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We investigate the spontaneous breaking of chiral symmetry in QCD by means of a recently proposed
approximation scheme in the Landau-gauge Curci-Ferrari model, which combines an expansion in the
Yang-Mills coupling and in the inverse number of colors, without expanding in the quark-gluon coupling.
The expansion allows for a consistent treatment of ultraviolet tails via renormalization group techniques. At
leading order, it leads to the resummation of rainbow diagrams for the quark propagator, with, however, a
trivial running of both the gluon mass and the quark-gluon coupling. In a previous work, by using a simple
model for a more realistic running of these parameters, we could reproduce the known phenomenology of
chiral symmetry breaking, including a satisfactory description of the lattice data for the quark mass
function. Here, we get rid of this model-dependence by taking our approximation scheme to next-to-
leading order. This allows us to consistently include the realistic running of the parameters and to access the
unquenched gluon and ghost propagators to first nontrivial order, which we can compare to available lattice
data for an even more stringent test of our approach. In particular, our results for the various two-point
functions compare well with lattice data while the parameters of the model are strongly constrained.
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I. INTRODUCTION

Spontaneous chiral symmetry breaking (SχSB) is one of
the most prominent aspects of QCD dynamics. It is an
emergent infrared phenomenon whose description from
first principles goes beyond any (known) perturbative
treatment. Our current understanding relies on either lattice
simulations [1,2] or nonperturbative continuum approaches
such as truncated Dyson-Schwinger equations (DSE) [3–
40], nonperturbative renormalization group (NPRG) tech-
niques [41–46], and the Hamiltonian formalism [47,48].
Although the latter have reached an impressive level of
sophistication and have lead to rather successful hadron
phenomenology, they often rely on ad hoc approximations
that have to be validated a posteriori. For instance, the most
basic level of description in the context of SDE, based on
the so-called rainbow equation for the quark propagator,

requires a proper modeling of both the gluon propagator
and the quark-gluon vertex [49]. In this context, it is of
great interest to identify a systematic organizing principle.
In a recent work [50], we have proposed an approxi-

mation scheme based on two essential aspects of the
infrared QCD dynamics unraveled by lattice simulations
and continuum approaches. The first—well-known—
observation is that an expansion in inverse powers of the
number of colors (Nc) often gives an accurate description
of the QCD dynamics. The second point is that the pure
gauge running coupling constant, as defined from the
Landau gauge ghost-gluon vertex in the Taylor scheme,
remains finite and moderate down to deep infrared momen-
tum scales, enabling the use of perturbation theory (see, for
instance, Refs. [51,52]).1 The concomitant observation that
the gluon propagator remains finite at vanishing momen-
tum suggests a simple massive modification of the
Faddeev-Popov Lagrangian in the Landau gauge—the
so-called Curci-Ferrari (CF) model [56]—as an efficient
starting point for a modified perturbative expansion [57,Published by the American Physical Society under the terms of
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1For other couplings extracted from lattice simulations see, for
instance, [53–55].
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58].2 In the last decade, this view has been supported by
numerous calculations in the perturbative CF model in the
vacuum [57, 58, 63–65] and at nonzero temperature [66–69].
Propagators, vertex functions, phase diagrams, etc. have
been computed at leading and next-to-leading orders and
have been successfully compared to the results of lattice
simulations and nonperturbative continuum approaches.
Interestingly, these results extend to QCD in the limit of
heavy quarks both at zero and non-zero temperature and the
rich phase structure in this regime is again accessible by
perturbative methods [70–74]. We also mention that inter-
esting results within the CF approach in Minkowski space
have been obtained inRef. [75].Alsoworthmentioning is the
related—although quite different in spirit—approach of
Refs. [76–78], based on the screened perturbative expansion.
Finally, models based on a phenomenological massive gluon
exchange have been employed recently in order to analyze
the equation of state of neutron stars [79,80].
The light-quark sector is substantially different, however,

because the quark-gluon coupling becomes too large in the
infrared to allow for a perturbative treatment [81]. To
accommodate this feature within a sensible approximation
scheme, we have proposed to replace the usual loop
expansion in the CF model with a double expansion in
the pure gauge coupling and in the inverse number of colors,
keeping the quark-gluon coupling arbitrary [50]. Such a
systematic approximation scheme allows for a consistent
implementation of renormalization group (RG) techniques,
which are crucial to control the ultraviolet (UV) tails of
propagators and vertices.
At leading order, the proposed expansion scheme leads

to the resummation of the infinite class of rainbow-ladder
diagrams in the quark sector, with definite (tree-level)
expressions for the gluon propagator and the quark-gluon
vertex. However, the running of the associated gluon mass
and of the quark-gluon coupling is trivial (i.e., no running)
at this order. In Ref. [50], in order to test the method despite
this limitation, we combined the leading order equation for
the quark propagator with a simple model for the running
gluon mass and quark-gluon coupling. In this paper, we get
rid of this layer of ad hoc modeling by taking our
approximation scheme to next-to-leading order.
While the only effect of the next-to-leading order cor-

rections at the level of the quark propagator is to incorporate
a realistic running of the parameters, we now gain access to

the gluon and ghost propagators to first nontrivial order. We
can then compare our results to available lattice data with no
other input parameters than those of the original Lagrangian.
The agreement is very good for specific values of these
parameters.3 In particular, this constrains the gluon mass
parameter to be nonvanishing as long as the Yang-Mills
coupling remains compatible with simulations.
The article is organized as follows. The CF model and

our expansion scheme are briefly reviewed in Sec. II. The
next-to-leading order propagators are presented in Sec. III,
together with the corresponding anomalous dimensions and
running masses, while Sec. IV details the calculation of the
beta functions for the couplings in a specific scheme
adapted to the propagators. Section V presents our results
for the running of the parameters and the comparison with
the lattice data. We conclude in Sec. VI, and a number of
technical details are gathered in the Appendixes.

II. MASSIVE LANDAU-GAUGE QCD AND THE
RAINBOW-IMPROVED LOOP EXPANSION

As mentioned in the Introduction, lattice simulations of
Landau gauge Yang-Mills correlation functions feature a
number of interesting properties which have motivated
a phenomenological extension of the Faddeev-Popov
Lagrangian with the inclusion of a gluon mass term
[57,58]. This extended Lagrangian is a particular case of
the so-called Curci-Ferrari Lagrangians [56]. The addition of
a gluon mass regularizes the infrared and allows for the
definition of renormalization schemes without a Landau
pole. This property has been used by some of us to compute
the two- and three-point correlations functions of the model
at one-loop order for all values of momenta [57,58,63] and
more recently the two-point functions at two-loop order [64],
as well as the ghost-antighost-gluon vertex in a particular
configuration of momenta [65]. The comparison with lattice
data for the Yang-Mills correlation functions turns out to be
surprisingly good already at one-loop order, and two-loop
corrections further improve the agreement with the lat-
tice data.

A. Massive Landau-gauge QCD

In view of these good results within Yang-Mills theory, it
is natural to extend these considerations to QCD.
Supplementing the usual Euclidean QCD action in the
Landau gauge with a gluon mass term yields

S ¼
Z

ddx

�
1

4
Fa
μνFa

μν þ iha∂μAa
μ þ ∂μc̄aðDμcÞa

þ 1

2
m2

ΛðAa
μÞ2 þ

XNf

i¼1

ψ̄ iðDþMΛÞψ i

�
; ð1Þ

2A modification of the gauge-fixed Lagrangian in the Landau
gauge is also expected due to the infamous Gribov ambiguity
which makes the Faddeev-Popov Lagrangian an incomplete
gauge-fixed description of Yang-Mills theory/QCD at low en-
ergies [59]. The various tests that the Curci-Ferrari model has
passed suggest that it could be intimately related to the solution of
the Gribov puzzle [60]. The connection between Gribov copies
and the dynamical generation of a mass term for the gluon field
has recently been investigated both in the Landau gauge [61] and
in a one-parameter family of gauges continuously connected to
the Landau gauge [62].

3With the noticeable exception of the vector component of the
quark propagator, see below.
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where Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gΛfabcAa

μAb
ν is the non-

Abelian field-strength tensor. The covariant derivatives
acting on fields in the adjoint (X) and fundamental (ψ )
representations read respectively,

ðDμXÞa ¼ ∂μXa þ gΛfabcAb
μXc; ð2Þ

Dμψ ¼ ∂μψ − igΛAa
μtaψ ; ð3Þ

with fabc the structure constants of the gauge group and ta

the generators of the algebra in the fundamental represen-
tation, normalized such that trðtatbÞ ¼ Tfδ

ab, with
Tf ¼ 1=2. We have introduced the notation D ¼ γμDμ,
with Euclidean Dirac matrices γμ such that fγμ; γνg ¼ 2δμν.
Finally, the parameters gΛ, MΛ and mΛ are respectively the
bare coupling constant, bare quark mass and bare gluon
mass. For simplicity, we only consider degenerate quark
masses. Releasing this assumption is straightforward. For
later use, we denote the Casimir of the fundamental
representation as CF ¼ ðN2

c − 1Þ=ð2NcÞ.
The previous action is standard, except for the gluon

mass term. In actual perturbative calculations, the mass
appears only through a modified bare gluon propagator,
which reads Gab

0;μνðpÞ ¼ δabG0ðpÞðδμν − pμpν=p2Þ, with

G0ðpÞ ¼
1

p2 þm2
Λ
: ð4Þ

The bare ghost propagator is

Gab
gh;0ðpÞ ¼

δab

p2
; ð5Þ

while the bare quark propagator S0ðpÞ reads
S0ðpÞ ¼ ½−ipþMΛ�−1: ð6Þ

Finally, the (unrenormalized) dressed quark propagator can
be written as

SΛðpÞ¼ ½−iAΛðpÞpþBΛðpÞ�−1¼ iÃΛðpÞpþ B̃ΛðpÞ; ð7Þ

where

ÃΛðpÞ ¼
AΛðpÞ

A2
ΛðpÞp2 þ B2

ΛðpÞ
; ð8Þ

B̃ΛðpÞ ¼
BΛðpÞ

A2
ΛðpÞp2 þ B2

ΛðpÞ
: ð9Þ

The bare propagator (6) corresponds to AΛ ¼ 1 and
BΛ ¼ MΛ.
Despite the excellent results obtained with the model (1)

in the quenched limit MΛ → ∞, the corresponding one-
loop results in the light-quark sector agree with the lattice
data only qualitatively [70,71]. In fact, the perturbative CF

prediction becomes even qualitatively incorrect when the
chiral limit is approached: as expected, the perturbative
analysis does not reproduce spontaneous chiral symmetry
breaking. One possible explanation for the failure of the
perturbative approach is that the renormalized coupling
constant extracted from the quark-gluon vertex is 2 to 3
times larger in the infrared than the one extracted from the
ghost-gluon vertex [81], even though, of course, they are
both related to the same bare value. It follows that, while
the expansion parameter in the Yang-Mills sector is
estimated to be about 0.2–0.25 the corresponding one in
the quark-gluon sector is of order one [58,70].

B. Rainbow-improved loop expansion

In order to take into account these features of the light
quark sector we have proposed in Ref. [50] to treat the
coupling constants associated to the quark-gluon vertex and
to the Yang-Mills vertices on a different footing in the
infrared. On the one hand, since perturbation theory
reproduces the results of lattice simulations in the Yang-
Mills sector with good accuracy, the Yang-Mills coupling
constant (gg) can be treated as a small parameter. On the
other hand, we refrain from expanding in the quark-gluon
coupling (gq) since the latter cannot be considered small.
An obvious problem with this expansion is that it goes

beyond any possible analytical treatment. At leading order
for instance, it includes already all QED-like diagrams. To
overcome this difficulty, we exploit another control param-
eter present in QCD: we combine our expansion in the pure
gauge coupling with an expansion in the inverse number of
colors (1=Nc). In the large Nc-limit, the counting is
performed after an appropriate rescaling of the couplings,
gg ¼ λg=

ffiffiffiffiffiffi
Nc

p
and gq ¼ λq=

ffiffiffiffiffiffi
Nc

p
, where λg and λq are fixed.

The added feature of our approach, as compared to the
usual 1=Nc expansion, is that λg can be treated as another
small parameter.
Our asymmetrical treatment of the couplings should not

interfere with fundamental properties of QCD in the UV,
such as asymptotic freedom or the universality of the
running of the coupling. In order to preserve these features,
we need to make sure that, at a given order of approxi-
mation, the expansion contains standard perturbation
theory up to a given loop order. In practice, we proceed
as follows: we write first all diagrams of standard pertur-
bation theory with up to l loops. Then we count the powers
of the Yang-Mills coupling λg and of the inverse number of
colors 1=Nc that appear in each of those diagrams. Finally,
we add all diagrams (with possibly more loops) with the
same powers of λg and 1=Nc.

4 This defines our approxi-
mation at l-loop accuracy.

4To be precise, what is meant here is the dominant contribution
in the naive counting of powers, which excludes possible
accidental suppressions; see the example of the quark-gluon
vertex below.
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As shown in Ref. [50], the zero-loop order of our
approximation scheme leads to tree-level contributions
for the gluon and ghost propagators as well as for the
various vertices, while it resums the rainbow diagrams for
the quark propagator; see Fig. 1. That the rainbow equation
emerges as the leading order of a systematic expansion is a
remarkable result. In particular, this means that corrections
to this equation are controlled by two small parameters λg
and 1=Nc. Also, the rainbow-resummed quark propagator
will enter as a basic building block of higher-order
contributions. For this reason, we refer to our approxima-
tion scheme as the rainbow-improved (RI) loop expansion.

C. Renormalization group and UV tails

The control over higher-order corrections also allows for
a consistent implementation of the RG flow. The latter is
mandatory in order to obtain a sensible description of UV
tails, not suffering from the problem of large logarithms.
This is crucial in order to be able to properly remove the
UV regulator while avoiding the problems pointed out in
Refs. [82,83].
More precisely, let us recall that the RG equation relates

the expressions for a given renormalized n-point vertex
function at different renormalization scales. In its integrated
form and for the particular case of the propagator associated
to a field φ, it reads

Gφðp; μ0; Xiðμ0ÞÞ ¼ zφðμ; μ0ÞGφðp; μ; XiðμÞÞ; ð10Þ

where XiðμÞ denotes the various running couplings and
masses of the theory. The benefit of the previous formula is
that, in order to evaluateGφðp; μ0; Xiðμ0ÞÞ in the UV regime
(p ≫ μ0) while avoiding large logarithms lnp=μ0 ≫ 1, one
can express it in terms of Gφðp; μ; XiðμÞÞ with μ ¼ p, for
which large logarithms are absent.
The implementation of the above program requires of

course the knowledge of the running of the various
parameters together with the scaling factor zφðμ; μ0Þ. The
former is controlled by the corresponding beta functions,

βXi
≡ μ

d
dμ

Xi; ð11Þ

where the μ-derivative is to be taken at fixed bare values of
the parameters Xi;Λ ¼ ZXi

Xi. On the other hand, the scaling
factor writes

zφðμ; μ0Þ ¼ exp
Z

μ

μ0

dμ0

μ0
γφðμ0Þ; ð12Þ

with

γφ ≡ μ
d
dμ

lnZφ; ð13Þ

the corresponding anomalous dimension, itself defined in
terms of the renormalization factor Zφ that relates the
unrenormalized and renormalized versions of the dressed
propagator: Gφ;Λ ¼ ZφGφ. Both the renormalization fac-
tors and the running parameters depend on the considered
renormalization scheme.
In Ref. [50], we have implemented the above program at

zero-loop order of the RI-improved expansion. At this order,
the running of the gluon mass and of the gauge coupling
remain trivial. In this article, we aim at consistently imple-
menting the RG flow at the lowest nontrivial order. This
requires going to next-to-leading (one-loop) order in the RI
loop expansion. Since our focus is here on the propagators,
we discuss them first in Sec. III, together with the corre-
sponding anomalous dimensions and runningmasses, before
considering the running couplings at the same order
in Sec. IV.

III. PROPAGATORS, ANOMALOUS DIMENSIONS
AND RUNNING MASSES

A. The quark propagator

Interestingly, the one-loop RI approximation for the
quark propagator leads exactly to the same equation as
the zero-loop order approximation, namely the rainbow
equation depicted in Fig. 1. The reason is simply that the
tree-level contribution to the quark propagator is of the
same order in λg and 1=Nc than the one-loop contribution.
We then have, writing

R
q ¼

R
ddq=ð2πÞd [50],

AΛðpÞ ¼ 1 − g2ΛCF

Z
jqj<Λ

ÃΛðqÞ
fðq; pÞ

ðpþ qÞ2 þm2
Λ
; ð14Þ

BΛðpÞ ¼ MΛ þ g2ΛCF

Z
jqj<Λ

B̃ΛðqÞ
ðd − 1Þ

ðpþ qÞ2 þm2
Λ
;

ð15Þ

with

fðq;pÞ¼2p2q2þðd−1Þðp2þq2Þðp ·qÞþ2ðd−2Þðp ·qÞ2
p2ðqþpÞ2 :

ð16Þ

We choose the renormalization factor ZψðμÞ and the
running mass MðμÞ such that the renormalized dressed
propagator obeys

FIG. 1. Rainbow equation for the quark propagator obtained
both at zero-loop and at one-loop accuracy of our expansion. The
thick line represents the dressed quark propagator.
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S−1ðp ¼ μ; μÞ ¼ −i=μþMðμÞ; ð17Þ

or, equivalently,

Aðp ¼ μ; μÞ ¼ 1 and Bðp ¼ μ; μÞ ¼ MðμÞ: ð18Þ

We note that Bðp; μÞ=Aðp; μÞ ¼ BΛðpÞ=AΛðpÞ is a
scheme-independent quantity. In terms of the renormalized
mass introduced above, we have Bðp; μÞ=Aðp; μÞ ¼
Bðp; pÞ=Aðp; pÞ ¼ MðpÞ. It follows that MðpÞ has a
double interpretation as the renormalized mass in the

scheme considered here, or as a scheme-independent
quark-mass function.
According to the renormalization group equation (10),

the renormalized propagator writes

Sðp; μ0Þ ¼ zψðp; μ0Þ½−ipþMðpÞ�−1: ð19Þ

The scaling factor can be shown to rewrite as
zψðp; μ0Þ ¼ Zψ ðpÞ=Zψ ðμ0Þ, with

ZψðpÞ ¼ 1þ g2qðpÞCF

32π2p4m2ðpÞZψðpÞ
Z

∞

0

dq2
ZψðqÞ

q2 þM2ðqÞ fjp
2 − q2j3 −m4ðpÞ½2m2ðpÞ þ 3ðp2 þ q2Þ�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q2ðm2ðpÞ − p2Þ þ ðm2ðpÞ þ p2Þ2 þ q4

q
½2m4ðpÞ þm2ðpÞðp2 þ q2Þ − ðp2 − q2Þ2�g; ð20Þ

while the running of the quark mass is controlled by

βMðpÞ¼ γψðpÞMðpÞ− 3g2qðpÞCF

16π2p2Zψ ðpÞ
Z

∞

0

dq2
Zψ ðqÞMðqÞ
q2þM2ðqÞ

�
m2ðpÞþq2−

m4ðpÞþm2ðpÞðp2þ2q2Þ−p2q2þq4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4ðpÞþ2m2ðpÞðp2þq2Þþðp2−q2Þ2

p �
: ð21Þ

We refer to Ref. [50] for details. It is important to observe
that Eqs. (20) and (21) are UV finite and thus insensitive to
the detail of the UV regulator. Our numerical results for
Zψ ðpÞ and MðpÞ will be shown in Sec. V.

B. The ghost and gluon propagators

We proceed similarly for the ghost and the gluon
propagators at the same order of accuracy. Starting from
the standard perturbative one-loop diagrams, depicted in
Fig. 2, we include all diagrams with the same powers of λg
and Nc. Diagrams (a), (b), (c), and (e), are of order λ2g while
(d) is of order 1=Nc. It is then easily checked that, in order to
improve from standard perturbation theory to the one-loop
RI approximation, one only needs to dress the tree-level
quark propagators into rainbow-resummed propagators, as
indicated by the thick lines used in the diagram (d).
This means that the ghost propagator remains perturba-

tive at this order, while the gluon propagator involves a
perturbative quenched contribution corresponding to dia-
grams (a), (b), and (c), in addition to a nonperturbative
quark loop contribution which we decompose as

Πρσ
ðdÞ;ΛðpÞ ¼

�
δρσ −

pρpσ

p2

�
Π⊥

ðdÞ;ΛðpÞ þ
pρpσ

p2
Πk

ðdÞ;ΛðpÞ:

ð22Þ
The appearance of a longitudinal contribution originating
from the quark sector is a novel feature with respect to the
strict one-loop calculation. In this latter case, one can

exploit an exact Slavnov-Taylor identity between the bare
longitudinal inverse gluon propagator and the bare ghost
dressing function [58],

Γð2Þ
k;ΛðpÞF−1

Λ ðpÞ ¼ m2
Λ; ð23Þ

(b)(a)

(d)(c)

(e)

FIG. 2. Diagrams contributing to the gluon (first two lines) and
ghost (last line) self-energies at one-loop order of the RI loop
expansion. Thick quark lines represent the quark propagator in
the rainbow approximation. The same topologies appear in
standard perturbation theory at one-loop order but with the quark
propagators undressed.

SPONTANEOUS CHIRAL SYMMETRY BREAKING IN THE … PHYS. REV. D 103, 094035 (2021)

094035-5



to argue that the quarks do not contribute to the longitudinal
gluon propagator at one-loop order (since there are no
corrections from the quarks to the ghost dressing function
at this order). This identity is broken at one-loop order of
the RI expansion, thus leading to a spurious longitudinal
contribution from the quark sector (despite the fact that the
ghost dressing function remains the same as before).
Because the transverse gluon propagator coincides with
the longitudinal one in the zero-momentum limit, this
spurious contribution affects the transverse propagator as
well. In order to cope with this issue, we proceed as
follows. We first note that the divergences of Πρσ

ðdÞ;Λ are
those of the corresponding one-loop contribution, as shown

in Appendix A. In particular, Πk
ðdÞ;Λ is finite and will be

denoted Πk
ðdÞ in what follows. Second, we devise a

renormalization scheme such that the renormalized mass
parameter m is not directly influenced by the spurious
longitudinal contributions. To this purpose, we impose the
following renormalization conditions on the renormalized
dressed ghost and gluon propagators:

G−1
gh ðp ¼ μ; μÞ ¼ μ2; ð24Þ

G−1ðp ¼ μ; μÞ ¼ μ2 þm2ðμÞ þ Πk
ðdÞðp ¼ μÞ: ð25Þ

We have checked that not including the longitudinal quark
contribution in the rhs of (25) leads to a singular behavior
of the gluon propagator at zero momentum.
The conditions (24) and (25) allow one to fix the

renormalization factors Zc and ZA respectively. While Zc
is given by the one-loop perturbative expression, we find

that ZA ¼ Zquench
A þ δZðdÞ

A , where Zquench
A is the quenched

contribution which coincides with the one-loop perturba-
tive expression and

δZðdÞ
A ¼ −

Π⊥
ðdÞ;Λðp ¼ μÞ − Πk

ðdÞðp ¼ μÞ
μ2

. ð26Þ

In deriving this expression we have used the fact that, when
it multiplies the gluon self-energy, ZA can be set equal to 1
to the present order of approximation, that is, up to
corrections of order λg or 1=Nc. For the same reason, it
follows from Eq. (26) that

γA¼ γquenchA −μ
d
dμ

�Π⊥
ðdÞ;Λðp¼ μÞ−Πk

ðdÞðp¼ μÞ
μ2

�
; ð27Þ

where γquenchA is the quenched anomalous dimension obtained
from diagrams (a)–(c), already determined in Ref. [58], and
we have replaced a factor ZA that appears in the denominator
by 1. We recall that the μ-derivative is to be taken at fixed

bare quantities. Since Π⊥
ðdÞ;Λðp ¼ μÞ and Πk

ðdÞðp ¼ μÞ are

expressed only in terms of bare quantities, this derivative is
easily computed. We obtain5

γAðμÞ ¼ γquenchA ðμÞ

þ 8
g2qðpÞTfNf

ðd − 1ÞZ2
ψ ðpÞ

p
d
dp

�
1

p2

Z
q

Zψ ðqÞ
q2 þM2ðqÞ

×
Zψ ðlÞ

l2 þM2ðlÞ
�
q · l − d

ðp · qÞðp · lÞ
p2

��
p¼μ

;

ð28Þ
where lþ q ¼ p.
Another important consequence of the finiteness of Πk

ðdÞ
is that, despite (23) not being fulfilled at one-loop order of
the RI expansion, the divergent part of ZAZm2 is equal to
that in the strict one-loop expansion. In this later case,
Eq. (23) imposes that ZAZm2Zc is finite [58,84–87], which
we can trivially extend to the present case since Zc also
coincides in the strict one-loop and RI one-loop approx-
imations. We shall then fix the running of the gluon mass
through the condition,

ZAZcZm2 ¼ 1: ð29Þ
This implies

βm2 ¼ m2ðγA þ γcÞ: ð30Þ
We mention that the nonrenormalization theorem (23)

underlying both (29) and the finiteness of Πk
ðdÞ arises as a

consequence of a Becchi-Rouet-Stora-Tyutin (BRST)-like
symmetry present in the Curci-Ferrari model which
requires, a priori, the use of a BRST-compatible regulari-
zation, such as dimensional regularization. In principle, this
regularization is defined within perturbation theory and
extensions beyond that framework are limited to few
specific examples. In the present context, we should
therefore ask whether the NLO RILO approximation
admits a description within dimensional regularization.
In this approximation, the ghost two-point function

coincides with the corresponding one-loop result of the
strict perturbative expansion, so no doubt that it can be
computed using dimensional regularization, and similarly
for γc. As for the gluon two-point function, it departs from
the one-loop perturbative result only due to the non-
perturbative quark loop. This means that the quenched
two-point function, and the corresponding quenched con-
tribution γquenchA to the anomalous dimension (27) can be
computed using dimensional regularization. As for the
nonperturbative quark loop, as we show in Appendix A, its
divergence entirely originates from the purely perturbative
quark loopΠpert

ðdÞ ðMÞ, obtained by replacingMðqÞ → M and

5To the present order of accuracy, we can set ZψZg ¼ffiffiffiffiffiffi
ZA

p
ZψZg ¼ 1þOðλg; 1=NcÞ when obtaining Eq. (28).
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Zψ ðqÞ → 1. Then, to evaluate the quark loop in dimen-
sional regularization, we write it as

ΠðdÞ ¼ Πpert
ðdÞ ðMÞ þ ΔΠðdÞðMÞ; ð31Þ

where the first term is divergent and is evaluated within
dimensional regularization. The remaining term ΔΠðdÞðMÞ
is finite and can be evaluated, in principle, within any
regularization that is more suited to a nonperturbative
setting, such as for instance cutoff regularization.
Despite these expectations, we find that, although the

splitting in Eq. (31) does indeed isolate the divergence of the
nonperturbative loop within that of the perturbative loop,
the finite part ΔΠðdÞðMÞ depends on the way the cutoff is
implemented. This is obvious in the case of the longitudinal
contribution to the quark-loop since, in this case, the first
term in (31) vanishes identically (in dimensional regulari-
zation), as required by the BRST symmetry, whereas the
second term depends on the constantM for a generic cutoff.
We show inAppendixA how to circumvent this difficulty by

implementing the cutoff such that Πkpert
ðdÞ ðMÞ vanishes as in

dimensional regularization. With such choice of cutoff
implementation, we do not need to evaluate the longitudinal

loop as in (31) but we can compute Πk
ðdÞ directly.

IV. RUNNING COUPLINGS

We now discuss the running of gq, needed to close the set
of Eqs. (20) and (21), and that of gg, which is inevitably
coupled to the running of m.

A. The pure-gauge coupling

We fix the coupling constant gg in the ghost-gluon sector
using the Taylor scheme

ffiffiffiffiffiffi
ZA

p
ZcZgg ¼ 1 [88], which

implies

βgg ¼ gg

�
γA
2
þ γc

�
: ð32Þ

Together with (24), (25), and (29), this defines an extended
version of the so-called infrared-safe scheme [58]. In this
scheme, the anomalous dimensions can be expressed
linearly in terms of the beta functions. This in turn implies
that zAðp; μ0Þ and zcðp; μ0Þ have simple expressions in
terms of the running parameters. This, together with
Eqs. (24) and (25), leads to the following expressions
for the ghost and gluon propagators:

Gghðp; μ0Þ ¼
m2ðμ0Þ
g2gðμ0Þ

g2gðpÞ
m2ðpÞ

1

p2
; ð33Þ

and

Gðp; μ0Þ ¼
g2gðμ0Þ
m4ðμ0Þ

m4ðpÞ
g2gðpÞ

1

p2 þm2ðpÞ þ Πk
ðdÞðpÞ

. ð34Þ

The explicit expression for Πk
ðdÞ at one-loop order of the

RI expansion reads

Πk
ðdÞðpÞ ¼−8

g2qðpÞTfNf

Z2
ψ ðpÞ

Z
q

ZψðqÞ
q2þM2ðqÞ

ZψðlÞ
l2þM2ðlÞ

×

�ðp ·qÞðp ·lÞ
p2

−
q ·l
2

þMðqÞMðlÞ
2

�
: ð35Þ

Aswe show inAppendixA, by using a cutoff implementation
withmanifest q ↔ l symmetry (such as for instance jqj < Λ
and jlj < Λ), one ensures that the integral is UV finite and
that the pure one-loop contribution identically vanishes, as
required by the Slavnov-Taylor identity (23). In practice, it is
more convenient to use a sharp cutoff only on q (which then
violates the q ↔ l symmetry). It is then necessary to first
rewrite the integrand in a way that ensures both the finiteness
of the integral and the vanishing of the pure one-loop
contribution. This is also discussed in Appendix A.
For completeness, we also quote the expression,

Π⊥
ðdÞ;ΛðpÞ ¼ −8

g2qðpÞTfNf

Z2
ψðpÞ

Z
q

Zψ ðqÞ
q2 þM2ðqÞ

ZψðlÞ
l2 þM2ðlÞ

×

�
1

d − 1

�
q · l −

ðp · qÞðp · lÞ
p2

�

−
q · l
2

þMðqÞMðlÞ
2

�
; ð36Þ

that enters the calculation of γAðμÞ in Eq. (28).

B. The quark-gluon coupling

The beta function for the quark-gluon coupling is
obtained from the quark-antiquark-gluon vertex function.
The one-loop contributions are represented in Fig. 3 and are
of (naive) order λgN

−1=2
c for diagram (a) and N−3=2

c for
diagram (b). As explained before, to consistently evaluate

(a) (b)

FIG. 3. Some of the diagrams contributing to the quark-gluon
vertex at one-loop order of the RI loop expansion (see Appen-
dix B for the complete list). The thick line represents the quarks
propagator in the rainbow approximation. Diagrams in standard
perturbation theory at one-loop order are the same, however, with
quark propagators undressed.
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the vertex function at next-to-leading (one-loop) order in
the RI loop expansion, one must supplement these dia-
grams with all higher loop diagrams that share the same
parametric dependence in λg and Nc. This involves infinite
series of ladder diagrams which we discuss in Appendix B.
Although interesting, because some of these resummations
include a nontrivial source of flavor dependence, this
calculation lies beyond the scope of the present work.
As we now explain, a consistent determination of the
running coupling that enters the propagators (our focus in
this work) does not necessarily require the evaluation of all
these diagrams, provided one chooses an appropriate
renormalization scheme.
Our resummed approximation scheme is devised so as to

exactly reproduce the standard loop expansion in the UV,
where all couplings are to be treated on the same footing. The
essential point here is that the diagram (b) of Fig. 3 isUVfinite
(in the Landau gauge) and, thus, does not contribute to the
beta function in the UV. As a consequence, we can always
devise a renormalization scheme where the coupling is
defined from diagram (a) only, without spoiling the UV
structure of the theory at one-loop order. Following our
general procedure, in such a scheme, we only have to
supplement this diagram—and not diagram (b)—with the
higher loop diagrams of the same order in λg and Nc. A
detailed inspection shows that this simply amounts todressing
the internal quark lines with rainbow insertions, that is, to
replacing the internal quark line by the rainbow-resummed
quark propagator, as represented by the thick line in Fig. 3.
Although the coupling that arises from the present

scheme is well grounded theoretically, it may not corre-
spond to the coupling that would be extracted from the
calculation of the full quark-gluon vertex. The reason is that
the full vertex contains other classes of diagrams that may
have nonsuppressed contributions for realistic values of
Nf=Nc; see Appendix B.
In particular, the corresponding renormalization factor

Zgq does not allow us to render the quark-gluon vertex finite
at this order of approximation. However, because our focus
is here on the two-point functions, this choice remains
consistent. Moreover, we mention that the explicit calcu-
lation of the color factors reveals that the diagram (b) of
Fig. 3 receives a further suppression by one power of 1=Nc
as compared to the naive counting and is thus of the same
order N−5=2

c as next-to-next-to-leading order (nonplanar)
diagrams in our expansion scheme.
We denote the quark-gluon vertex that derives from

diagram (a) by Γψ̄ψAa
μ
ðp; r; kÞ, with k the gluon momentum,

p the quark momentum and r the antiquark momentum (all
incoming). It can be decomposed into twelve independent
tensorial structures. Here, we follow the convention of
Ref. [89] and write

ΓΛ
ψ̄ψAa

μ
ðp; r; kÞ ¼ taΓΛ

μ ðp; r; kÞ; ð37Þ

with

ΓΛ
μ ðp; r; kÞ ¼ −igΛ

�X4
i¼1

λΛi Liμ þ
X8
i¼1

τΛi Tiμ

�
: ð38Þ

The various tensorial structures Liμ and Tiμ are given in
Table I.
We choose to define the renormalized quark-gluon

coupling constant through the scalar function [89],

λ01
Λ ¼ λΛ1 − k2τΛ3 ; ð39Þ

that is, we choose a transverse vertex (where the gluon is
contracted with a transverse projector).6 We make this
choice in order to define the coupling through a vertex that
can be extracted directly from Landau-gauge lattice sim-
ulations. On top of the choice of tensorial structure, one
needs to choose a momentum configuration. We consider
the case where the quark and antiquark momenta are
orthogonal and of equal norm (OTE, orthogonal two-equal
configuration). In this momentum configuration, the cou-
pling λ0Λ1 ðpÞ, where, again, p is the quark momentum, can
be extracted from lattice simulations as

λ01
ΛðpÞ ¼ Im tr½γσΓΛ

μ ðp; r; kÞP⊥
μνðkÞP⊥

νρðrÞP⊥
ρσðpÞ�

4gΛð2 − dÞ ; ð40Þ

where the right-hand side is to be evaluated in the OTE
configuration. We detail the calculation of λ01

ΛðpÞ in
Appendix B 1.
The renormalized quark-gluon coupling is then

defined as

TABLE I. The different tensorial structures along which the
quark-gluon vertex is decomposed, together with the associated
(scalar) coupling constants.

Coupling Tensorial structure

λ1 L1μ ¼ γμ
λ2 L2μ ¼ −ðp − =rÞðp − rÞμ
λ3 L3μ ¼ −iðp − rÞμ
λ4 L4μ ¼ −iσμνðp − rÞν
τ1 T1μ ¼ iðkμrνkν − rμk2Þ
τ2 T2μ ¼ ðkμrνkν − rμk2Þðp − =rÞ
τ3 T3μ ¼ =kkμ − k2γμ
τ4 T4μ ¼ −i½k2σμνðp − rÞν − 2kμσνλrνkλ�
τ5 T5μ ¼ iσμνkν
τ6 T6μ ¼ =kðp − rÞμ − kνðp − rÞνγμ
τ7 T7μ ¼ − i

2
kλðp − rÞλ½ðp − =rÞγμ − ðp − rÞμ�

−iðp − rÞμσνλrνkλ
τ8 T8μ ¼ −γμσνλrνkλ þ rμ=k − =rkμ

6Moreover, we normalize the coupling such that it coincides
with the bare vertex at tree-level.
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gqðμÞ ¼ Zψ

ffiffiffiffiffiffi
ZA

p
gΛλ01

ΛðμÞ; ð41Þ

from which we deduce the beta function,

βgq ¼ gq

�
γψ þ 1

2
γA þ d ln λ01

Λ

d ln μ

�
: ð42Þ

The RI expansion at one-loop order is constructed so as
to contain the standard one-loop contributions in the UV.
In this spirit, it is consistent to replace d ln λ0Λ1 =d ln μ ≃
dλ0Λ1 =d ln μ at the present level of precision since
λ0Λ1 ¼ 1þOðλg; 1=NcÞ. Moreover, after taking the μ-
derivative, we can replace bare masses and couplings by
renormalized ones, using similar remarks as above.
It is important to stress that the flow of gqðμÞ depends on

the full momentum-dependence of the quark propagator
and vice versa, so their coupled equations need to be solved
simultaneously together with the flow for ggðμÞ and mðμÞ.
In Appendix A, we show that βgg , βgq , and βm have the
known one-loop expressions in the UV.

V. RESULTS

In this section, we solve the rainbow equation numeri-
cally, together with the flow of the gluon mass and of the
coupling constants. We proceed by successive iterations
from a given ansatz until a required accuracy is reached.
The momentum integrals over q are divided into two
regions q ≤ μ0 and μ0 < q < Λ. In the former, we sample
the functions Zψ ðqÞ and MðqÞ on a regular grid with a
lattice spacing δq whereas we use, for the latter, the known
UV expressions (solutions of the rainbow equations [50]),

ZUV
ψ ðqÞ ¼ 1; ð43Þ

MUVðqÞ ¼ b0

�
ln
q2 þm2

0

m2
0

�−α
þ b2
q2

�
ln
q2 þm2

0

m2
0

�
α−1

;

ð44Þ

where [4,50]

α ¼ N2
c − 1

2Nc

9

11Nc − 2Nf
; ð45Þ

and b0 and b2 are constants adjusted at each iteration step
so that MðpÞ is continuous and differentiable at μ0. The
term proportional to b0 dominates the UV behavior for a
nonzero bare quark mass whereas the term ∝ b2 is the
dominant one in the chiral limit. We also use the previous
expressions as an initial condition for the iteration while
keeping Mðμ0Þ fixed.
There are, a priori, four free parameters: Mðμ0Þ ¼ M0,

mðμ0Þ ¼ m0, ggðμ0Þ ¼ g0 and gqðμ0Þ. In fact, the latter two
are not independent since they both relate to the one and
only bare coupling constant of the model gΛ. Taking μ0 in

the UV regime and using perturbation theory in the present
scheme, one obtains (see Appendix B 2 for details)

gqðμ0Þ ¼ ggðμ0Þ
�
1þ Ncg2gðμ0Þ

64π2
½5 − 3 log 2�

�
ð46Þ

where we neglected terms of order g5gðμ0Þ and g3gðμ0Þ×
m2=μ20. Note that gqðμ0Þ > ggðμ0Þ.
We now compare our numerical results for the SUð3Þ

quark and gluon propagators within the one-loop RI
scheme with available lattice data for two degenerate light
quarks, Nf ¼ 2 [2,90].

A. Quark propagator

We first determine the parametersM0, m0, g0 which best
fit the lattice data for the quark mass function. To this
purpose, we choose for M0 the value of the lattice quark
mass function at the momentum closest to μ0 ¼ 10 GeV.
We also choose Λ ¼ 30 GeV and δq ¼ 0.05 GeV. We
have tested that our results are stable against changes of μ0,
Λ and δq.
We then scan for different values of m0 and g0 while

minimizing the following error function,

Δ2 ¼ 1

2Nlt

XNlt

i¼1

�
1

M̄2
lt

þ 1

M2
ltðiÞ

�
½MltðiÞ −MðiÞ�2; ð47Þ

where the sum runs over the Nlt lattice momenta below
1 GeV. Here, MltðiÞ denote the quark mass function as
measured on the lattice and M̄lt its value at the lowest
available momentum, where it reaches its maximum.
As an example, we show in Fig. 4 the error levels obtained

when fitting the data of Ref. [2] (for whichM0 ¼ 3 × 10−3

GeV) either in terms of the parametersm0 and g0 at the scale
μ0 or in terms of theRGevolved parametersmðμÞ and gðμÞ at
the scale μ ¼ 1 GeV.We observe that one can fit the data for
the quark mass function with relatively low values of the
gluon mass. However, below a certain threshold, our
numerics becomes unstable suggesting the presence of an
infrared Landau pole (as observed in the Yang-Mills case
[91]). What happens is the following: A low gluon mass
tends to increase the effective interaction between quarks
and to favor the spontaneous breaking of chiral symmetry.
However, if the gluon mass becomes too small, the running
of the coupling is not regular anymore, and no solution is
found. The parameters that minimize the error function (47)
arem0 ¼ 0.08 GeV and g0 ¼ 1.9, or, equivalently,mðμÞ ¼
0.12 GeV and ggðμÞ ¼ 2.42, at μ ¼ 1 GeV, corresponding
to Δ ¼ 0.07. The range of parameters giving a similar level
of precision, with Δ < 0.1, is shown in Fig. 4.
In Fig. 5, we compare the quark mass function MðpÞ

obtained in the present approach with lattice data from
Ref. [2]. The agreement is excellent. To be fair, we mention
that the one-loop expression ofMðpÞ also provides a rather

SPONTANEOUS CHIRAL SYMMETRY BREAKING IN THE … PHYS. REV. D 103, 094035 (2021)

094035-9



good description of the lattice data, as shown in Fig. 6.
This, however, requires pushing the parameters m0 and g0
to rather large values, incompatible with values from other
fits. For instance, the unquenched gluon propagator is
badly described with such large values of the gluon mass.

B. Gluon propagator

We now focus on the gluon propagator. We fit the
expression (34) of the gluon dressing function p2GðpÞ
against the lattice data of Ref. [90]. Similarly to Eq. (47)

we define an error function associated to the gluon dressing
function as

Δ2
G ¼ 1

2Nlt

XNlt

i¼1

�
p4ðiÞ
μ4Ḡ2

lt

þ 1

G2
ltðiÞ

�
½GltðiÞ −GðiÞ�2; ð48Þ

where the sum runs over the Nlt lattice momenta below
3 GeV. Here, pðiÞ is the lattice momentum corresponding
to the point i,GltðiÞ denotes the gluon propagator measured
on the lattice at that point and Ḡlt its value at the lattice
momentum μ closest to 1 GeV i.e., near the maximum of
the dressing function.
We first fit thegluonpropagator alone, independently of the

quark mass function. The corresponding contour plots are
shown in Fig. 7. As was already the case for the quark mass
function, there exist regions of parameters giving excellent
fits. The best-fit values (keeping M0 ¼ 3 × 10−3 GeV as
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FIG. 4. Top: Contour levels for the error function Δ obtained
using chiral data from [2] and M0 ¼ 3 × 10−3 GeV, for different
values of m0 and g0. Bottom: The same contours in terms of the
running parameters mðμÞ and gðμÞ at the scale μ ¼ 1 GeV. The
darkest region corresponds to parameters with Δ < 0.1. All
masses and momenta are in GeV.
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FIG. 5. The function MðpÞ compared to the lattice data from
Ref. [2]. The best fit parameters are M0 ¼ 3 × 10−3 GeV,
m0 ¼ 0.08 GeV, and g0 ¼ 1.9, corresponding to Δ ¼ 0.07. All
masses and momenta are in GeV.
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FIG. 6. The RG-improved one-loop expression of Ref. [70] for
MðpÞ can be employed to describe well lattice data. This
necessitates to push the gluon mass to artificially large values,
here, m0 ¼ 0.78 GeV and g0 ¼ 2.625. All masses and momenta
are in GeV.
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before) are m0 ¼ 0.2 GeV and g0 ¼ 1.89 or, equivalently,
mðμÞ ¼ 0.39 GeV and gðμÞ ¼ 4.67 at μ ¼ 1 GeV, corre-
sponding toΔG ¼ 0.03. The corresponding gluonpropagator
is shown in Fig. 8. As was already noticed for the quark mass
function, the gluon dressing function can be fitted with good
accuracywith a one-loop expression [70] (taking into account
RG effects). Here, however, the best-fit parameters are
sensibly the same than those obtained when fitting with
theRIone-loop expression. Still, this latter fit is important as it
allows us to assess the consistency of our approximation
scheme.

C. Quark and gluon propagators combined

The previous results show that one can obtain excellent
fits of either the quark mass function or the gluon
propagator. However, we point out that the approximations
involved in the present order of the RI scheme are not
expected to give such small values of the error functions Δ
and ΔG. In fact, fitting a single correlation function at a
time can give artificially good results. Indeed, we observe
in Figs. 4 and 7 that the regions of parameters giving good
fits for the two functions separately do not overlap. This is
illustrated in Fig. 8. Good fits for the gluon propagator
require sensibly higher values of the gluon mass than for
the quark mass function. In order to obtain a realistic
control of the quality of our approximation, it is desirable to
fit all available lattice data with a single set of parameters.
When fitting the quark mass function and the gluon
propagator together, we find regions of parameters for
which both the error estimators Δ and ΔG lie below 15%.
The best parameters for this combined fit are (using
M0 ¼ 3 × 10−3 GeV), m0 ¼ 0.15 GeV and g0 ¼ 1.94 or,
equivalently, mðμÞ ¼ 0.21 GeV and gðμÞ ¼ 2.45 for
μ ¼ 1 GeV. The corresponding quark mass and gluon
dressing functions are shown in Fig. 9. The overall agree-
ment remains quite satisfactory.
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FIG. 7. Top: Contour levels for the error function ΔG obtained
using chiral data from [90] andM0 ¼ 3 × 10−3 GeV, for different
values of m0 and g0. Bottom: The same contours in terms of the
running parameters mðμÞ and gðμÞ at the scale μ ¼ 1 GeV. The
darkest region corresponds to parameters with ΔG < 0.1. All
masses and momenta are in GeV.
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FIG. 8. Quark mass function MðpÞ (top) and gluon dressing
function p2GðpÞ (bottom) compared with lattice data from [90].
The best fit parameters are (for M0 ¼ 3 × 10−3 GeV) m0 ¼
0.2 GeV and g0 ¼ 1.89, corresponding to ΔG ¼ 0.03. All masses
and momenta are in GeV.
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An important general observation is that it is not possible
to reproduce lattice data with a gluon mass (defined at the
scale μ ¼ 1 GeV) smaller than 0.2 GeV. In fact, the
favorable values are typically of the order of 0.25 GeV
if we insist on fitting simultaneously the quark mass and the
gluon propagator.
In Fig. 10, we show the function zψðp; μ0Þ for the best fit

parameters obtained above and how it compares to the lattice
data. In contrast to the quark mass function, the function

zψðp; μ0Þ is not well reproduced. The reason for this
mismatch has been discussed at length in Refs. [50,70]
in the context of perturbation theory. This difficulty is
common to most analytical approaches and is related to
the fact that, in the Landau gauge, the function zψ is
dominated by two loop diagrams that are not included at
the present order of approximation but whose effect is
currently under investigation.
Finally, in Fig. 11, we show the running of the quark-gluon

and ghost-gluon couplings as well as the running of the gluon
mass for the best fit parameters. We see that the quark-gluon
coupling is systematically larger than the ghost-gluon one
which is consistent with the assumptions underlying our
expansion scheme. Moreover, in perturbation theory, the
relevant expansionparameter is ðg2NcÞ=ð16π2Þ. In the caseof
the ghost-gluon coupling, this parameter never exceeds a
comfortable ðg2gNcÞ=ð16π2Þ ≈ 0.12 whereas it reaches
ðg2qNcÞ=ð16π2Þ ≈ 0.68 in the case of the quark-gluon cou-
pling and a perturbative treatment appears much more
questionable.7 We also note that the two expansion
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FIG. 9. Quark mass function MðpÞ (top) and gluon dressing
function p2GðpÞ (bottom) compared with lattice data from [2,90],
respectively, using M0 ¼ 3 × 10−3 GeV, m0 ¼ 0.15 GeV and
g0 ¼ 1.94. All masses and momenta are in GeV.
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FIG. 10. The function zψ ðpÞ normalized to zψ ¼ 1 at p ¼
2 GeV for the set of parameters M0 ¼ 0.003 GeV, m0 ¼
0.15 GeV and g0 ¼ 1.94. All masses and momenta are in GeV.
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The parameters are M0 ¼ 0.003 GeV, m0 ¼ 0.15 GeV and
g0 ¼ 1.94. All masses and momenta are in GeV.

7We note that those values are slightly smaller than those
obtained in previous studies in the quenched approximation and
in the case of heavy quarks [58,70].
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parameters of our approximation scheme are roughly of the
same size for Nc ¼ 3, namely, gg

ffiffiffiffiffiffi
Nc

p
=ð4πÞ≲ 0.34 and

1=Nc ≈ 0.33.

VI. CONCLUSIONS

In Ref. [50] we proposed a systematic expansion
scheme, dubbed the RI loop expansion, in order to study
the infrared QCD dynamics within the Curci-Ferrari
model. The RI expansion scheme relies on a double
expansion using as small parameters the coupling gg in
the Yang-Mills sector and the inverse number of colors
1=Nc that allows for a consistent implementation of the
renormalization group. In Ref. [50], we implemented this
approach at leading order with, however, the caveat that
the running of the various parameters was modeled by
hand. In the present article, we go one step beyond by
considering the RI expansion at next-to-leading (one-
loop) order, treating the running of the parameters in a
consistent way. In particular, only the parameters of the
LagrangianM0, m0, and g0 are free adjustable parameters.
We compare our results for the quark and gluon propa-
gators with existing lattice data near the chiral limit [2,90].
We find regions of parameters of the CF model which
simultaneously describe the quark mass function and the
gluon propagator with good precision.
An important observation is that we obtain a consistent

solution where the ghost-gluon coupling remains pertur-
bative due to the massive behavior of the gluon propagator.
When adjusting the parameters to the lattice data, it is
observed that a massless gluon is not compatible with the
solution of the rainbow equation for the quark mass
function. Indeed, below a certain value of the gluon mass,
the equations become numerically unstable suggesting the
appearance of an infrared Landau pole. Moreover, even
before reaching those instabilities the gluon propagator
becomes very badly reproduced. That is, with gluon masses
below 0.2 GeVone cannot reproduce the gluon propagator
with a reasonable accuracy. Instead, values of the gluon
mass (at the scale of 1 GeV) that allow us to fit simulta-
neously the quark mass function and the gluon propagator
are of the order of 0.25 GeV. This is consistent with the
value obtained both in the Yang-Mills sector and in the
heavy quark sector.
We also computed the beta function for the quark-gluon

coupling in a particular renormalization scheme where we
can discard the diagram (b) of Fig. 3 and its diagrammatic
completion (see Appendix B). This is sufficient with regard
to the calculation of the propagators. Computing the quark-
gluon vertex function would require the evaluation and
proper renormalization of further diagrams. On the tech-
nical side the diagram (b) of Fig. 3 is both UV finite and
receives an additional suppression in 1=Nc as compared to
its naive scaling. Of course, in principle, it is interesting to
consider other renormalization schemes which include this
diagram and its diagrammatic completion. In that case, it is

worth mentioning that only part of the diagrammatic
completion is further suppressed by 1=Nc as compared
to the naive order. As shown in the Appendix B, there exists
an infinite class of ladder diagrams of order N−3=2

c , part of
which actually corresponding to an effective one-meson
exchange. Interestingly, such diagrams yield a nontrivial
flavor dependence already at the present order of approxi-
mation and may be of genuine interest for that reason.
As a future application of this expansion scheme, we

plan to evaluate mesonic properties. In particular, at one-
loop order in the RI expansion, the meson-quark-
antiquark vertex is described by the rainbow-ladder
approximation for the Bethe-Salpeter equation [50].
Moreover, the present approach can be extended to
analyze the thermal and finite density properties of
quark-gluon matter. First steps in this direction have been
taken in Ref. [92].
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APPENDIX A: RESUMMED QUARK-LOOP
CONTRIBUTION TO THE GLUON

SELF-ENERGY

We discuss here the UV convergence of the quark
contributions to the longitudinal and transverse compo-
nents (35) and (36) of the gluon self-energy. In particular,
we show that the UV divergences of the quark loopΠðdÞ are
entirely contained within the corresponding perturbative
loop Πpert

ðdÞ ðMÞ, obtained after replacing the quark wave

function ZψðqÞ by 1 and the mass function MðqÞ by a
constant M. To this purpose, we subtract this perturbative
loop from the nonperturbative one and show that the
difference ΔΠðdÞ ≡ ΠðdÞ − Πpert

ðdÞ ðMÞ is finite.8 We also
stress the importance of choosing an appropriate

8It is of course understood that one subtracts the integrals, the
prefactors in front of these integrals remain the same and equal
those of the nonperturbative loop.
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implementation of the cut-off regularization, and we
investigate the convergence rate of the integrals.

1. Subtracted loop

Let us begin with the longitudinal component, Eq. (35),

Πk
ðdÞðpÞ ¼−8

g2qðpÞTfNf

Z2
ψ ðpÞ

Z
q

ZψðqÞ
q2þM2ðqÞ

ZψðlÞ
l2þM2ðlÞ

×

�ðp ·qÞðp ·lÞ
p2

−
q ·l
2

þMðqÞMðlÞ
2

�
: ðA1Þ

In order to subtract the corresponding perturbative loop, we
isolate the perturbative contribution by writing M2ðqÞ ¼
M2 þ ΔM2ðqÞ and ZψðqÞ ¼ 1þ ΔZψ ðqÞ, such that

Zψ ðqÞ
q2þM2ðqÞ¼

1

q2þM2

þ 1

q2þM2ðqÞ
�
ΔZψ ðqÞ−

ΔM2ðqÞ
q2þM2

�
: ðA2Þ

At large q, the second line is suppressed by a factor of 1=q2

as compared to the first line since ΔZψ ðqÞ ∼ q−2 and
ΔM2ðqÞ ∼ q0 up to logarithms. We thus have

ZψðqÞ
q2 þM2ðqÞ ¼

1

q2 þM2

×

�
1þ ΔZψðqÞ −

ΔM2ðqÞ
q2 þM2

þO
�
1

q4

��
:

ðA3Þ

Since the original integral in Eq. (28) is quadratically
divergent, this means that the potential divergences involve
at most one insertion of this second line. Further-
more, using the fact that, at large q, MðqÞ −MðlÞ∼
2ðp · qÞdMðqÞ=dq2, with dM=dq2 ∼ q−2, we can replace
MðqÞMðlÞ → M2ðqÞ in the numerator. Subtracting the
perturbative loop from (A1), we get the following poten-
tially divergent terms:

ΔΠk
ðdÞ ∝

Z
ddq
ð2πÞd

�
1

q2 þM2

1

l2 þM2

ΔM2ðqÞ
2

þ d − 2

d
q2

ðq2 þM2Þ2
�
ΔZψ ðqÞ −

ΔM2ðqÞ
q2 þM2

��
þ � � � ; ðA4Þ

where we have used the symmetry of the integrand upon
q ↔ l (recall that p ¼ qþ l) and the dots correspond to
finite contributions. Combining some terms this rewrites as

ΔΠk
ðdÞ ∝

4 − d
2d

Z
ddq
ð2πÞd

ΔM2ðqÞ
ðq2 þM2Þ2

þ d − 2

d

Z
ddq
ð2πÞd

ΔZψðqÞ
ðq2 þM2Þ

þ � � � ; ðA5Þ

where we have considered p → 0 where appropriate.
Let us now show that these integrals are UV finite. The

integral involving ΔM2 is finite in d < 4 and becomes
logarithmically divergent as d → 4. However, this diver-
gence is canceled by the numerical prefactor, leaving a
finite result. This is not so for the last integral, whose
convergence crucially depends on the properties of ZψðqÞ.
In the Landau gauge, for q ≫ m, the function Zψ ðqÞ
behaves, at one loop, as (see, for instance, Ref. [70])

ZψðqÞ ¼ 1þ ag2qðqÞ
m2ðqÞ
q2

þ � � � ; ðA6Þ

where the corrections are of order 1=q4 up to logarithms. It
is easily checked from Eq. (20) that this remains true at one-
loop order in the RI expansion. Owing to the fact that, at
large momentum, [58,84],

g2qðqÞ∝1= logðq2Þ; m2ðqÞ∝ ½1= logðq2Þ�35=44; ðA7Þ

the third integral in (A5) is convergent in the limit d → 4.
We now come to the transverse part (36). The discussion

is greatly simplified by noticing that

Π⊥
ðdÞ;ΛðpÞ−Πk

ðdÞðpÞ¼−8
g2qðpÞTfNf

Z2
ψ ðpÞðd−1Þ

Z
q

ZψðqÞ
q2þM2ðqÞ

×
Zψ ðlÞ

l2þM2ðlÞ
�
q ·l−d

ðp ·qÞðp ·lÞ
p2

�
:

ðA8Þ

At large q, the bracket behaves as q2 − dðp · qÞ2=p2 ∼ q2

and would naively contribute a quadratic divergence to the
integral. However, upon angular integration, we have q2 −
dðp · qÞ2=p2 → q2 − dq2=d ¼ 0 and the superficial degree
of divergence of the integral is in fact logarithmic.
Moreover, this logarithmic divergence relates to the leading
asymptotic behavior of the propagator for which the mass
plays no role and ZψðqÞ can be replaced by its asymptotic
behavior, 1. It follows that the divergence of the integral in
(A8) is again that of the corresponding perturbative loop,

or, in other words that ΔΠ⊥
ðdÞ;Λ − ΔΠk

ðdÞ is finite.

2. Cutoff implementation and Πk
ðdÞ

As discussed in the main text, the fact that the divergence
of the nonperturbative quark loop is that of the corres-
ponding perturbative loop is not sufficient to provide a
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consistent computational scheme using dimensional regu-
larization. The point is that although ΔΠðdÞ is finite, its
continuum limit may still depend on the way the (neces-
sary) cutoff that is used to evaluate it is implemented. As
already mentioned, this is clearly visible in the case of the
longitudinal loop where the strategy presented in (31)
leads to

ΔΠk
ðdÞ ¼ Πk

ðdÞ − Πkpert
ðdÞ ðMÞ; ðA9Þ

which makes sense only if the cutoff regularization that is
used to evaluate the bracket is implemented such that the

perturbative longitudinal loop Πkpert
ðdÞ ðMÞ vanishes. As

already mentioned below Eq. (23), that this perturbative
loop vanishes is clear in dimensional regularization where
one can exploit the BRST symmetry, see also below for a
more explicit evaluation. However, this is not necessarily so
in the case of a cutoff regularization and, in fact, with a

naive cutoff implementation, Πkpert
ðdÞ ðMÞ does not vanish and

even diverges quadratically.
In this section, we show one implementation of the cutoff

where Πkpert
ðdÞ ðMÞ ¼ 0. The point is that this property does

not rely much on dimensional regularization itself but
rather on the fact that the two possible loop momenta q and
l ¼ p − q are treated on an equal footing.
To see this, let us consider the perturbative loop,

Πkpert
ðdÞ ðpÞ ¼ −8

g2qðpÞTfNf

Z2
ψ ðpÞ

Z
q

1

q2 þM2

1

l2 þM2

×

�ðp · qÞðp · lÞ
p2

−
q · l
2

þM2

2

�
: ðA10Þ

Using the identity,

2ðp · qÞðp · lÞ − p2ðq · lÞ
¼ q2ðp · lÞ þ l2ðp · qÞ
¼ ðq2 þM2Þðp · lÞ þ ðl2 þM2Þðp · qÞ −M2p2; ðA11Þ

this rewrites

Πkpert
ðdÞ ðpÞ ¼ −4

g2qðpÞTfNf

Z2
ψðpÞp2

Z
q

�
p · q

q2 þM2
þ p · l
l2 þM2

�
:

ðA12Þ

This makes obvious that for any regularization scheme that
treats q and l on an equal footing,9 the above integral
vanishes upon angular integration.

With such an implementation of the cutoff the non-
perturbative quark loop can be computed directly, without
relying on the subtraction (A9). It is, however, convenient
to use a cutoff only on the variable q and not on both q and
l, while maintaining the above properties of the corre-
sponding perturbative loop. To this purpose, we first
generalize (A11) as

ðp · qÞðp · lÞ
p2

−
q · l
2

þMðqÞMðlÞ
2

¼ ½q2 þM2ðqÞ�p · l
2p2

þ ½l2 þM2ðlÞ�p · q
2p2

þ q2 − l2

p2

M2ðqÞ −M2ðlÞ
4

−
½MðqÞ −MðlÞ�2

4
;

ðA13Þ

and use the q ↔ l (assuming first that both q and l are cut)
symmetry to rewrite

Πk
ðdÞðpÞ ¼ −8

g2qðpÞTfNf

Z2
ψ ðpÞ

Z
q

�
ZψðqÞZψ ðlÞ
q2 þM2ðqÞ

p · q
p2

þ Zψ ðqÞ
q2 þM2ðqÞ

ZψðlÞ
l2 þM2ðlÞ

MðqÞ −MðlÞ
4

×

�
q2 − l2

p2
½MðqÞ þMðlÞ� −MðqÞ þMðlÞ

��
:

ðA14Þ

Unlike Eq. (A1), this expression vanishes for ZψðqÞ → 1

and MðqÞ → M with a sharp momentum cutoff. The
potentially divergent contribution to the momentum inte-
gral is now given by

1

d

Z
ddq
ð2πÞd

�
−2

dZψðqÞ
dq2

þ 1

q2
dM2ðqÞ
dq2

�
: ðA15Þ

Again we see that the convergence of these integrals relies
on the large-q behavior of ZψðqÞ andMðqÞ. From what we
have recalled above, we have dZψðqÞ=dq2 ∝ ðln qÞ−γ=q4,
with γ > 1, which guarantees the convergence of
the first contribution above. Similarly, the large-q
behavior of the quark mass function, recalled in
Eq. (44), is, at most, MðqÞ ∝ ðln qÞ−α, with α > 0, which
guarantees the convergence of the second contribution
above.

3. Convergence rate

We note that, if the convergence of the integral in
Eq. (A8), which enters the calculation of the gluon
anomalous dimension (28) is rapid (power law), that of

9This is the case for dimensional regularization but also when
implementing the cutoff such that both jqj < Λ and jlj < Λ.
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the integral in Eq. (A14) is pretty slow,10 which could make
its numerical evaluation difficult. Fortunately, the UV tail is
numerically small and poses no particular problem.
Finally, we show that the expressions (A8) and (A14)

approach their perturbative expressions at large p. One
easily verifies that both integrals are dominated by q ∼ p,
and we find that

Πk
ðdÞðpÞ ∼ AZ

g2qðpÞ
ðlnpÞγ þ AM

g2qðpÞ
ðlnpÞ2α ðA16Þ

and

Π⊥
ðdÞ;ΛðpÞ − Πk

ðdÞðpÞ ∼ pertþ Bg2qðpÞ; ðA17Þ

where α and γ have been defined above, AZ, AM, and B are
constants, and where pert denotes the perturbative contri-

bution. The latter behaves as − g2ðpÞNf

12π2
p2ðlnpþ CÞ, with C

is a (divergent) constant. We thus see that the nonpertur-
bative contribution is strongly suppressed in the UV. This
analysis shows that the nonperturbative contribution to the
gluon anomalous dimension (28) is ∝ g2qðpÞ=p2 at large p
and the gluon anomalous dimension matches its one-loop
expression in the UV [70],

γquarkA ðpÞ ∼ g2qðpÞNf

12π2
: ðA18Þ

Owing to the Taylor theorem, the same is true for the beta
function βgg of the pure gauge coupling.

APPENDIX B: THE QUARK-GLUON VERTEX

Even though this is not the main focus of the present
work, we discuss here, for completeness, the diagrams that
contribute to the quark-gluon vertex at next-to-leading
(one-loop) order of the RI expansion. We first determine

how the standard one-loop diagrams scale with our expan-
sion parameters λg and 1=Nc. Then we proceed to their
diagrammatic completion, that is, we identify all higher-
loop diagrams with the same parametric dependence in λg
and Nc.
The two possible one-loop contributions are identical to

diagrams (a) and (b) in Fig. 12 but with bare quark
propagators instead of dressed ones. These diagrams scale,
respectively, as λgN

−1=2
c and N−3=2

c .
A careful inspection shows that including higher-loop

diagrams with the same respective powers of λg and Nc
amounts to dressing all internal quark lines with rainbow-
resummed propagators, dressing the quark-gluon vertex in
diagram (b) with infinitely many one-gluon exchange
rungs, as shown in diagram (c), and resumming the infinite
ladders with the topology of diagram (d). Again, all internal
quark lines in diagrams (c) and (d) are rainbow-resummed
quark propagators.
The explicit calculation of the color factors reveals a

further suppression by one power of 1=Nc for the diagrams
(b) and (c), which are actually of the same order N−5=2

c as
higher order nonplanar diagram. Another important prop-
erty is that these diagrams are UV-finite (in the Landau
gauge) and do not contribute to the beta function in the UV.
In contrast, the diagrams (d) do not receive any additional
suppression by 1=Nc and are actually UV divergent. They
thus contribute to the beta function for the quark-gluon
coupling in the UV, starting at two-loop order, however. As
explained in the main text, it is thus consistent to devise a
scheme for the running quark-gluon coupling at one-loop
order in the RI expansion that does not include these

(a) (b)

(c) (d)

FIG. 12. Diagrams contributing to the quark-gluon vertex at
one-loop order of the RI loop expansion. The thick line represents
the quarks propagator in the rainbow approximation. Diagrams in
standard perturbation theory at one-loop order are obtained from
diagrams (a) and (b) after undressing the quark propagators.

10One possible origin for the slow convergence of the integrals
could be the miscancellation of UV divergences in the perturba-
tive diagrams that are resummed in the rainbow approximation.
Indeed, miscanceled perturbative subdivergences can sum up to
slowly convergent expressions [93]. For instance, the quark-loop
in the gluon propagator contains a two-loop contribution where a
one-loop quark self-energy is inserted in one of the lines of the
loop. By opening up the gluon line in this self-energy, one
generates a contribution to the four-gluon function which is not
finite and does not have the structure of the four-gluon tree-level
vertex. The reason why this occurs is that there are missing
channels that would be generated by another diagram that is not
included at this order of the RI expansion, namely the diagram
with one gluon exchange. This is a very well-known issue in the
2PI formalism and has been discussed in [94] for the case of
QED. There, the trick is to introduce artificial counterterms to
absorb these perturbative divergences. Similar considerations
could allow to improve the convergence of the integrals in the
present case.
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diagrams. They should be considered already at the present
order of approximation, however, were we to evaluate the
full quark-gluon vertex. It is interesting that such infinite
sum of contributions, directly sensitive to the flavor
structure of the theory (for it is proportional to the number
of flavours Nf) and including effectively one-meson
exchange contributions (via the infinite series of ladder
diagrams), appear already at this order of approximation in
our expansion scheme.
We end this section by commenting on the expected

relative orders of magnitude of the various contributions to
the quark-gluon vertex shown in Fig. 12 for the realistic
values Nc ¼ 3 and Nf ¼ 2. Although the neglect of
diagrams (d) is formally justified by the fact that they
are two-loop suppressed in the UV, this is less clear in the
infrared. Indeed, the relative order of the diagrams (d) with
respect to the diagram (a) is xðdÞ ¼ ðλ̄2qÞl−2 × λ̄3qNf=ðλ̄gNcÞ,
where λ̄ ¼ g

ffiffiffiffiffiffi
Nc

p
=ð4πÞ is the loop parameter for each

coupling, and where l ≥ 2 is the number of loops in the
diagrams (d). Using the maximal infrared values quoted in
the text, λ̄2g ¼ 0.12 and λ̄2q ¼ 0.68, we get, xðdÞ ≈ ð0.68Þl−2.
We thus see that these diagrams may be numerically
important in practice for realistic values of Nf=Nc.
Although formally justified in our approximation scheme,
neglecting the diagrams (d) in the beta function of the quark-

gluon coupling should be seen as a simplifying technical
assumption rather than an accurate account of the vertex. A
similar discussion for the diagrams (c) [which include the
diagram (b)] leads to a relative suppression factor xðcÞ ¼
ðλ̄2qÞl−1 × λ̄q=ðλ̄gN2

cÞ with respect to the diagram (a), where,
here, l ≥ 1. With the numbers quoted above, we get xðcÞ ≈
0.26 × ð0.68Þl−1 so that not including these diagram in the
running of the quark-gluon coupling is expected to be
numerically accurate. Finally, we mention that these esti-
mates are to be taken with a grain of salt since, in some cases,
higher loops are suppressed by powers of μ2=m2 in the
infrared [58].

1. Calculation of λ01
ΛðpÞ

Here, we show how to deal with the contribution to λ01
Λ

arising from diagram (a) of Fig. 3 in the OTE-momentum
configuration. The Feynman integral is easily obtained from
the standard one-loop expression by replacing the quark
masses byMðqÞ and including a multiplicative factorZψðqÞ.
We first use FeynCalc to deal with the Dirac-gammas and
simplify the tensorial structure. We then use FIRE [95] to
reduce the integral to master integrals, taking proper care of
the momentum dependence of MðqÞ. We find
λ01

Λ ¼ λΛ1 − k2τΛ3 , with

λΛ1 ðpÞ ¼
g2ΛN
8m2p2

Z
∞

0

dq qd−1ZψðqÞ
�
ðM2 þ p2Þðm2 þM2 þ p2ÞBðM2; 0;−p2Þ − 2m2ðd − 2ÞAqðM2Þ

þ ½2ðd − 2Þm2ðm2 −M2 þ p2Þ − ðM2 þ p2Þ2�BðM2; m2;−p2Þ þ ½ð2d − 3Þm2 þM2 þ p2�Agðm2Þ

þm2ðm2 þ 2p2Þ
2

ðBðm2; 0;−2p2Þ þ Bð0; m2;−2p2Þ − 2ðM2 þ p2Þ½CðM2; 0; m2Þ þ CðM2; m2; 0Þ�Þ
�

ðB1Þ

and

τΛ3 ðpÞ ¼ g2N
Z

∞

0

dqqd−1Zψ ðqÞ
�½ð2d2 − 5dþ 4Þm2 þ ðd − 1ÞM2 þ ð7 − 3dÞp2�Agðm2Þ

16ðd − 1Þm2p4
−
ðd − 2ÞAqðM2Þ

8p4

−
½ðd − 1ÞM4 þ ðd − 2Þp4�Bð0; 0;−2p2Þ

4ðd − 2Þðd − 1Þm4p2
þ F 1½Bð0; m2;−2p2Þ þ Bðm2; 0;−2p2Þ�

32ðd − 2Þðd − 1Þm4p4

þ F 2Bðm2; m2;−2p2Þ
4ðd − 2Þðd − 1Þm4p4

þ F 3BðM2; 0;−p2Þ
16ðd − 2Þm2p4

þ F 4BðM2; m2;−p2Þ
16ðd − 2Þm2p4

þ ðM4 þ p4ÞCðM2; 0; 0ÞM2

4ðd − 2Þm4p2
þ F 5CðM2; m2; m2Þ

4ðd − 2Þm4p4
−

F 6

32ðd − 2Þm4p4
½CðM2; 0; m2Þ þ CðM2; m2; 0Þ�

�
; ðB2Þ

where

F 1 ¼ ðm2 þ 2p2Þ½d2m2ðm2 − 4p2Þ − 2dm2ðm2 þM2 − 8p2Þ − 2ðM4 þ p4Þ� þ 2½m2ðM2 − 8p2Þ − 2ðM4 þ 2p4Þ� ðB3Þ

F 2 ¼ ðd2 − 3dþ 2Þm6 −m4½ðd2 − 4dþ 3ÞM2 þ 2ðd − 2Þp2� þ p2½ð1 − dÞM4 − ðd − 2Þp4�
þm2½ð2d2 − 9dþ 10Þp4 þ ð1 − dÞM4 þ ðd − 1ÞM2p2� ðB4Þ
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F 3 ¼ −4M4 þ 10p2M2 þ 6p4 − 2m2p2

þ dðm2 þM2 − 3p2ÞðM2 þ p2Þ ðB5Þ

F 4 ¼ 2ðd2 − 6dþ 8Þm4 − 2m2½ðd2 − 6dþ 10ÞM2 − ðd2
− 6dþ 8Þp2� − ðM2 − 3p2Þ½ðd − 4ÞM2 þ ðd − 2Þp2�

ðB6Þ

F 5 ¼ ðd − 2Þm8 þm6½ð5 − 2dÞM2 þ 2ðd − 2Þp2�
þm4½ðd − 4ÞM4 − ðd − 2Þp4 þ 3M2p2� ðB7Þ

þm2½ð7−2dÞM2p4−2ðd−2Þp6þM6−2M4p2�
þM2p2½M4þp4�

F 6¼ðm2þ2p2Þ½dm2ðm2−4p2ÞðM2þp2Þ
−2m4p2−4m2ðM4−3M2p2−2p4Þ
þ4M2ðM4þp4Þ� ðB8Þ

andM ¼ MðqÞ. The functions Aq, Ag, B, and C are defined
as the angular integrals over the directions of the vector q

AqðM2Þ ¼
Z

dΩdðqÞ
ð2πÞd

1

q2 þM2
; ðB9Þ

Agðm2Þ ¼
Z

dΩdðqÞ
ð2πÞd

1

ðqþ pÞ2 þm2
; ðB10Þ

Bðm2
1; m

2
2;−p2Þ ¼

Z
dΩdðqÞ
ð2πÞd

1

q2 þm2
1

1

ðqþ pÞ2 þm2
2

;

ðB11Þ

CðM2; m2
2; m

2
3Þ

¼
Z

dΩdðqÞ
ð2πÞd

1

q2 þM2

1

ðqþ pÞ2 þm2
2

1

ðqþ rÞ2 þm2
3

;

ðB12Þ

with rþ pþ k ¼ 0. We have checked that this result
reproduces the one-loop expression from Ref. [71] when
MðqÞ and ZψðqÞ are treated as constants. The latter also
reproduces results from Ref. [96] in the case of a vanishing
gluon mass. In fact, because the original integral is loga-
rithmically divergent, it is obvious that by adding and
subtracting these perturbative expressions, we obtain one
contribution that can be evaluated in dimensional regulari-
zation and another one that is explicitly finite and that can be
computed directly for d ¼ 4. In what follows we concentrate
one these latter contributions.
The next step is to perform the angular integrals

analytically. For integrals involving Aq, Ag, and B, we
proceed as follows:Z

∞

0

dqq3wðp2; q2ÞBðm2
1; m

2
2;−p2Þ

¼
Z

∞

0

dqq3

4π3
wðp2; q2Þ
q2 þm2

1

Z
1

−1

du
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p

q2 þ p2 þ 2qpuþm2
2

¼
Z

∞

0

dqq
16π2p2

wðp2; q2Þ
q2 þm2

1

ða −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 4p2q2

q
Þ; ðB13Þ

with a ¼ q2 þ p2 þm2
2. Integrals involving C have the

generic form,

H ¼
Z

∞

0

dqq3fðq2; p2; k2; p:kÞCðM2; m2
2; m

2
3Þ; ðB14Þ

and are computed in the following way. First, we take into
account the OTE configuration, for which k2 ¼ 2p2 and
p:k ¼ −p2 (or, equivalently, p:r ¼ 0 and r2 ¼ p2). To
perform the angular integrals, we project q in the plane
defined by r and p (which are orthogonal); see Fig. 13.
Then, we can write q2 ¼ q2k þ q2⊥, with qk ¼ q cos θ and
q⊥ ¼ q sin θ, so that

Z
d4q
ð2πÞ4 ¼

1

ð2πÞ4
Z

d2q⊥
Z

qkdqk

Z
2π

0

dφ: ðB15Þ

Therefore,

H ¼
Z

∞

0

q⊥dq⊥
ð2πÞ3

Z
∞

0

qkdqk

Z
2π

0

dφ
fðq2; p2; 2p2;−p2Þ

q2 þM2

1

ðq2 þ p2 þ 2pqk cosφþm2
2Þðq2 þ p2 þ 2pqk sinφþm2

3Þ

¼
Z

∞

0

dq⊥q⊥
2π

Z
∞

0

qkdqk
2π

fðq2; p2; 2p2;−p2Þ
q2 þM2

hðq2; p2; q2uÞ; ðB16Þ

FIG. 13. Geometrical representation of the integration variables
in Eq. (B15) in the OTE configuration.
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where (u ¼ cos θ)

hðq2; p2; q2uÞ ¼
affiffiffiffiffiffiffiffiffi

c2−b2
p þ cffiffiffiffiffiffiffiffiffi

a2−b2
p

a2 þ c2 − b2
; ðB17Þ

with b ¼ 2pqu and c ¼ q2 þ p2 þm2
3. Switching from the

variables qk and q⊥ to q and θ, the integral over θ can be
evaluated as

H ¼
Z

∞

0

dqq3

ð2πÞ2
fðq2; p2; 2p2;−p2Þ

q2 þM2

Z
1

0

duuhðq2; p2; q2uÞ

¼
Z

∞

0

dqq
16π2p2

fðq2; p2; 2p2;−p2Þ
q2 þM2

× arctan

 
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 4p2q2

p
− a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 4p2q2

p
caþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 4p2q2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 4p2q2

p
!
:

ðB18Þ

The remaining radial momentum integral can be performed
numerically using the grid that we used to determineMðqÞ.

2. Choice of kinematic configuration
for the quark-gluon vertex

In this work we define the renormalized ghost-gluon
coupling gg using the Taylor scheme, that is, through the
ghost-gluon vertex at vanishing ghost momentum [88]. Here,
we discuss various possible definitions of the quark-gluon
coupling gq through different momentum configurations of
the quark-gluon vertex. Even though the various renormal-
ized couplings are different, they are related to the same bare
value. This implies that their renormalization factors are also
different. While Zgg

ffiffiffiffiffiffi
ZA

p
Zc ¼ 1 for the gauge sector, in the

quark sector, we have Zgq

ffiffiffiffiffiffi
ZA

p
Zψλ

0
1
Λ ¼ 1, where λ01

Λ rep-
resents the bare quark-gluon scalar function that includes the
tree-level term in the chosen kinematical configuration.11 The
ratio between the couplings defines the renormalized λ01 as

gqðμÞ
ggðμÞ

¼ Zψ ðμÞ
ZcðμÞ

λ01
ΛðμÞ≡ λ01ðμÞ: ðB19Þ

In the UV regimewe can use perturbation theory and expand
this relation in gg. In theLandau gauge, at one loop, there is no
correction to the quark renormalization factor for μ ≫ m
(Zψ ¼ 1þOðg4gÞ), while a straightforward calculation gives

Zc ∼ 1þ Ng2g
64π2

�
6

ϵ
þ 4 − 3 log

�
μ2eγ

4π

��
; ðB20Þ

where ϵ ¼ 4 − d and γ is the Euler constant.
Next, we determine the UV behavior of λ01 in the chosen

kinematical configuration. The simplest choice is to use the

vanishing-gluon-momentum configuration. In this case, the
one-loop quark-gluon vertex can be computed analytically
for arbitrary quark momentum p. In particular, at large
momentum,

λ0Λ1 ðpÞ ∼
p≫m

1þ 3Ng2g
64π2

�
2

ϵ
þ 1 − log

�
p2eγ

4π

��
: ðB21Þ

However, we obtain in this case,

gqðμ0Þ ¼ ggðμ0Þ
�
1 −

Ng2g
64π2

�
< ggðμ0Þ: ðB22Þ

This particular definition of the quark-gluon coupling
makes it smaller than the Taylor ghost-gluon coupling in
the UV, an ordering that persists in the infrared. Lattice data
from [97] show that this is not the common situation for λ01,
and it is then preferable to look for other configurations
where the couplings are ordered in the opposite way.
It is not difficult to find such configurations. For

instance, if the quark-coupling is defined using the OTE,
we find for p ≫ m,

λ0Λ1 jOTEðpÞ ∼ 1þ 3Ng2g
64π2

�
2

ϵ
þ 3 − log

�
p2eγ

2π

��
; ðB23Þ

and, therefore,

gqðμ0Þ ¼ ggðμ0Þ
�
1þ g2gN

64π2
ð5 − 3 logð2ÞÞ

�
> ggðμ0Þ:

ðB24Þ

In the present context, the appropriate choice of momen-
tum configuration is dictated by the Dyson-Schwinger
equation for the quark self-energy. To analyze the latter
in a simple way, we replace both the quark and the gluon
propagators by their tree-level expressions. Moreover, we
restrict the analysis to Γμðp; qÞ ¼ γμfðp; qÞ which is the
dominant tensorial structure. The resulting contribution to
the self-energy is proportional to

Z
ddq
ð2πÞd

P⊥
μνðqÞ

q2 þm2
Γμðp; qÞ

qþ pþM
ðqþ pÞ2 þM2

γν: ðB25Þ

It is easy to see that the contribution from small gluon
momentum q ≪ p, M, m is suppressed and that the region
that dominates corresponds to q ∼ p,M [50]. It follows that
the vanishing-gluon-momentum scheme for the coupling is
not representative and virtually any other configuration is a
better option. We have checked on a few of these other
configurations (including the OTE) that they give the
ordering gqðmu0Þ > ggðμ0Þ. For practical purposes we
choose then the OTE configuration mentioned before.

11We employ here the notation of Refs. [81,89]. We stress that
the prime here does not denote a derivative; see Eq. (39).
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