
 

Hybrid stars can be self-bound
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Based on the properties of uniform nuclear matter at the nuclear saturation density and basic
thermodynamic relations, we first restudy the composition of matter on the surface of normal neutron
stars and hybrid stars. It is found that hybrid stars are composed of uniform hadronic matter on the surface
rather than heavy nuclei. Then we use the Walecka model and the self-consistent NJL model to describe the
equation of state of low-density hadrons and quark matter at high densities respectively. The P-interpolation
method is employed to connect the equation of state at the extreme densities to study hybrid stars. As a result,
we find that the obtained hybrid star mass-radius relation and tidal deformability meet the requirements of the
latest astronomical data. More importantly, we find that the hybrid stars we obtained can be self-bound rather
than gravitationally bound, which is completely different from previous related studies.
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I. INTRODUCTION

Neutron stars are some of the densest manifestations of
massive objects in the Universe. Remarkable progresses
have been made in neutron-star physics, covering frommany
directions [1–11] and providing new observational windows
into the microscope physics of dense strongly interacting
matter. First, as the discovery of massive neutron stars, i.e.,
PSR J0348þ 0432 [12] with 2.01� 0.04 M⊙, many mod-
els with a soft equation of state (EOS) are excluded because
they can not support such massive stars. Second, x-ray
observations provided much more precise measurements of
the radius [13–15], such as 11.0þ0.9

−0.6 km for the 1.4-solar-
mass neutron stars in Ref. [15]. Third, due to the gravita-
tional wave detection, the binary neutron star (BNS) merger
event GW170817 [10] supplies constraints on the tidal
deformability, Λ < 800 for the 1.4-solar-mass neutron stars,
which rules out models with much stiff EOS. These
astronomical observations give us new ways of inferring
both equilibrium and dynamical properties of neutron stars.

Although people have accumulated a lot of astronomical
observational data about neutron stars, people still have
great controversy about the internal structure of neutron
stars. At present, it is generally believed that there are three
types of neutron star structure models. The first is to assume
that the neutron star is composed of hadronic matter, and
there is no asymptotically free quark matter inside. The
second is to assume that when the core density of a
traditional neutron star is large enough, a hybrid star/mixed
star with a core of quark matter will be formed [16–18]. The
third is the so-called “strange quark matter” star. Following
the argument from Witten [19] that strange quark matter is
more stable, the existence of quark star is discussed by
many authors [20–25]. In recent years, many authors have
proposed the possible existence of two-flavor quark stars
[26,27]. As discussed in Ref. [28], two-flavor quark matter
can be the stable ground state for the baryon number
A > 300 after taking the bulk effect into account. In this
study, we mainly discuss the so-called hybrid star, that is,
the outer region of the compact star is composed of uniform
hadronic matter, and the inner core is composed of
asymptotically free nonstrange quark matter.
It is generally believed that the surface pressure and

baryon density of ordinary neutron stars and hybrid stars are
zero, and the region of 0.3 − 0.5 n0 is made of inhomo-
geneous hadronic matter in a “pasta” phase [6–9,29], where
n0 is the nuclear saturation density. As the baryon number
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density goes beyond 0.5 n0, the nuclei begin to coalesce into
the uniform neutron matter. The thermodynamic properties
of strongly interacting matter can be effectively illustrated in
the mass-radius diagram. For instance, the EOS of free
particles requires no particles should exist at zero pressure.
Hence, the mass-radius diagram under such an EOS shows
that as the mass of a compact star decreases [16–18], the
radius of the compact star grows, which reflects the fact that
a small mass can no longer constrain a cluster of particles,
and they tend to expand into the whole space. However, for
self-bound particles, the EOS will be quite different, and the
extremely large radius of the mass-radius diagram naturally
vanishes. In this case, for a small mass object, although the
gravity itself might be too weak to constraint the particles,
the self-bound feature ensures that all particles will be
restricted inside the boundary. It explains why quark stars
have different mass-radius relation as compared with neutron
stars and hybrid stars [18,21].
The main motivation of this paper is to try to use the

known properties of the strongly interacting matter at the
nuclear saturation density n0 and some basic thermodynamic
relationships to readdress the properties of the strongly
interacting matter at low density and then to study hybrid
stars. According to the fact that the density of nuclear matter
saturates at n0, the energy per baryon E=A at n0 has a
minimum value ðE=AÞmin ¼ μ0 [30] (see below), which is
exactly the baryon chemical potential. It implies that the
density converges directly to n0, where the pressure is zero,
while states with the density less than n0 are unstable.
Otherwise, the most stable state will be replaced by such a
state. Unlike the past picture of hybrid stars where the
pressure vanishes as the density becomes zero, the uniform
hadronic matter at large densities is stable to be self-bound
now. However, it seems contradictory that the most stable
state of nuclear matter is the iron nucleus, which, with a
density lower than n0, are not supposed to be stable. In fact,
the statement that iron nucleus is the most stable state is
attributed to the fact that the bulk effect (Ev ¼ −16 MeV),
the surface energy (Es ¼ 18A−1=3 MeV), and the Coulomb
repulsion (Ec ¼ 0.7Z2A−4=3, where Z is the number of
protons), impose a huge influence on E=A for a finite baryon
number A. On the contrary, for neutron stars, the baryon
number A is large enough so that the bulk effect is
insignificant and the strong interaction dominates. Under
this situation, the uniform hadronic matter appears only
when the baryon number density is larger than n0.
Due to the fact that uniform hadronic matter is the most

stable state of strongly interacting matter, neutron stars or
hybrid stars without inhomogeneous hadronic matter on the
crust are possible to exist in the Universe. With the self-
bound hadronic matter on the surface, a small mass compact
star will have a limited radius, and it is different from the
mass-radius relation of classic neutron stars and hybrid stars
that have increasing radius with decreasing mass.
This paper is organized as follows. In Sec. II, the reason

that enormous asymmetric hadronic matter is more stable
than iron nuclei is presented. In Secs. III and IV, The

Walecka model and a self-consistent NJL model are
engaged for the description of hadronic matter and quark
matter, respectively. In Sec. V, The P-interpolation method
is employed to smoothly connect the EOS between
hadronic matter and quark matter, and the mass-radius
relations are illustrated, which satisfy the astronomical
observations for massive neutron stars. In Sec. VI, our
conclusions are presented.

II. THE MOST STABLE STATE

Since we can not derive the properties of cold dense
matter at finite density from the first principles of QCD, the
experiments of nuclear matter at nuclear saturation density
n0 provide us the most reliable constraints on the strongly
interacting matter. First of all, the energy per particle has a
minimum value at n0,

∂ε=n
∂n

����
n0

¼ 0; ð1Þ

here ε is the energy density of cold dense matter, and n is
the baryon number density. Besides, with the thermody-
namical relation of

ε ¼ −Pþ μn; ð2Þ

and combining Eq. (1) and Eq. (2), we have

Pðn0Þ ¼ 0: ð3Þ

Substituting Eq. (3) into Eq. (2), we get the baryon
chemical potential μ0 at the nuclear saturation density n0,

μ0 ¼
�
ε

n

�
min

: ð4Þ

As long as the chemical potential μ is lower than μ0, the
baryon number density should be zero,

nðμÞ ¼ 0; for μ < μ0: ð5Þ

If the baryon number density nðμÞ is nonzero at μ < μ0,
then because εðμÞ=nðμÞ > εðμ0Þ=nðμ0Þ so that

−
PðμÞ
nðμÞ þ μ > μ0 > μ; ð6Þ

we would have

PðμÞ < 0; for nðμÞ > 0; μ < μ0; ð7Þ

which is unstable. Hence, the baryon number density is
expected to be zero until the chemical potential μ shifts to μ0
where it is the most stable state. Once the chemical potential
reaches μ0, the baryon number density discontinuously
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jumps up to n0. As a result, we conclude that the baryon
number density does not gradually grow from zero but
appears suddenly to n0.
Since the vacuum pressure is usually divergent and could

not be directly measured, people usually assume that the
vacuum pressure is equal to zero [31]. In fact, with the
universal zero-temperature finite-density pressure relation-
ship [16–18,32,33],

PðμÞ ¼ Pðμ ¼ 0Þ þ
Z

μ

0

nðμ̃Þdμ̃; ð8Þ

and considering the experimental data at the nuclear
saturation density of the strongly interacting matter
Pðμ0Þ ¼ 0 and Eq. (5), the vacuum pressure becomes

Pðμ ¼ 0Þ ¼ −
Z

μ0

0

nðμ̃Þdμ̃ ¼ 0; ð9Þ

which is model independent as well. It implies that the no-
sea approximation [31] is not necessary but is constrained
by the nature.
A question is aroused concerning what is μ0 for the

strongly interacting matter. To answer the question, we
need to consider the binding energy defined as the energy
per baryon [30],

ε

n
¼ MN − ðNMN − EÞ=N ¼ MN − E0; ð10Þ

whereMN is the mass of nucleon, E=V ¼ ε, N=V ¼ n, and
the binding energy E0 ¼ ðNMN − EÞ=N. Because the most
stable state has a minimum μ0, the binding energy E0 in
turn becomes the maximum value. Empirically, we know
that the most stable state is the iron nucleus with N ¼ A ¼
56 and E0 ¼ 8 MeV, where N and A are particle number
and baryon number, respectively. For a nucleus with finite
size, the bulk effect plays a crucial role in the binding
energy. In the core of the nucleus where particles are
isotropic, the electromagnetic interaction is weak and can
be omitted as comparing with the strong interaction. So, the
central density of the nuclei is approximately n0. However,
the situation changes on the surface of the nucleus, where
the strong interaction is absent from the outside. Hence, the
electromagnetic interaction can no longer be ignored,
which leads to the bulk effect of hadronic matter with
finite size. The stability of nuclei is thus prominently
influenced by the bulk effect. The Weizsacker formula
tells us that [30]

E0 ¼ a1 − a2
1

A1=3 − a3Z2
1

A4=3 ; ð11Þ

where a1 ≈ 16 MeV, a2 ≈ 18 MeV, a3 ≈ 0.7 MeVand Z is
the number of protons. Thus, for the nuclear matter with a
finite size, E0 goes up to the maximum value at A ¼ 56,

E0 ≈ 8.7 MeV and μ ¼ μ0 ≈ 931 MeV, so that the iron
nucleus becomes the most stable state. Nevertheless, the
radius of a massive neutron star is of the order of 10 km,
and the hadronic matter on the surface of neutron stars is
insufficient as comparing with the total baryon number A.
Therefore, the bulk effect is ignorable. Although the real
phase structure on the surface remains unknown, the stable
condition can provide some constraints. For a hybrid star,
the outer layer is composed of hadronic matter and the inner
core is composed of quark matter. They must coincide in
the middle-density region. As the density goes down, the
quark matter in the core gradually transforms into the
uniform hadronic matter through the deconfinement, and
then the density of uniform hadronic matter stops declining
when the pressure is zero, corresponding to the stable
density n0. No more structures are necessary to cover the
uniform hadronic matter.

III. WALECKA MODEL

Following other researchers, we use the Walecka model
to describe the hadronic matter [1,9,29,31,34–39],

L ¼ ψ̄ði=∂ −MN þ gσσ − gωωγ0 − gρρτ3γ0Þψ

þ 1

2
ð∂μσ∂μσ −m2

σσ
2Þ − 1

3
bMNðgσσÞ3 −

1

4
cðgσσÞ4

−
1

4
ωμνω

μν þ 1

2
m2

ωω
2 −

1

4
ρμνρ

μν þ 1

2
m2

ρρ
2

þ 1

2
Λg2ρg2ωρ2ω2; ð12Þ

where gσ , gω, gρ are the nucleon coupling constant for σ, ω
and ρ mesons, b and c are the coupling constants for the
self-interactions of σ mesons. ωμν and ρμν are defined as

ωμν ¼ ∂μων − ∂νωμ ð13Þ

ρμν ¼ ∂μρν − ∂νρμ: ð14Þ

The gap equations are obtained by variation of the
Lagrangian,

M�
N ¼ MN − gσσ; ð15Þ

μ�p ¼ μp − gωω −
1

2
gρρ; ð16Þ

μ�n ¼ μn − gωωþ 1

2
gρρ; ð17Þ

m2
σσ þ bMNg3σσ2 þ cg4σσ3 ¼ gσns; ð18Þ

m2
ωωþ Λg2ωg2ρρ2ω ¼ gωðnn þ npÞ; ð19Þ

m2
ρρþ Λg2ωg2ρω2ρ ¼ 1

2
gρðnn − npÞ; ð20Þ
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where

ns ¼ 2Nf

Z
d3p
ð2πÞ3

M�
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þM�
N
2

p ðf− þ fþÞ; ð21Þ

n ¼ 2Nf

Z
d3p
ð2πÞ3 ðf

− − fþÞ: ð22Þ

Here f� ¼ 1
1þexp½βðEp�μÞ� is the fermion distribution, and

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM�

N
2

p
. The thermodynamical potentials are

required to illustrate which phase is more stable at a certain
situation. Then we have

Ω ¼ −2Nf

Z
d3p
ð2πÞ3 fT lnð1þ exp½−βðEp þ μÞ�Þ

þ T lnð1þ exp½−βðEp − μÞ�Þg

−
1

2
m2

ρρ
2 −

1

2
m2

ωω
2 −

1

2
Λg2ρg2ωρ2ω2

þ 1

2
m2

σσ
2 þ 1

3
bMNm3

σσ
3 þ 1

4
cm4

σσ
4: ð23Þ

Following Ref. [31], we take the parameters as MN ¼
939 MeV, mσ ¼ 550 MeV, mω ¼ 783 MeV, mρ ¼
770 MeV, b ¼ 7.950 × 10−3, and c ¼ 6.952 × 10−4. We
further take g2σ=4π ¼ 6.003, g2ω=4π ¼ 5.948, gρ ¼ 4.583
and Λ ¼ 8.431, then the binding energy is obtained as
E0 ¼ 16.317 MeV. And other features at the saturation
point are shown in Table I.
The baryon number density is shown in Fig. 1. Different

colors in the figure represent the three solutions of gap
equations from Eqs. (15)–(20) with different initial values.
Unlike the usual picture of free particles that the density
increases with the growing chemical potential, the density
of red solutions declines as the chemical potential
increases. In fact, it indicates a liquid-gas phase transition
by the Maxwell construction. In order to obtain the physical
EOS of uniform hadronic matter, stable solutions must be
distinguished from unstable ones. For this purpose, the
thermodynamical potential of uniform hadronic matter is
presented in Fig. 2. It is shown that the red solutions always
have a higher thermodynamical potential, and thus it can
not be the most stable states. As the chemical potential
grows, the blue solutions shift to the black one. The
intersection between blue and black solutions implies the
position of a first-order phase transition, μ ¼ 923 MeV, as

indicated by the Maxwell construction in Fig. 1. Therefore,
in Fig. 1, the density of uniform hadronic matter has a
singularity at μ0 ¼ 923 MeV. At low chemical potentials,
no particles can be excited from the vacuum, but the density
directly jumps to n0 ¼ 0.155 fm−3 as the chemical poten-
tial reaches μ0. Besides, to show that such solutions are
indeed stable, more details about the solutions are shown in
Fig. 3, where the pressure as a function of the baryon
number density is plotted. Apparently, for the red solutions,
we have ∂P=∂n < 0. It clearly shows that this is an
unstable state. On the contrary, the black solutions are
physical and stable. To sum up the above analysis, the
Walecka model is consistent with the deduction in Sec. II
that the baryon number density jumps from zero to the
nuclear saturation density n0 when the pressure is zero, and
the matter with a baryon number density less than n0 is
unstable and could not exist.

TABLE I. The empirical and theoretical value at nuclear
saturation density.

n0ðfm−3Þ K (MeV) Esym (MeV) L (MeV)

MFT 0.155 258.213 30.8098 80.3535
Empirical 0.16� 0.01 240� 20 31.7� 3.2 58.7� 28.1

FIG. 1. The baryon number density as a function of the
chemical potential with different initial values.

FIG. 2. The thermodynamical potential as a function of the
chemical potential with different initial values.
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In order to describe the hadronic matter in hybrid stars,
the electronic and chemical equilibriums should be
included,

μp þ μe ¼ μn; ð24Þ

μp þ μμ ¼ μn; ð25Þ

np − ne − nμ ¼ 0: ð26Þ

As shown in Fig. 4 and Fig. 5, the thermodynamical
properties under electronic and chemical equilibriums
are similar to the case without such conditions, but
the zero pressure point moves from μ0 ¼ 923 MeV to
μ0 ¼ 937 MeV. Correspondingly, the baryon number den-
sity moves from n0 ¼ 0.155 fm−3 to ρ0 ¼ 0.1 fm−3.

IV. THE SELF-CONSISTENT NJL MODEL

The standard Lagrangian of the two-flavor NJL model
[40–48] with chemical potential is

L ¼ ψ̄ðiγμ∂μ −m0 þ μγ0Þψ þ G½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�;
ð27Þ

where G is the four-fermion coupling constant, m0 is the
current quark mass matrix and τ is the pauli matrix. The
NJL model as an effective field theory can not be solved by
the perturbation method. The mean field approximation has
to be employed for thermodynamical properties of quark
matter [49],

Leff ¼ ψ̄ðiγμ∂μ −m0 þ 2Gσ þ μγ0Þψ −Gσ2; ð28Þ

where σ ¼ hψ̄ψi is the quark condensate. The effective
quark mass is obtained as

M ¼ m0 − 2Gσ: ð29Þ

The quark condensate is derived by setting stationary point
of the thermodynamical potential of quark matter with
respect to the effective quark mass to be zero,

σ ¼ hψ̄ψi ¼
Z

d4p
ð2πÞ4 Tr½SðpÞ�; ð30Þ

where SðpÞ represents the dressed quark propagator, and
the trace operates on the Dirac, flavor and color space. Here
it should be noted that the NJL model does not possess the
property of confinement. Normally, it is believed that the
chiral phase transition and phase transition of deconfine-
ment happen at the same time. Thus, the scalar condensate

FIG. 3. The pressure as a function of the baryon number density
with different initial values. The grey line corresponds to zero
pressure.

FIG. 4. The thermodynamical potential as a function of the
chemical potential under electric and chemical equilibrium.

FIG. 5. The pressure as a function of the baryon number density
with different initial values. The grey line corresponds to zero
pressure.
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manifests the chiral phase transition along with the
deconfinement.
Since we only concern about the situation of finite

chemical potential at zero temperature. The quark con-
densate is

σ ¼ −2NcNf

Z
d3p
ð2πÞ3

M
Ep

½1 − θðμ − EpÞ�; ð31Þ

where Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
. The Fierz-transformation of the

four-fermion interaction in the two-flavor NJL model is

F ¼ 1

8Nc
½2ðψ̄ψÞ2 þ 2ðψ̄ iγ5τψÞ2 − 2ðψ̄τψÞ2 − 2ðψ̄iγ5ψÞ2

− 4ðψ̄γμψÞ2 − 4ðψ̄iγμγ5ψÞ2
þ ðψ̄σμνψÞ2 − ðψ̄σμντψÞ2�; ð32Þ

where color terms are neglected. We only keep the scalar
term and the vector term from the Fierz-transformed four-
fermion interaction. As the Fierz transformation is just a
mathematical technique, the original Lagrangian and Fierz-
transformed Lagrangian can be combined at any propor-
tions. The weighting factor α reflects the competition
between scalar interaction channels and vector interaction
channels [24,26,27,50–53].

LR ¼ ð1 − αÞLþ αLF; ð33Þ

where L is the original Lagrangian and LF is Fierz-
transformed Lagrangian. However, this situation is differ-
ent when we employed the mean field approximation,
because the Fierz-transformation and mean-field approxi-
mation are not commutative,

M ¼ m0 − 2G

�
1 − αþ α

4Nc

�
σ; ð34Þ

μ0 ¼ μ −
G0α
Ncπ

2
hψ†ψi; ð35Þ

where G0 ¼ 2Gð1þ 1
4Nc

Þ
ð1−αþ α

4Nc
Þ. It is clear that the gap equations are

affected by α [52], and the vector interaction between
quarks becomes dominant with the increase of α. We will
show that the parameter α is crucial to the EOS of quark star
and can be constrained from astronomical observations.
As indicated by the divergence of quark condensates, the

three-momentum cutoff is usually adopted. But 5–10 n0 of
the central density of hybrid stars corresponds to quark
chemical potential over 700 MeV. In this region, the θ
function of the equation is malfunctioning, because the
quark chemical potential is beyond the cutoff of the
momentum. We have the mathematical identity,

1

An ¼
1

ΓðnÞ
Z

∞

0

dττn−1e−τA →
1

ΓðnÞ
Z

∞

τUV

dττn−1e−τA;

ð36Þ
where τUV is set to regularize the divergence. Thus the
proper-time regularization is employed, and the quark
condensate now can be altered into the form of

σ ¼ −2NcNf

�Z
∞

τUV

dτ
M
τ2

e−τE
2
p −

Z
d3p
ð2πÞ3

M
Ep

θðμ − EpÞ
�
:

ð37Þ
In our calculations, the parameters will be fixed as m0¼
5.0MeV, τUV¼1092−2MeV, and G0¼3.086×10−6MeV−2,
which fit the pion decay constant and pion mass at zero
temperature and chemical potential [27].
Similar to the hadronic matter, quark matter should be in

electronic and chemical equilibrium as well,

μu þ μe ¼ μd; ð38Þ
μu þ μμ ¼ μd; ð39Þ

2

3
nu −

1

3
nd − ne − nμ ¼ 0: ð40Þ

Due to the asymmetry between u-quark and d-quark in the
beta equilibrium system, the pressure of quark matter is
given as [32,33]

Pðμu; μdÞ ¼ Pðμu ¼ 0; μd ¼ 0Þ þ
Z

μu

0

ρuðμ̃u; μd ¼ 0Þdμ̃u

þ
Z

μd

0

ρdðμu; μ̃dÞdμ̃d: ð41Þ

Because no free quarks are observed in nature, following
the MIT bag model, the vacuum pressure, Pðμu ¼ 0; μd ¼
0Þ in Eq. (41), is set to make the pressure of quark matter
appears at 2 times of nuclear saturation density 2n0, where
the deconfinement happens,

Pðμ ¼ 0Þ ¼ −
Z

μð2n0Þ

0

ρdμ̃; ð42Þ

where μð2n0Þ ¼ 1029 MeV, which is derived from the
Walecka model.

V. HYBRID STARS

To obtain a smooth EOS of hybrid star, an interpolation
approach to connect the hadronic matter at low densities
and quark matter at large densities is employed. In
Refs. [54–56], the P-interpolation and ϵ-interpolation
approaches in the P-ρ and ε-ρ plane are adopted. In this
paper, the P-interpolation on the P-μ plane is employed
with an extra parameter αI introduced as in Refs. [16–18],
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PðμÞ ¼ PHðμÞf−ðμÞ þ PQðμÞfþðμÞ; ð43Þ

f� ¼ 1

2

�
1� tanh

�
μ − μ̃

αIΓ

��
: ð44Þ

Here, PH and PQ represent the pressures of hadronic matter
and quark matter respectively. The interpolation functions
f� are introduced to make the region of deconfined phase
transition smoothly shifting. It is usually assumed that the
deconfinement happens at 2 n0 and finishes at 4–7n0 [3].
So, the region of window are set from 2 n0 to 4 n0, μ̃ − Γ ≤
μ ≤ μ̃þ Γ (Fig. 6), where μ̃ and Γ are set as the chemical
potential corresponding to the particle number density at 3
and 1 times of nuclear saturation density respectively, for
the reason that no single EOS of hadronic matter or quark
matter alone is reliable to describe the deconfinement.
Taking into account the thermodynamical relation of
Eq. (2), the energy density in such a region is

εðμÞ ¼ εHðμÞf−ðμÞ þ εQðμÞfþðμÞ þ Δε; ð45Þ

Δε ¼ μðPQ − PHÞgðμÞ; ð46Þ

where gðμÞ ¼ 2
αIΓ

ðeY þ e−YÞ−2 and Y ¼ ðμ − μ̃Þ=ðαIΓÞ.
With the above interpolation function, the constituent

fractions for neutron, proton, electron and quark are
defined as

XðiÞ ¼ ρi
ρn þ ρp þ ρe þ ρμ þ ρq

; i ¼ n; p; e; μ; q;

ð47Þ
where ρ is the baryon or lepton number density and the
subscripts of n, p, e, μ and q stand for neutrons, protons,

electrons, muons and quarks respectively. The correspond-
ing results for different α ’s are shown in Fig. 7. As the
density increases, hadronic matter transforms into quark
matter. Note the muon is also present, but its fractions are
all below 1%, hence not plotted. (The muon number density
is generally suppressed as compared to electron as leptons
are treated as free fermion gas here.) The discontinuities in
these curves are artifacts of our interpolation scheme. The
good thing is that the jumps at these discontinuities are
indeed insignificant in magnitude. αI ¼ 0.17 is assumed in
Eq. (44), so the hadronic matter fraction declines from 0.8
to 0.2. If αI decreases further, the tidal deformability of the

FIG. 6. The pressure as a function of the chemical potential
with different α. The black line is the pressure of hadronic matter,
and the colorful lines are for quark matter. The two vertical grey
lines represent the window between 1029 MeV and 1272 MeV,
corresponding to 2 n0 and 4 n0, where deconfinement happens.

FIG. 7. The particle fraction of protons (p), neutrons (n),
electrons (e) and quarks (q) as a function of the baryon number
density.
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1.4-solar mass compact star will exceed the upper limit
from astronomical observations [10].
By employing such an interpolation, the overall EOS

covering all the density ranges can be calculated. The result
is shown in Fig. 8.
The sound velocity can be calculated from the EOS as

C2
s ¼

dP
dϵ

: ð48Þ

The sound speed can reflect the stiffness of the EOS. The
results are illustrated in Fig. 9. We see that as α grows, the
velocity also becomes larger, which means a stiffer EOS.
Therefore, a stronger vector interaction can support a larger
pressure.

Now that the EOS of hybrid stars has been achieved, the
Tolman-Oppenheimer-Volkoff equations (TOV) can be
adopted (as G ¼ c ¼ 1) to solve the structure of the
compact star,

dP
dr

¼ −
ðεþ PÞðM þ 4πr3PÞ

rðr − 2MÞ ; ð49Þ

dM
dr

¼ 4πr2ε: ð50Þ

Figure 10 shows that, for a larger α, the hybrid star can be
significantly more massive than 2-solar-mass. Unlike the
usual mass-radius relation of hybrid stars, for which a small
mass object usually has a large radius, our hybrid stars with
uniform nuclear matter on the surface are self-bound;
therefore the radius of the hybrid star shrinks as the mass
decreases.
Additionally, as demonstrated in Ref. [11], a 2-solar-

mass neutron star may have a 6.5 km quark core, with the
square of sound velocity Cs2 lower than 1=3. In Fig. 11, the
radius of quark core (Rq) is plot. For the 2-solar-mass
hybrid star, the radius of quark core is 6.38 km when
α ¼ 0.5, and it is 6.51 km when α ¼ 0.7. The results are
compatible with the constraints in Ref. [11]. However, the
square of the sound velocity in the NJL model with vector
interacting channel is larger than 1=3, which requires
further study in the future.
The tidal deformability can be calculated with the tidal

Love number k2, and the Love number measures the
distortion of the surface of a star by an external gravity.
In the unit G ¼ c ¼ 1, the relation between k2 and the tidal
deformability is

k2 ¼
3

2
Λ
�
M
R

�
5

: ð51Þ

FIG. 8. The pressure as a function of the energy density for
different α. FIG. 10. The mass-radius relation for different α.

FIG. 9. The velocity of sound as a function of the chemical
potential for different α.
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The l ¼ 2 tidal Love number k2 is calculated as [57]

k2 ¼
8

5
C5ð1− 2CÞ2½2þ 2Cðy− 1Þ− y�

× f2C½6− 3yþ 3Cð5y− 8Þ�
þ 4C3½13− 11yþCð3y− 2Þþ 2C2ð1þ yÞ�
þ 3ð1− 2CÞ2½2− yþ 2Cðy− 1Þ� lnð1− 2CÞg−1; ð52Þ

where C ¼ M=R is the compactness of the quark
star and

y ¼ RβðRÞ
HðRÞ −

4πR3ε0
M

: ð53Þ

Here ε0 represents the surface energy density of the
quark star.
The dimensionless parameter y is obtained by solving

two differential equations,

dH
dr

¼ β; ð54Þ

dβ
dr

¼ 2H
1 − 2M=r

�
−2π½5εþ 9Pþ dε=dPðεþ PÞ�

þ 3

r2
þ 2

1 − 2M=r

�
M
r2

þ 4πrP

�
2
	

þ 2β

r − 2M

�
−1þM

r
þ 2πr2ðε − PÞ

�
: ð55Þ

As r → 0, HðrÞ ¼ a0r2 and βðrÞ ¼ 2a0r. a0 can be any
number, because we only concern about the ratio between
H and β.
In Fig. 12, the tidal deformability Λ versus the stellar

mass is plot. We see that the tidal deformability decreases

as the mass of the hybrid star increases. The astrono-
mical constraint of Λ < 800 ([10]) can be satisfied as long
as α is smaller than 0.9. Hence, we conclude that hybrid
stars with a uniform surface of two-flavor quark matter can
satisfy the current constraints from the astronomical
observations.

VI. SUMMARY AND CONCLUSION

In this paper, the stability condition of the hadronic matter
is discussed. It is pointed out that the most stable state has
minimum energy per baryon, ðE=AÞmin ¼ μ0, where nuclear
saturation density n0 is zero pressure. It implies chemical
potentials lower than μ0 is unstable for particles. As for the
fact that the iron nucleus is the most stable state, the bulk
effect takes responsibility. But in hybrid stars, the bulk effect
may not be inappreciable. In addition, unlike a nucleus in a
lattice, where pressure appears along with the density,
uniform hadronic matter exists at zero pressure. If the inner
layer of the hybrid star is the uniform hadronic matter,
which is described by the Walecka model, the matter of
nuclei is not necessary to be the crust over them. Because, in
the description of a nucleus in a lattice, zero pressure must
be zero densities, and density at n ≈ ρ0 has finite pressures.
However, the hadronic matter has no pressure at n ≈ ρ0,
which makes two phases unable to connect. As a result,
hybrid stars or neutron stars with uniform hadronic matter
on the surface becomes possible to exist in the Universe. For
precise explanation, the Walecka model and self-consistent
NJL model are employed to construct the hybrid stars, and
P-interpolation is used to smoothly connect the EOSs of
uniform hadronic matter and quark matter. The mass-radius
relations are obtained, which is self-bound rather than
gravitationally bound. The astronomical observations pro-
vides that two-solar-mass neutron stars exist and 1.4-solar-
mass neutron stars has upper limit of tidal deformability
Λ < 800, which are all satisfied by our model.

FIG. 11. The radius of the quark core as a function of mass for
hybrid stars.

FIG. 12. Tidal deformability.
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