
2β

2π
Un

kðxÞ
�
; ð6Þ

which is nothing but a Villain type action.1 An alternative
is to use a Wilson type action for the link variables,
namely,

e
β
2
ðUkðxÞþU�

kðxÞÞ

2πI0ðβÞ
¼ eβ cos θkðxÞ

2πI0ðβÞ
¼

X∞
n¼−∞

InðβÞ
2πI0ðβÞ

Un
kðxÞ: ð7Þ

The coefficients in the character expansion for the two
choices reach the same limit as β → ∞, but our interest is
to look for a critical point at a finite value of β, possibly

close to zero. Close to β ¼ 0, InðβÞ ¼ βjnj

2jnjðjnjÞ!, and sup-

pression of Wilson loop with a given size will be stronger
in the Villain type action compared to the Wilson type
action.

II. MASSLESS FERMION SPECTRUM
ON THE LATTICE

The massless overlap Dirac operator, Do, and the
associated anti-Hermitian propagator, A, are [13]

1The author would like to thank Simon Hands for bringing this
to his attention.
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Do¼
1þV
2

; V¼X
1ffiffiffiffiffiffiffiffiffi
X†X

p ; X¼BþD;

D¼1

2

X3
k¼1

σkðTk−T†
kÞ; B¼1

2

X3
k¼1

ð2−Tk−T†
kÞ−mw;

ðTkϕÞðxÞ¼eiθkðxÞϕðxþ k̂Þ;

A¼ 1−V
1þV

: ð8Þ

The Wilson mass parameter, mw, can be taken anywhere in
the range (0,2) to realize a single massless fermion.
Changing the value of mw will result in different values
for the lattice spacing effects and we will set it to mw ¼ 1
for all computations in this paper. We will assume anti-
periodic boundary conditions for fermions unless otherwise
specified. Let the spectrum of A−1 be defined by

1þ V
1 − V

ψ j ¼ iΛjψ j; j ¼ �1;�2;…;

� � � < Λ−2 < Λ−1 < 0 < Λ1 < Λ2 < � � � : ð9Þ

In the weak coupling limit, β ¼ ∞, all gauge actions
discussed in Sec. I will result in gauge fields, θkðxÞ, that are
gauge equivalent to zero and the spectrum will be that of
massless free fermions as expected. In the strong coupling
limit, β ¼ 0, all gauge actions discussed in Sec, I will result
in gauge fields, θkðxÞ, that are uniformly and independently
distributed in ½−π; π�. The spectrum of the lattice Dirac
operator will show a gap, namely, limL→∞hΛ�1i will be
consistent with unity and this corresponds to an eigenvalue
of V being �i. It might be possible to obtain this result
analytically using resolvents, but it will be sufficient for our
purposes to have shown it numerically by computing the
spectrum on a few L3 lattices and extrapolating to L → ∞
as shown in Fig. 1. To emphasize that the spectral gap is an

effect at strong coupling, one could have repeated the
calculation at β ¼ 0 but by coupling the fermions to a
smeared link [52,53]. Smearing takes a distribution of links
that is uniform into one that favors θμðxÞ ¼ 0. The effect on
the gap will depend on the smearing parameters and the
initial range of θkðxÞ which could be any real number
instead of restricting it to −½π; π�.

A. Spectral gap for a Maxwell measure

The Maxwell measure given in Eq. (3) translates to [17]

Y
n

exp

�
−
L3βf2ðnÞ

2

X2
j¼1

jθ̃j⊥ðnÞj2
�

ð10Þ

on a L3 lattice where

θkðxÞ ¼
X
n

X2
j¼1

θj⊥ðnÞvjkðnÞ exp
�
2πin · x

L

�
ð11Þ

and

fjðnÞ ¼ e
2πinj
L −1; fðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
j¼1

jfjðnÞj2
vuut ;

X3
k¼1

v�jkðnÞfkðnÞ ¼ 0; j¼ 1;2;
X3
m¼1

v�jmðnÞvkmðnÞ ¼ δjk:

ð12Þ

The zero mode (n ¼ 0) is not included in the measure. The
low-lying spectrum of the overlap Dirac operator,Λi; i ¼ 1,
2, 3, 4 in Eq. (9) was computed on L ¼ 6, 8, 10, 12, 14, 16
for a range of coupling from β ¼ 0.05 to β ¼ 1.6 in steps of
Δβ ¼ 0.05 on 100 independent configurations at each L
and β. The results are plotted in the top left panel of Fig. 2.
The spectrum shows the discrete nature at finite volume and
the eigenvalues themselves go down as L increases. To
show the presence of a transition from strong coupling to
weak coupling, we plot the scaled lowest eigenvalue, Λ1L,
in the top right panel of Fig. 2. There is a clear evidence for
a critical coupling, βc ≈ 0.28. The spectrum has a gap in the
strong coupling side (β < βc). The spectrum is gapless in
the weak coupling side (β > βc) since the scaled eigenvalue
itself goes down as L increases. The scaled eigenvalue on
the weak coupling side falls faster away from β → ∞ and
this is consistent with the presence of a condensate that
properly scales with β. A careful matching with random
matrix theory should result in a condensate ΣðβÞ for β > βc.
We do not pursue this direction here since a value of the
condensate has already been numerically computed [14]. In
order to emphasize the presence of a gap on the strong
coupling side, we extrapolated the lowest eigenvalue, Λ1,
as a function of L to a gap at L ¼ ∞ using a fit of the form

0 0.05 0.1 0.15 0.2

1/L

1

1.05

1.1

1.15

1.2

1

FIG. 1. A plot of hΛ1i ¼ hΛ−1i is shown as a function of L in
the strong coupling limit, β ¼ 0. The data are fitted to 1þ a0

L þ a1
L2

and shown to be consistent.
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gþ a0
L þ a1

L2. The square of the gap, g2, so obtained with
errors obtained by a single elimination jackknife has been
plotted for β ≤ 0.25 in the bottom panel of Fig. 2. The
square of the gap at β ¼ 0.1, 0.15, 0.2, 0.25 fits a simple
linear regression quite well with an estimate of the critical
coupling consistent with βc ≈ 0.28. If this simple-minded
analysis survives further scrutiny, the transition from the
strong coupling (gapped side) to weak coupling (gapless
side) is a second order transition with Gaussian exponents.

B. Spectral gap for a conformal measure

The conformal measure given in Eq. (4) amounts to
changing the weight of each mode in the Maxwell measure
[cf. Eq. (10)] to

Y
n

exp

�
−
L3βfðnÞ

2

X2
j¼1

jθ̃j⊥ðnÞj2
�
: ð13Þ
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0

0.5

1

g2

FIG. 2. The top left panel shows the low-lying spectrum of the overlap Dirac operator with the Maxwell measure. The lowest scaled
eigenvalue is shown on the top right panel and the presence of a critical coupling is indicated by the point where the curves at different
values of L cross each other. The bottom panel shows the square of the gap extrapolated to L ¼ ∞ for β ≤ 0.25 along with a simple
linear regression.
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This measure is of relevance in computing fermionic
observables and matching them to observables in QED3

coupled to Nf flavors (assumed to be even to preserve
parity) of two component massless fermions [17]. The
coupling β becomes equal toNf whenNf → ∞ but one can
match βðNfÞ for the entire range of Nf ≥ 2. To obtain the
matching function, βðNfÞ, the fermions were coupled to
smeared gauge fields in [17] and we will study the effect of
smearing on the spectral gap in this section. The low-lying
spectrum of the overlap Dirac operator coupled directly to
the unsmeared gauge fields generated by Eq. (13),
Λi; i ¼ 1, 2, 3, 4 in Eq. (9) were computed on L ¼ 6, 8,
10, 12 for a range of coupling from β ¼ 0.08 to β ¼ 512 on
100 independent configurations at each L and β. The results
are plotted in the top left panel of Fig. 3. Like with the
Maxwell measure, the spectrum shows the discrete nature
at finite volume and the eigenvalues themselves go down as

L increases. A gap develops close to β ¼ 1 and this might
hinder the matching, βðNfÞ, over the entire range of Nf. If
the gauge fields appearing in the overlap Dirac operator are
smeared, the gap shifts to smaller β and the results for
Λi; i ¼ 1, 2, 3, 4 computed on L ¼ 6, 8, 10, 12, 14, 16 for a
range of coupling from β ¼ 0.0139 to β ¼ 512 on 100
independent configurations at each L and β are shown in
the top right panel of Fig. 3. To show the presence of a
transition from strong coupling to weak coupling, we plot
the scaled lowest eigenvalue, Λ1L, with smeared gauge
fields in the bottom left panel of Fig. 2. There is a clear
evidence for a critical coupling, βc ≈ 0.05. The spectrum
has a gap in the strong coupling side (β < βc). The
spectrum is gapless in the weak coupling side (β > βc)
since the scaled eigenvalue itself goes down as L increases.
A continuum limit can be obtained at every value of β > βc
with this measure and the scaling of theeigenvalue with L at
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FIG. 3. The top left panel shows the low-lying spectrum of the overlap Dirac operator coupled to unsmeared gauge fields generated
with the conformal measure. The top right panel shows the low-lying spectrum of the overlap Dirac operator coupled to smeared gauge
fields generated with the conformal measure. The lowest scaled eigenvalue is shown on the bottom panel and the presence of a critical
coupling is indicated by the point where the curves at different values of L cross each other. The bottom right panel shows the square of
the gap extrapolated to L ¼ ∞ for β ≤ 0.25 along with a simple linear regression. The overlap Dirac operator is coupled to the smeared
gauge fields in both the bottom panels.
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a fixed β gives the anomalous dimension at that β. The
anomalous dimension goes down as β increases and this is
consistent with the trend in the dependence of the eigen-
values with L for β > 0.1. Only values of coupling,
β > 3.5, were used to match with QED3 in [17]. A careful
analysis of the anomalous dimension for the entire range of
β > βc might be interesting and might not even be a
monotonic function of β. In order to emphasize the
presence of a gap on the strong coupling side, we
extrapolated the lowest eigenvalue, Λ1, as a function of
L to a gap at L ¼ ∞ using a fit of the form gþ a0

L þ a1
L2. The

square of the gap, g2, so obtained with errors obtained by a
single elimination jackknife has been plotted for β ≤ 0.05
in the bottom right panel of Fig. 3. The square of the gap for
β ∈ ½0.0139; 0.0473� fits a simple linear regression quite
well with an estimate of the critical coupling consistent
with β ≈ 0.0525. This shows the Maxwell measure and the
conformal measure that describe the same physics also

exhibit the same mean field behavior close to the critical
lattice coupling where the gap closes.

C. Spectral gap for a compact Thirring measure

We now move on to the Thirring measure which is the
main new point of this paper. Our aim is to compare the
behavior of the low-lying spectrum of the overlap Dirac
operator with the Thirring measure to the one from the
Maxwell and the conformal measure. To this end, we first
focus on the compact Thirring measure given in Eq. (7). We
generated θkðxÞ with a measure exp½βðcosðθkðxÞÞ − 1Þ�
independently for each k and x on a L3 lattice. The
behavior of the four lowest eigenvalues as a function of
β is shown in the top left panel of Fig. 4 for six different
values of L and the qualitative similarity with the corre-
sponding behaviors in Fig. 2 with the Maxwell measure and
Fig. 3 with the conformal measure is evident. Like with the
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FIG. 4. The top left panel shows the low-lying spectrum of the overlap Dirac operator coupled to gauge fields generated with the
compact Thirring measure. The lowest scaled eigenvalue is shown on the top right panel and the presence of a critical coupling is
indicated by the point where the curves at different values of L cross each other. The bottom left panel shows the gap extrapolated to
L ¼ ∞ for β ≤ 5 along with a simple linear regression over a region that covers β ∈ ½1.5; 2�. The bottom right panel shows the error in
the fit with g ≠ 0 and g ¼ 0.
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Maxwell and the conformal measures, we have plotted the
scaled lowest eigenvalue, Λ1L, as a function of β in the top-
right panel of Fig. 4. There is evidence for a critical value
around βc ≈ 4. Whereas the increase with increasing L
below βc is as pronounced as in the Maxwell and conformal
measures, the behavior above βc seems to be essentially
independent of L and the value of ΛiL is close to π
indicating free field behavior. Contrary to this behavior, the
free field behavior with the Maxwell measure has not set it
even at β ¼ 1.7 and there is a clear tendency for Λ1L to go
below π as L is increased. The free field behavior in Λ1L
does seem to set in with the conformal measure for large
enough β, but the values stay well below π for a wide range
of β along with a variation in the behavior as a function of
β. Like in the Maxwell and conformal measures, we
extrapolated Λ1 to obtain a gap using the fit gþ a0

L þ a1
L2.

The result with errors obtained by a single elimination
jackknife is shown in the bottom left panel of Fig. 4. There
are qualitative differences when one compares the gap with

the Thirring measure to the ones from the Maxwell and
conformal measures. The square of the gap with the
Maxwell and conformal measures fits a simple minded
linear regression quite well for g2 close to 1 and close to 0.
On the other hand, we have plotted g as a function of β for
the Thirring model and we see a region in the gap, namely,
[0.1, 0.7], where a simple linear regression fits well. But
this results in a critical value of βc ≈ 2.1 which is not
consistent with the estimate from the behavior of Λ1L as a
function of β for different values of L in the top right panel
of Fig. 4. To further understand this discrepancy, we also
fitted Λ1 to

a0
L þ a1

L2 þ a2
L3 which assumes there is no gap. The

fit errors, namely, the value of the least square function,
from the two different fits are shown in the bottom right
panel of Fig. 4. It is clear that a nonzero gap is favored for
β < 2. It is also reasonably clear that a fit with no gap is
favored for β > 8. The region, 2 < β < 7, is murky and it is
difficult to conclude the presence or the absence of a gap
with the data that are currently available. Combining this
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FIG. 5. The top and bottom left panels show the low-lying spectrum of the overlap Dirac operator coupled to gauge fields generated
with the noncompact Thirring measure. The lowest scaled eigenvalue is shown on the top and bottom right panels. The fermions obey
antiperiodic boundary conditions in the top panels, whereas they obey periodic boundary conditions in the bottom panels.
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with a possible behavior of g ∼ ðβ − 2.1Þ for β ∈ ½1.5; 2�,
this model might have a lattice critical point which is
characterized by non-Gaussian exponents.

III. WHY USE A COMPACT THIRRING
MEASURE?

The Thirring measure that arises from converting a four-
Fermi interaction to a bilinear with an auxillary vector field
is given by Eq. (5). We generated θkðxÞ using a measure
exp½− β

2
θ2kðxÞÞ� independently for each k and x on a L3

lattice and studied the behavior of the low-lying spectrum
of the overlap Dirac operator. In this case, we computed the
spectrum with both antiperiodic and periodic boundary
conditions for fermions. The results with antiperiodic and
periodic boundary conditions are shown in the top and
bottom panels of Fig. 5, respectively. The monotonic
behavior of the eigenvalues as a function of L as a fixed
β seen in the strong coupling side is absent in the weak
coupling side. The presence of a single critical coupling is
not evident in the plots of the scaled lowest eigenvalue in
the plots on the right panels. Since the fermion always sees
the compact gauge field, the difference in the behavior
between the noncompact gauge action [cf. Eq. (6)] and the
compact gauge action [cf. Eq. (7)] is in suppression of
larger Wilson loops in the noncompact action compared to
the compact gauge action. This difference in the actions
plays a strong qualitative role in the behavior of the
spectrum at intermediate coupling which is the region of
interest in the Thirring model.

IV. DISCUSSION

We numerically studied the low-lying spectrum of the
overlap Dirac operator coupled to a compact Abelian gauge
field. We investigated four different measures for the gauge
field. All of them clearly show a lattice strong coupling
phase where the spectrum is gapped: there are no eigen-
values in the range i½−g; g�; g > 0. The natural interpreta-
tion of the gapped phase is the effect of a random gauge
potential that persists up to a certain value of the coupling
constant (see [54] for example). One can change the
location of the critical coupling where the gap closes by
coupling the overlap Dirac operator to a smeared gauge
field; the transition from the gapped phase to a gapless
phase is a lattice transition. The location of the lattice
transition will also depend on the choice of theWilson mass
parameter, mw, used in the overlap Dirac operator. One
expects to realize a continuum theory in the gapless phase.
In order to see if a continuum theory can be realized in the
three-dimensional Thirring model, we compared the fer-
mion spectrum with a compact Thirring measure to a
Maxwell measure and a conformal measure. The Maxwell
measure is relevant for QED3 and the conformal measure
becomes relevant for QED3 due to its scale invariant
behavior. All three measures show a clear separation of

the two phases. There is a reasonable evidence that the gap
with the Maxwell and conformal measures goes to zero asffiffiffiffiffiffiffiffiffiffiffiffiffi
βc − β

p
from the strong coupling side as one approaches

the critical coupling. This Gaussian-like behavior is not
seen with the Thirring measure where there is some
indication that the gap behaves closer to ðβc − βÞ from
the strong coupling side. But the location of the transition is
itself not well determined based on the data used in this
paper and further work has to be done to explore the
intermediate region of coupling and perform a careful finite
volume analysis. We also studied the spectrum with the
noncompact Thirring measure and the behavior of the low-
lying eigenvalues in the potentially gapless phase is non-
monotonic in the size of the lattice. This effect is a
consequence of suppressing Wilson loops of larger size
and can be avoided by using the compact Thirring action.
Our analysis suggests that it would be interesting to

study the 2N flavor compact Thirring model with the lattice
action including fermionic sources defined by

S ¼ β

2

X
k;x

cos θkðxÞ þ
XN
j¼1

ðψ̄ jDoψ j þ ψ̄ jD
†
oψ jÞ

þ
X2N
j¼1

η̄jAηj: ð14Þ

A lattice model similar to this one with staggered fermions
in one dimension can be found in [55] and an explicit
integration over all gauge transformations of θkðxÞ in three
dimensions was already proposed in [56]. In order to make
a connection between the above action and the one for
QED3 with 2N flavors of massless fermions, consider the
generalized continuum action defined by

S ¼ 2N
4g2

Z
d3xð∂kAj − ∂jAkÞ

×

�
1

−∂2

�
p
ð∂kAj − ∂jAkÞ þ

Z
d3xψ̄ jσkð∂k þ iAkÞψ j;

ð15Þ

with the coupling constant, g2, having a mass dimension of
ð1 − 2pÞ. The p ¼ 0 theory corresponding to QED3 shows
scale invariant infrared behavior for all even number of
flavors [12,13]. Furthermore, the induced action for the
gauge fields is well described by p ¼ 1

2
conformal theory

with no dynamical fermions [17]. Theories with p > 1
2
are

not renormalizable by simple power counting but are shown
to bewell defined in the largeN limit [27–31]. Strictly in the
large N limit, the beta function is exactly equal to

βðᾱÞ ¼ ð2p − 1Þᾱð1 − ᾱÞ; ð16Þ

where ᾱðpÞ is the dimensionless running coupling constant
[4]. This suggests that the infrared and ultraviolet behavior
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are flipped when a theory with p is compared to (1 − p). It
would be interesting to see if one can realize a continuum
theory withp ¼ 1 using Eq. (14) by first finding the location
in the lattice coupling where the gap in the fermion spectrum
closes and studying the scaling limit from the weak cou-
pling side.
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