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We propose a novel simulation strategy for Yang-Mills theories with a complex coupling, based on
the Lefschetz thimble decomposition. We envisage that the approach developed in the present work
can also be adapted to QCD at finite density and real-time simulations. Simulations with Lefschetz
thimbles offer a potential solution to sign problems in Monte Carlo calculations within many different
models with complex actions. We discuss the structure of generalized Lefschetz thimbles for pure
Yang-Mills theories with a complex gauge coupling β and show how to incorporate the gauge orbits.
We propose to simulate such theories on the union of the tangential manifolds to the relevant
Lefschetz thimbles attached to the critical manifolds of the Yang-Mills action. We demonstrate our
algorithm on a (1þ 1)-dimensional U(1) model and discuss how, starting from the main thimble
result, successive subleading thimbles can be taken into account via a reweighting approach. While
we face a residual sign problem, our novel approach performs exponentially better than the standard
reweighting approach.
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I. INTRODUCTION

The notorious sign problem hampers numerical simu-
lations of many interesting physical systems, ranging from
high energy to condensed matter systems. A sign problem
is faced in numerical calculations of statistical models
whenever the action becomes genuinely complex. Hence,
standard Monte Carlo methods and in particular importance
sampling drastically lose their efficiency with increasing
lattice volume.
Examples of theories with a sign problem include real-

time calculations in lattice-regularized quantum field the-
ories, i.e., lattice QCD in Minkowski space-time, with a
nonzero vacuum angle θ and with a nonzero baryon
chemical potential μB. For the latter two cases, many
methods have been developed that potentially circumvent
or solve this problem in the continuum limit. These
methods include reweighting [1,2], Taylor expansions
[3–5], analytic continuation from purely imaginary chemi-
cal potentials [6,7], canonical partition functions [8,9],

strong coupling or dual methods [10–13], the density of
states method [14–16], and complex Langevin dynamics
[17–21]; see [22,23] for reviews of recent developments.
However, all these methods so far face severe limitations
that restrict their applicability in the continuum limit.
In the past decade deformations of the original integra-

tion manifold into the complex domain have been intro-
duced, based on complex saddle points of the action, the
Lefschetz thimbles [24,25]. If these deformations are
chosen well, all physical expectation values obtained from
an oscillatory integral remain unchanged but the sign
problem is drastically alleviated. Thus, a numerical evalu-
ation of the theory is accessible. By definition, the
imaginary part of the action (phase of the probability
density) is stationary on the thimble. A first Lefschetz
thimble algorithm in the context of the QCD finite density
sign problem was introduced in [26]. Also for models in
condensed matter physics, the method has been studied and
applied [27–35]; for a recent review see [36]. Despite its
great potential for beating the sign problem, simulations
with Lefschetz thimbles have to overcome the following
intricacies:

(i) A parametrization of the thimble is a priori un-
known and has to be obtained as the numerical
solution of a flow equation. The parametrization and
the necessary Jacobian of the variable transforma-
tion are numerically demanding.
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(ii) The curvature of the thimble manifold introduces a
residual sign problem through the Jacobian.

(iii) In most cases, one has to include relevant contri-
butions from a large number of thimbles. Their
relative weight may give rise to a further, residual,
sign problem. In any case, the probability density
becomes multimodal.

These shortcomings have been addressed by formulating
particularly efficient methods for the calculation of the
Jacobian [37,38], by optimizing the deformation of the
integration domain either based on a model ansatz [39,40]
or by means of machine learning [34,41,42] and finally by
using tempering [31,43] and other advanced strategies to
foster transitions between thimbles and take into account
contributions from multiple thimbles [35,44,45].
In the present work we analyze the structure of the

Lefschetz thimble decomposition of pure gauge theories
with gauge groups UðNÞ and SUðNÞ and complex coupling
β. We propose to sample on the tangential manifold
attached to the thimble of the main critical point, i.e.,
the critical point with the smallest action value. As
expected, we find a full hierarchy of critical points (saddle
points) that have to be considered depending on the
coupling parameter β. We include successive subleading
saddle point contributions via reweighting. The reweight-
ing procedure is set up by using linear mappings from the
main tangential manifold to the tangential manifold
attached to the thimble of the target critical point.
Our approach has the following advantages over the

flow-based generalized Lefschetz thimble approach [30]:
(A1) During the sampling procedure, we neither have to

flow our configuration nor have to calculate a Jaco-
bian since it is constant on the tangential manifold.

(A2) As contributions from subleading thimbles are
taken into account by reweighting [45], there is no
ergodicity problem due to potential barriers between
thimbles. The reweighting procedure does also not
introduce any overlap problem since critical points
are mapped onto critical points.

The disadvantages are
(D1) Sampling on the tangential manifold rather than on

the thimble itself does not completely resolve the
sign problem; however, there is no residual sign
problem from the Jacobian [37].

(D2) The critical points need to be known.
The advantages are clearly demonstrated for the benchmark
case of an U(1) gauge theory, as summarized in Fig. 1.
There we compare our results for the real part of the
plaquette with that produced by the standard reweighting
procedure. For the same numerical costs the error bars of
our results are reduced by orders of magnitude.
This will be discussed in more detail in this work, which

is organized as follows: In Sec. II we derive necessary
formulas for our setup. Emphasis is devoted to discussing
the critical manifolds of the Yang-Mills action as well as the

Lefschetz thimbles. Moreover we explain our update and
reweighting procedures. In Sec. III we apply our algorithm
to the case of a two-dimensional U(1) gauge theory. In
Sec. IV we discuss prospect of our approach. Finally we
conclude in Sec. V.

II. FORMULATION

A. Overview

We consider the standard discretization of the Yang-
Mills action [46]

S ¼ β
X
x

X
μ<ν

�
1 −

1

2N
ðTrPμ;νðxÞ þ TrP−1

μ;νðxÞÞ
�
; ð1Þ

where Pμ;νðxÞ¼UμðxÞUνðxþμ̂ÞU−1
μ ðxþν̂ÞU−1

ν ðxÞ denotes
the elementary plaquette in the (μ, ν) plane at lattice site
x ∈ Λ where Λ ⊂ Zd. The summation is done such that
each plaquette is counted with only one orientation. The
link variables UμðxÞ are elements of the gauge group,
which we consider to be a Lie group and in particular UðNÞ
or SUðNÞ. In terms of the exponential function, we write

UμðxÞ ¼ exp

�
i
X
a

ωa
μðxÞta

�
; ð2Þ

where ta are the Hermitian generators of the corresponding
Lie algebras suðNÞ or uðNÞ. For N > 1, they satisfy the
normalization condition Tr½tatb� ¼ 1

2
δab and the Lie deriva-

tive in the direction of a generator ta is defined as
∂afðUÞ ≔ ∂

∂ω fðeiωtaUÞjω¼0. If the gauge group is U(1),
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FIG. 1. Comparison of the novel Takagi simulation method,
incorporating 32 different tangent spaces for each sample, with
standard reweighting on an 8 × 8 lattice with gauge group U(1).
We measured the real part of the average plaquette, varying
the real part of β while keeping ImðβÞ ¼ 1 constant. Both
reweighting and our approach took about the same amount of
computing time.
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we can omit the color index and write φμðxÞ instead of
the ω.
A sign problem is introduced by choosing general

complex couplings β rendering Eq. (1) complex. We aim
to update a given gauge field configuration such that the
imaginary part of the action ImðSÞ varies slowly and hence
the remaining sign problem is mild.
In order to achieve this goal the link variables are

complexified; i.e., they are allowed to take values within
the larger group GLðN;CÞ or SLðN;CÞ, respectively. By
generalized Picard-Lefschetz theory, there is a smooth
middle dimensional manifold connected to each complex
critical manifold (simply connected union of points, where
∇S ¼ 0) of the action on which ImðSÞ stays constant.
These manifolds are called Lefschetz thimbles. As already
stated, updates that stay on these thimbles are computa-
tionally very demanding and are invariably global updates
[26,30,47,48]. To reduce the computational demand, it has
been argued that one does not have to stay exactly on the
thimble in order to reduce the sign problem significantly
[40,49]. Any deformation of the original integration
domain which has the correct asymptotic behavior will
be sufficient. Here we construct an integral deformation,
which is the union of all tangential manifolds to the critical
points. As for the pure gauge theory all critical manifolds
are known, this manifold is straightforward to parametrize.
After discussing the critical manifolds in Secs. II B and II C
we discuss properties of Lefschetz thimbles and tangential
manifolds in Secs. II D and II E. Our algorithmic approach
is presented in Secs. II F, II H and II G.

B. The critical points of the Yang-Mills action

A Lefschetz thimble is generally defined to be the union
of flow lines generated by the steepest descent equation

dU
dt

¼ −
�
δS
δU

��
; ð3Þ

which end in a nondegenerate critical point of the action.
The degeneracy of critical points due to gauge symmetry
necessitates the application of Witten’s concept of gener-
alized Lefschetz thimbles [50], [3.3].
The critical manifolds can be described in terms of

plaquette variables. This is seen by examining the gradient
of the action

∂S
∂ωa

κ ðxÞ
¼−

iβ
2N

×Tr

��X
κ<ν

Pκ;νðxÞ−P−1
κ;νðxÞþPκ;−νðxÞ−P−1

κ;−νðxÞ

−
X
μ<κ

Pμ;κðxÞ−P−1
μ;κðxÞþP−μ;κðxÞ−P−1

−μ;κðxÞ
�
ta

�
:

ð4Þ

Negative signs in the subscript of the plaquette variables
refer to reversed directions in their orientation, e.g.,

Pκ;−νðxÞ ¼ UκðxÞU−1
ν ðxþ κ̂ − ν̂ÞU−1

κ ðx − ν̂ÞUνðx − ν̂Þ:
A necessary condition for a critical configuration is a
vanishing gradient of the action.
In the following we derive relations that constrain

possible plaquette values from a critical configuration.
Equation (4) vanishes ∀ a, if the matrix in round brackets
is proportional to 1 for plaquette values in SLðN;CÞ. For
plaquette values in GLðN;CÞ, the matrix has to be zero. For
a proof, see Appendix D. This criticality condition yields
relations for adjacent plaquettes sharing one link. Note that
in d dimension one link is shared by 2ðd − 1Þ plaquettes.
We exemplify the d ¼ 2 case: For plaquette values in

GLðN;CÞ, we can directly read off the relations

P1;2ðxÞ ¼ P−1
1;−2ðxÞ or P1;2ðxÞ ¼ −P1;−2ðxÞ

and

P1;2ðxÞ ¼ P−1
−1;2ðxÞ or P1;2ðxÞ ¼ −P−1;2ðxÞ: ð5Þ

If we assume that our critical configuration consists of
commuting (Abelian) link variables, i.e., if link variables
are diagonal, the above relation simplifies to

P1;2ðxÞ ¼ P1;2ðx − ν̂Þ or P1;2ðxÞ ¼ −P−1
1;2ðx − ν̂Þ; ð6Þ

with ν ∈ f1; 2g. It follows that each critical configuration
exhibits at most two distinct plaquettes values. If plaquettes
take values in SLðN;CÞ, we get, e.g., for a link in the 1̂
direction,

ðP1;2ðxÞ − P−1
1;2ðxÞ − P−1

1;−2ðxÞ þ P1;−2ðxÞÞ ¼ α1; ð7Þ

for an arbitrary α ∈ C. For the Abelian case, this equation
reformulates again to a relation between adjacent pla-
quettes. Restricting this further to the original group
SUðNÞ, i.e., the maximal torus of SUðNÞ, we find

ðImP1;2ðxÞ − ImP1;2ðx − ν̂ÞÞii
¼ ðImP1;2ðxÞ − ImP1;2ðx − ν̂ÞÞjj ∀ i; j; ν: ð8Þ

For d > 2, we obtain the same constraint on the imaginary
parts of diagonal entries of adjacent plaquettes, but natu-
rally there are more adjacent plaquettes.
From the periodic boundary condition we can derive

further constraints. Under the assumption that the relevant
critical configurations are Abelian, the product of all
plaquettes in an arbitrary two-dimensional hyperplane
Λμν must be one, i.e.,

Y
x∈Λμν

PμνðxÞ ¼ 1: ð9Þ
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C. Locality and critical manifolds

We are left with a fairly large number of critical con-
figurations, which we will boil down to a set of basis
configurations, getting the others by transpositions and
symmetry relations. The ultimate aim is to obtain a homo-
topic covering of the original integration domain ½UðNÞ�dV
or ½SUðNÞ�dV.
As a guiding inspiration, we start with a discussion of the

one-plaquette model; i.e., we just have only one plaquette
degree of freedom, as Eq. (1) is a sum of local plaquette
terms. The action is defined as

S ¼ −
β

2N
Tr½Pþ P−1�; ð10Þ

where an irrelevant constant has been omitted. The Lie
derivatives with respect to P are given by

∂aS ¼ −
iβ
2N

Tr½ðP − P−1Þta�: ð11Þ

Observations are
(i) Equation (11) vanishes for self-inverse plaquettes P

in UðNÞ. Therefore, the critical points consists only
of matrices whose eigenvalues are þ1 and −1.

(ii) For P ∈ SUðNÞ, Eq. (8) implies that the imaginary
part of all eigenvalues must be identical. For the
vanishing imaginary part, we obtain the self-
inverse elements of SUðNÞ. The constraint
det½P� ¼ 1 implies an even number of (−1) eigen-
values, denoted by Nð−Þ. For the nonvanishing
imaginary part, the center elements of SUðNÞ
are solutions. For N ≥ 6, we have roots of unity
apart from �1 with the same imaginary parts. So a
mixing of these yielding a unit determinant is a
valid solution.

Different critical points indicate different action values.
Their importance with respect to the weight factor w≡
e−ReðSÞ may be exponentially suppressed. For the one-
plaquette model we find the following hierarchy of critical
points: For P ∈ UðNÞ, we have

S ¼ −
β

N
ðN − Nð−ÞÞ: ð12Þ

The importance of a critical point thus shrinks with the
number of (−1) eigenvalues. For SU(3), we find six critical
points with three different action values:

S ¼ −β; P ¼ 1;

S ¼ −
β

2
; P ∈ fei2π3 k1; k ¼ 1; 2g;

S ¼ −
β

3
; P ∈ fdiagð1;−1;−1Þ; diagð−1; 1;−1Þ;

diagð−1;−1; 1Þg: ð13Þ

Critical points from the one-plaquette model can be used
to construct certain critical configurations for the full lattice
theory. We pick critical plaquette values from the one-
plaquette model and distribute them in accordance with
Eqs. (5) and (7) over the lattice. Each critical configuration
obtained in this way is one representative of a critical
manifold, which consists of its gauge orbit and additional
zero modes of the action. For this simple procedure we
obtain an additional constraint from Eq. (9): The product of
eigenvalues at every position over every two-dimensional
hyperplane must be one. We are therefore limited to
configurations, where the number of (−1) eigenvalues at
a given diagonal entry is even [the UðNÞ case] in every
hyperplane or in principal their overall product is one
including additional roots of unity.
Note, however, that not all critical configurations can be

found by the above prescription. Recall that Eq. (5) restricts
the plaquette values in a hyperplane at any given position to
only two possible values. We can construct a further critical
configuration by setting one (or more) plaquette eigenval-
ues at a certain diagonal entry in that hyperplane to eiϵ,
while choosing eiðπ−ϵÞ at this entry for all remaining
plaquettes in the hyperplane. Possible ϵ values are con-
strained by Eq. (9), and hence

kπ þ ðV − 2kÞϵ ¼ 2πl; ð14Þ

where k is the number of plaquettes with the entry eiðπ−ϵÞ
and V is the number of plaquettes in the hyperplane. The
2πl factor stems from the 2π periodicity. For d ¼ 2, N ¼ 1,
l is the actual topological charge. It is constant on the
thimble, since the antiholomorphic gradient flow can be
seen as an analytic continuation of the classical gradient
flow, which leaves the topological charge invariant [51].
Note, especially for k ≠ V=2, that ϵ has to be a real number,
so the critical configurations are all in the original group
space. Picard-Lefschetz theory tells us now that if the
tangent space of the thimble is not normal at this point to
the original group manifold, then the intersection number is
nonzero (in our case one). We will see that, for Imβ ≠ 0,
this is the case and they all contribute. For SUðNÞ, we have
to add the constraint that the determinant equals one,
effectively reducing the number of critical configurations.

D. The Takagi decomposition and generalized
Lefschetz thimbles

Next, we construct the tangent spaces at each critical
manifold described in Sec. II C. To that end we solve the
Takagi equation

H�ξ� ¼ λξ with λ ∈ R: ð15Þ

Here H denotes the Hessian of the action evaluated on the
critical manifold. Modes ξ associated with positive λ point
in the direction of the thimble. In the following we refer to
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such a mode as Takagi vector. Correspondingly, a mode ξ
associated with a negative λ points in direction of the
antithimble. It is called anti-Takagi vector (see, e.g., [30]).
The λ ¼ 0 vectors do not change the action and are
therefore referred to as zero modes. They result for instance
from the gauge degrees of freedom. The Hessian of the
action can be written as

∂2S
∂ωa

κ ðxÞ∂ωb
ηðyÞ

¼ β

2Nc
Tr

" X
UκðxÞ;UηðyÞ∈P

ðPþ P−1Þ

þ
X

U−1
κ ðxÞ;U−1

η ðyÞ∈P
ðPþ P−1Þ −

X
UκðxÞ;U−1

η ðyÞ∈P
ðPþ P−1Þ

−
X

U−1
κ ðxÞ;UηðyÞ∈P

ðPþ P−1Þ
!
tbta

#
; ð16Þ

where the plaquettes appear in different orientations
depending on the position of the referred link. Since by
construction we have considered only those representatives
of our critical manifolds which have diagonal links, they
are Abelian and we can permute our variables to bring all
generators to the right.
For critical configurations, where the plaquettes are

elements of the original group, the Hessian splits into a
real matrix with a complex prefactor H ¼ βM, whose
eigenvectors v and eigenvalues α can be computed. We
will denote the number of eigenvectors with α ¼ 0 as nð0Þ, as
well as nðþÞ for positive α and nð−Þ for negative eigenvalues.
For α ≠ 0, the solutions to Eq. (15) take the form

ξð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sgnðαÞβ�

jβj

s
v; ð17Þ

where the ξðþÞ (ξð−Þ) indicate the thimble (antithimble)
directions. The α ¼ 0 eigenvectors correspond to the
λ ¼ 0 solutions of Eq. (15) and can have an arbitrary
complex prefactor.
We observe that for most of our critical configurations

(exceptions are discussed in Sec. III B) the Hessian does
not change under field transformations in the direction of
these zero modes. Consequently the critical manifold
fUcrit;0

μ ðxÞg is independent of those. Therefore, we can
deduce that the projection of the subspace spanned by its
zero modes in the Lie algebra is the critical manifold itself:

�
Ucrit

μ ðxÞ ¼ Ucrit;0
μ ðxÞ exp

�
i
X
k;a

b̃kv
x;μ;a
k ðα ¼ 0Þta

�				b̃k ∈ C;

x ∈ Λ; μ ¼ 1;…; d

�
: ð18Þ

The index k enumerates the different zero eigenvectors v of
matrix M. For b̃k ∈ R, this is a compact manifold. In
complexified space with b̃k ∈ C, we have noncompact
imaginary directions; nevertheless, the manifold is still
critical. To obtain the generalized Lefschetz thimble [50],
we start with a compact submanifold (a cycle) of real
dimension nð0Þ. From there its tangent space is spanned.
The compact submanifold is commonly called gauge orbit.
At every point of this cycle, we use the α ≠ 0 Takagi
vectors to span the rest of the tangent space. Since the latter
is invariant under zero modes, a point on this tangent space
can be directly written in terms of

UμðxÞ ¼ Ucrit;0
μ ðxÞ exp

�
i
X
k;a

bkckv
x;μ;a
k ta

�
;

with bk ∈ R and ck ¼
8<
:

1; αk ¼ 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sgnðαkÞβ�

jβj ;
q

αk ≠ 0:
ð19Þ

Here the summation index k runs over all eigenvectors. The
real dimension n of the thimble thus splits into zero and
nonzero mode directions as n ¼ nð0Þ þ nðþÞ þ nð−Þ ¼
dVNg, where Ng is the dimension of the Lie algebra.
This construction can be generalized to more complicated
Hessians; see Appendix A.
If we do not conform to that construction, e.g., tilt the

real vectors by a complex factor, we lose homotopy to the
generalized Lefschetz thimble. The resulting manifold is
noncompact; see Fig. 2. However, the noncompact direc-
tions refer to zero modes; i.e., they leave the action
invariant. This corresponds to multiplying the partition

FIG. 2. Upper plot: schematic picture of the generalized
Lefschetz thimble, spanned on a compact submanifold as
proposed by Witten [50], [3.3]. Lower plot: The thimble will
exhibit infinitely many Riemann surfaces if we choose a non-
compact submanifold from the critical cylinder. In both plots the
critical cylinder is depicted in orange and the thimble in blue.
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sum with an infinite volume factor, which drops out for all
physical observables, when calculating expectation values.
The prerequisite for these observables is that they are
independent from the zero modes, i.e., that they are gauge-
invariant observables.
The global minimum among our critical manifolds is

given by fPμνðxÞ ¼ 1 ∀ x; μ < νg. Since this is a mini-
mum in the noncomplexified gauge theory, the matrixM is
positive semidefinite. As the gauge field is constant, the
complex prefactor is identical to all Takagi modes. We are
free to choose the same complex prefactor also for the real
zero modes. Since the eigenvectors ofM span the wholeRn

space and since we chose the same complex prefactor for
all directions, we can make a basis transformation to the
unit basis fe1;…; eng. Moving in one of these directions ei
corresponds to a change of a single (local) color degree of
freedom. This basis can thus be used to construct a local
update algorithm on the generalized main Lefschetz thim-
ble; see Sec. II H.
As we are interested in a single homotopic covering of our

original compact integration domain, we need to limit the
tangent spaces. It turns out that the construction of a
continuous manifold that is homotopic to the original
integration domain is the main conceptual difficulty in this
approach. For the U(1) one-plaquette model, we have only
two critical points and tangent spaces. They give, when glued
together at their intersections, a manifold homotopic to U(1);
see Fig. 3. We introduce boundaries on the main tangential
manifold by identifying intersections with the tangential
spaces of the other subleading criticalmanifolds.Wewill call
these limited tangent spaces tangentialmanifolds (TMs) from
now on. For the full lattice theory we discuss several possible
choices of boundaries throughout this work.

E. Hierarchy of critical manifolds

The choice of critical manifolds introduces a natural
hierarchy which is reflected by the values of the action.

Their importance decreases according to their weight factor
e−S with increasing action. Given our choice of critical
configurations with diagonal plaquettes from the original
integration domain [UðNÞ or SUðNÞ], we can easily
express the action in terms of the plaquette eigenvalues.
We find

S ¼ β
X
x

X
μ<ν

�
1 −

1

N

XN
k¼1

cosðϕðkÞ
μ;νðxÞÞ

�
; ð20Þ

where the ϕðkÞ
x is the angle of the kth eigenvalue of the

plaquette PμνðxÞ. These critical action values are minima of
the attached thimbles, since the real part of the action
naturally increases if one moves away from the critical
manifolds for ReðβÞ > 0 in the Takagi direction. This is
still true, if one considers the thimble tangent space
in a region around the critical manifold, limiting it

to a TM. The main critical point (ϕðkÞ
x ¼ 0 ∀ x; k) defines

the global minimum of the action in this many TMs
scenario. Consequently with increasing ReðβÞ, certain
TMs become exponentially suppressed and we obtain a
pronounced hierarchy with the main TM as leading order.
For purely imaginary values of β, every thimble contrib-
utes equally.

F. Update algorithm on a TM with a Takagi basis

Next, we discuss possible sampling algorithms that are
restricted to a single TM. Following our strategy to span
the tangent space by the Takagi vectors and real zero
modes, we readily have a parametrization at hand.
According to Eq. (19) we can express each configuration
on the tangent space by real coordinates bk, specifying a
vector in the Lie algebra. Note that for the zero modes
(α ¼ 0) we have no complex prefactor. Using these
coordinates, one can think of applying various different
update procedures on the tangent space, starting from a
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FIG. 3. Lefschetz thimbles and tangential manifolds (TMs) bounded by their intersection for the one-plaquette model at β ¼ 1þ 3i in
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single random walk Monte Carlo (crude Monte Carlo),
over a hybrid Monte Carlo to a trained flow-based neural
network [52,53]. The important steps are
(1) Choose a critical configuration, to specify the

tangent space on which to carry out the updates.
This configuration may also serve as starting
configuration.

(2) Calculate the real Hessian M and determine its
eigenpairs (αi, vi). This has to be done only once
for a given critical configuration, independent of the
coupling β.

(3) Propose a new configuration by drawing a set of
real coordinates bk. The proposed configuration is
then specified according to Eq. (19). Perform an
accept or reject step based on the real part of the
action difference between the old and new con-
figuration. If the proposed configuration is outside
the boundaries of the TM, we assign to it a zero
probability and reject the proposed configuration,
recording the old configuration like in the Metropo-
lis algorithm.

(4) Finally take the remaining sign problem into account
by reweighting with the imaginary part of the action.

G. Leading and subleading thimbles

So far, we have restricted the sampling to a single TM
attached to a specific critical configuration. Ultimately, we
are interested in sampling a compact manifold that is
homotopic to the original integration domain. In the
standard thimble decomposition, the combination of vari-
ous Lefschetz thimble leads, by definition, to a multimodal
probability distribution. Sampling such distributions by a
Monte Carlo procedure is difficult. As a solution, a
tempered sampling procedure was proposed [31,43].
Another possibility are independent Monte Carlo processes
on each thimble. However, in this case the relative weights
between thimbles need to be known. One possibility to
infer these values is by using prior knowledge of a physical
observable for normalization [44].
Here we construct a homotopic manifold by piecewise

definition, where we use the TMs as building blocks. As
our construction deviates from the thimble decomposition
especially close to the boundaries, we do not have infinite
action barriers between the patches. Hence, a sampling
procedure that proposes configurations across boundaries
would be in principle possible. However, we found that it is
most convenient to sample the main tangent space with a
single Monte Carlo chain and take all remaining patches
into account via reweighting. We exemplify this procedure
for a system of two TMs, τ0 and τ1. Calculating expectation
values over this extended region requires the relative weight
Z1=Z0. Here Z1 denotes the partition function correspond-
ing to the subleading tangential manifold and Z0 refers to
the corresponding quantity on the main tangential mani-
fold. It holds that

hOiτ0∪τ1 ¼
R
τ0
dUO½U�e−S½U� þ Rτ1 dUO½U�e−S½U�R

τ0
dUe−S½U� þ Rτ1 dUe−S½U�

¼ hOiτ0 þ ðZ1=Z0ÞhOiτ1
1þ ðZ1=Z0Þ

: ð21Þ

Following the method proposed in [45], we construct a
mapping

f∶ τ0 → τ1: ð22Þ

It maps configurations from one of the two patches to the
other. With this mapping we can express the ratio Z1=Z0 as

Z1

Z0

¼
R
τ0
dUe−S½fðUÞ�þS½U� det½df�e−S½U�R

τ0
dUe−S½U�

¼ he−S∘fþS det½df�iτ0 : ð23Þ

It remains to find a suitable f. Since we consider only
tangent spaces, f is linear and can be constructed as a basis
transformation from the Takagi basis of τ0 to τ1. This is
described in the following.
A point on the tangent space is described by its ωa

μðxÞ
components and for simplicity suppose that the zero vector
ωa
μðxÞ ¼ 0 ∀ a; x; μ is the main critical point of τ0 and

ωa;crit;ð1Þ
μ ðxÞ a critical configuration belonging to the gauge

orbit of τ1. Take the complex orthogonal basis cð0Þk vð0Þk for

τ0 and c
ð1Þ
k vð1Þk for τ1 with its base point being ω

a;ð1Þ
μ ðxÞ. We

write a point on τ0 as

ωa
μðxÞ ¼

X
k

cð0Þk vð0Þ;ðx;μ;aÞk bk ≕
X
k

Wð0Þ
ðx;μ;aÞ;kbk ð24Þ

and by for example constructing f by projecting the same
parameters bk onto the basis of τ1, we can write the
mapping as

ωb;ð1Þ
ν ðyÞ¼f½ωa;ð0Þ

μ ðxÞ�
¼ωb;crit;ð1Þ

ν ðyÞþ
X

k;ðx;μ;aÞ
Wð1Þ

ðy;ν;bÞ;kðWð0ÞÞ−1k;ðx;μ;aÞωa
μðxÞ:

ð25Þ

Additional transformations like aligning the two bases (see
Sec. III F) to improve the mapping can be incorporated.
Since f is a linear mapping, the Jacobian det½df� is a
constant factor. As the eigenbases of the real HessianM are
orthogonal and can be chosen to have determinant one, the
Jacobian depends consequently only on the different sets of
complex prefactors ck of the Takagi vectors. These depend
in turn only on the sign of the eigenvalues αk. Therefore we
find for the Jacobian
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det½df� ¼
ð
ffiffiffiffiffiffi
−β�
jβj

q
Þn

ð−Þ
τ1

ð
ffiffiffiffiffiffi
þβ�
jβj

q
Þn

ðþÞ
τ0

−nðþÞ
τ1

; ð26Þ

where nðþÞ and nð−Þ are the number of positive and
negative eigenvalues, respectively, of the real Hessian M
(see Sec. II D) at the respective patch. Here we assumed that
τ0 is the patch attached to the main critical manifold having
only positive eigenvalues being the global minimum. If the
patches τ0 and τ1 are of different size, one may introduce an
independent scale parameter to the mapping f, which is
then also reflected as a factor in the Jacobian. As the main
tangential manifold is usually the largest, such a factor is
not necessarily needed in practice. It may however be used
for optimization purposes.

H. Alternative updates on the main tangent space

As outlined in Sec. II D we can sample the main tangent
space by just setting each complex factor ck to

ffiffiffiffiffiffiffiffiffiffiffiffi
β�=jβjp

. In
practice this tilts every link, since in this case all eigen-
values are positive or zero. Having identical complex
prefactors, we can perform a basis transformation of our
coordinates to the unit basis. Therein each coordinate
corresponds to a single gauge degree of freedom. This
allows for applying a local heat bath or Metropolis
algorithm. The situation discussed here is shown at the
bottom of Fig. 2. The unbounded critical manifold in
imaginary direction has to be dealt with.
We limit the plaquette values in accordance with the

intersection points of the tangent spaces in the one-
plaquette model, creating TMs (see Fig. 3). Similarly as
before, we define the region outside the boundary to have
zero probability.
But since link variables can still diverge in an imaginary

direction we have to apply a second limit or just record
variables, which are unaffected by the zero modes. In our
theory, these are the plaquettes variables. An alternative is
to adopt gauge cooling [54] to make this problem milder. A
severe limitation of this method stems from the fact that
only observables invariant under all zero modes can be
measured. Taking pure Yang-Mills theory it is not possible
to measure the Polyakov loop. It is invariant under gauge
transformations but not under a global zero mode. The
latter is represented by changing all links in the same
direction and amounts to leaving the plaquettes and there-
fore the action invariant.

III. APPLICATION TO A TWO-DIMENSIONAL
U(1) GAUGE THEORY

In this section we apply the above outlined method to
two-dimensional pure U(1) gauge theory with periodic
boundary conditions. Recently, complementary studies on
this theory with a sign problem have appeared in the

literature. In [55] the complex Langevin method is
employed. The complex action here is caused by a nonzero
vacuum angle. On the other hand in [56] the theory with a
complex gauge coupling is investigated by means of the
path-optimization method.

A. The effective degrees of freedom

We formulate the theory in terms of its effective degrees
of freedom.
Equation (9) can be verified easily by noting that every

link appears twice in all plaquettes. Hence the links cancel
each other when being multiplied altogether. Consequently,
one plaquette can be expressed in terms of all others. The
action of the two-dimensional theory is rewritten as follows:

S ¼ −
β

2

� X
ðx;tÞ≠ð0;0Þ

ðP1;2ðx; tÞ þ P−1
1;2ðx; tÞÞ

þ
� Y

ðx;tÞ≠ð0;0Þ
P−1
1;2ðx; tÞ þ

Y
ðx;tÞ≠ð0;0Þ

P1;2ðx; tÞ
��

; ð27Þ

neglecting constant terms. The last term is called the toron
term. One can reformulate the full theory in terms of these
plaquette variables having a reduced partition sum, which
gives the same expectation values for observables that are
invariant under zero modes

Z¼
Z Y

ðx;tÞ≠ð0;0Þ
dθðx;tÞ

×exp
�
β=2

X
ðx;tÞ≠ð0;0Þ

ðeiθðx;tÞ þe−iθðx;tÞÞ
�

×exp

�
β=2

�
e−i
P

ðx;tÞ≠ð0;0Þθðx;tÞ þei
P

ðx;tÞ≠ð0;0Þθðx;tÞ
��

: ð28Þ

For a full derivation see Appendix B. The periodic boundary
conditions are represented by the toron term we placed at
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FIG. 4. Thimble hierarchy depending on ReðβÞ in the approxi-
mation on a 4 × 4 lattice at constant ImðβÞ ¼ 1.
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position (0,0). Replacing this term by an independent
plaquette term is equivalent to employing open boundary
conditions. This shall be used as an approximation to the
theory in the following. With open boundary conditions the
integral factorizes in plaquette variables yielding

Z ¼
�Z

Uð1Þ
dPeβ=2ðPþP−1Þ

�
V
¼ ½I0ðβÞ�V: ð29Þ

The plaquette expectation value is then

1

2
ðPþ P−1Þ

�
¼ I1ðβÞ

I0ðβÞ
; ð30Þ

which is exactly the same as for the one-plaquette model.
There is no volume dependence. Since the difference
between periodic and open boundary conditions vanishes
in the infinite volume limit, this is the expected value.
We construct the approximation scheme by successively

including TMs as integration domains. Thereto we split the
integral according to the critical points P ¼ �1 of the one-
plaquette model and get

Z ¼
�Z

τ0

dPeβ=2ðPþP−1Þ þ
Z
τ1

dPeβ=2ðPþP−1Þ
�
V

≕ ½Z0 þ Z1�V ¼
XV
k¼0

�
V

k

�
ZV−k
0 Zk

1: ð31Þ

We can map this to the lattice by k denoting the number of
plaquettes being −1 at the critical configuration. ðVkÞ is the
number of such combinations on the lattice. Equation (31)
allows one to calculate approximate values for the com-
parison with numerical simulations (see Fig. 4).
Complementarily, there exists a formal solution for the

full lattice theory with periodic boundary conditions
involving no approximations. We can write the partition
sum as

Z ¼
Z

dU expð−S½U�Þ ¼
Xþ∞

n¼−∞
½InðβÞ�V; ð32Þ

being a series in modified Bessel functions InðβÞ, where V
is the number of plaquettes [57,58]. The leading order of
this series corresponds to our approximation. The following
orders take finite volume effects into account and yield the
exact result provided that the series converges for the given
value of β.

B. Critical manifolds and their hierarchy

For an even number k in Eq. (31) the critical configu-
rations in the approximation and in the original lattice
theory coincide. In contrast, for odd k, this does not hold
due to the periodic boundary conditions. However, it is

possible to construct critical manifolds being (arbitrarily)
close to the corresponding configurations in the approxi-
mation. For odd k < V=2 − 1 we set k plaquettes to eiðπ−ϵÞ

and the rest to eiϵ such that Eq. (14) is satisfied. This leads
to the choice

ϵ ¼ π

V − 2k
; ð33Þ

which we refer to together with the critical configura-
tions for even k as basis configurations from now on.
Furthermore as discussed in Sec. II C, Eq. (14) gives rise to
a multiplet of configurations being related to the basis
configurations by a symmetry. To see this, note that these ϵ
configurations have topological charge ⌈ k

2
⌉. Now, we can

change the topological sector by adding or subtracting 2π
V−2k

from ϵ. We observe that, if jϵj < π=2, the Takagi vectors do
not change. Consequently we can apply this transformation
directly to measured plaquettes values by multiplying them
with e�2π=ðV−2kÞ, where the sign is chosen whether we have
a eiðπ−ϵÞ or eiϵ plaquette. This transformation does not only
apply to odd k but also to even k. By this procedure, we
reach 2ðV=4 − ⌈ k

2
⌉Þ critical manifolds in different topo-

logical sectors for odd k and 2ðV=4 − 1 − k
2
Þ þ 1 for even k,

respectively.
Second, we can go from the kth TM to the (V − k)th TM

by changing the plaquettes from the critical configuration
according to

Pcrit
1;2ðxÞ → −ðPcrit

1;2ðxÞÞ−1: ð34Þ

The corresponding real Hessian M → ð−MÞ changes sign
and has the same eigenvectors and zero modes. Only the
nonzero eigenvalues α → ð−αÞ change sign. Consequently
and using the fact that eigenvectors are unique up to a
nonzero scalar multiplication we get the Takagi vectors for
the (V − k)th TM by multiplying the Takagi vectors from
the kth TM by

ffiffiffiffiffiffi
−1

p ¼ i. For k ≠ V=2; V=2� 1, all zero
modes do not change the plaquettes. Writing a plaquette
configuration on the kth tangent space as Pcrit

1;2ðxÞeiΔφðxÞ, we
can write the mapping to the configuration on the opposite
(V − k)th tangent space as

Pcrit
1;2ðxÞeiΔφðxÞ → −ðPcrit

1;2ðxÞÞ−1e−ΔφðxÞ; ð35Þ

having again a transformation for directly measuring the
plaquette values. Having these, the same procedure to reach
the different topological sectors can be applied to these
plaquette values.
An exception is the case k ¼ V=2, which has an addi-

tional zero mode, which can be parametrized by

P12ðxÞ ¼ eiφ and P12ðxÞ ¼ eiðπ−φÞ; ð36Þ
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for V=2 plaquettes on either side. This transformation
necessarily leaves the action invariant while changing
actual plaquette values. The configurations, where all
plaquettes are �i, which would be assigned to k¼V=2�1
in our scheme are included in this critical manifold and are
therefore being left out. This transformation reduces the
combinatorial factor to 1

2
ð V
V=2Þ.

The critical manifolds form a hierarchy depending on
their associated value of the action

S

8<
:

¼ 2kβ; k even;

≈β
�
2kþ π2

2ðV−2kÞ2

�
; k odd:

for the basis configurations. Depending on ReðβÞ the
critical manifolds differ in importance for the partition
sum since on thimbles and suitably bounded TMs the real
part of the action is minimal at the critical manifold.
Consequently, if β is purely imaginary, every thimble or
TM contributes equally. Otherwise one can obtain an
approximate result by taking only a few thimbles or
TMs into account as the others are exponentially sup-
pressed. Figure 5 illustrates the hierarchy of the critical
manifolds considering subleading TMs up to order k ¼ 4
restricted to the basis configurations. The simulation setup
used for the shown data is described in detail in Secs. III D
and III F.

C. Ensuring homotopy

To ensure global homotopy, we need to make sure that
the TMs form a patchwork covering ½Uð1Þ�2V . Therefore,

we have to create boundaries, which match each other
exactly. Strictly speaking, this is not generally possible in
higher dimensions, since there is no theorem that tells us
that these tangent spaces have to intersect in this manner as
it is the case for thimbles. But we can at least get close to
something alike minimizing the systematic error introduced
by homotopy violations as much as possible.
Our approach comes with thinking in effective degrees of

freedom being plaquette variables with a toron term as
shown in Sec. III A. Looking at the different (subleading)
tangent spaces, we have applied several schemes, each
based on different criteria:
(1) Real plaquette boundaries based on the one-

plaquette model.—These are shown in Fig. 3. The
plaquette variables take values in a region bounded
by the intersection points of the two tangents in the
one-plaquette model. In the full lattice theory, we
still find these intersection points for the transitions
in configurations where k is even. We therefore limit
the real parts of the plaquettes by these intersections.
For ϵ ≠ 0 configurations the transition looks differ-
ent and we take it into account by a shift of the
boundaries. Having transition points does not mean
that we get full homotopy. We would need to
identify intersections with real dimension 2V − 1
which do not necessarily exist.

(2) Imaginary plaquette bounds.—The limit can also be
applied to the imaginary part of the plaquettes
preventing them from drifting to far off in an
imaginary direction. This allows a larger space to
be explored than for real plaquette bounds. More-
over these boundaries are far easier to implement
since all real critical manifolds are part of the
original group and we only need one value to specify
these boundaries.
However, this does not care so much for homo-

topy like the real boundaries, since the plaquettes in
the full lattice theory only approximately lie on the
same tangent spaces found in the one-plaquette
model. Consequently overlapping TMs are not
excluded in the case of imaginary plaquette boun-
daries, while the real plaquette boundaries still
guarantee that there is no overlapping.

(3) Action boundaries.—On a Lefschetz thimble, there
exists a coordinate system with the critical point at
the center, where SR is a simple rising quadratic
function (Lemma 2.2 in Ref. [59]). Since the TM is
close to it in the vicinity of the critical manifold, we
observe the similar rising behavior up to some
distance illustrated for the local action in Fig. 6.
We limit the plaquette variables by the local maxima
of SR. Since configurations are exponentially sup-
pressed by it and the fact that this distance goes
beyond the intersection points mentioned before
allows a larger part of configuration space to be
explored, while the systematic error stays small.
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FIG. 5. Comparison of the ratio of the partition functions
ZR;j=ZR;0 ¼ hexpð−ðSR;j − SR;0ÞÞi0, i.e., the relative weights
between the lowest four subleading and the leading order TMs
(basis configurations). The index j labels the subleading orders
and the subscript 0 indicates that the expectation value is
calculated on the configurations measured on the leading order
tangential surface, as in [45]. Here, the lattice is of size 4 × 4,
ImðβÞ ¼ 1 and spherical boundaries are used. The data reflect
very well the hierarchy described in Sec. III B. As a comparison
the functions expð−SR½Pcrit�Þ are added to the plot in light colors.
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(4) Spherical boundaries.—This is the most
conservative choice being independent from the
coordinate system. We observe that wandering along
the Takagi vector with the highest eigenvalue α ¼ 8
(this is true for all even lattice sizes including and
greater than 2 × 2) for the main TM turns it into the
ultimate subleading TM (whose critical configura-
tion has all plaquettes equal to −1) intersecting with
its counterpart (α ¼ −8) from there. This can be
understood in terms of the effective degrees of
freedom as a diagonal connection in a hypercube.
The intersection marks a corner in the cube con-
taining the main TM. We now choose the radius of
the inner sphere of the cube to make sure we do not
intersect with other TMs, where we can assign a
radius in the same way. We get

rmax ¼
ffiffiffiffiffiffi
2V

p
π

4
ffiffiffiffiffiffiffiffiffiffiffiffi
V − 1

p Re

ffiffiffiffiffiffi
β

jβj

s
ð37Þ

as the radius of the effective sphere (the distance
from the critical manifold is calculated in terms of
the nonzero eigenmodes).

A disadvantage is that here the curse of dimen-
sionality hits directly into the calculations, since
with rising dimension, the volume of the inner
sphere becomes negligible in comparison to the
cube and we explore only small portions of con-
figuration space. One can counter that by scaling the
radii paying the price of overlapping TMs introduc-
ing another systematic error.

(5) ImðSÞ boundaries.—The idea here is that the TMs
go into the other TMs by their intersections. So the
imaginary part of the action of one TM has to change
continuously to the one of the other (on thimbles
ImS is constant and changes abruptly at their
singular intersection, which in our case is at infinity).
Having a pronounced hierarchy allows us to set the
boundaries using this feature by, e.g., allowing one
tangent space only to vary in an interval of ImS and
the other one on a subsequent interval.
Problematic is the fact that we have intersections

of one TM with multiple TMs in different orders. So
here we possibly limit the explored space too much.

All in all, we have found a combination of real plaquette
boundaries with ϵ shifts and action boundaries most
promising. To that end we calculate the former and correct
them, if they extend further than the action boundaries,
which is especially important for TMs with high ϵ.
Otherwise we can fall into the regions with negative action,
where the TM is far away from the thimble; see Fig. 6.

D. Algorithm for sampling on the main TM

In the following we explain the sampling method to
generate configurations on the main tangential surface.
(1) Diagonalize the Hessian at the main critical point

where all plaquettes are þ1.
(2) Construct the parametrization of the main TM sur-

face. The eigenvectors from (1) with nonzero ei-
genvalues correspond to thimble directions. Tilt
those as described in Eq. (17) above to obtain the
Takagi basis fξii ¼ 1;…; 2Vg.

(3) Define boundaries. Before running the simulation,
specify the configuration space to be sampled by
choosing suitable boundaries of the main TM. For
possible choices see Sec. III C.

(4) Run the Monte Carlo simulation. A vector on the
leading TM in the Takagi basis is given by ξ ¼ ϕiξi
with ϕi ∈ R. Beginning with a cold start at the
critical manifold, i.e., ϕi ¼ 0 ∀ i ¼ 1;…; 2V sam-
ple the ϕi via the Metropolis algorithm using
proposals Δϕi ∼N ð0; σÞ. Here, a sweep is defined
by applying a Metropolis accept-reject step for every
direction i. The Metropolis updates are constructed
such that the following conditions are satisfied:
(i) Configurations with SR < 0 are being rejected.
(ii) A proposed configuration outside of the speci-

fied boundaries is being rejected.

FIG. 6. Real part of the action of a single plaquette on the
tangent space of the thimble. At the top, we look at the situation
ϕ ¼ 0, i.e., P ¼ 1 and P ¼ −1 like in the one-plaquette model. In
the plot below, we applied a shift ϵ ¼ π=4 to see the behavior of
shifted plaquettes, which we encounter in critical configurations
with nonzero topological charge.
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The measured configurations are stored to be used for the
reweighting on the subleading TMs. This part of the
algorithm is described in detail in Sec. III F.
Like already mentioned in Sec. II H, there is also a local

update algorithm (see Appendix C).

E. Numerical results on the main TM

Looking at the approximation in Fig. 4, we expect the
main tangent results to roughly follow the zero order
approximation. For high βR, the other tangent spaces are
exponentially suppressed allowing for convergence to the
full result. Noticing that the full result for this range is
slightly above the one-plaquette model due to finite volume
effects, we hope to see the same from the simulation, which
is the case; see Fig. 7. This proves thatwe do not accidentally
just simulate the one-plaquette model by our procedure.
Another important point is that the sign problem should

be reduced in comparison with standard reweighting, which
is also the case (see second plot in Fig. 7).
So, we can expect for high enough βR (e.g., here larger

than 3) correct results for simulations at complex beta with
a lesser sign problem. To extend this range, we need to take
the subleading TMs into account; see Sec. III F.
For standard phase reweighting, the average sign should

exponentially decrease with increasing space-time volume.
Since our simulation works similarly just on a tilted space,
we see the same happening here. The difference is that our
average sign is higher than the one for standard reweighting
and the slope is less steep; see Fig. 8. Therefore, higher
lattice volumes are more easily accessible in our approach.
Indeed, we needed to increase statistics for the reweighting
simulations, while the number of samples for the different
volumes in the TM simulations remained the same.

F. Reweighting of subleading TMs

For the reweighting, the observable from Eq. (21)
becomes

hOi ¼ he−iSIOþPn
k¼1mk det½dfk�eSR−S∘fkO∘fkiτ0

he−iSI þPn
k¼1mk det½dfk�eSR−S∘fkiτ0

; ð38Þ

where n denotes the number of subleading tangent space
orders one wants to incorporate, mk are the multiplicities
and fk are linear transformations projecting the main TM τ0
onto the subleading tangent space τk. This is done by
aligning the Takagi basis using the real vectors vj to
calculate a transformation matrix

γðkÞij ¼ ðvðkÞj ÞTvð0Þi ; ð39Þ

which we apply to the subleading Takagi basis

zðkÞi ¼
X
j

γðkÞij c
ðkÞ
j vðkÞj ; ð40Þ

where the cðkÞj are the complex prefactors from Eq. (17).

The zðkÞi are now our new aligned basis vectors for τk.
Therefore we can directly project from the leading to
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FIG. 8. The average sign plotted for increasing volume at
constant β ¼ 2þ 1.4i.
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accident a Cartesian product of the one-plaquette model. On the right is the average sign compared with standard reweighting.
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subleading tangent spaces. As already mentioned in
Sec. II G, depending on the other boundaries of the
subleading tangent space, one can apply scaling factors
to the variables. We observed that for βR; βI ≥ 0 the main
TM is always larger than (or equally large as) the other
subleading TMs. Instead of rescaling, we use an indicator
function χτkðUÞ for the boundaries: If the projected space
fkðτ0Þ ¼ τ̃k ⊇ τk, then we haveZ

τk

dUgðUÞ ¼
Z
τ̃k

dUgðUÞχτkðUÞ ð41Þ

with gðUÞ an arbitrary function on the subspace. So, we
simply set the integrand to zero in the reweighting process,
if the projected configuration is out of bounds.
We use several symmetries to incorporate the different

topological sectors for each order as well as a mapping

from the kth to the (V − k)th TM already discussed in
Sec. III B. In the end, we have to diagonalize only V=2
Hessians to get every contribution. For practical reasons,
we subsumed the V=2 TM under order V=2 − 1 and V=2
using a turn by φ ¼ π of the additional zero mode (36).
During the reweighting process, we need to check for every
contribution if it is in its predefined boundaries, since they
also differ over topological sectors (see Sec. III C).
We applied the procedure on an 8 × 8 lattice at constant

ImðβÞ ¼ 1 and compared different orders of reweighting
with the Bessel NLO result (see end of Sec. III A). The
results are shown in Fig. 10 as well as the average sign in
Fig. 9 depending on how many orders of TMs one takes
into account. The boundaries chosen are real plaquette
boundaries based on the one-plaquette model, since they
prevent overlapping of the TMs, while allowing a large
space to be explored.

IV. DISCUSSION

As we have stated already in the introduction, the
particular choice of our deformation has two important
advantages:
(A1) Due to the flatness of the patches, a parametrization

in terms of real coordinates and basis vectors is
easily constructed. It is thus straightforward to
realize a sampling procedure on a particular patch.
In contrast to the generalize Lefschetz thimble
approach, there is no need to solve a flow equation
to propose a new configuration nor to evaluate a
Jacobian at each sampling point.

(A2) Since our coordinate systems originate from a
critical configuration on each patch, which is the
configuration that receives the largest weight on that
patch, a reweighting from one patch to another is
possible without any severe overlap problem.
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FIG. 9. Absolute values of the expectation values of the phase
of the reweighting factor of Eq. (38) depending on the number of
included tangent spaces and β in comparison with a standard
reweighting simulation.
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In the case of a pronounced hierarchy among critical
configurations, we have demonstrated in the case of the
2D U(1) theory that a well-controlled approximation
scheme emerges if successive contributions from sup-
pressed patches are taken into account.
On the other hand, there are two—as we believe, less

severe—disadvantages:
(D1) Sampling on the flat tangential manifold rather than

on the curved thimble does not erase the sign
problem completely. It would be interesting to
analyze whether the optimal deformation of the
original manifold, which minimizes the combined
sign problem of the action on the integration domain
and the one introduced by the Jacobian, is closer to
the thimble decomposition or our decomposition
from flat patches. We leave this for future inves-
tigations. We have demonstrated that the resulting
sign problem in the case of the 2D U(1) gauge theory
is, although sill exponential in volume, very mild
compared to the standard reweighting procedure.

(D2) In order to construct our deformation, we need to
know all relevant critical configurations. Depending
on the space-time dimension, volume and gauge
group, this can be a very large amount of critical
configurations.

It is one of the main results of this work that we have
identified a large number of critical configurations,which are
characterized by specific distributions of plaquettes across on
the lattice. In particular, we have demonstrated that we can
chose these critical configuration from the maximal torus of
the original gauge group. We have shown further that there
exist a large number of degenerate critical configurations and
patches due to lattice symmetries. For the reweighting
procedure we thus need to take only one of these patches
into account if appropriate combinatorial multiplicity factors
are used. The results look promising and systematic errors by
nonhomotopy vanish with growing lattice size.
We want to emphasize here that the choice of a complex

coupling β is not at all a pathological choice. In the limit of
a purely imaginary coupling, the kernel of the discussed
partition sum can be seen as the real-time propagator of the
theory. For the evaluation of real-time correlation functions
in a thermal bath, the Schwinger-Keldysh formalism is
usually applied. Our sampling strategy might also be
applied to the Schwinger-Keldysh contour, even though
in this case an additional sign problem arises from the edges
of the contour.
Moreover, the critical configurations we have identified

here are not only critical in the case of the Yang-Mills
action with complex coupling β. The same configurations
remain critical when we introduce fermionic matter fields
with a chemical potential μ. In this case the effective action
might be written as

Seffðμ;UÞ ¼ βSGðUÞ − Tr lnDðμ;UÞ: ð42Þ

Hence, the action gradient is the sum of a contribution
from the gauge [SGðUÞ] and the fermionic part [SFðμ;UÞ]
of the action. That the action gradient of the gauge part
vanishes at our critical configurations has been discussed in
detail above. The fermionic contribution to the gradient is
given as

∂SF
∂ωa

νðxÞ
¼ iTr½D−1ðeμδν;0UνðxÞ−e−μδν;0U†

νðxþ ν̂ÞÞta�: ð43Þ

For those critical points that are not only chosen from the
maximal torus of the gauge group but are also constructed
from center elements of the original gauge group, the
fermionic contribution vanishes as well. As all link vari-
ables are proportional to the unit matrix, the (none sparse)
inverse of the fermion matrixD−1 contains N × N diagonal
blocks which are also proportional to the unit matrix. We
conclude that the matrix multiplying the generator ta is
proportional to the unit matrix and as such the whole
expression vanishes. We thus hope that our strategy might
also prove useful in this case, i.e., the field theoretical
description of dense matter, including QCD at net-baryon
number density.

V. CONCLUSION

We have put forward here a novel nonperturbative lattice
approach for Yang-Mills theories with a complex gauge
coupling β. The approach is based on a deformation of the
original integration domain of the theory into complex
space. Guided by the Lefschetz thimble decomposition of
the partition sum, we have chosen a new integration
domain. This is constructed piecewise from patches of
tangential manifolds to the relevant Lefschetz thimbles.
For the numerical implementation we have chosen to set

up a Monte Carlo procedure on the main tangent space
only. All further contributions from other patches are taken
into account by reweighting. We have tested our approach
by applying it to the case of 2D U(1) gauge theory. Here, it
far outperforms our benchmark simulation with standard
reweighting; see Fig. 1.
Based on this observation we plan to apply our approach

to general UðNÞ and SUðNÞ gauge groups in 4D. While our
approach has shown to feature an exponentially better
performance than standard reweighting, it remains to be
shown that the sign problem stays numerically manageable
also in these cases. We hope to address these questions in a
forthcoming publication. Moreover, we envisage simula-
tions of fermionic matter fields at finite chemical potential
as well as real-time lattice theories with expectation values
along the Schwinger-Keldysh contour.
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APPENDIX A: GENERAL COMPLEX HESSIANS

If we cannot write the Hessian as H ¼ βM, with a real
matrix M as in Sec. II D, we consider real and imaginary
parts of the Takagi Eq. (15) separately (see, e.g., [30]):

ðHR − iHIÞðvR − ivIÞ ¼ λðvR þ ivIÞ

⇔

�
HR −HI

−HI −HR

��
vR

vI

�
¼ λ

�
vR

vI

�
: ðA1Þ

The matrix is by definition symmetric and we have only
real eigenvalues, positive λ for Takagi and negative λ for
anti-Takagi vectors. The zero modes span again the whole
critical manifold. Since for compact gauge groups we are
only interested in the real subspace, which are naturally
compact, we impose vI ¼ 0 and get

HRvR ¼ 0 and HIvR ¼ 0: ðA2Þ

This implies that the critical manifold is spanned by the
mutual zero modes of the real and imaginary parts of the
Hessian. The strategy therefore is to calculate the zero
modes either parts and test, if these are also zero modes of
the other part. The number of real zero modes and of the
Takagis have to add up to the overall dimension.

APPENDIX B: THE TORON FORMULATION

We reformulate the theory as mentioned in Eq. (27).
Then we gauge all timelike directions into one link. This
reduces the degrees of freedom by NxðNt − 1Þ.
Next, we define new lattice variables θ and express

the links [in their algebra representation ϕμðx; tÞ] in
terms of these. Thereto we write direction vectors
[φ⃗ðx; tÞ; φ⃗2ðxÞ; φ⃗1ð0Þ] in link space indicating how the

new variables change the links in their respective direction.
This yields the following parametrization:

ϕμðy; tÞ ¼
X

ðx;τÞ≠ð0;0Þ
θðx; τÞðφ⃗ðx; τÞÞϕμðy;tÞ

þ
X
x

θ2ðxÞðφ⃗2ðxÞÞϕμðy;tÞ þ θ1ð0Þðφ⃗1ð0ÞÞϕμðy;tÞ

ðB1Þ

for each remaining link. The θðx; tÞ shall denote plaquette
variables, while the θ2ðxÞ and θ1ð0Þ denote zero modes at
space slices or the zero time slice. We will integrate them
out later. All spacelike links can be replaced by plaquette
variables

φ⃗ðx; tÞ ¼ ϕ̂1ðx; t mod NtÞ − ϕ̂1ðx; t − 1 mod NtÞ;
t ∈ f2;…; Ntg; ðB2Þ

and a zero mode

φ⃗2ðxÞ ¼
XNt−1

t¼0

ϕ̂1ðx; tÞ;

for each space slice. We use the notation ϕ̂ to denote a unit
vector in link space corresponding to the variable ϕ.
We have V variables, which are linear independent, since

we can express each spacelike link by

ϕ̂1ðx; tÞ ¼
1

Nt

 
φ⃗2ðxÞ þ

Xðt−1Þ mod Nt

k¼1

kφ⃗ðx; kÞ

−
Xð−tÞ mod Nt

l¼1

lφ⃗ðx; Nt − lÞ
!
: ðB3Þ

We replace the remaining Nx timelike links with plaquette
variables

φ⃗ðx; 0Þ ¼ ϕ̂2ðx; 0Þ þ ϕ̂1ðx; 1Þ
− ϕ̂2ðxþ 1 mod Nx; 0Þ − ϕ̂1ðx; 0Þ; ðB4Þ

for x ∈ f1;…; Nx − 1g and the zero mode

φ⃗1ð0Þ ¼
XNx−1

x¼0

ϕ̂2ðx; 0Þ:

Using the fact that we already have a basis transform for the
spacelike links, we can express the remaining timelike links
in terms of these variables in a similar fashion to Eq. (B3).
This proves that our variable transformation is invertible
and therefore we have a nonzero Jacobian. By the para-
metrization (B1) and the toron action (27), we rewrite the
partition sum to
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Z¼
Z

dθ1ð0Þ
Y
x

dθ2ðxÞ
Y

ðx;tÞ≠ð0;0Þ
dθðx;tÞdet

�∂ϕ⃗
∂θ⃗
�

×exp

�
β=2

X
ðx;tÞ≠ð0;0Þ

ðeiθðx;tÞ þe−iθðx;tÞÞ
�

×exp

�
β=2ðe−i

P
ðx;tÞ≠ð0;0Þθðx;tÞ þei

P
ðx;tÞ≠ð0;0Þθðx;tÞÞ

�
: ðB5Þ

Since our transformation is linear, the Jacobian det½∂ϕ⃗∂θ⃗� is
constant and drops out when taking expectation values. The
same is true for the integrals over the zero modes. They do
not change the plaquettes and the action. Their contribution
is given by a constant factor. Therefore they can be dropped
without changing expectation values. This reduces our
degrees of freedom by Nx þ 1 to V − 1. The remaining
effective degrees of freedom θðx; tÞ are called toron
variables.

APPENDIX C: A LOCAL UPDATE PROCEDURE
FOR A TWO-DIMENSIONAL U(1)

GAUGE THEORY

We parametrize this tangent space by arclength.
Therefore, we have

φμðxÞ ¼
ffiffiffiffiffiffi
β�

jβj

s
λμðxÞ; ðC1Þ

where λμðxÞ ∈ R. We limit this space by the intersections
seen in the one-plaquette model (see Sec. II D). Therefore
we have

ΛðxÞ ¼ λ1ðxÞ þ λ2ðxþ 1̂Þ − λ1ðxþ 2̂Þ − λ2ðxÞ

∈ ½−πR;þπR�; with R ¼ Re

ffiffiffiffiffiffi
β�

jβj

s
: ðC2Þ

We enforce this limit by setting the probability for
proposed configurations outside this limits to zero, effec-
tively rejecting them in the Metropolis step. The algorithm
is according to that
(1) Go through the lattice by a checkerboard pattern and

pick accordingly λμðxÞ.
(2) Make a proposal ΔλμðxÞ ∼ Gaussðμ ¼ 0; σÞ and

calculate the two adjacent plaquettes ΛðxÞ, Λðx −
ν̂Þ with ν ≠ μ.

(3) If ΛðxÞ and/or Λðx − ν̂Þ is not within the boundaries,
set e−S

0 ¼ 0. Otherwise calculate the change of the
action ΔSðP1;2ðxÞ; P1;2ðx − ν̂ÞÞ

(4) Do a Metropolis accept-reject step and begin again
from 1.

Since our links can wander off into the imaginary
direction, we perform gauge cooling steps; see i.e., [54].

Locally for a site x we can analytically compute an
optimum for the gauge transformation VðxÞ. Therefore
we look at the unitarity norm

F ½UμðxÞ� ¼
X
x;μ

Tr½U†
μðxÞUμðxÞ þ ðU†

μðxÞÞ−1U−1
μ ðxÞ − 2I�;

ðC3Þ

which simplifies in our case UμðxÞ ¼ eiϕμðxÞ to

F ½ϕμðxÞ� ¼
X
x;μ

½e−2ϕI
μðxÞ þ e2ϕ

I
μðxÞ − 2�

¼
X
x;μ

½jUμðxÞj−2 þ jUμðxÞj2 − 2�; ðC4Þ

depending only on the absolute value of the links. How a
gauge transformation changes (C3) depends therefore only
on its absolute value. For a local VðxÞ we get the local
minimum at

jVðxÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

μðjUμðxÞj−2 þ jUμðx − μ̂Þj2ÞP
μðjUμðxÞj2 þ jUμðx − μ̂Þj−2Þ

4

s
; ðC5Þ

which we apply between sweeps.
Alternatively one does not need to record the link values

and we restrict ourselves to just recording the plaquette
values, which are naturally bounded. We apply the update
steps only in terms of changes in links affecting their
neighboring plaquettes.
Reweighting to different orders of TMs can also be

applied here by injectively mapping the plaquette configu-
rations to link configurations and aligning the TMs bases to
the unit basis, corresponding to the individual links. Given
a set of plaquette values θðx; tÞ in the algebra, a possible
mapping to link variables ϕμðx; tÞ would be
(1) For t ¼ 0 and all x ∈ 0;…; Nx − 1 set

ϕ1ðx; 0Þ ¼ θðx; 0Þ:

(2) For t ¼ 1, all x, set

ϕ1ðx; 2Þ ¼ −θðx; 1Þ:

(3) Successively for t ∈ 2;…; Nt − 2 and all x, set

ϕ1ðx; tþ 1Þ ¼ ϕ1ðx; tÞ − θðx; tÞ:

(4) The last time slice t ¼ Nt − 1 is assigned succes-
sively by setting the first timelike link ϕ2ð0; tÞ ¼ 0
and for x ∈ 1;…; Nx − 1 to

ϕ2ðx; tÞ ¼ ϕ2ðx − 1; tÞ þ θðx − 1; tÞ þ ϕ1ðx − 1; 0Þ
− ϕ1ðx − 1; tÞ:
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The last plaquette value θðNx − 1; Nt − 1Þ is automatically
taken into account up to a factor of 2π by the periodic
boundary conditions. Now the values obtained for the
algebra of the links are used to map onto the sublead-
ing TMs.

APPENDIX D: PROOF OF THE MATRIX
IDENTITY

We consider the system of equations

Tr½MTa� ¼ 0 ∀ a; ðD1Þ

where M is a general N × N complex matrix and Ta are
generators of the lie algebra suðNÞ or uðNÞ. We show that
Eq. (D1) holds, iff M ¼ c1 for an arbitrary c ∈ C for
suðNÞ and M ¼ 0 for uðNÞ.
First note that the Ta also form the basis of the complex

lie algebras suðN;CÞ, glðN;CÞ. This is done by allowing
complex coefficients effectively removing the anti-
Hermiticity of the elements. Consequently elements are
only defined by being traceless for slðN;CÞ and we
have glðN;CÞ ≃ CN×N .
The statement does not depend on the basis of the Lie

algebra: Let Ta and Sa be two basis of the same Lie algebra.
We show that

Tr½MTa� ¼ 0 ∀ a ⇔ Tr½MSa� ¼ 0 ∀ a ðD2Þ

by expanding Sa ¼Pb c
a
bT

b and using the linearity of the
trace

Tr½MSa� ¼
X
b

cabTr½MTb� ¼ 0: ðD3Þ

Especially the statement is equivalent to

Tr½MT� ¼ 0 ∀ T ∈ slðN;CÞ or ∀T ∈ glðN;CÞ: ðD4Þ

Note that the backward direction is trivial, since Tr½c1T� ¼
cTr½T� ¼ 0 for T being traceless and Tr½0T� ¼ Tr½0� ¼ 0
for T ∈ glðN;CÞ.
For the forward direction we use the more general

statement (D4). For T ∈ slðN;CÞ, suppose first Mij ≠ 0
for i ≠ j. Then we can choose Tlk ¼ δljδki, which is
obviously traceless and have

Tr½MT� ¼
X
k;l

MklTlk ¼
X
k;l

Mklδljδki

¼ Mij ≠ 0: ðD5Þ

ForMii ≠ Mjj; i ≠ j we take Tlk ¼ δliδki − δljδkj, which is
also traceless, and have

Tr½MT� ¼
X
k;l

MklTlk ¼
X
k;l

Mklðδliδki − δljδkjÞ

¼ Mii −Mjj ≠ 0: ðD6Þ

Since i and j were arbitrary M ¼ c1 for some c ∈ C.
For T ∈ glðN;CÞ ⊃ slðN;CÞ, T is not traceless any-

more and can also be, e.g., 1, which excludes the M ¼ c1
case and M has to be zero to fulfill the statement.
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