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Holographic conformal field theories (CFTs) are usually studied in a limit where the gravity description
is weakly coupled. By contrast, lattice quantum field theory can be used as a tool for doing computations in
a wider class of holographic CFTs where nongravitational interactions in AdS become strong, and gravity is
decoupled. We take preliminary steps for studying such theories on the lattice by constructing the
discretized theory of a scalar field in AdS2 and investigating its approach to the continuum limit in the free
and perturbative regimes. Our main focus is on finite sublattices of maximally symmetric tilings of
hyperbolic space. Up to boundary effects, these tilings preserve the triangle group as a large discrete
subgroup of AdS2, but have a minimum lattice spacing that is comparable to the radius of curvature of the
underlying spacetime. We quantify the effects of the lattice spacing as well as the boundary effects, and find
that they can be accurately modeled by modifications within the framework of the continuum limit
description. We also show how to do refinements of the lattice that shrink the lattice spacing at the cost of
breaking the triangle group symmetry of the maximally symmetric tilings.
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I. INTRODUCTION

Our expectations about what kinds of behavior are
possible in physical systems are often strongly affected
by the tractable examples we have at our disposal.
Conformal field theories (CFTs) suffer from the disadvant-
age that finding examples to work with can be difficult
since one has to make sure that all β functions vanish.
Consequently, known classes of CFTs tend to be fairly rigid
in that they have at most a small number of discrete
parameters.
By contrast, one of the strengths of AdS=CFT is that the

conformal symmetry of the field theory dual is built into the
spacetime isometries of the AdS description for any values
of the bulk parameters, so the boundary theory is auto-
matically conformal. If one is content to work with effective
theories in AdS, one can thereby easily scan over large
classes of CFTs with many continuously tuneable

parameters. These classes can be a fantastic source of
concrete models for many types of strongly coupled
physics, and in many cases have eventually led to a deeper
understanding of the behavior in the field theory which can
after the fact be formulated without reference to a bulk dual.
However, these classes of bulk models are still rather
special because in order to be calculationally tractable, the
bulk theory usually must be taken to be perturbative.1 We
will refer to such theories as “large N” CFTs, where N is
not necessarily related to the central charge of the CFT but
rather refers to the fact that all correlators are Gaussian to
leading order in a small expansion parameter “1=N”.
To go beyond the class of weakly coupled bulk theories,

one would like to be able to do strong coupling calculations
in AdS. The best-developed numeric tool for QFT at strong
coupling is lattice field theory, and by applying it to
strongly coupled QFTs in AdS one can potentially learn
about qualitatively new kinds of CFTs. An initial objection
might be that it is not clear how to include gravity in a
lattice calculation, and therefore the CFT duals would not
contain a stress tensor. However, we can nevertheless
consider such theories as “nonlocal” CFTs that satisfy
most of the usual axioms of conformal field theory (e.g.,
crossing symmetry, associative operator product expansion,
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1See [1] for interesting work on bulk theories that are
calculable due to large N in the bulk rather than due to weak
coupling. See also [2–4].
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invariance of correlators under the global conformal alge-
bra, etc.), minus the existence of a stress tensor. Perhaps
more intuitively, decoupling gravity in the bulk theory can
be thought of as taking the limit of an infinite central charge
c the boundary theory; under what conditions it is possible
to actually realize such theories as the large c limit of a
sequence of finite c theories is an interesting open question.
Even with gravity decoupled, the theories we consider will
still be “small N” in that correlators of generic operators
will not be approximately Gaussian.
The goal of this paper is to build the basic lattice

scaffolding to do these nonperturbative calculations in
AdS. We will restrict our attention to the case of AdS2,
though in principle it should be possible to work in any
number of dimensions. The first step in constructing a
lattice field theory is to choose a lattice that respects as well
as possible the isometries of the target manifold and to
understand the UVand IR cut-off effects, which are referred
to as lattice spacing and finite volume errors, respectively.
Both of these are more challenging and novel in hyperbolic
space than in flat space.
On two-dimensional manifolds of constant curvature, the

triangle group provides an elegant approach to maintaining
a maximal discrete subgroup of the AdS2 isometries. The
approach is essentially to choose a fundamental triangle
and generate the lattice by reflection on the edges. For
example a familiar case in flat space is that starting with an
equilateral triangle, one generates the infinite triangulated
lattice. In negative curvature hyperbolic space, there are an
infinite number of such tessellations, some of which are
illustrated in the classic Escher drawings. These hyperbolic
graphs play a role in tensor networks [5–7] and quantum
error correction codes [8,9] in the context of AdS=CFT.
Additionally, hyperbolic lattices have recently been real-
ized in circuit QED experiments experimentally [10] and
theoretically [11]. As such, we present a sketch of the
triangle group algebra with the hope of relevance beyond
the present context.
The main difference with tilings of flat space is that in

hyperbolic space, there is a minimum possible size of the
triangles in units of the spatial curvature, i.e., the lattice
spacing cannot be taken arbitrarily small while preserving
the full discrete subgroup of spatial symmetries.
Consequently, in order to use lattice methods to probe
distances shorter than the AdS curvature length l, we must
subdivide (“refine”) our maximally symmetric lattice in a
way that breaks the discrete symmetries. Nevertheless, the
maximally symmetric lattices are useful for several reasons.
First, they provide a warm-up case where one can check the
lattice calculations in a simpler setting. The large discrete
subgroup of the AdS isometries preserved by the tilings
means that the full isometries are often “accidental”
symmetries of the theory broken only by high dimension
operators that scale away quickly at long distances. Second,
if the initial maximally symmetric tiling has triangles that

are not much larger than the spatial curvature, then the
effect of the curvature within a single triangle is small and
further refinements of the tiling are approximately those of
flat space. Finally, most known physical systems have
critical exponents that are Oð1Þ, which translates to their
AdS duals having fields with masses m comparable to the
AdS radius. Therefore their Compton wavelength is gen-
erally spread out over sizes similar to l and perhaps even
the tilings without refinement may give good approxima-
tions to boundary CFT observables.
This paper is organized as follows. In Sec. II, we review

the triangle group that we use to construct maximally
symmetric tilings of hyperbolic space, and set up the
discretized action for a scalar field theory on this lattice.
In Sec. III, we characterize the behavior of the classical
theory on this lattice and compare to analytic results. Most
of the discussion in Sec. III will focus on the free theory,
where we compute various propagators and quantify how
they differ on the lattice vs in the continuum, but we also
compare lattice and continuum results for a tree-level four-
point function in λϕ4 theory. In Secs. IV and V, we go
beyond our maximally symmetric lattices and study how
additional corrections can be included in order to approach
the continuum limit; Sec. IV focuses on finite volume
effects, and Sec. V shows how to refine the lattices to make
the lattice spacing arbitrarily small in units of the radius of
curvature of hyperbolic space. Finally, in Sec. VI we
conclude with a discussion of future directions.

II. TILING THE HYPERBOLIC DISK

Euclidean de Sitter Sd and anti–de Sitter Hd space have
constant positive and negative curvature, respectively.
Although in the continuum they share with flat space Rd

the attribute of being a maximally symmetric Riemann
manifold, they pose new difficulties for lattice construction.
A lattice realization necessitates a scheme used to tile the
geometry it represents. In Rd a common lattice choice is
hypercubic (square, cubic, etc.) with a growing discrete
subgroup of the isometries: integer translation on each axis
on the torus and hypercubic rotation by π=2. In Hd all sites
are equivalent; there is no “origin.” Thus we already see one
additional challenge in tiling a space with constant negative
curvature. In what follows, we detail how to tile AdS by
constructing a simplicial lattice for hyperbolic space using
the triangle group.
Although the goal of this section is to construct a

simplicial lattice of H2, it is interesting to see this in the
context of the three maximally symmetric manifolds of
either positive, negative, or zero constant curvature. The
full Euclidean plane R2 (adding a point at infinity) is
equivalent to the Riemann sphere up to a Weyl factor:

ds2R2 ¼ dx2 þ dy2 → ds2S2 ¼ 4l2
dzdz̄

ð1þ jzj2Þ2 ; ð2:1Þ
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where the scalar curvature K ¼ 1=l2 and l is the radius of
the sphere. Similarly, hyperbolic space with K ¼ −1=l2

can be represented as the Euclidean upper half-plane (UHP)
up to a Weyl factor 1=y2, which can then be mapped to the
Poincaré disk

ds2UHP ¼ l2
dx2 þ dy2

y2
→ ds2H2 ¼ 4l2

dzdz̄
ð1 − jzj2Þ2 ð2:2Þ

by the Möbius transformation w ¼ xþ iy ¼ −iðzþ
1Þ=ðz − 1Þ with jzj < 1. The Poincaré disk is most conven-
ient for our triangulation. The PSLð2;ZÞ isometries in the
UHPare realMöbius transformations,w → w0 ¼ ðawþ bÞ=
ðcwþ bÞ, which are easily mapped to Poincaré disk coor-
dinates. This includes rotations that are manifest in polar
coordinates on the Poincaré disk with z ¼ reiθ. Unlike the
sphere, the boundary at r ¼ 1 is at geodesic infinity, which
can be seen from the metric ds2 ¼ dρ2 þ sinh2ðρÞdθ with
the radial geodesic coordinate ρ ¼ log½ð1þ rÞ=ð1 − rÞ�. We
will proceed to use the triangle group to tessellate the
Poincaré disk with approximately concentric layers around
r ¼ 0.

A. The triangle group

If p, r, and q are integers greater than one, the full
triangle group Δðp; r; qÞ is a group that can be realized
geometrically as a sequence of reflections along the sides of
a triangle with angles ðπ=p; π=r; π=qÞ. The proper rotation
triangle group, Dðp; r; qÞ, is generated by two elements S,
T satisfying Sp ¼ Tq ¼ Ur ¼ 1, whereU ¼ ST. The target
space is tessellated by acting on an initial triangle with
angles ð2π=p; 2π=r; 2π=qÞ in each vertex. The full
improper triangle group includes a Z2 factor for reflections
a, b, c on the edges, with a2 ¼ b2 ¼ c2 ¼ 1. Two reflec-
tions along the sides joining at a vertex give a rotation
around that vertex: S ¼ ab; T ¼ bc;U ¼ ca. Either way
the result is a uniform triangulation of a manifold with
constant positive, zero or negative curvature dictated by the
sum rule:

π

p
þ π

r
þ π

q

8<
:

> π positive curvature

¼ π zero curvature

< π negative curvature

ð2:3Þ

The group is finite for positive curvature and infinite for flat
and hyperbolic space [12].
As a familiar example start with flat space where

Dð3; 3; 3Þ generates the triangular lattice. At a more
fundamental level, we can start with the Dð2; 3; 6Þ group
of 90-60-30 triangles and combine 6 of them together to
create an equilateral triangle with 6 subtriangles. Dropping
the midpoint recovers theDð3; 3; 3Þ equilateral tessellation.
In the same spiritDð2; 4; 4Þ utilizes the right triangle for the
standard square lattice and the hexagonal lattice is the dual

of Dð3; 3; 3Þ. We are most interested in the special series
Dð2; 3; qÞ, which divides equilateral hyperbolic triangles
into 6 subtriangles, thereby generalizing the 90-60-30
degree flat case to a triangle with 90-60-ð30 · 6qÞ degree
interior angles. An important feature of hyperbolic/spheri-
cal triangles is the introduction of an intrinsic length scale,
l2 ¼ �1=K in terms of the scalar curvature K. This fixes
the area of the hyperbolic and spherical triangles,

AΔ ¼ jπ − α − β − γjl2; ð2:4Þ

in terms of the interior angles ðα; β; γÞ and the intrinsic
scale l. Whereas in flat space the scaling gives no condition
on the area, in the spherical case there is a maximum
triangle area of 2πl2 given by a great circle. Perhaps a bit
surprisingly, in hyperbolic space there is also a maximum
area of πl2 when all interior angles vanish.
For positive curvature, q ¼ 3, 4, 5 produces the finite

group symmetries and tessellations of the tetrahe-
dron, octahedron and icosahedron, respectively.
The cube and the dodecahedron are the respective dual
polyhedra of the octahedron and icosahedron, thus com-
pleting the five Platonic solids.
The situation for H2 is more interesting. Even restricting

ourselves to equilateral triangle graphs, starting with the
infinite sequence Dð2; 3; qÞ for any q ≥ 7 gives an infinite
discrete subgroup2 of hyperbolic isometries PSLð2;RÞ.
The smallest triangles with the smallest curvature defect at
the vertices is given by q ¼ 7 and will be the major focus of
our lattice construction.

B. Constructing the lattice

From the above discussion, the hyperbolic plane can be
tiled with Δð2; 3; qÞ where q is any integer with q ≥ 7. One
of the benefits of a lattice built up from Δð2; 3; qÞ is that
there is a Zq symmetry. This can be exploited to simplify
calculations and also provides a check for the structure we
expect in certain data. The case q ¼ 7 is particularly nice as
it gives triangles in AdS2 with the smallest area and
therefore the least curvature (cf. Appendix A 2 for details).
We mention in passing that the case q ¼ 8 is also useful in
that a geodesic connecting two points will always pass
through lattice points.
In practice the lattice is constructed as follows:

2These groups have fascinating properties studied exhaustively
in the mathematics literature [13–15]. The full modular group,
PSLð2;ZÞ, is reached in the limit q → ∞. In special cases they
yield finite representations of constant negative curvature Rie-
mann surfaces—the negative curvature analogue of Platonic
solids. A famous example is the 168 element tessellation of
the genus 3 surface, first introduced by Felix Klein in 1879,
(reprinted in [13]), in the study of the Riemann surface associated
with the “Klein quartic”, x3yþ y3zþ z3x ¼ 0. For a historical
account of this work, see [13–16].
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(i) Choose q, which sets the properties of the equilateral
triangle such as its area and side length.

(ii) Put the first lattice point at the origin (r ¼ 0) of the
Poincarè disk. Put the second on the real axis a
distance of the side length of the equilateral triangle.

(iii) Rotate by 2π=q around the origin to add additional
triangles until the layer is complete.

(iv) Move out to a point on the next layer. Rotate around
this point by 2π=q but laying triangles only along
forward links connecting to the following layer.

(v) Continue until the input layer L is reached.
Figure 1 illustrates the construction of a hyperbolic

equilateral triangle built from the triangle group with
q ¼ 7. Figure 2 shows a L ¼ 4, q ¼ 7 tiling on the
Poincarè disk and its dual realized from this construction.
It is also possible to generate the lattice using the action of
the triangle group on the lattice (cf. Appendix B). For
generating large lattices using C-code we use the first
method; for smaller lattices to which we will later add
refinements, we use Mathematica utilizing the second
method. Finally, we note that lattices can also be generated
starting with the circumcenter of the equilateral triangle at

the center (r ¼ 0). However with a finite number of layers,
this choice preserves for any q only an exact 3-fold
rotational symmetry, rather than preserving a q-fold
symmetry.

C. Lattice action for scalar fields

We choose ϕ4 theory as a simple example with the action

S ¼ 1

2

Z
d2x

ffiffiffi
g

p ðgμν∂μϕ∂νϕþm2ϕ2 þ λϕ4Þ: ð2:5Þ

Discretizing this action on a 2d triangulated lattice (or
indeed any d-dimensional simplicial complex) takes the
generic form,

S ¼ 1

2

X
hiji

Kijðϕi − ϕjÞ2 þ
1

2

X
i

ffiffiffiffi
gi

p ðm2ϕ2
i þ λϕ4

i Þ; ð2:6Þ

where the sum is over the sites i and the links hiji on the
graph. The coefficients

ffiffiffiffi
gi

p
and Kij can be determined by

the finite element method literature (FEM) [17] as pre-
sented in detail for positive curvature triangulation in
Refs. [18,19]. This method sets the measure

ffiffiffiffi
gi

p
to the

volume at dual sites (e.g., the heptagons in Fig. 2) and the
kinetic weights Kij to the ratio Sij=lij of the dual to the link
(theHodge star of the link l�ij) divided by length of the link lij.
In fact, these kinetic weights Kij were anticipated in the
pioneering paper by N. Christ, R. Frieberg and T.D. Lee [20]
by enforcing a discrete Gauss’ law constraint on a random
lattice and later generalized as a consequence of discrete
exterior calculus (DEC) [21] on a simplicial complex.
For our Δð2; 3; qÞ example, illustrated in Fig. 3 for

q ¼ 7, the tessellation consists of uniform equilateral
triangles so that both

ffiffiffiffi
gi

p
and Kij are constants indepen-

dent of position. On the hyperbolic disk they are given as

ffiffiffiffi
gi

p ¼ q
3
AΔ; Kij ¼

4AΔ

3a2
; ð2:7Þ

in terms of the area AΔ ¼ ðπ − 6π=qÞl2 of the equilateral
triangle and the lattice spacing a, which is the length of
each side of the triangle, defined below in (2.10). In our
numerical work we have adopted the common practice of
setting Kij ¼ 1 by an appropriate re-scaling of the field ϕ.
We also have introduced a dimensionless bare mass
parameter,

m2
0 ≡ c2qm2; c2q ¼

ffiffiffiffi
gi

p
Kij

¼ qa2

4
; ð2:8Þ

in terms of an effective lattice spacing cq ¼ q1=2a=2, as
well as a re-scaled coupling λ0 ¼ 3qa4λ=ð16AΔÞ. Now in
our simulations in the triangle group lattice, the action takes
the convenient form

FIG. 1. We construct the lattice using hyperbolic equilateral
triangles built from the Δð2; 3; qÞ triangle group. Left: the
hyperbolic equilateral triangle (2π=7; 2π=7; 2π=7Þ built from
the Δð2; 3; 7Þ triangle group. Right: the first layer of the lattice
constructed by rotating the (2π=7; 2π=7; 2π=7Þ equilateral tri-
angle around a point.

FIG. 2. Left: the L ¼ 4, q ¼ 7 lattice on the Poincaré disk.
Right: the same lattice with the dual lattice shown in dotted lines.
In the infinite L limit we produce a tiling of the entire
Poincaré disk.
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S ¼ 1

2

X
hiji

ðϕi − ϕjÞ2 þ
1

2

X
i

ðm2
0ϕ

2
i þ λ0ϕ

4
i Þ: ð2:9Þ

Restoring the dimensionful form is easily done when we
compare the simulation to the continuum.
All lattice calculations in flat space have to deal with

both lattice spacing (UV) and finite volume (IR) errors. In
flat space, on a toroidal hypercubic lattice, the lattice
spacing a for a finite volume V ¼ ðaLÞd has a single
integer ratio L ¼ V1=d=a, which is the number of lattice
spacings in a closed cycle. Since flat space has no intrinsic
scale the lattice spacing is arbitrary and only defined
relative to some physical mass scale m−1 ¼ aξ. Control
over UV and IR errors requires a window such that
a ≪ m−1 ≪ aL.
Hyperbolic space (or de Sitter space) is different because

the manifold itself has an intrinsic length scale given by the
curvature. Thus even the infinite lattice has two scales,
the UV cut-off and the curvature, which complicates the
problem of approximating a continuously smooth manifold
of constant negative curvature with objects of a finite size.
Additionally, there is no analogue to periodic boundary
conditions to hide the finite volume boundary. Instead, the
boundary is an important feature exploited by AdS=CFT,
which we discuss later.
The intrinsic continuum scale l of the manifold is

provided by the metric (A1). The area of a hyperbolic
(or spherical) triangle AΔ is determined by the deficit angle
jπ − α − β − γj. In units of l2 the area is bounded by

AΔ=l2 < π. For our ð2; 3; qÞ equilateral triangulation of the
disk the length of the edges a is given by

coshða=2lÞ ¼ cosðπ=3Þ
sinðπ=qÞ ¼

1

2 sinðπ=qÞ ; ð2:10Þ

which gives the minimum values of a ¼ 1.090550l and
AΔ ¼ 0.448799l2 for q ¼ 7. Note that as q → ∞ the
length diverges logarithmically as a ≅ 2l logðqÞ but the
area approaches the so-called ideal hyperbolic triangle area
of AΔ ¼ πl2. We focus exclusively on the case q ¼ 7 that
gives the minimum intrinsic lattice scale.

D. Lattice simulations

Our lattice simulation generates a graph by starting with
a vertex at r ¼ 0 and building out one layer of triangles at a
time to L layers. Each layer has n½L� vertices, where n½L�
satisfies the recursion relation (cf. Appendix C)

n½L� ¼ ðq − 4Þn½L − 1� − n½L − 2�;
n½1� ¼ q; n½0� ¼ 0: ð2:11Þ

In this graph the growth of vertices is exponential in L.
Additionally, at asymptotically large L the last layer has a
finite fraction of all the points in our lattice. For q ¼ 7 this
fraction is the inverse of the Golden Ratio, 2=ð1þ ffiffiffi

5
p Þ ≈

61% of all points. For a finite number of layers, our lattice
has only a finite volume and fills out the Poincaré disk with
a cut-off, i.e., jzj ≤ 1 − ϵ. We place fields ϕi on the interior
vertices, labeled by ri, θi, and impose Dirichlet boundary
conditions on a fictitious (Lþ 1)th layer. Not all points on
this layer are at the same distance from the “origin,” since
our lattice breaks rotational invariance to a discrete sub-
group. Nevertheless, we can define an approximate cutoff
in 1 − jzj by taking its value averaged over all points on this
fictitious layer, where the boundary condition is enforced:

ϵeff;L¼meani∈ðLþ1Þthlayerð1− jzijÞ∝e−0.919lðLþ1Þ: ð2:12Þ

This IR cutoff ϵeff;L ∝ e−c̃7lðLþ1Þ can be thought of as an
effective lattice length c̃7 ¼ 0.919 in the radial direction.
This numerical estimate, extrapolating from finite L, is very
close to the asymptotic lattice spacing, a7 ¼ 0.962,
between layers in (C10). Also note that c̃7 is approximately
two-thirds of the UV scale c7 ¼

ffiffiffiffiffiffiffiffi
q=4

p ða=lÞ ¼ 1.443 that
we introduced above.

III. CLASSICAL THEORY ON
TRIANGLE GROUP LATTICE

In this section we mostly study the free discretized
theory in AdS2, the action (2.6) with λ ¼ 0, with a focus on
the errors introduced by the UV cut-off and IR finite
volume effects. The continuum limit in the free theory is of

FIG. 3. The lattice and its dual at a vertex point i. The area of
the dual heptagon (light blue region) corresponds to

ffiffiffiffi
gi

p
and the

kinetic weight between i and another point j is given by
Kij ¼ lij=l�ij.
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course solvable and will allow us to check our methods and
analyze discretization errors, and will give insight into
features that are absent in the flat space formulation.
Moreover, the main quantities of interest in the free theory
are propagators, which we will use in later sections to do
perturbative computations at weak coupling.

A. Green’s function

We begin by considering the bulk-to-bulk propagator in
AdS. Both the bulk-to-boundary propagator and the boun-
dary-to-boundary two-point function in the dual CFT can
be extracted from the bulk Green’s function, so in this sense
it is a more basic building block than the others. There is
another practical reason, however, for beginning with the
bulk propagator, namely our finite lattices can never truly
reach infinity and consequently we will have to be more
careful than usual when extracting propagators with points
on the boundary.
We begin with a brief review of some well-known results

in the continuum limit. For a given mass-squared m2, the
analytic bulk Green’s function GbbðX;X0Þ between two
points X, X0 in AdSdþ1 is the solution to the equation

ð−∇2 þm2ÞG ¼ 1ffiffiffi
g

p δdþ1ðX − X0Þ; ð3:1Þ

where ∇μ is the covariant derivative 1ffiffi
g

p δdþ1ðX − X0Þ
defined as the δ function for AdSdþ1, and the Laplace
operator is ∇2 ¼ ∇μ∇μ ¼ ffiffiffi

g
p −1∂μ

ffiffiffi
g

p
gμν∂ν acting on sca-

lars. The solution is given by [22,23]

GbbðX;X0Þ ¼ GbbðσðX;X0ÞÞ

¼ e−ΔσðX;X0Þ
2F1

�
Δ;

d
2
;Δþ 1 −

d
2
; e−2σðX;X0Þ

�
; ð3:2Þ

where m2l2 ¼ ΔðΔ − dÞ and σðX;X0Þ is the geodesic
distance between the points X and X0. For d¼1 and Δ¼1
this reduces to the simple value of

GbbðσÞ ¼Δ¼1 1

2
log coth

σ

2
: ð3:3Þ

For the geodesic distance σ in various coordinate systems,
see Appendix A 1.
For the most part, we will not need the exact form of the

propagator because the lattice spacing is comparable to the
AdS radius and distinct lattice points have a minimum
geodesic distance between them. Above, we saw that this
geodesic distance is smallest for q ¼ 7 where it is
σmin ¼ a ¼ 1.09l, and so e−2σ ≤ 0.11 for our lattice
points. We can therefore approximate the hypergeometric
function 2F1ðΔ; 12 ;Δþ 1 − 1

2
; t2Þ in the propagator as ≈1.

In fact, between Δ ¼ 1 and Δ ¼ ∞, this propagator
interpolates between the simple functions 1

t tanh
−1 t and

ð1 − t2Þ−1
2, and these never deviate from 1 by more than ∼6

percent over the range 0 < t2 < 0.11. Consequently, we
will often approximate the propagator as simply

GbbðσÞ ≈ e−Δσ: ð3:4Þ

Both the finite lattice spacing as well as the finite number of
layers make the exact bulk Green’s function more com-
plicated in the discretized theory than in the continuum
limit, and we will not be able to write it down in closed
form. However, in the following we will be able to obtain
closed form approximations in various limits.

B. Taylor expansion of lattice action

The discretized bulk Green’s function is simply the
inverse Gij of the matrix Aij from the free theory action,

S ¼ 1

2
ϕiAijϕj ¼

1

2

�X
hiji

ðϕi − ϕjÞ2 þ
X
i

m2
0ϕ

2
i

�

¼ 1

2

X
i

�
1

2

X
j adjacent to i

ðϕi − ϕjÞ2 þm2
0ϕ

2
i

�
: ð3:5Þ

The sum on hiji is over adjacent pairs of points. Because
each lattice point has q neighbors, the matrix Aij is qþm2

0

on the diagonal, −1 in off-diagonal entries if i and j are
neighboring points, and 0 otherwise.
We would like to relate the discretized action to the

continuum action. To do this, we can Taylor expand ϕ
around each point to leading order in the lattice spacing:

ϕj − ϕi ≈ rμj · ∇μϕðriÞ: ð3:6Þ

The Taylor expansion uses the covariant derivative ∇μ to
account for the curvature of space, and the magnitude of r⃗j
should be the geodesic length between i and j. Because
there is a Zq subgroup of the rotational symmetry around
each point, all such adjacent distances are the same lattice
spacing a. Moreover, it is easy to see that

X
j adjacent to i

rmj r
n
j ¼

qa2

2
δmn: ð3:7Þ

The fact that the right-hand side (rhs) must be proportional
to δmn is due to the Zq symmetry, and the proportionality
constant can be obtained by taking the trace of both sides of
the equation. Therefore, at leading order in a, the dis-
cretized free action is equivalent to the following con-
tinuum action

S ≈
3a2

4AΔ

Z
d2x

ffiffiffi
g

p �
1

2
ð∇ϕÞ2 þ 1

2
m2ϕ2

�
; ð3:8Þ
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where we re-instated the original mass parameter m2

using (2.7).
If the lattice spacing a could be taken arbitrarily small,

then we could simply expand the discretized kinetic term to
leading order in a. In our case, the lattice spacing a is fixed
by our choice of triangle group and has a minimum possible
value in units of the AdS radius l, so cannot be taken
arbitrarily small. Therefore, to improve the accuracy of the
approximation, we may need to keep higher order terms in
the Taylor expansion. The result for q ¼ 7 is that due to
the Z7 symmetry, the action expanded to Oða12Þ can be
written in terms of powers of the rotationally symmetric
combination ∇2:

S∝
Z
d2x

ffiffiffi
g

p �
1

2
ðmaÞ2ϕ2−

1

2
ϕ

�X6
s¼1

bsða2∇2ÞsþOða14Þ
�
ϕ

�
;

ð3:9Þ

where we have found the coefficients bs to be

b1 ¼ 1; b2 ¼
1

16
; b3 ¼

1

576
;

b4 ¼ −
7

36; 864
; b5 ¼ −

7

30; 700
;

b6 ¼ −
77

88; 473; 600
: ð3:10Þ

Starting at Oða14Þ and higher, one finds combinations of
derivatives that break rotational invariance but preserve
the Z7.
Now, we can obtain an approximate formula for the

discretized bulk-to-bulk propagator Gbb;lat that is valid at
small m2. To do this, recall that (for σ > 0) the continuum
bulk-to-bulk propagator Gbb satisfies

∇2Gbb ¼
1

l2
ΔðΔ − 1ÞGbb: ð3:11Þ

If we take Gbb with Δ a free parameter and substitute it into
the equation of motion for our series expanded action (3.9),
we find that it is a solution as long as

m2a2 ¼
X6
s¼1

bs

�
a2

l2
ΔðΔ − 1Þ

�
s

: ð3:12Þ

Note that Δ ¼ 1 remains a solution at m2 ¼ 0. By con-
tinuity, as long asm2 is sufficiently small Δ will be close to
1, and discarding the Oða14Þ terms and higher will be a
good approximation. In Fig. 4, we compare the prediction
of the analytic equation (3.12) with fits to the numerical
data, at small mass. The figure also shows the prediction of
another analytic equation valid at large mass, which we
derive in the next subsection.

C. Large mass effective model

The approximation in the previous subsection for the
bulk-to-bulk propagator breaks down whenm2 is too large.
Here, we will consider a different approximation that works
well for large m2.
Consider the equation of motion forGij as a function of j

with i fixed, in the limit of large geodesic separation σ.
With an infinite number of layers, we can take any point i to
be the center of our triangulated lattice without loss of
generality. Additionally, near the boundary of AdS there is
a lattice point at every θ (see Fig. 2), but by contrast the
lattice spacing in ρ remains the same regardless of the layer.
We can use this fact to obtain an approximate formula for
the discretized Green’s function Gij at large σ by letting G
be independent of θ, due to rotational symmetry, and letting
ρ be discrete in the free AdS equation of motion.
In the continuum the metric can be written (see A 1) as

ds2 ¼ dρ2 þ sinh2ðρÞdθ. Assuming rotational symmetry
the equation of motion is

−∂2
ρGðρÞ − cothðρÞ∂ρGðρÞ þm2GðρÞ ¼ ∂ρδðρÞ; ð3:13Þ

where ρ is the radial geodesic distance from the source at
the origin.
At large ρ the Green’s function therefore satisfies the

equation,

−∂2
ρGðρÞ − ∂ρGðρÞ þm2GðρÞ ≅ 0: ð3:14Þ

Different ways of discretizing the ∂ρ derivatives lead to
different solutions for GðρÞ. To see this, let us factor out an
overall exponential dependence from GðρÞ:

GðρÞ ¼ esρgðρÞ: ð3:15Þ

FIG. 4. A comparison of the mass-squared scaling dimension
from the lattice data to the expansion formula (3.12) and the
asymptotic analysis formula (3.19) for small masses. Dots are
extracted from lattice data as described in subsection III D.
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The equation of motion in terms of gðρÞ is

sð1þ sÞgðρÞþð1þ2sÞg0ðρÞþg00ðρÞ¼m2l2gðρÞ: ð3:16Þ

The left-hand side (lhs) of (3.16) can be discretized by the
following finite difference:

LHS ≈
ð2bsþ bþ 2Þgðρþ bÞ

2b2

þ
�
s2 þ s −

2

b2

�
gðρÞ − ð2bsþ b − 2Þgðρ − bÞ

2b2
:

ð3:17Þ

The resulting finite difference equation, like the continuum
equation, has a growing and decaying solution at ρ → ∞.
The decaying solution behaves at large ρ as GðρÞ ∼ e−Δρ

for some Δ. Substituting gðρÞ ¼ e−ðΔþsÞρ into our discre-
tized equation of motion, we see that the equation is
satisfied as long as Δ obeys the following equation:

2ðcoshðbðΔþ sÞÞ − 1Þ − bð2sþ 1Þ sinhðbðΔþ sÞÞ
¼ b2ðm2l2 − sðsþ 1ÞÞ: ð3:18Þ

At large m2, the solution is Δþ s∼b−1ðlogm2l2þ
logð b2

1−bðsþ1
2
ÞÞÞ, whereas in the limit b → 0 of small lattice

spacing, the solution reduces to the usual m2l2 ¼
ΔðΔ − 1Þ. The parameters s and b are fudge factors that
we use to compensate for the fact that our finite difference
equation treats the lattice like a set of regularly spaced
points in ρ, whereas the true lattice equation involves
differences in multiple different directions and is more
complicated. We have found that the choice s ¼ −1=2, i.e.,

m2l2 ¼
�
4

b2
sinh2

�
b
Δ − 1

2

2

�
−
1

4

�
; b ¼

8>><
>>:

0.96 7

1.34 8

1.66 9

ð3:19Þ

approximates the exact numeric results quite well with the
given values of b for q ¼ 7, 8, 9, as shown in Fig 5, where
we compare at large masses the analytic approximation
(3.19) with the numeric values ofΔ extracted from the data;
in Fig 5, we also show for comparison the prediction of the
small mass analytic expression (3.19) from the previous
subsection. Note that s ¼ −1=2 is special in that it respects
the Δ → 1 − Δ symmetry of the m2 vs Δ relation of the
continuum theory. Also note that in Appendix C we
determine analytically the mean lattice spacings between
layers to be aq ¼ 0.9624, 1.317, 1.567 for q ¼ 7, 8, 9,
which are nearly identical to the values of b found here by
fitting to the correlator data.

D. Numerical propagator and comparison

Once we have the lattice action in the form (3.5), the
numeric computation of the bulk Green’s function Gij just
requires taking the inverse of Aij. In this subsection, we will
inspect the numeric Green’s function and see how it
compares to the analytic results derived above.
Recall the approximate formula for the continuum bulk-

to-bulk propagator:

logGbbðσÞ ≈ −Δσ: ð3:20Þ

From the previous subsections, we expect that the dis-
cretized bulk-to-bulk propagator will behave similarly, but
with a modified value for Δ compared to the usual
continuum limit relation m2l2 ¼ ΔðΔ − 1Þ. Our strategy
will therefore be to first check that logG is approximately
linear in σ, and then from its slope extract Δ. By doing this
for many values of m2, we obtain the function Δðm2Þ.
Typical plots of logG as a function of σ for fixed m2 are
given in Fig. 6. These show that for the lattice propagator,
logGbbðσÞ is indeed linear in σ.
Figure 6 also shows how only using bulk points in the

linear fit to avoid boundary effects we can improve the
derived Δ. Additionally, in Sec. V we show how using the
exact fit from taking into account the true finite boundary
condition produces a remarkably good estimate for Δ for a
modestly size lattice. However, the approximate linear fit is
sufficient for most of our purposes, as noted before.
The result of this comparison of the lattice propagator to

our small and large mass approximate formulas [(3.12) and
(3.19), respectively] is shown in Figs. 4 and 5, showing an
excellent agreement over a large range in mass.

1. Approach to cutoff boundary

One subtlety in our tessellation scheme that we need to
account for is that the lattice boundary points, although

FIG. 5. Same as Fig. 5 but for large masses. Dots are extracted
from lattice data, black dashed and red solid curves are the
expansion formula (3.12) and the asymptotic analysis for-
mula (3.19) respectively.
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close, are not all at the same distance away from the origin
on the Poincaré disk. This will affect comparing boundary
dependent observables, such as the bulk-to-boundary
propagator. We can see this by looking at the bulk-to-
boundary propagator as the limit of the bulk-to-bulk

propagator as the primed bulk coordinate approaches the
boundary via y0 → 0:

Gb∂ðy; x; x0;ΔÞ ¼
�

y
y2 þ jx − x0j2

�
Δ

¼ lim
y0→0

1

y0Δ
Gbbðy; x; y0; x0;ΔÞ; ð3:21Þ

FIG. 6. A plot of (3.20) for different mass regimes. In the top plots the source point X and sink point X0 cover all possible pairs on the
lattice from which Δfit is derived from. In the bottom plot, only bulk points are used to avoid boundary effects. The linear fit is evident.

FIG. 7. Boundary-boundary two-point function from one point
fixed on the boundary to all others, for lattice vs analytic
continuum result.

FIG. 8. Four-point contact term from lattice vs analytic con-
tinuum result (3.27).
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where as y0 → 0 the divergent part goes as

ðy0Þ−Δ ∼ ð1 − jz0j2Þ−Δ: ð3:22Þ

So when looking at the bulk-to-boundary propagator from one point on the boundary, X, to any other point X0, we need

Gb∂ðX;X0;ΔÞ ≃ ð1 − jz0j2Þ−ΔGbb;latðX;X0;ΔÞ; ð3:23Þ

where Gbb;lat indicates the numeric lattice propagator data. In Fig. 7, we compare the result from the lattice data to
the exact CFT two-point function, which in our θ coordinate is

G∂∂ðθÞ ∝ ð1 − cos θÞ−Δ; ð3:24Þ

where the proportionality constant depends on the normalization of the operator, which we fix to match the lattice data.

E. Four-point function

Now that we have characterized the propagators we can calculate tree diagrams. Here we focus on the four-point
interaction term, which has a known analytic form. The AdS2 four-point contact term is given by

AContact
4 ðxiÞ ¼ DΔ1Δ2Δ3Δ4

¼
Z

d2y
ffiffiffiffiffiffiffiffiffi
gðyÞ

p
Gb∂ðy; x1ÞGb∂ðy; x2ÞGb∂ðy; x3ÞGb∂ðy; x4Þ: ð3:25Þ

This becomes a sum on the lattice

AContact
4 ðxiÞ →

X
i

aΔi Gb∂ðxi; x1ÞGb∂ðxi; x2ÞGb∂ðxi; x3ÞGb∂ðxi; x4Þ; ð3:26Þ

where aΔi is the area of the lattice triangle being summed over. Therefore we can easily calculate the four-point function by
summing over four bulk-to-boundary propagator configurations. Moreover, for Δ1 ¼ � � � ¼ Δ4 ¼ 1 the D-function has a
closed form given by

2x213x
2
24

πd=2
D1111ðxiÞ ¼

1

z − z̄

�
2Li2ðzÞ − 2Li2ðz̄Þ þ logðzz̄Þ log 1 − z

1 − z̄

�
; ð3:27Þ

which for d ¼ 1, z ¼ z̄, and to leading order becomes

D1111ðxiÞ ≃
2x213x

2
24ffiffiffi

π
p

�
−2

logð1 − zÞ
z

þ 2
log z
z − 1

�
; ð3:28Þ

allowing us to compare with the lattice value. The result of this comparison is shown in Fig. 8, where we find a good
agreement between the lattice and the analytic expression.

IV. FINITE VOLUME CORRECTIONS

In this section, we will discuss corrections to our
discretization arising from the fact that any finite lattice
fills out only a finite volume of AdS2. We will approach
these corrections in two different ways. The first is to
compare our lattice results for the eigenvalues of the
discretized Laplacian operator to the eigenvalues of a
modified AdS2 space where we move the boundary to a
finite radius. The second is to consider modifying our
discretized action to take into account the effect of

“integrating out” the rest of the space not included in
our finite volume region.

A. Eigenvalues of the Laplacian on finite disk

One measure of the accuracy of the lattice approximation
is how closely the eigenvalues of the Laplacian are to the
those of the continuum theory. AdS2 has infinite volume
and the eigenvalues of its Laplacian form a continuous
distribution. However, for any finite number of layers, our
tessellation fills out a finite volume, so it is more instructive

RICHARD C. BROWER et al. PHYS. REV. D 103, 094507 (2021)

094507-10



to compare the eigenvalues of our discrete system to those
of AdS2 with a finite cutoff at r ¼ 1 − ϵ away from the
original boundary at r ¼ 1.

To find the spectrum of the Laplacian, we first solve the
equation of motion locally. In global coordinates, take
fðr; θÞ ¼ eilθfðrÞ with integer l. The equation to solve is

∇2fðr; θÞ ¼ −λfðr; θÞ → ðr2 − 1Þ2ðrðrf00ðrÞ þ f0ðrÞÞ − l2fðrÞÞ
4r2

¼ −λfðrÞ: ð4:1Þ

Next, we impose the boundary condition that the solutions are regular at r ¼ 0. The regular solution is

fðrÞ ∝ rlð1 − r2Þ12þis
2F1

�
1

2
þ is; lþ 1

2
þ is; lþ 1; r2

�
; ð4:2Þ

where s≡
ffiffiffiffiffiffiffiffiffiffi
λ − 1

4

q
; although it is not obvious by inspection, the above function is invariant under s → −s. The final step is

to impose the boundary condition fð1 − ϵÞ ¼ 0. This condition can be imposed numerically, and for any ϵ > 0 it is satisfied
by the above solutions for a discrete set of values of λ. At r ¼ 1 − e−y in the limit of large y (r close to 1) and small s, the
eigenfunctions (4.2) are approximately proportional to sinðsyÞ:

fð1 − e−yÞ ∼ e−y=2

π1=2Γðlþ 1
2
Þ
�
sin sy
s

þ
�
logð2Þ − γE − ψ

�
lþ 1

2

��
cosðsyÞ þOðsÞ

�
; ð4:3Þ

where ψðzÞ is the polygamma function and γE is the Euler-Mascheroni constant. Therefore, with a boundary at very large
y ¼ log 1

ϵ the eigenvalues are approximately given by the discrete spectrum

s ¼ nπ
y

�
1þ γE þ ψðlþ 1

2
Þ − logð2Þ

y
þOðy−2Þ

�
; n ¼ 0; 1; 2;…: ð4:4Þ

Since it is easy to numerically compute the exact spectrum
of s for any boundary value ϵ using the exact eigenfunction
(4.2), this is what we will use to compare to the lattice
spectrum.

For the massless L ¼ 7, q ¼ 7 lattice the mean cutoff
can be estimated as ϵeff;7 ≃ 0.00082916 by looking at the
average value of 1 − r of the next L ¼ 8 layer where the
Dirichlet BC is enforced. However, by looking at the
spectrum we can do even better in defining a cutoff. In
comparing the lattice and continuum eigenspectrums there
are two parameters we can fix, the offset and the slope. The
offset is fixed by the normalization between the lowest
eigenvalues, which is 2.013 in this case. We expect this to
be close to the value given from the discrete Laplacian
expansion at lowest order, ð7=4Þða2=l2Þ ≃ 2.081. The slope
is fixed by matching the second lowest eigenvalues. The
result can be thought of as an improved definition for the
cutoff, which in this case is ϵeff;7 ≃ 0.00080897.
Figure 9 shows a comparison of the lattice spectrum

versus the spectrum from the continuum theory with the
improved ϵ cutoff. The first 100 out of 4264 eigenvalues
plotted show the low-lying spectrum; there is a remarkable
agreement between the lowest eigenvalues of the con-
tinuum theory and the unrefined lattice.

B. Integrating out the boundary

We can think of our lattice construction at finite L as a
low-energy effective theory realized from starting with the

FIG. 9. The low-lying eigenspectrum of the continuum theory
with a cutoff versus the discretized lattice realization. The
normalization is fixed by matching the lowest eigenvalues, which
is determined to lowest order by c2q. The slope is set by matching
the second lowest eigenvalues. This can also be considered the
definition of the cutoff.

LATTICE SETUP FOR QUANTUM FIELD THEORY IN AdS2 PHYS. REV. D 103, 094507 (2021)

094507-11



L → ∞ limit and integrating out layers. Although the long-
distance limit is associated with the IR, the modes of the
dual CFT that live near the boundary are high energy ones,
thus the Wilsonian intuition of “integrating out” is still
valid. This is an example of the UV/IR connection. By
integrating out layers, we can gain another quantitative
handle on how observable quantities depend on the number
of layers of the lattice, especially in the large L limit.
For a given L the lattice Hamiltonian has the structure

H ¼
�Hb v

vT H∂

�
; ð4:5Þ

where Hb contain the bulk points, H∂ the boundary points,
and v and its transpose link boundary points to bulk points.
This demarcation of the Hamiltonian naturally lends itself
to a factorization of its determinant,

detH ¼ detðH∂Þ detðH=H∂Þ; ð4:6Þ

where H=H∂ ¼ ðHb − vH−1∂ vTÞ is the Schur complement
of H relative to H∂ . The importance of this term is that it
encodes the precise correction to the bulk from the
boundary layer.
Whereas Hb is manifestly local, the corrective piece

vH−1∂ vT in the Schur complement couples nonlocal points.
That is, given a point on the boundary which corresponds to
some matrix element ðH=H∂Þii its non-neighboring ele-
ments ðH=H∂Þiiþ2; ðH=H∂Þiiþ3;… are nonzero. Now,
before integrating out the (Lþ 1)th layer, all points strictly
have nearest-neighbor links, so one boundary point will
only be linked to its two boundary neighbors and the
nearest-neighbor bulk points. Moreover, the two-point
function for a particle propagating along the boundary is

given by G∂∂ ∝ ð1 − cos θÞ−Δ. Consequently, we expect
the non-locality arising from integrating out the extra layer
to be suppressed as a function of the geodesic distance.
Indeed, as Fig. 10 shows, by picking a boundary point and
looking at its coupling to other boundary points, this
nonlocal effect decays exponentially in geodesic distance.
In summary we have shown that for any lattice size Lwe

understand precisely how the Lþ 1 layer corrects the
Hamiltonian and that this correction preserves locality,
so we can view our lattice as a local, low-energy effective
theory obtained by integrating out layers from the L → ∞
continuum.

V. FINITE LATTICE SPACING REFINEMENT

So far we have looked at the pure equilateral triangle
group tessellation as an approximation of the hyperbolic
plane. Relative to the continuum this introduces a finite
lattice spacing error, with (2,3,7) triangles having a mini-
mum spacing of a ≃ 1.091 relative to the fixed curvature
length l. The finite element approach to partial differential
equations uses a sequence of nearly regular smaller
simplices (triangles in 2d) when properly constructed
allowing one to converge to exact continuum solutions,
or in the context of quantum field theory to the classical tree
approximation. Loops introduce UV divergences [24] but
are neglected in our current presentation.
The linear interpolated finite elements method in 2d flat

space for the Laplace Beltrami operator is equivalent to the
method of discrete exterior calculus (DEC) [21]. The
formal expression for the DEC Laplace-Beltrami operator
acting on scalar fields in d-dimensions is ðδþ dÞ2ϕ ¼
ðdδþ δdÞϕ ¼ �d � dϕ, with

�d � dϕðiÞ ¼ jσ0ðiÞj
jσ�0ðiÞj

X
j∈hi;ji

jσ�1ðijÞj
jσ1ðijÞj

ðϕi − ϕjÞ

¼ 1ffiffiffiffi
gi

p
X
j∈hi;ji

Sij
lij

ðϕi − ϕjÞ ð5:1Þ

in terms of the discrete exterior derivative d and its dual
δ ¼ �d�. The notation σn identifies a n−dimensional
simplex3 points, lines, triangles, etc. for n ¼
0; 1;…; d and jσ�nj the d − n dual polyhedron. j � � � j is the
volume for these polyhedra. By convention jσ0ðiÞj ¼ 1.
This coincides with the natural form of the divergence as a
flux, where Sij is the volume of the dual normal. To be
concrete, in Fig. 3 (where lij ¼ jσ1ðijÞj is also indicated),
Sij is the length of the link l�ij ¼ jσ�1ðijÞj.
On our hyperbolic manifold it is natural and convenient

to replace lij and l�ij by the appropriate geodesic lengths asFIG. 10. The value of the matrix element of a chosen boundary
point i in the Schur complement H=H∂ and its boundary
neighbors j. The exponential decay signals the vanishingly small
coupling between nonlocal boundary points as a result of adding
a new layer.

3More precisely, σnði0; i1; � � � inÞ is the volume form for the
n-simplex with vertices i0; i1; � � � in with value�jσnj for even/odd
permutations of the indices. See Ref. [21] for details.
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we have already been using this intrinsic geometry for the
triangle group. To do this we need Heron’s hyperbolic
triangle area rule and the circumradius [25],

Aða;b;cÞ¼4arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh

s
2
tanh

s−a
2

tanh
s−b
2

tanh
s−c
2

r �

Rða;b;cÞ¼ arctanh

��
tanh

a
2
tanh

b
2
tanh

c
2

��
sin

Aða;b;cÞ
2

�
;

ð5:2Þ
for a general hyperbolic triangle Δða; b; cÞ in terms of the
side lengths a, b, c, with s ¼ ðaþ bþ cÞ=2. Finally, using
the Pythagorean theorem for a hyperbolic right triangle,
coshðcÞ ¼ coshðaÞ coshðbÞ, we can solve for the length of
the dual4 from a side a into the triangle a, b, c—denoted
l�ða; b; cÞ—as

l�ða; b; cÞ ¼ arccosh½coshRða; b; cÞ= coshða=2Þ�: ð5:3Þ

The above formulas allow us to calculate the weights l�ij=lij
on an arbitrary lattice.
For the first iteration of this hyperbolic refinement we

split our fundamental equilateral triangle into four sub-
triangles by bisecting each edge to half the lattice spacing:
a → a=2. The price we pay is a breaking of the Z7

symmetry at this scale so the subtriangles are neither
equilateral nor congruent to each other. This means the
FEM weights are no longer uniform.
Explicitly, the equilateral triangle at one refinement is

split into three triangles of side lengths ða=2; a=2; cÞ and
one with sides ðc; c; cÞ, where for q ¼ 7

a ¼ 2arccosh

�
cos

π

3

.
sin

π

7

�
≈ 1.091;

c ¼ arccosh
�
cosh2

a
2
− sinh2

a
2
cos

2π

7

�
≈ 0.492: ð5:4Þ

Using (5.3) we find the kinetic weight l�ij=lij between two
points i and j, which, is the factor Kij in (2.6). For a single
refinement there are only two different weights, one for
those links that are already present in the original lattice
(left image in Fig. 11), and another for those that are new in
the refined lattice (middle image in Fig. 11). These two
weights are

Kij;orig ¼
2l�ða

2
; a
2
; cÞ

a=2
¼ 0.490;

Kij;ref ¼
l�ðc; c; cÞ þ l�ðc; a

2
; a
2
Þ

c
¼ 0.643: ð5:5Þ

Note that for Kij;ref, the length l�ij is the sum of two different
lengths, one for the normal in each direction.
The rightmost image in Fig. 11 shows an example of a

lattice refinement for two refinements. In principle this
process can be applied recursively an arbitrary number of
times. For the case of a lattice with a finite number of
layers, in the limit of an infinite number of refinements we
recover the continuum theory with a cutoff. More con-
cretely, observables such as the bulk-to-bulk propagator
that are sensitive to short distances in the bulk become
closer to their continuum values as we add more refine-
ments. Figure 12 shows this is indeed the case. We
emphasize that Fig. 12 also shows that by using the correct
boundary conditions, the unrefined triangle group lattice—
even with a modest number of layers—produces remark-
ably accurate results.

FIG. 11. Refinement of the L ¼ 3, q ¼ 7 lattice. The lattice is unrefined on the left, has one refinement in the middle, and two
refinements on the right.

4The “dual from a side a into the triangle a, b, c” means
the segment from the center of a to the circumcenter of triangle a,
b, c.
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VI. FUTURE DIRECTIONS

We have presented a triangulation of AdS2 in order to
establish a framework for nonperturbative lattice field
theory methods on the hyperbolic disk H2. The
Dð2; 3; qÞ triangle group generates a lattice of equilateral
triangles that preserve an exact discrete subgroup of the
isometries. The case q ¼ 7 gives the minimum area
triangulation with a lattice spacing a that is Oð1Þ in units
of the curvature K ¼ 1=l2. Nonetheless, when introducing
ϕ4 theory we find remarkably good comparisons for
propagators, the tree-level four-point amplitude, and the
Laplacian eigenspectrum on a Poincaré disk of finite
geodesic radius. We also introduce methods to reduce
the lattice spacing by application of finite elements refine-
ment using discrete exterior calculus. We propose that this
initial lattice is sufficient for a first semiquantitative,
nonperturbative investigation of the AdS2/CFT correspon-
dence in the limit that gravity is decoupled.
We have restricted our attention to a scalar field theory in

AdS2 for simplicity, but it would be interesting to general-
ize to a wider class of field theories. The inclusion of bulk
Abelian and non-Abelian gauge theories and Dirac
Fermions should be straightforward following the approach
of Ref. [18] for de Sitter. Kähler Dirac fermions are
naturally adapted to simplicial lattices using DEC as
described in Ref. [26]. Generalizing to higher dimensions
should also be possible, and it is an interesting question
what constitutes the best choice for lattices on higher
dimensional AdS.
Ultimately, the point is to eventually do nonperturbative

Monte Carlo lattice simulations of bulk field theories, and
compute correlators in the dual boundary CFTs. A natural

first effort is to study λϕ4 theory AdS2 at strong coupling.
In that case, one could compare results for the spectrum of
the dual CFT1 to constraints from the conformal boot-
strap [27].
We also note that hyperbolic graphs are playing an

increasingly prominent role in other applications such as
tensor networks [5–7] and quantum error correction codes
[8,9]. These networks are employed in the computation of
entanglement entropies [28] for boundary field theories.
For this reason, our sketch of the triangle group algebra
may have relevance beyond the present context.
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APPENDIX A: HYPERBOLIC PLANE

In this Appendix we reproduce various results of the
hyperbolic plane.

1. Metric

There are various forms of the metric:

ds2¼l2ðdρ2þsinh2ρdθ2Þ ðGeodesic coordinatesÞ ðA1Þ

FIG. 12. The bulk-to-bulk propagator from a central source to all other points for the massless L ¼ 3, q ¼ 7 unrefined, once refined,
and twice refined lattice, respectively. The fit for Δ is derived from the infinite BC corresponding to (3.2) for the left figure and solving
the exact equation for a finite BC on the right.
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¼ 4l2

ð1 − r2Þ2 ðdr
2 þ r2dθ2Þ

�
Global coordinates∶ r ¼ tanh

ρ

2
; ρ ¼ log

1þ r
1 − r

�
ðA2Þ

¼ 4l2
dzdz�

ð1 − jzj2Þ2 ðPoincaré disk∶ z ¼ reiθÞðA3Þ

¼ l2
dwdw�

ðImwÞ2
�
Upper-half plane∶ z ¼ w − i

wþ i

�
ðA4Þ

¼ l2
dx2 þ dy2

y2
ðUpper-half plane∶ w ¼ xþ iyÞ ðA5Þ

¼ l2ð−dX2
0 þ dX2

1 þ dX2
2Þ ðEmbedding Space∶ X0 ¼ cosh ρ; X1 � iX2 ¼ e�iθ sinh ρÞ ðA6Þ

The chordal distance

dchðX;X0Þ≡ −
1

2
ðX − X0Þ2 ≡ l2

�
1 −

1

ξðX;X0Þ
�
; ξðX;X0Þ≡ −

l2

X · X0 ; ðA7Þ

is related to the geodesic distance (in units of AdS radius l) σðX;X0Þ by

coshðσÞ ¼ 1

ξ
↔ σ ¼ log

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
ξ

�
; ðA8Þ

as is easily verified by evaluating the chordal distance in geodesic coordinates between the point at ρ ¼ 0 and any other
point. The embedding space coordinates are related to the UHP coordinates by

X0 ¼
1þ x2 þ y2

2y
; X1 ¼

−1þ x2 þ y2

2y
; X2 ¼ −

x
y
; ðA9Þ

from which one can easily obtain

ξðX;X0Þ ¼ 2yy0

ðx − x0Þ2 þ y2 þ y02
: ðA10Þ

Lastly, we also mentioned that, for the Poincaré disk, the
geodesic distance between two points z and z0 can be
expressed as

σðz; z0Þ ¼ 2tanh−1
���� z − z0

1 − z�z0

����: ðA11Þ

2. Hyperbolic trigonometry

Nowwe turn to triangles,with interior angles ðα; β; γÞwith
opposite geodesic side lengths of ða; b; cÞ in units of
curvature l ¼ 1. We will be primarily interested in the case
of negative constant curvature, where αþ β þ γ < π. The
triangle area AΔ is given by (2.4), with ratios for its sides
fixed. For equilateral triangles, α ¼ β ¼ γ and a ¼ b ¼ c,
one has

cosh a=2 ¼ 1

2 sinα=2
: ðA12Þ

In this paper we are interested primarily in equilateral
triangles with α ¼ β ¼ γ ¼ 2π

q and q ¼ 7; 8;…, thus

a ¼ 2 cosh−1
1

2 sin π=q
: ðA13Þ

For right triangles with γ ¼ π=2,

cosha¼cosα
sinβ

; coshc¼cosβ
sinα

; coshc¼cotαcotβ: ðA14Þ

The last relation corresponds to the Pythagorean theorem. In
particular, consider ðα; β; γÞ ¼ ðπ

2
; π
3
; πqÞ. For the side oppo-

site the angle β ¼ π=3,

b ¼ cosh−1
cos π=3
sin π=q

¼ cosh−1
1

2 sin π=q
¼ a=2; ðA15Þ
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where a above is the geodesic length for the side of the
ðq; q; qÞ equilateral triangle, given in (A13), and also
in (2.10).

APPENDIX B: ACTION OF TRIANGLE GROUP
ON THE LATTICE

The maximally symmetric lattices we use in this paper
are irreducible representations of the proper Dð2; 3; qÞ
triangle group, so that every point in the lattice is related
to every other point by a symmetry of the lattice. Here, we
exhibit the action of this symmetry explicitly, in Poincaré
disk complex coordinates z ¼ reiθ mapped from the UHP
coordinates w ¼ xþ iy by z ¼ ðw − iÞ=ðwþ iÞ. The sym-
metry of the continuum spacetime is PSLð2;RÞ, of which
the triangle group is a discrete subgroup.
As discussed in Sec. II A, the triangle groupDðp; r; qÞ is

generated by two elements S and T satisfying

Sp ¼ 1; Tr ¼ 1; Uq ¼ 1; U ¼ ST: ðB1Þ

We are interested in the case ðp; r; qÞ ¼ ð2; 3; qÞ so that six
triangles with angles ðπ

2
; π
3
; πqÞ form a cell of an equilateral

triangle, as illustrated in Fig. 1, and our lattice is the vertices
of these equilateral triangles. We will orient our lattice so
that one vertex is at the center z ¼ 0 in Poincaré disk
coordinates, and a neighboring vertex is along the positive
real axis as in Fig. 3. The action of U on the lattice is just a
rotation by 2π=q:

U∶z → e2πi=qz: ðB2Þ

Using the map z ¼ w−i
wþi from the Poincaré disk to the UHP,

it is easy to infer the action of U on the lattice in UHP
coordinates. We can represent this action as an element of
PSLð2;RÞ as follows:

U∶w →
awþ b
cwþ d

;

�
a b

c d

�
¼

� cos πq − sin π
q

sin π
q cos πq

�
:

ðB3Þ

The action of S and T are more difficult to infer, but easy to
check once they are known. For S, its action on the UHP is
given by

S ≅
�

0 b

− 1
b 0

�
; b ¼ esech

−1ð2 sinπqÞ: ðB4Þ

Clearly, S2 ≅ 1 in PSLð2;RÞ. The action of T is simply
T ¼ US, and one can check that T3 ¼ ðUSÞ3 ≅ 1.
Finally, we can translate the action of S on the UHP to its

action on the Poincaré disk:

S∶z →
z −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosð2π=qÞ − 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosð2π=qÞ − 1

p
z − 1

: ðB5Þ

As a check, note that S takes the origin in z-coordinates to

z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosð2πq Þ − 1

q
. By (A.2), the geodesic distance

between the origin and z1 is 2 tanh−1 jz1j ¼
2 cosh−1 1

2 sinðπqÞ. This gives us an independent derivation for

the length a of the edges of the lattice, which agrees with our
previous formula (2.10). In terms of this geodesic length a,
the transformation S can be seen as a boost

S∶z →
coshða=2Þz − sinhða=2Þ
sinhða=2Þz − coshða=2Þ : ðB6Þ

Because the lattice is an irreducible representation of
Dð2; 3; qÞ, one can generate the entire lattice by starting
with one point and repeatedly acting with S and T. So for
instance, if we take our initial point to the origin of the
Poincaré disk, then acting with S generates one vertex of
the first layer. Acting with Tn for n ¼ 0;…; q − 1, this
vertex is repeatedly rotated by 2π=q to fill out the rest of the
first layer. Then, we can act with S again to generate points
on the second layer, and acting multiple times with T to fill
out the second layer, and so on.

APPENDIX C: RECURSIVE ENUMERATION ON
THE TRIANGULATED DISK

The construction of our triangulated lattice on H2 is
defined by recursively adding one layer at time starting
from r ¼ 0. Each layer has nðLÞ vertices on a periodic ring
connected by single links on the triangles between them.
The total number of links between two layers is
nðLÞ þ nðL − 1Þ. Consequently, one obtains a sum rule
by counting the number of links (or flux) through each
layer. Consider the number of vertices nðL − 1Þ at layer
L − 1. All the vertices must have exactly q neighbors. Of
the q links (per vertex) to these neighbors, two are around
the circumference of the layer, and q − 2 must either enter
from layer L − 2 or exit to layer L. This gives the sum rule,

ðq − 2ÞnðL − 1Þ
¼ ½nðLÞ þ nðL − 1Þ� þ ½nðL − 1Þ þ nðL − 2Þ�; ðC1Þ

or the two term recursion relation in (2.11),

nðLÞ ¼ ðq − 4ÞnðL − 1Þ − nðL − 2Þ: ðC2Þ

The solution is the sum of two homogeneous powers,
nðLÞ ¼ cþxLþ þ c−xL−, where

x� ¼ 1=x∓ ¼ 1

2

h
ðq − 4Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq − 6Þðq − 2Þ

p i
ðC3Þ
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are the roots of the quadratic equation x2 − ðq − 4Þxþ
1 ¼ 0. To fix the coefficients c� we need two starting
conditions. In our construction we chose the q-fold vertex
at r ¼ 0, so the initial condition is nð0Þ ¼ 0; nð1Þ ¼ q. So
the particular the solution for our D(2,3,7) lattice is

nðLÞ ¼ 7ffiffiffi
5

p ½ð3=2þ
ffiffiffi
5

p
=2ÞL − ð3=2 −

ffiffiffi
5

p
=2ÞL�: ðC4Þ

However, if we were to place a 3-fold circumcenter of the
equilateral triangle at r ¼ 0, the initial condition would be
nð0Þ ¼ 3; nð1Þ ¼ ðq − 4Þnð0Þ. An equivalent approach is
to build both initial conditions into a generating function,
NðzÞ ¼ P∞

i¼0 nðiÞzi ¼ ðnð0Þ þ zðnð1Þ þ ðq − 4Þnð0ÞÞÞ=
ððz − xþÞðz − x−ÞÞ, computing nðLÞ¼ð2πiÞ−1H dzz−1−L×
NðzÞ by contour integration.
The total number of vertices in our D(2,3,q) disk is

Vðq; LÞ ¼ 1þ
XL
i¼1

nðiÞ: ðC5Þ

By Euler’s identity for a triangulated disk, V − Eþ F ¼ 1
(zero handles and one boundary) the number of edges (E)
and faces (F) are also fixed. To include the boundary term,
it is convenient to first add a point vertex at∞, starting with
Euler’s identity for a triangulated sphere obeying V∘ −
E∘ þ F∘ ¼ 2 −H ¼ 2 and the constraint 2E∘ ¼ 3F∘. Then
it is simple to solve these two equations for E0 and F0 in
terms of V0 to find E0 ¼ 3V0 − 6; F0 ¼ 2V0 − 4. Deleting
the links between the Bðq; LÞ ¼ nðLÞ boundary sites
eliminates Bðq; LÞ edges and Bðq; LÞ faces, but only
one vertex. Therefore the number of edges Eðq; LÞ and
faces Fðq; LÞ in the disk with the point at infinity deleted
are

Eðq; LÞ ¼ 3Vðq; LÞ − 3 − Bðq; LÞ;
Fðq; LÞ ¼ 2Vðq; LÞ − 2 − Bðq; LÞ; ðC6Þ

where Vðq; LÞ is the number of vertices in the graph. One
can easily check that (C6) solves the Euler identity on
the disk.
Since all of these functions scale as xLþ for large L, we

can obtain rigorous scalings of our hyperbolic network
toward the boundary. Assuming that the layers are on
average spherical, a comparison is made between the area
of the finite disk in the continuum,

Adisk ¼ 2π

Z
ρ0

0

dρ sinhðρÞ ¼ 2πðcoshðρ0Þ − 1Þ; ðC7Þ

and the area of the triangulated lattice

Alat ¼ AΔðqÞFðq; LÞ ¼ ðπ − 6π=qÞFðq; LÞ: ðC8Þ

Matching the exponential growth for Adisk ∼ Alat we find
that

ρ0 ≃ logðxþÞL ¼ log½ðq − 4Þ=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq − 6Þðq − 2Þ

p
=2�L;
ðC9Þ

so that the effective lattice spacing between layers is

aq ¼ log½ðq − 4Þ=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq − 6Þðq − 2Þ

p
=2�: ðC10Þ

For q ¼ 7 the effective lattice spacing in ρ is a7 ¼ 0.962424,
which is consistent with the numerical estimate, c̃7 ¼ 0.919,
from the finite L extrapolation in (2.12).
With this identification of the lattice spacing the solution

for general q is written,

nðLÞ ¼ q
2 sinhðaqÞ

½eaqL − e−aqL� ¼ q sinhðaqLÞ
sinhðaqÞ

: ðC11Þ

The flat space limit, q → 6; aq → 0, gives the correct
enumeration, nðLÞ ¼ 6L, of vertices at each layer for
the triangular lattice.
Several comments are worth making. First it is interest-

ing to look at the q-dependence for aq ¼ 0.9624, 1.317,
1.567 for q ¼ 7, 8, 9, respectively. Remarkably this is the
same lattice spacing b ¼ 0.96, 1.34, 1.66 determined
numerically in Sec. III C by fitting to the Green’s function
for large AdS mass.
Next we note this recursive enumeration is general for

any triangulated planar graph. Starting from a node, each
layer is defined by single link to the next layer.
Consequently this can be applied to the coarse graining
of an ensemble of Regge calculus triangulations approxi-
mating a smooth manifold with small average values of
hq − 6i ≃ 0. To this end, rewrite the recursion relation as

n½Lþ 1� − 2n½L� þ n½L − 1� ¼ ðq − 6Þn½L�; ðC12Þ

which approaches the following continuum equation,

∂2
ρnðρÞ ≃

ðq − 6Þ
a2q

nðρÞ; ðC13Þ

in the limit with aq ≃
ffiffiffiffiffiffiffiffiffiffiffi
q − 6

p
as hqi → 6. So for ρ ≫ aq

the continuum solution nðρÞ ∼ eρ gives precisely the right
exponential growth in arc length in θ for AdS2 at fixed ρ.
Similar methods would also apply to our DEC refinement
scheme as it approaches the continuum.
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