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Evolution of spin polarization in the presence of external electric field is studied for collision energiesffiffiffiffiffiffiffiffi
sNN

p ¼ 27 GeV and
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The numerical analysis is done in the perfect-fluid Bjorken-
expanding resistive magnetohydrodynamic background and novel results are reported. In particular, we
show that the electric field plays a significant role in the competition between expansion and dissipation.
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I. INTRODUCTION

In recent years, relativistic hydrodynamics has become a
commonly accepted tool for the description of relativistic
heavy-ion collisions [1–5], which allows us to draw a
uniform picture of the complicated processes taking place
in these events. It has been quite successful in describing
the collective phenomena [6], and, hence, it is supposed to
be applicable to explain the QGP (quark-gluon-plasma)
dynamics from the very early stages of evolution [7,8].
Despite the triumph of hydrodynamics in explaining
physical observables, there are certain quantum aspects
of the produced QCD matter that may not be understood
using the standard formulations of relativistic hydrody-
namics and indicate directions for many new investigations.
In particular, recent measurements of spin polarization
of Λ hyperons [9–13] indicate that the incorporation of
spin degrees of freedom into the standard hydrodynamics
framework may be necessary for understanding the spin
polarization of final hadrons. The first attempt to formulate
relativistic hydrodynamics with spin as a dynamic quantity
has been proposed in Ref. [14]; for various follow-up
theoretical investigations see, for instance [15–29]. Other
theoretical studies [30–49] deal mainly with the spin
polarization during the freeze-out stage of heavy-ion
collisions, where they consider that the thermal vorticity
is the basic hydrodynamic quantity which gives rise to spin
polarization.

Grounded on basic physical arguments [50] and simu-
lations [51,52], large electromagnetic (EM) fields are
produced during heavy-ion collisions. The typical scales
of the initial field strength are of the order of eE=m2

π∼
eB=m2

π ∼Oð1Þ, with mπ being the pion mass and e
denoting the elementary electric charge. If the EM fields
do not decay too quickly, then they may modify different
aspects of the fireball dynamics including the dynamics of
spin polarization. Although the production of large EM
fields in heavy-ion collisions is not of any doubt, their
dynamics is not yet settled. Thus, recent years have observed
a significant attraction to the applications of both analytical
[53–58] and numerical [59,60] solutions of relativistic
magnetohydrodynamics (MHD) to heavy-ion collisions.
In this work, we assume the fluid in the microscopic

scale to be composed of noninteracting quarklike quasi-
particles of Nf flavors in equilibrium, which admits a
kinetic description according to the Boltzmann-Vlasov
(BV) equation. By this virtue, we are not taking into
account the direct coupling between the EM fields and spin
degrees of freedom. The stationary solution of the BV
equation is obtained, in particular, in Ref. [61] as the zeroth
order in ℏ expansion. In this solution, modification of the
chemical potential permits the electric field to exist in
equilibrium [62]. Although the electric field vectors may
cancel out in the event-by-event averaging [51], the
modifications of thermodynamics that they induce, do
not. We use the stationary solution to the BVequation to
derive the modification of hydrodynamic variables in
equilibrium. The results are then plugged into the MHD
equations, with the solutions of the Maxwell equations in
the case of Bjorken flow derived in Ref. [55], to find the
dynamics of temperature and chemical potential. We finally
use the acquired background dynamics in the spin con-
servation law to study the spin polarization dynamics. The
evolution of the hydrodynamic variables is modified both
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by the Joule heating (JH) term at the macroscopic level, and
the modification of the thermodynamics at the microscopic
level. Consequently, the competition between the JH and
expansion gives rise to novel results.
The structure of the manuscript is as follows: we start by

modifying the perfect-fluid background in the presence of
the external electric field in Sec. II and setting up the
necessary hydrodynamic framework for the study of spin
polarization. In Sec. III the details about the spin polari-
zation tensor and the form of the spin tensor are given.
Sec. IV deals with the evolution of EM fields and
conservation laws. In Sec. V we present numerical results
for the thermodynamic variables and spin polarization
coefficients in the perfect-fluid background. Finally, we
summarize the key results and interpretations of our work
and outline possible future extensions in Sec. VI.
Notation and conventions.—In this paper, we use

“mostly minus” metric convention. The scalar (or dot)
product of two four vectors aα and bα reads a · b ¼
aαbα ¼ gαβaαbβ ¼ a0b0 − a · b, where three vectors are
denoted by bold font. For the Levi-Civita tensor ϵαβγδ

we adopt the convention ϵ0123 ¼ −ϵ0123 ¼ þ1. We denote
the Lie derivative of a tensor X of arbitrary rank with
respect to a vector V as £VX. We use a shorthand notation
for antisymmetrization by a pair of square brackets. For
example, for arbitrary rank-two covariant tensorM we have
M½μν� ¼ 1=2ðMμν −MνμÞ. Throughout the paper we use
natural units, i.e., c ¼ ℏ ¼ kB ¼ 1.

II. HYDRODYNAMIC EQUATIONS IN THE
PRESENCE OF ELECTROMAGNETIC FIELDS

The EM fields may modify the spin hydrodynamics
formalism in different ways. In the present work, we study
the dynamics of spin polarization in the presence of a
background gauge field Aμ. We assume that each fluid
element consists of quarklike quasiparticles of Nf flavors,
which admit a classical kinetic description. Following
Refs. [18,23] we assume that the single-particle distribution
function for particles and antiparticles can be factorized
into spin-dependent and spin-independent parts as

f�s;eqðx; p; sÞ ¼ f�eqðx; pÞ exp
�
1

2
ωαβðxÞsαβ

�
; ð1Þ

where f�eqðx; pÞ is the stationary solution to the Boltzmann
equation, ωαβ is the spin polarization tensor (see Sec. III for
discussion) and sαβ is the internal angular momentum [63]
for massive spin-1=2 particles defined in terms of spin four
vector sα and particle four momentum pα [64]

sαβ ¼ 1

m
ϵαβγδpγsδ; ð2Þ

where m is the particle mass.

In the rest of this section, we ignore possible modifica-
tion of the spin-dependent part of the distribution function
due to EM field by assuming that ωαβ is small [18,20,24].

A. The stationary solution to the BV equation

In the presence of EM fields, we employ the stationary
solution to the BVequation [65]. The relativistic BV
equation in the collisionless limit reads

pμ∂μf�i � qiFμνpν∂p
μf�i ¼ 0; ð3Þ

where i ¼ 1;…; Nf is the flavor index, qið−qiÞ is the
(anti)particle electric charge for each flavor, and Fμν ¼
∂μAν − ∂νAμ is the EM field strength tensor. All quarks
have the same baryon number while their electric charges
differ. In the global equilibrium, the solution to Eq. (3)
reads [61,65]

f�eq;iðx; pÞ ¼ exp

�
� ξB

3
− βμðpμ � qiAμÞ

�
; ð4Þ

where ξB is the ratio of baryon chemical potential μ over
temperature T, ξB ≡ μ=T, and βμ is the ratio of fluid flow
vector Uμ and temperature, βμ ≡Uμ=T. Plugging the
solution (4) into Eq. (3) gives rise to

1

2
pμpν£βgμν � qipμ£βAμ ¼ 0: ð5Þ

Here £βX is the Lie derivative of a tensor with respect to β
and in particular [66]

£βAμ ¼ βν∂νAμ þ Aν∂μβ
ν; ð6Þ

£βgμν ¼ ∂μβν þ ∂νβμ: ð7Þ

Equation (5) is satisfied in the global equilibrium for which
we have

£βgμν ¼ 0; £βAμ ¼ 0: ð8Þ

We rewrite the latter relation above using Eq. (6) as follows

£βAν ¼ βμð∂μAν − ∂νAμÞ þ βμ∂νAμ þ Aμ∂νβ
μ;

¼ βμFμν þ ∂νðβ · AÞ ¼ 0: ð9Þ

The Faraday tensor Fμν can be decomposed with respect to
the four velocity Uμ in the following way [67]

Fμν ¼ EμUν − EνUμ þ ϵμναβUαBβ; ð10Þ

where the EM four vectors are defined as
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Eμ ≡ FμνUν; Bμ ≡ 1

2
ϵμναβFναUβ: ð11Þ

Plugging Eq. (10) into Eq. (9) and expressing Uμ with βμ

gives rise to

Eμ

T
¼ ∂μðβ · AÞ: ð12Þ

Integrating Eq. (12) and assuming that Eμ and T are slowly
varying at the microscopic scale leads to

β · A ¼ Eμ

T

Z
dxμ; ð13Þ

up to a gauge transformation that should be absorbed into
the quark baryon chemical potential μ=3 [68]. By this
virtue, the solution (4) can be rewritten as

f�eq;iðx; pÞ ¼ exp ð�ξi − βμpμÞ; ð14Þ

where

ξi ¼ ξB − qi
Eμ

T

Z
dxμ: ð15Þ

The distribution function (14) has an important implication.
Even if the event-by-event average of the electric field
vanishes [51], its fingerprint in the distribution function
may survive.
Thus, the spin distribution function Eq. (1), can be

written using Eq. (14) in the small polarization limit as

f�i;s;eqðx; p; sÞ ¼ f�eq;iðx; pÞ
�
1þ 1

2
ωαβðxÞsαβ

�
: ð16Þ

B. Baryon and electric charges

In contrast to Ref. [20], the fluid considered in this
work has two different charge currents: a baryon charge
current Nα and an electric charge current Jα. In equilibrium
we have [24]

Nα
eq ¼

XNf

i

Z
dPdSpα½fþi;s;eq − f−i;s;eq�; ð17Þ

where the invariant momentum integration measure dP and
spin integration measure dS is [18]

dP ¼ d3p
ð2πÞ3Ep

; dS ¼ m
πs

d4sδðs · sþ s2Þδðp · sÞ; ð18Þ

and s2 ¼ 3=4 is the length of the spin vector.

Plugging the distribution function (16) in Eq. (17), and
keeping the terms up to first order for small polarization in
ωμν gives rise to [1,14]

Nα
eq ¼ nUα ¼

XNf

i

niUα; ð19Þ

where ni ¼ 4 sinhðξiÞnð0Þ;iðTÞ and nð0Þ;iðTÞ denotes the
number density of spinless and neutral massive Boltzmann
particles of the form [1,14]

nð0Þ;iðTÞ ¼
1

2π2
T3m̂2

i K2ðm̂iÞ; ð20Þ

with m̂i ≡mi=T being the ratio of the ith flavor mass over
temperature andKnðm̂iÞ is the nth modified Bessel function
of the second kind.
Baryon charge conservation law has the form

∂αNα
eqðxÞ ¼ 0; ð21Þ

which is guaranteed by Eq. (3) and it also implies that the
baryon charge current is independently conserved for each
flavor, namely,

∂αNα
i;eqðxÞ ¼ 0; with Nα

i;eq ≡ niUα: ð22Þ

Next we turn to the electric current. First, note that the
conservation of electric current is an implication of the
inhomogeneous Maxwell equation, namely,

∂μFμν ¼ Jν ¼ ρeUν þ ΔνρJρ; ð23Þ

where Δνρ is the spatial projection operator expressed as

Δνρ ¼ gνρ −UνUρ; ð24Þ

and ρe is the local electric charge density given by

ρe ¼
XNf

i

Z
dPdSðp ·UÞqi½fþi;s;eq − f−i;s;eq�; ð25Þ

which, similar to Eq. (19), gives rise to

ρe ¼
XNf

i

qini: ð26Þ

In what follows, we use Bjorken-expanding resistive
MHD in which the symmetries require electric neutrality
[55]. The fluid can have a net baryon charge density n
with a vanishing electric charge density ρe. Such a setup is
simplified but not unrealistic in the later stages of the
fireball evolution. Out of equilibrium, the electric current is
expressed as
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Jμ ¼ σeEμ; ð27Þ

where σe is the electric conductivity and the above current
is dissipative.

C. Conservation of energy and linear momentum

In equilibrium, the energy-momentum tensor of the fluid
reads

Tμν
eq ¼

XNf

i

Z
dPdSpμpν½fþi;s;eq þ f−i;s;eq�: ð28Þ

Using Eq. (16) in above equation, we obtain

∂μT
μν
eq ¼ FνρJρ;eq: ð29Þ

However, the above form of the energy-momentum con-
servation law is implied by the diffeomorphism and gauge
invariance [69] and is therefore independent of the under-
lying microscopic theory. By this virtue, the conservation
law of energy and linear momentum has the form

∂αT
αβ
fluidðxÞ ¼ FβγJγ; ð30Þ

where for the perfect fluid, the energy-momentum tensor
Tαβ
eq is expressed as

Tαβ
eq ¼ ðεþ PÞUαUβ − Pgαβ; ð31Þ

with the energy density and pressure having the form

ε ¼ 4
XNf

i

coshðξiÞεð0Þ;iðTÞ; ð32Þ

and

P ¼ 4
XNf

i

coshðξiÞPð0Þ;iðTÞ; ð33Þ

respectively.
Similar to (20), εð0Þ;iðTÞ and Pð0Þ;iðTÞ are the energy

density and pressure for spinless and neutral massive
Boltzmann particles defined as [1,14]

εð0Þ;iðTÞ ¼
1

2π2
T4m̂2

i ½m̂iK1ðm̂iÞ þ 3K2ðm̂iÞ�; ð34Þ

and

Pð0Þ;iðTÞ ¼ Tnð0Þ;iðTÞ; ð35Þ

respectively.

D. Entropy conservation

At this stage, we would like to comment on entropy
conservation in the presence of background electric fields.
The entropy current reads [24]

Hμ ¼ −
XNf

i

Z
dPdSpμ½fþi;s;eqðlog fþi;s;eq − 1Þ

þ f−i;s;eqðlog f−i;s;eq − 1Þ�: ð36Þ

Plugging Eq. (1) with Eq. (4) into the above equation,
we obtain [24]

Hμ ¼ Pβμ þ βαT
μα
eq −

1

2
ωαβS

μ;αβ
eq −

XNf

i

ξiðxÞNμ
i;eq; ð37Þ

where Sμ;αβeq is the spin tensor.
In global equilibrium, where Eq. (8) holds, one has

∂μðPβμ þ βαT
μα
eq Þ ¼ βα∂μT

μα
eq

¼ βαFαβJβ;eq ¼ −
XNf

i

qiEμN
μ
i;eq; ð38Þ

wherein Eq. (29) was used. Using the above relation, and
Eq. (22) in the divergence of (37) gives rise to

∂μHμ ¼ −
XNf

i

Nμ
i;eq∂μðξiðxÞ þ qiEμÞ;

¼ −nTβμ∂μξB ¼ −nT£βξB ¼ 0: ð39Þ

We conclude that the electric field does not induce entropy
production in global equilibrium provided the chemical
potential is modified according to Eq. (15).
We also point out that the entropy current has the

contribution from the polarization. However, since there
is no direct coupling between spin and electromagnetic
fields in our setup, we have neglected such terms as they
were already taken care of in Ref. [24]. We should note that
the entropy current analysis does not rely on any approxi-
mation, and the Eq. (37) is exact. Equation (39) and the
analysis given in Ref. [24] admits that the entropy is
conserved in, and only in, equilibrium.
The setup that is worked out in this section is called the

strong electric field regime by certain authors [62]. It
should be emphasized that in the rest of the current work
we consider resistive MHD equations with the electrical
conductivity as the only source of dissipation. Out of
equilibrium, the entropy production has the form
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∂μHμ ¼ σe
T
E2; ð40Þ

where E≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−EμEμ

p
.

III. SPIN POLARIZATION TENSOR AND
CONSERVATION OF SPIN ANGULAR

MOMENTUM

A. Spin polarization tensor

The spin polarization tensor ωμν is an antisymmetric
rank-two tensor, which can be always expressed as follows

ωμν ¼ κμUν − κνUμ þ ϵμναβUαωβ; ð41Þ

where Uμ is the fluid four velocity and κμ and ωμ are yet
other four vectors [14]. Any part of the κμ and ωμ parallel to
Uμ does not contribute to the right-hand side of Eq. (41).
Therefore, we assume that κμ and ωμ fulfill the following
orthogonality conditions

κ ·U ¼ 0; ω · U ¼ 0: ð42Þ

Hence κμ and ωμ can be written as

κμ ¼ ωμαUα ≡ aXXμ þ aYYμ þ aZZμ;

ωμ ¼
1

2
ϵμαβγω

αβUγ ≡ bXXμ þ bYYμ þ bZZμ: ð43Þ

Here the scalar quantities aX, aY , aZ, bX, bY , and bZ are
called spin polarization coefficients.
A general expression for the spin polarization tensor in

terms of κ and ω four vectors has the form [20],

ωμν ¼ aXðXμUν − XνUμÞ þ aYðYμUν − YνUμÞ
þ aZðZμUν − ZνUμÞ
þ ϵμναβUαðbXXβ þ bYYβ þ bZZβÞ; ð44Þ

where X, Y, and Z together with U form a four-vector basis
satisfying the following normalization conditions

U ·U ¼ 1; ð45Þ

X · X ¼ Y · Y ¼ Z · Z ¼ −1; ð46Þ

X ·U ¼ Y ·U ¼ Z ·U ¼ 0; ð47Þ

X · Y ¼ Y · Z ¼ Z · X ¼ 0: ð48Þ

B. Conservation of angular momentum

In the formalism by de Groot, van Leeuwen, and van
Weert (GLW) the energy-momentum tensor is symmetric;
hence, the angular momentum conservation implies the

conservation of the spin tensor and therefore we can
write [17]

∂αS
α;βγ
GLWðxÞ ¼ 0; ð49Þ

where in the leading-order spin polarization tensor, the
GLW spin tensor is written as [15,17]

Sα;βγGLW ¼
XNf

i

coshðξiÞ½A1;iðU½βωγ�α þ gα½βκγ�Þ

þA2;iUαU½βκγ� þA3;iUαωβγ�; ð50Þ

with thermodynamic coefficients having forms

A1;i ¼ −
2

m̂2
i

εð0Þ;iðTÞ þ Pð0Þ;iðTÞ
T

; ð51Þ

A2;i ¼ 2nð0Þ;iðTÞ − 6A1;i; ð52Þ

A3;i ¼ nð0Þ;i −A1;i: ð53Þ

IV. PERFECT-FLUID AND SPIN DYNAMICS

Based on the discussion given in the previous sections in
the following we will study perfect-fluid dynamics in the
presence of electromagnetic fields, as given by Eqs. (21)
and (30), and, on top of it, we consider spin evolution
equations, as determined by Eq. (49).

A. Boost invariant form of conservation laws

Using Eq. (19), the conservation law for charge Eq. (21)
can be cast into the following form

Uα∂αnþ n∂αUα ≡ dn
dτ

þ n
τ
¼ 0: ð54Þ

Projecting Eq. (30) on Uβ and then using Eq. (31), we also
obtain

Uα∂αεþ ðεþ PÞ∂αUα ¼ σeE2;

dε
dτ

þ εþ P
τ

¼ σeE2: ð55Þ

Using Eqs. (44) and (50) in Eq. (49), and contracting the
resulting tensor equation with UβXγ , UβYγ , UβZγ , YβZγ ,
XβZγ , and XβYγ we obtain the following evolution equa-
tions for the spin polarization coefficients a ¼ ðaX; aY; aZ;
bX; bY; bZÞ [20],

diagðL;L;L;P;P;PÞ_a ¼ diagðQ;Q;Q1;R;R;R1Þa;
ð56Þ
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respectively, where _ð…Þ≡U · ∂ ¼ ∂τ and,

LðτÞ ¼ A1;i;

PðτÞ ¼ A3;i;

QðτÞ ¼ −
�
_Lþ 3L

2τ

�
;

Q1ðτÞ ¼
�
Qþ L

2τ

�
;

RðτÞ ¼ −
�
_P þ 1

τ

�
P −

L
2

��
;

R1ðτÞ ¼
�
R −

L
2τ

�
; ð57Þ

c.f. Eq. (44).

B. Evolution of the EM fields

To obtain the evolution of EM fields, one needs to
simultaneously solve the Maxwell equations and the
conservation laws for energy and linear momentum. In
general, this is not an easy task. However, here we adopt the
nonrotating or maximally boost invariant solution pre-
sented in Ref. [55], which is given by

Bμ ¼ B0

τ0
τ
Yμ; Eμ ¼ lE0

τ0
τ
e−σeðτ−τ0ÞYμ; ð58Þ

where B0 and E0 are the initial values of the magnetic and
electric field at the initial proper time τ0, respectively,
whereas the parameter l≡ B·E

BE ¼ �1, corresponds to the
parallel and antiparallel field configurations. The solution
to the resistive MHD equations mentioned above is
found as follows. The translational symmetries of the
Bjorken flow do not permit the magnetic field to exist in
the longitudinal (z) direction [57], as well as boost
invariance requires both Ez and electric charge density
ρe to vanish. Thus, both electric and magnetic fields are
constrained to exist only in the transverse, i.e., x − y,
plane. To preserve the Bjorken flow, the acceleration due
to the Poynting vector must vanish, which implies that the
electric and magnetic fields are either parallel or anti-
parallel to each other. The angle between the fields is
either 0ðl ¼ 1Þ or πðl ¼ −1Þ, which remains fixed during
the evolution and is a part of the initial conditions. If one
assumes that the direction of the fields is also boost
invariant, the solution (58) is found from the Maxwell’s
equations. We should also emphasize that the magnetic
field exists in the system, however it does not play any
direct role in our setup. Plugging Eq. (58) into Eq. (15),
gives rise to

ξi ¼ ξB − lqiRRMS
E0

T

�
τ0
τ

�
e−σeðτ−τ0Þ; ð59Þ

where RRMS is the nucleon root-mean-square charge
radius. The solution (58) implies that

ρe ¼ 0: ð60Þ

We note here that in our setup the neutrality is not
automatically satisfied at the initial time. To see this,
consider ρe at the initial time for Nf ¼ 3. The neutrality
puts a constraint on the initial number densities

2nuðτ0Þ − ndðτ0Þ − nsðτ0Þ ¼ 0: ð61Þ

As it turns out, such a constraint cannot be satisfied with
the physical parameters introduced here, and there is no
reason to believe that it should be satisfied by the fluid in
realistic situations. On the other hand, as the fluid starts to
evolve the local electric charge density relaxes to neg-
ligible values in a fraction of a Fermi, and, to a very good
approximation, neutrality is reached.

V. NUMERICAL RESULTS

In this section we present numerical results for the
hydrodynamic variables obtained by solving Eqs. (54)
and (55) in the presence of external electric field. These
results are then used to solve Eqs. (56) for the spin
polarization coefficients. The calculations are performed
for two choices of collision energies, i.e.,

ffiffiffiffiffiffiffiffi
sNN

p ¼ 27 GeV
and

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The initial values for the temper-
ature and baryon chemical potential for each collision
energy read as [70]

T0 ¼ 300 MeV; μ0 ¼ 300 MeV for
ffiffiffiffiffiffiffiffi
sNN

p ¼ 27 GeV;

T0 ¼ 600 MeV; μ0 ¼ 50 MeV for
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV:

We use the constituent quark masses at Λ’s mass scale for
number of quark flavors Nf ¼ 3 [71]

mu ¼ md ¼ 0.382 GeV; ms ¼ 0.537 GeV: ð62Þ

The initial proper time for both energies is chosen to be
τ0 ¼ 1 fm, and we adopt RRMS ¼ 4.3 fm from Ref. [72].
The electric conductivity to second order approximation in
μ=T is given by [73]

σeðT; μÞ ¼ 0.37QeT

�
1þ 0.15

�
μ

T

�
2
�
; ð63Þ

where Qe ¼ ð2=3Þe2 is the sum over flavors of the quark
electric charges squared. To employ different values for
the initial electric field E0, we introduce the following
parameter
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α≡ l
eE0

m2
π
; ð64Þ

where we choose eE0=m2
π ¼ 1 for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV and
scale it down linearly with

ffiffiffiffiffiffiffiffi
sNN

p
for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 27 GeV [51].
As a result, α is our only free parameter for each chosen
collision energy. To understand the dynamics of T and μ, it
is suitable to rewrite Eq. (55) in the following form

τ
dε
dτ

¼ −wþ σeτE2; ð65Þ

where, w ¼ εþ P is the enthalpy density.
As the above form suggests, the evolution of energy

density is determined by the competition between the
expansion term, ∼w, and Joule heating (JH) term. The
electric field plays two opposite roles. First, it produces
entropy and therefore increases the temperature compared
to the case without an electric field. To realize this, assume
an uncharged conformal fluid with the equation of state,
ε ¼ 3P ¼ 3fPT4, with fP being a pure number [4]. Then
Eq. (65) is transformed to

d logT
d log τ

¼ −
1

3
þ σeτ

12fP

�
E
T2

�
2

: ð66Þ

The second term on the right hand side increases the
temperature and the heating effect gets enhanced by
increasing the values of E=T2 and σeτ. However, according
to Eq. (63), the factor σeτ is a small number during the
hydrodynamic evolution, and increasing it suppresses the
electric field, see Eq. (58). On the other hand, if the initial
electric field is sufficiently large, the JH term may still
dominate over expansion in early times. In such a case, a
reheating effect is possible [55]. Nevertheless, the electric
field in our setup modifies the dynamics of fluid not only
through the JH term but also through the equation of state.
Consequently, the analytical investigation presented in
Ref. [55] for the reheating conditions is not applicable.
Still, some important observations can be made using
numerical inspections, such as studying the τ derivatives
of T and μ at the initial time for various values of α:
see Fig. 1, which shows that the reheating observed in
Refs. [53,55] is not possible in our setup. For an early-time
reheating to occur at a particular value of α ≠ 0, the initial
derivative of T must be positive. It means that if the initial
derivative of T is larger than the derivative at α ¼ 0, then
the JH effect comes into play making the fluid hotter.
Inversely, if the initial derivative of T is smaller than the
derivative at α ¼ 0, then the electric field is making the
fluid cooler. This electric cooling effect occurs because
the electric field makes the fluid elements heavier, which in
consequence increases their enthalpy density, as can be
seen in Fig. 2. For small μ=T, this effect can be seen using a
Taylor expansion of w in μ=T which reads

wi ¼ 4 cosh

�
qil

ERRMS

T

��
1 − tanh

�
qil

ERRMS

T

�
μ

3T

þ 1

2

�
μ

3T

�
2

þO
μ

3T
3
�
wð0Þ;iðTÞ; ð67Þ

where wð0Þ;i ¼ εð0Þ;i þ Pð0Þ;i. Here, the overall factor

coshðqil ERRMS
T Þ is larger than one. The second term in

the parenthesis is a quantity with an absolute value smaller
than one with the sign given by sgnðqilÞ. Therefore, for
qil < 0 the electric field enhances the enthalpy density
slightly more than in the opposite case, see Fig. 2.
Since there are more negatively charged quarks than
positively charged ones in Nf ¼ 3 case, for l < 0, the
enthalpy density is larger which can be seen in lower
collision energies where μ=T is of order unity. However,
this difference is negligible in small μ=T regime.
Consequently, the temperature dynamics is similar for both
negative and positive values of α, as can be seen in the
lower panel of Fig. 3. This larger enthalpy density may
result a lower temperature for α < 0. Nevertheless, this is
not pronounced unless α is extremely large. For moderate
values of α shown in the plots, the asymmetry of Fig. 2 is
not rendered into asymmetry of temperatures for positive
and negative α, as is seen in the upper panel of Fig. 3.
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By further inspection of the initial derivative of T, we can
understand the relation between the value of α and electric
cooling effect. As it turns out, there is an interval around
jαj ¼ 0, for which increasing jαj enhances the electric

cooling effect (see the peak around α ¼ 0 in the upper panel
of Fig. 1). When jαj reaches a threshold, i.e., the two
minima in the upper panel of Fig. 1, this behavior is turned
opposite, and the temperature starts rising with jαj. This is
because the JH term is getting strong enough to partially
counterbalance the electric cooling effect. As Fig. 3 sug-
gests, the electric field effects in the dynamics of temper-
ature is less pronounced for larger values of μ=T, since μ
dominates over E. We should emphasize that, from a
phenomenological perspective, the occurrence of early
time reheating is unlikely. If existed, such a reheating
should have been already observed, for instance, via
electromagnetic probes.
As the lower panel of Fig. 1 indicates, the dynamics of

chemical potential is much more sensitive to the electric
field than the dynamics of temperature. This is confirmed
by Fig. 4. In the small μ=T regime (the lower panel in
Fig. 4), the late-time absolute value of μ is always larger for
α ≠ 0 case, and μ has the same sign as α. On the other hand,
for μ=T of order unity (the upper panel in Fig. 4), μ
dominates over the electric field and the change of sign
requires very large electric fields. Consequently, if α is not
too large, μ is enhanced (suppressed) for positive (negative)
values of α. Moreover, as the results on μ=T suggest, see
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Fig. 5, the electric field modifies the trajectory which the
fireball passes through the QCD phase diagram.
Finally, we find that the behavior of the spin polari-

zation components, see Fig. (6), is qualitatively similar to
the case of pure Bjorken-expanding perfect-fluid back-
ground without an electric field [20]; however, introduc-
ing the external electric field in the perfect-fluid
background solely interestingly enhances the dynamics
of spin polarization coefficients. We also observe that the
enhancement of the spin polarization coefficients
depends on the ratio μ0=T0. Slope rises drastically for
the small value of μ0=T0, i.e., in the higher beam energy
case. Hence, our results suggest that the external electric
field in the background may play an important role in the
polarization dynamics in heavy-ion collisions. In this
work we present only the behavior of bZ component;
however, all other spin polarization components exhibit
similar qualitative features.
The spin polarization coefficients studied in this

work is directly related to the spin polarization of the
hyperon’s emitted from the system at the freeze-out through
the formula for the mean spin polarization per particle
hπμðpÞi [17,20]

hπμi ¼
Ep

dΠμðpÞ
d3p

Ep
dN ðpÞ
d3p

: ð68Þ

The above equation is the ratio of the invariant momentum
distribution of the total Pauli-Lubański vector and the
momentum density of particles and antiparticles
expressed as

Ep
dΠμðpÞ
d3p

¼ coshðξBÞ
ð2πÞ3m

Z
ΔΣλpλe−β·pω̃βμpβ; ð69Þ

and

Ep
dN ðpÞ
d3p

¼ 4 coshðξBÞ
ð2πÞ3

Z
ΔΣλpλe−β·p; ð70Þ

respectively, where ω̃μν ¼ ð1=2Þϵμναβωαβ is the dual polari-
zation tensor [20] and ΔΣλ is the infinitesimal element of
the freeze-out hypersurface.
We find that due to the enhancement of the spin

polarization coefficients, the dynamics of the average spin

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

1.2

b
Z

s NN = 27 GeV

2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

b
Z

s NN = 200 GeV

[fm]

[fm]
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initial value b0Z ¼ 0.1. The modification of the bZ evolution slope
due to electric field is much more pronounced when μ0=T0 is
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polarization of Λ hyperons, Eq. (68), also gets enhanced
and exhibit similar qualitative behavior as compared to the
case without electric field in the perfect-fluid Bjorken-
expanding background studied in Ref. [20].

VI. SUMMARY AND CONCLUSIONS

In the present work, we have studied the spin polariza-
tion dynamics in a Bjorken-expanding perfect-fluid resis-
tive MHD background. In equilibrium, we used the
stationary solution to the Boltzmann-Vlasov equation to
find the modification of the baryon density, energy density,
pressure, and energy-momentum tensor in the presence of
an external electric field. We have assumed that the fluid is
described by the BV solution for a medium composed of
noninteracting quarklike quasiparticles. The latter results
were used in the MHD equations. From the Maxwell
equations and the Bjorken symmetry the evolution of
EM fields is readily determined. The symmetry implies
that the electric and magnetic field in the local rest frame
must be either parallel or antiparallel and oriented in the
transverse directions. In such a solution, there is no extra
source of fluid acceleration due to the Poynting term.
The MHD equations in our case are reduced to the

energy-momentum conservation and the baryon number
conservation. We have solved these two equations numeri-
cally to find the evolution of temperature and baryon
chemical potential and found that the electric field plays
a twofold role in this regard. On the one hand, the electric
field produces entropy through the JH term and therefore
increases the temperature. On the other hand, it makes the
fluid enthalpy density larger, which results in a faster
decrease of the temperature. For the collision energies that
we have studied, this electric cooling effect is always
dominant over the JH term. Therefore our results show a
faster decay of temperature than in the purely hydro-
dynamic case. The dynamics of baryon chemical potential
depends on the initial value of μ=T. For small values of
μ0=T0, the parallel and antiparallel EM field cases are
almost symmetric, and the baryon chemical potential
changes sign with the sign of α, while its absolute value
is always larger than in the purely hydrodynamic case

(α ¼ 0). On the other hand, for larger values of μ0=T0, the
evolution of baryon chemical potential is different for
parallel and antiparallel configurations. The antiparallel
field cases (i.e., for α < 0) have lower temperature and the
baryon chemical potential decreases faster than the purely
hydrodynamic case (α ¼ 0), while the baryon chemical
potential of the parallel fields (i.e., for α > 0) are larger
than in the purely hydrodynamic case.
The dynamics of temperature and baryon chemical

potential is used to solve the spin conservation law. The
resulting spin polarization dynamics has qualitatively
similar behavior as in the case of perfect-fluid Bjorken-
expanding background without electric field, but we
observe that the dynamics of the spin polarization coef-
ficients is enhanced due to the presence of electric fields in
the background. It was found that for small values of
μ0=T0, the slope is steeper, and behavior gets enhanced
significantly. Therefore, it suggests that the electric field
may play a significant role in the polarization dynamics of
Λ hyperons if it is sufficiently large.
In the present work, the simplest available solution to the

resistive MHD was employed, in which the symmetries of
Bjorken flow are fully preserved. This implies that the
qualitative behavior of the spin polarization remains
unchanged. In a more realistic setup, one may consider
the modification of the flow and breakdown of the
symmetries induced by the EM fields, which may change
the dynamics of the spin polarization—we leave these
problems for future investigations. Other possible exten-
sion of the present work is to include the coupling between
the EM fields and spin degrees of freedom at the micro-
scopic level. Investigations along these lines are ongoing
and will be reported elsewhere.
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