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A nonperturbative one-gluon exchange quark-antiquark interaction is considered to compute flavor-
dependent U(3) Nambu–Jona-Lasinio-type (NJL-type) interactions of the form Gij;Γðψ̄λiΓψÞðψ̄λjΓψÞ for
i; j ¼ 0…8 and Γ ¼ I; iγ5 from the one-loop polarization process with nondegenerate u-d-s quark effective
masses. The resulting NJL-type coupling constants in all channels are resolved in the long-wavelength limit
and the numerical results are presented for different choices of an effective gluon propagator. Leading
deviations with respect to a flavor symmetric coupling constant are found to be of the order
ðM�

f2
−M�

f1
Þn=ðM�

f2
þM�

f1
Þn, for n ¼ 1, 2, where M�

fi
are the effective masses of quarks f1; f2 ¼ u,

d and s. The scalar channel coupling constants Gij;s can be considerably smaller than the pseudoscalar
ones. The effect of the flavor-dependence of coupling constants for the masses of pions and kaons may be
nearly of the same order of magnitude as the effect of the u, d, and s quark mass nondegeneracy. The effect
of these coupling constants is also verified for some of the light scalar meson masses, usually described by
quark-antiquark states, and for some observables of the pseudoscalar mesons.
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I. INTRODUCTION

Theoretical investigations and predictions for low energy
strong interacting systems have important support from
QCD effective models among which are the Nambu–Jona-
Lasinio-type (NJL-type) models [1–3]. They are suitable
for describing phenomena related to dynamical chiral
symmetry breaking (DChSB), according to which massive
constituent quarks can be defined and are responsible for
most part of the hadron masses. The NJL model can be
derived in terms of QCD degrees of freedom in different
ways [4–9]. Lately, an effective gluon mass was found to be
appropriate for parametrizing the deep infrared behavior
of a gluon propagator, and the quark-NJL coupling con-
stant has been identified roughly as GNJL ∝ 1=M2

G.
Nonperturbative or effective gluon propagators take into
account part of the non-Abelian gluon dynamics and they
might be suitable enough to provide numerical estimates
for hadron properties. Eventually they make possible a
clear relation of fundamental processes and fundamental
degrees of freedom with the NJL model framework and
description since they are expected to at least produce
DChSB. In addition to the explicit chiral and flavor
symmetry breakings due to the nondegenerate current
quark mass, the couplings to electromagnetic fields also

break these symmetries contributing to masses [2,10–14]
and coupling constants [15]. It might be interesting to
verify if, and to what extent, NJL coupling constants
receive flavor-dependent contributions. This should be of
relevance for a fine-tuned description of hadron masses and
dynamics.
Current quark masses, at the energy scale μ ¼ 2 GeV,

are approximately mu ≃ 2.1 MeV, md ≃ 4.7 MeV, and
ms ≃ 93 MeV [16] and they are amplified due to the
DChSB with the formation of quark-antiquark scalar
condensates. In spite of the need for the electromagnetic
corrections to fully describe hadron masses, there are well
known strong-interaction contributions; for example, for
masses of pions and kaons, the quasi-Goldstone bosons that
are, respectively, of the order of mπ� −mπ0 ≃ 0.1 MeV and
mK� −mK0;K̄0 ≃ −5.3 MeV [17]. This contribution to the
pion mass difference is very small due to the small
difference between up and down quark masses. The
electromagnetic neutral and charged pion mass difference
is somewhat larger, and of the order of 4 MeV [11–14]. The
charged and neutral kaon mass difference has the opposite
sign of the pion mass difference and is larger due to the
larger strange quark mass. Flavor symmetry breaking
corrections are small for light hadrons but important for
a good description of hadrons. In QCD, the quark current
masses are the only parameters that control flavor sym-
metry breaking. This issue has far consequences in some
effective approaches as in chiral perturbation theory
(ChPT), as an effective field theory (EFT) for the low
energy regime [18]. By starting from QCD to understand
effective models, one might expect that the flavor
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symmetry breaking encoded in different quark current
masses might spread and have consequences for a variety
of parameters and coupling constants in effective models by
means of quantum effects. Therefore NJL coupling con-
stants might also be expected to receive flavor-dependent
contributions from quantum effects. The Schwinger-Dyson
equation approach for light and heavy hadrons indicates
coupling constants might be flavor-dependent [19]. The
lightest scalar mesons that could be expected to be chiral
partners of the pseudoscalar ones do not seem to be
compatible with the usual quark model due to the apparent
impossibility of fitting all the experimental data with
quark-antiquark structures as prescribed by the simplest
quark model [20,21], although it might be partially appro-
priated [16,20,22,23]. One of the specific problems with
the attempt to describe some of the lightest scalar mesons in
a U(3) nonet from the standard NJL model scheme is
the inverted mass behavior of a0ðIðJCÞ ¼ 1ð0þÞÞ and
K�ð1

2
ð0þÞÞ [24]. In the present work this issue appears

again and although no complete solution for this problem is
obtained or proposed, we expect to show further insights.
In fact, there are several different theoretical calculations
with different proposals for their structures, such as
whether they are composed by mixed states with tetra-
quarks, glueballs, meson molecules, or coupled channels
resonances [21,25–32]. The full problem of the light scalar
meson structure will not really be addressed in the present
work. Nevertheless, it becomes interesting to introduce as
many different effects as possible to test their individual
contributions and the predictive power of the model.
In this work, explicit chiral and flavor symmetry break-

ing contributions to the NJL coupling constant are derived
by considering vacuum polarization in a flavor U(3) model
in which quark-antiquark interaction is mediated by a
(nonperturbative) gluon exchange. These coupling con-
stants are resolved in the local long-wavelength limit in
terms of quark and gluon propagators and they will be used
to calculate light pseudoscalar and scalar meson masses.
An effective nonperturbative gluon propagator will be
considered to incorporate non-Abelian dynamics to some
extent, with the crucial requirement being to produce
dynamical chiral symmetry breaking and the large con-
stituent quark masses due to the gluon cloud. This method
extends previous works for u-d-s or u-d degenerate
quarks [5,33]. Because the logic and steps of the calculation
has been shown with details in previous works, in the next
section the main steps are only briefly outlined. In Sec. III,
numerical estimations for the long-wavelength local limit
for the resulting four point quark interaction are presented
as NJL-type flavor-dependent interactions. This is done for
two types of effective gluon propagators and different
values of Lagrangian and effective quark masses. Since the
flavor-dependent coupling constants Gij were found to
describe the light pseudoscalar mesons masses, further
observables will be presented in Sec. III C to assess the

change in their values if Gij are used to redefine the gap
equations. In Sec. IV, the effects of such flavor-dependent
NJL coupling constants are verified on some light meson
masses. Because not all of the scalars are seemingly
described by quark-antiquark states, and the pseudoscalar
η − η0 mesons require further interactions [34], the masses
of pseudoscalar pions and kaons, and of the light scalar a0
and K� (or κ), will be investigated. In the last section there
is a summary.

II. QUARK DETERMINANT AND LEADING
CURRENT-CURRENT INTERACTIONS

The following low energy quark effective action [37–39]
will be considered:

Z ¼ N
Z

D½ψ̄ ;ψ � exp i
Z
x

�
ψ̄ði∂ −mfÞψ

−
g2

2

Z
y
jbμðxÞR̃μν

bcðx − yÞjcνðyÞ þ ψ̄J þ J�ψ
�
; ð1Þ

where the color quark current is jμa ¼ ψ̄λaγ
μψ , the sums in

color, flavor, and Dirac indices are implicit,
R
x stands forR

d4x, a; b… ¼ 1;…ðN2
c − 1Þ stand for color in the adjoint

representation, and mf is the quark current masses
matrix [16], with indices of the flavor SU(3) fundamental
representation f ¼ u, d and s. The adjoint representation of
flavor SU(3) will be used with indices i;j;k¼0;1.:;N2

f−1

with the additional matrix λ0 ¼
ffiffiffiffiffiffiffiffi
2=3

p
I to complete the

U(3) algebra. In several gauges the gluon kernel is usually
argued to be written in terms of the transversal and
longitudinal components in momentum space, RTðkÞ and
RLðkÞ, as: R̃μν

abðkÞ ¼ δab½ðgμν − kμkν

k2 ÞRTðkÞ þ kμkν

k2 RLðkÞ�.
Although this decomposition may not be exact because
of confinement-related effects [40], it is important to
emphasize that numerical results will be calculated by
considering effective gluon propagators whose contribu-
tions from other components might be parametrized into
these two components. Besides that, it can be shown that
contributions of other terms, of the form δðk2Þ or its
derivatives, in the effective gluon propagator for the results
can be expected to be much smaller. Even if other terms
arise from the non-Abelian structure of the gluon sector, the
quark-quark interaction (1) is a leading term of the QCD
effective action. The use of a dressed (nonperturbative)
gluon propagator already takes into account non-Abelian
contributions that guarantee important effects. Among
these, it will be assumed and required that this dressed
gluon propagator provides enough strength for DChSB as
obtained, for example, in [41–45]. To some extent, the
present work will follow previous developments by adopt-
ing the background field method to introduce the back-
ground quarks that, dressed by gluons, give rise to the

FABIO L. BRAGHIN PHYS. REV. D 103, 094028 (2021)

094028-2



constituent quarks. A complete account of the calculations
below was presented in Refs. [5,33,46,47].
To explore the flavor structure of the interaction in the

action (1) that will be denoted by Ω, a Fierz transformation
is performed for the quark-antiquark channel resulting in
F ðΩÞ ¼ ΩF. We are only interested in this work in the
color-singlet scalar-pseudoscalar state sector, and vector
and axial currents will be neglected. Color nonsinglet terms
are suppressed by a factor of 1=Nc, and they might give rise
to higher order colorless contributions [46,48]. The follow-
ing bilocal currents are needed to describe the resulting
terms: jqi ðx; yÞ ¼ ψ̄ðxÞλiΓqψðyÞ where q ¼ s, p for scalar
and pseudoscalar currents, Γs ¼ λiI (with the 4 × 4 Dirac
identity), Γp ¼ iγ5λi where λi are the flavor SU(3) Gell-

Mann matrices (i ¼ 1…8), and λ0 ¼ I
ffiffiffiffiffiffiffiffi
2=3

p
. The resulting

s and p nonlocal interactions are the following:

ΩF ¼ 4αg2f½jiSðx; yÞjiSðy; xÞ þ jiPðx; yÞjiPðy; xÞ�Rðx − yÞg;
ð2Þ

where α ¼ 2=9 and Rðx−yÞ≡R¼3RTðx−yÞþRLðx−yÞ.
Next, the quark field will be split into the background

field (ψ constituent quark) and the sea quark field (ψ2) that
might form light mesons and the chiral condensate. This
sort of decomposition is not exclusive to the background
field method (BFM) and it is found in other approaches
[49]. At the one-loop BFM level it is enough to perform this
splitting for the bilinears ψ̄Γqψ [48,50], and it can be
written that

ψ̄Γqψ → ðψ̄ΓqψÞ2 þ ðψ̄ΓqψÞ; ð3Þ

where ðψ̄ψÞ2 will be treated in the usual way as a sea quark
of the NJL model, and the full interaction ΩF is split
accordingly to ΩF → Ω1 þ Ω2 þΩ12, where Ω12 contains
the interactions between the two components. This sepa-
ration preserves chiral symmetry, and it might not be
simply a low and high energy mode separation. The
auxiliary field method makes it possible to introduce the
light quark-antiquark chiral states, the chiral condensate,
and mesons. Therefore this procedure improves the one-
loop BFM since it allows one to incorporate DChSB.
Because it is a standard procedure in the field, it will not be
described. To make possible a clear evaluation of the effects
of the resulting NJL coupling constants, the corresponding
gap equations at this level, which can arise for the local
limit of an auxiliary scalar field, will be considered to be
those of the NJL model, given in Eq. (27) for the case of
coupling constants Gff ¼ G0 ¼ 10 GeV−2, as discussed
below. This guarantees a clear and fair subsequent com-
parison of the effects of the flavor-dependent coupling
constants. Otherwise, the relation between effective masses
and NJL coupling constants would not be clear. The
nontrivial solutions for these gap equations allow one to
define the quark effective massesM�

f ¼ mf þ S̄f, where S̄f
(f ¼ u, d, s). The quark kernel can be written as

S0ðx − yÞ ¼ ði=∂ −M�
fÞ−1δðx − yÞ: ð4Þ

The aim of this work is to present corrections to the NJL-
type interaction so that the meson sector in terms of
auxiliary fields will be neglected. The quark determinant
can then be written as

Sd ¼ C0 þ
i
2
Tr ln

��
1þ S0

�X
q

aqΓqjq

����
1þ S0

�X
q

aqΓqjq

���
; ð5Þ

where the following quantities were defined:

X
q

aqΓqjq ¼
X
q

aqΓqjqðx; yÞ ¼ 2K0Rðx − yÞ½ðψ̄ðyÞλiψðxÞÞ þ iγ5λiðψ̄ðyÞiγ5λiψðxÞÞ�; ð6Þ

where K0 ¼ αg2 and C0 ¼ i
2
Tr ln ½S−10 S−10 �, which reduces

to a constant in the generating functional.
A large quark mass expansion is performed with a zero

order derivative expansion [51] for the local limit. The first
term of the expansion is a nondegenerate mass term M3;f

that is proportional to the masses from gap equations [47]
that will not be investigated further. The second-order terms
of the expansion correspond to four-fermion interactions
with the chiral and flavor symmetries breaking. These
terms, in the local limit, can be written as:

L ¼ M3;fðψ̄ψÞf þ Gij;sðψ̄λiψÞðψ̄λjψÞ þGijðψ̄iγ5λiψÞðψ̄iγ5λjψÞ;
¼ M3;fðψ̄ψÞf þ Gij½ðψ̄λiψÞðψ̄λjψÞ þ ðψ̄iγ5λiψÞðψ̄iγ5λjψÞ� −Gsb

ij ðψ̄λiψÞðψ̄λjψÞ; ð7Þ

FLAVOR-DEPENDENT U(3) NAMBU–JONA-LASINIO … PHYS. REV. D 103, 094028 (2021)

094028-3



where the coefficients were resolved and, after a Wick rotation for the Euclidean momentum space in the (very long-
wavelength) zero momentum transfer limit, they are the following:

M3;f ¼ d1NcK0TrDTrF

Z
d4k
ð2πÞ4 S0ðkÞλiRðkÞ; ð8Þ

Gij;s ¼ Gij þ Gsb
ij ¼ d2NcK2

0TrDTrF

Z
d4k
ð2πÞ4 S0ðkÞλiRðkÞS0ðkÞλjRðkÞ; ð9Þ

Gij ¼ d2NcK2
0TrDTrF

Z
d4k
ð2πÞ4 S0ðkÞRðkÞiγ5λiS0ðkÞRðkÞiγ5λj; ð10Þ

where TrDTrF are the traces in Dirac and flavor indices,
dn ¼ ð−1Þn

2n , and S0ðkÞ is the Fourier transform of S0ðx − yÞ.
If the effective gluon propagator has other terms propor-
tional to δðk2Þ, or its derivatives [40], it can be shown that
their resulting contribution will be suppressed, if not
disappear, with respect to the finite momenta component
encoded in RðkÞ by factors 1=ð16π4M�

f1
M�

f2
Þ, at least.

Eventually, these further contributions may also vanish
because of explicit dependencies on internal loop momenta
kμ. To calculate these traces in flavor indices, the following
strategy was adopted. Each of the quark propagators
originally in the fundamental representation were written
as a combination of kernels in the adjoint representation by
diagonalizing them with the correct diagonal Gell-Mann
matrices. This makes possible an unambiguous and
straightforward calculation of the flavor traces in these
equations. The quark mass matrix can be written as

M ¼ M0

ffiffiffiffiffiffiffiffi
3=2

p
λ0 þM3λ3 þM8

ffiffiffi
3

p
λ8; ð11Þ

where M0, M3, M8 are combinations of the up, down, and
strange quark effective masses. The quark propagator can
then be written as:

S0mðkÞ¼ I
�
Aði=kþM0Þþ2M8Cþ2

3
M3B

�

þλ3½Bði=kþM0ÞþM3ðAþCÞþM8B�

þλ8
ffiffiffi
3

p �
Cði=kþM0ÞþM8ðA−CÞþM3B

3

�
; ð12Þ

where

A ¼ 1

3

�
1

Ru
þ 1

Rd
þ 1

Rs

�
; ð13Þ

B ¼ 1

2

�
1

Ru
−

1

Rd

�
; ð14Þ

C ¼ 1

6

�
1

Ru
þ 1

Rd
−

2

Rs

�
: ð15Þ

In these equations, Rf ¼ ðk2 −M�
f
2 þ iϵÞ. Flavor traces of

up to four Gell-Mann matrices were calculated, i.e.,
TrFðλmλiλnλjÞ, where m, n ¼ 0, 3, 8 and i; j ¼ 0;…8 with
all combinations. The four-point interactions above (9),
(10), in the limit of degenerate quark massesmu¼md¼ms,
reduce to those of Ref. [33] with a different coefficient due
to the Uð3Þ group. This way of writing Eq. (7) suggests an
ambiguous definition of a nearly chiral “symmetric part” of
NJL interaction as Gij and the chiral symmetry breaking
part Gsb

ij that arises only for the scalar sector. Gij is not
really a chiral-symmetric interaction because of the flavor
symmetry breakings for all of the flavor channels i, j. The
integrals for Gij have two components, one of them
strongly dependent on momentum k and the other strongly
dependent on the quark masses, whereasGsb

ij is written only
in terms of the second of these integrals. This difference
between the integrals (9), (10) favors the above separation
of the regular and (strongly) symmetry breaking (sb)
coupling constant. Two important properties of these
coupling constants is the following:

Gij ¼ Gji; Gij;s ¼ Gji;s: ð16Þ

All the integrals in Eqs. (9) and (10) are ultraviolet (UV)
finite and infrared (IR) regular if the gluon propagator
contains a parameter such as a gluon effective mass or
Gribov type parameter. Gij; Gs

ij, and Gsb
ij have dimensions

of mass−2. For some observables, however, it is more
appropriate to define the following coupling constants
between quark currents in the fundamental representation,

Gijðψ̄λiψÞðψ̄λjψÞ ¼ 2Gf1f2ðψ̄ψÞf1ðψ̄ψÞf2 ; ð17Þ

being that none of the types of mixing terms, Gi≠j or
Gf1≠f2 , will be considered in most of the present work.

III. NUMERICAL RESULTS

In the following, two types of the effective gluon
propagators that incorporate the quark-gluon running
coupling constant g are written and will be considered
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for the numerical calculations. The first effective gluon
propagator is a transversal one extracted from Schwinger-
Dyson equation calculations [44,45]. It can be written as:

DI;2ðkÞ ¼ g2RTðkÞ

¼ 8π2

ω4
De−k

2=ω2 þ 8π2γmEðk2Þ
ln ½τ þ ð1þ k2=Λ2

QCDÞ2�
; ð18Þ

where γm ¼ 12=ð33 − 2NfÞ, Nf ¼ 4, ΛQCD ¼ 0.234 GeV,
τ¼e2−1, Eðk2Þ¼½1−expð−k2=½4m2

t �Þ=k2, mt ¼ 0.5 GeV,
D ¼ 0.553=ω ðGeV2Þ, and ω ¼ 0.5 GeV.
The second type of gluon propagator is based in a

longitudinal effective confining parametrization [41] that
can be written as:

DII;α¼5;6ðkÞ ¼ g2RL;αðkÞ ¼
KF

ðk2 þM2
αÞ2

; ð19Þ

where KF ¼ ð0.5 ffiffiffi
2

p
πÞ2=0.6 GeV2, as considered in pre-

vious works [47,48], with either a constant effective gluon
mass (M5 ¼ 0.8 GeV) or a running effective mass given by
M6 ¼ 0.5

1þk2=ω2
6

GeV for ω6 ¼ 1 GeV.

It can be noted that these effective gluon propagators
exhibit different normalizations and the resulting numerical
values for Eqs. (9) and (10) might be quite different. Instead
of addressing specific issues on the gluon propagators and
their normalizations, a more pragmatic approach was
adopted so that the relevant issue is not their normalization
but the overall momentum dependence that contributes
to the momentum integrals that generate the flavor-
dependencies of the results. Therefore a normalization
procedure common to all effective gluon propagators to
compare different results is needed. In addition to that, to
make easier the comparison of the flavor-dependent effects,
a reference coupling constant with the value G0 ¼
10 GeV−2 will be considered and the following normalized
quantities will be displayed in the tables below:

Gn
ij ¼

Gij
G11

10

; Gn
ij;s ¼

Gij;s
G11

10

: ð20Þ

In a first analysis, the resulting coupling constants Gij and
Gij;s are expected to be additive corrections to a constant
NJL model coupling constant. Given that the overall
absolute values are not determined, this sort of multipli-
cative normalization was chosen instead of an additive
correction. Therefore, coupling constants are normalized
with respect to the channel Gn

ij¼11 ¼ 10 GeV−2 which is
close to usual values adopted in the literature for the NJL
model. Besides that, this way of normalizing coupling
constants becomes more appropriate for investigating
consequences for the differences between each of the flavor
channels, particularly the light meson mass differences.

A. Flavor-dependence of coupling constants

Besides the gluon propagators that implicitly contain a
quark-gluon running coupling constant, the quark constitu-
ent masses for the quark propagator are also needed. Sets of
values for the parameters that will be considered are shown
in Table I with the Lagrangian quark masses mu, md, and
ms. These values, together with the ultraviolet (three-
dimensional) cutoff Λ, were chosen because they satisfy
a gap equation with an NJL coupling constant of reference
G0, and this makes possible a comparison of the contri-
bution of the particular flavor-dependent coupling constant
on the results. Besides that, it will be required that the
resulting neutral pion and kaon masses are in quite good
agreement with experimental values for the case of the
symmetric coupling constant Gij ¼ G0 ¼ 10 GeV−2. A
combination of up and down quark masses, with the UV
cutoff, determine neutral (or charged) pion mass and, with
the additional strange quark mass, one obtains the neutral
(or charged) kaon mass. Although only the effective quark
masses are needed for the estimation of coupling constants,
the other parameters of the Table are needed to find the
meson masses. Sets of parameters have two main labels, X
and Y, which correspond to different ways of dealing with
the scalar meson channels below. The subscripts in labels X
and Y are just numbers used to identify a set of parameters–
they have no physical meaning. The numerical method
used to solve the gap equations and the bound state
equation, or Bethe-Salpeter equation, (BSE) is required
to identify each set of values for the quark masses and
cutoff and for each possible solution of the BSE. For that, a
name X or Y was chosen with numbers to identify them. X
stands for sets of parameters with which scalar meson
masses were found by considering the same coupling
constants as for the pseudoscalar mesons channel, i.e.,
Gij ¼ Gij;s. This is equivalent to setting Gsb

ij ¼ 0, as
discussed above. Besides that, sets of parameters X will
produce somewhat better results, as discussed below. Y
stands for sets of parameters with which scalar mesons
were found with coupling constants obtained from Eq. (9)
instead of Gij, i.e., Gij;s ≠ Gij.
In Tables II and III, the resulting values of coupling

constants Gij are presented for each set of masses and for
the gluon effective propagators: DI;2, DII;5, and DII;6. In
Table IV, the resulting values of Gij;s are presented for the

TABLE I. Sets of parameters used in the numerical estimations:
effective and Lagrangian quark masses and ultraviolet cutoff.

Set of
parameters

M�
u M�

d M�
s mu md ms Λ

MeV MeV MeV MeV MeV MeV MeV

X20 ¼ Y18 389 399 600 3 7 123 675
X21 392 396 600 4 6 123 675
Y14 362 362 574 5 5 123 665
Y19 391 395 600 4 6 163 675
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TABLE II. Numerical results forGij for the sets of parameters X and different gluon propagators. The entries forG0 are simply defined
in this Table and they correspond to fixed values independent of any gluon propagator for the sake of comparison.

Set
Gn

11 Gn
33 Gn

44 Gn
66 Gn

88 Gn
00 Gn

03 Gn
08 Gn

38

GeV−2 GeV−2 GeV−2 GeV−2 GeV−2 GeV−2 GeV−2 GeV−2 GeV−2

X20-DI;2 10.00 10.00 9.77 9.69 7.61 8.60 0.11 1.80 0.14
X20-DII;5 10.00 10.00 9.82 9.76 8.13 8.90 0.08 1.41 0.10
X20-DII;6 10.00 10.00 9.89 9.70 7.72 8.66 0.10 1.72 0.13
X20-G0 10.00 10.00 10.00 10.00 10.00 10.00 0 0 0

X21-DI;2 10.00 10.00 9.74 9.71 7.61 8.60 0.04 1.80 0.05
X21-DII;5 10.00 10.00 9.80 9.78 8.12 8.90 0.03 1.41 0.04
X21-DII;6 10.00 10.00 9.76 9.73 7.72 8.66 0.04 1.72 0.05
X21-G0 10.00 10.00 10.00 10.00 10.00 10.00 0 0 0

TABLE III. Numerical results for Gij for the sets of parameters Y and different gluon propagators. The entries for G0 are simply
defined in this Table and they correspond to fixed values independent of any gluon propagator for the sake of comparison. The set of
parameters Y18 has the same values as X20 in Table II.

Set
Gn

11 Gn
33 Gn

44 Gn
66 Gn

88 Gn
00 Gn

03 Gn
08 Gn

38

GeV−2 GeV−2 GeV−2 GeV−2 GeV−2 GeV−2 GeV−2 GeV−2 GeV−2

Y14-DI;2 10.00 10.00 9.69 9.69 7.52 8.53 0 2.39 0
Y14-DII;5 10.00 10.00 9.76 9.76 8.06 8.85 0 1.46 0
Y14-DII;6 10.00 10.00 9.71 9.71 7.63 8.60 0 1.04 0
Y14-G0 10.00 10.00 10.00 10.00 10.00 10.00 0 0 0

Y18-DI;2 10.00 10.00 9.77 9.69 7.61 8.60 0.11 1.80 0.14
Y18-DII;5 10.00 10.00 9.82 9.76 8.13 8.90 0.08 1.41 0.10
Y18-DII;6 10.00 10.00 9.78 9.70 7.72 8.67 0.10 1.72 0.13
Y18-G0 10.00 10.00 10.00 10.00 10.00 10.00 0 0 0

Y19-DI;2 10.00 10.00 9.74 9.71 7.61 8.60 0.04 2.04 0.06
Y19-DII;5 10.00 10.00 9.80 9.78 8.12 8.90 0.03 1.33 0.04
Y19-DII;6 10.00 10.00 9.76 9.73 7.72 8.66 0.04 1.95 0.05
Y19-G0 10.00 10.00 10.00 10.00 10.00 10.00 0 0 0

TABLE IV. Numerical results for the scalar channel normalized coupling constants Gn
ij;s, with the different sets of parameters Y.

Set
Gn

11;s Gn
33;s Gn

44;s Gn
66;s Gn

88;s Gn
00;s Gn

03;s Gn
08;s Gn

38;s

GeV−2 GeV−2 GeV−2 GeV−2 GeV−2 GeV−2 GeV−2 GeV−2 GeV−2

Y14-DI;2 0.31 0.31 0.11 0.11 −0.98 −0.47 0 0.96 0
Y14-DII;5 3.03 3.03 2.87 2.87 1.25 2.00 0 1.35 0
Y14-DII;6 0.87 0.87 0.67 0.67 −0.52 0.04 0 1.04 0
Y14-G0 10.00 10.00 10.00 10.00 10.00 10.00 0 0 0

Y18-DI;2 −0.32 −0.32 −0.46 −0.52 −1.37 −0.95 0.07 0.79 0.09
Y18-DII;5 2.53 2.53 2.42 2.35 0.94 1.61 0.08 1.21 0.10
Y18-DII;6 0.28 0.29 0.15 0.09 −0.88 −0.41 0.07 0.87 0.10
Y18-G0 10.00 10.00 10.00 10.00 10.00 10.00 0 0 0

Y19-DI;2 −0.32 −0.32 −0.48 −0.50 −1.37 −0.96 0.03 0.82 0.04
Y19-DII;5 2.53 2.53 2.35 2.33 0.76 1.50 0.03 1.33 0.04
Y19-DII;6 0.28 0.28 0.09 0.06 −0.95 −0.47 0.03 0.92 0.04
Y19-G0 10.00 10.00 10.00 10.00 10.00 10.00 0 0 0

FABIO L. BRAGHIN PHYS. REV. D 103, 094028 (2021)

094028-6



same sets Y of Table III. The set with G0 corresponds to a
constant and symmetric choice of reference,Gij ¼ G0δij ¼
10δij GeV2. This set, G0, is independent of the effective
gluon propagator and it was included to make possible a
clearer analysis of the effects of the flavor-dependence of
the coupling constants on the quark-antiquark meson
masses, as discussed above. Note that G0 has the same
value of the normalized Gn

11 and this is important for
understanding the role of the flavor-dependent coupling
constants on observables. The set of parameters Y18 has the
same values of Gij as the set X20 in Table II, and it was
included separated in this Table to make the comparison of
results simpler, in particular for the scalar meson channel in
the next section. Some entries were not included because
they are equal to those already displayed in the Table, being
CP-conserving interactions:

G22 ¼ G11; G55 ¼ G44; G77 ¼ G66;

G22;s ¼ G11;s; G55;s ¼ G44;s; G77;s ¼ G66;s: ð21Þ

The interaction channels exclusively of up and down
quarks G11 and G33 are seen to be close to each other, i.e.,
they have almost no flavor-dependent correction. In fact, in

the leading order, G33 − G11 ∝ ðM�
d−M

�
u

M�
dþM�

u
Þ2 ∼ 10−4; that is

very small. The channels involving strange quarks have a
larger deviation from the symmetric limit because

Gij¼4;5;8;0 −Gsym ∝ ðM�
s−M�

d
M�

sþM�
d
Þn for n ¼ 1, 2, where Gsym is

obtained by the limit of equal quark masses, the flavor
symmetric limit. Moreover, larger strange quark masses
induce smaller values of the coupling constants. This is in
qualitative agreement with [19]. There are also mixing
couplings Gi≠j among the neutral channels from the
diagonal generators of the flavor U(3) group, i.e., for i,
j ¼ 0, 3, 8. In the pseudoscalar channel they are all
proportional to the quark mass differences in the leading
order: G03 ∝ ðM�

d −M�
uÞ=M�, G08 ∝ ðM�

s −M�
dÞ=M�, and

G38 ∝ ðM�
d −M�

uÞðM�
s −M�

dÞ=M�2. Note that the mixing
G08 has the largest values and the difference between its
values for the sets of parameters X20 and X21 is too small.
Together with G03 and G38, these effective coupling
constants can be associated with the η − η0 − π0 mixings.
These mixings, however, will not be investigated in the
present work. The set of parameters Y14 in Table III, which
contains mu ¼ md, yields G03 ¼ G38 ¼ 0. The set of
parameters with G0 necessarily implies Gi≠j ¼ 0.
The coupling constants Gij;s, Eq. (9) of the scalar sector

and Table IV, are only shown for the sets of parameters Y
because for the sets of parameters X it was considered that
Gsb → 0. The gluon propagator DI;2 yields, on average,
considerably lower values of coupling constants and the
normalization (20) is, at least in part, responsible for that.
These coupling constants may even be negative (repulsive),
and the effective gluon propagator DII;5 yields the largest

values. The relative values of the gluon propagator Gij;s

with respect to Gij are highly dependent on the quark
propagator structure, similar to the problems that emerge in
form factors [52]. Nevertheless the relative shift of values
of Gij;s (and the corresponding changes in the meson
masses) for each of the channels for a particular set of
parameters should be meaningful. On average the scalar
channel coupling constants G88;s and G00;s are somewhat
lower than the others. Detailed investigations of the meson
mixings and the whole scalar meson octet/nonet mass
problem are outside the scope of this work.

B. Effect on some light meson masses

In this section the effect of the flavor-dependent coupling
constants on the masses of light quark-antiquark pseudo-
scalar pions and kaons is analyzed. Besides that, the effect
on some of the scalar quark-antiquark states, usually
associated to the scalars a0 and K�, is also analyzed.
This will be done according to the following quark
structure [23,24]:

a00 ∼ ðūu − d̄dÞ; a�0 ∼ ūd; d̄u;

K�
0; K̄

�
0 ∼ d̄s; s̄d; K�

� ∼ s̄u; ūs: ð22Þ

It must be kept in mind, however, that the scalar sector
should not be expected to be fully worked out and
described due to the particularities of their structures
quoted in the Introduction. Problems in the description
of light scalars are particularly strong for the σ that
seemingly cannot be a quark-antiquark state, as reminded
in the Introduction.
The Bethe-Salpeter equation, or bound state equation,

for the quark-antiquark meson sector in the NJL model is
usually investigated at the Born approximation level.
Therefore for a constant Bethe-Salpeter kernel this can
be written as K ¼ 2G [2,3,53,54] for the case of diagonal
interaction Gii by neglecting mixing interactions. It pro-
vides the following condition to determine a particular
meson mass P2

0 ¼ M of the channel Γ, i [Γ ¼ I; iγ5,
respectively, for scalar or pseudoscalar]:

1 − 2Gii IiiΓf1f2ðP2
0 ¼ M2; P⃗ ¼ 0Þ ¼ 0; ð23Þ

for the corresponding flavor i ¼ 0;…8 of the quark-
antiquark state, when written in terms of the f1; f2 ¼ u,
d, s quark flavors. Note that the dependence of the results
on the effective gluon propagator is encoded in the resulting
value ofGij, as discussed above. The following integral, for
the four-momentum P of the meson, was defined:

IijΓ f1f2
ðPÞ

¼ itrF;C;D

Z
d4k
ð2πÞ4 ½S0;f1ðkÞΓλiS0;f2ðkþ PÞΓλi�; ð24Þ
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where trF;C;D stands for the traces in flavor, color, and
Dirac indices. Note that the indices i, i of the Gell-Mann
matrices of the adjoint representation are tied with the
indices f1, f2 of the fundamental representation of the
quark propagators for each particular channel in the integral
and in the coupling constants Gii. In the pseudoscalar
channel, the following association appears: for the charged
and neutral pions i¼ 1, 2 with f1; f2 ¼ ū; d=d̄; u and i ¼ 3

with f1; f2 ¼ ūuþ d̄d, respectively; for the charged and
neutral kaons i ¼ 4, 5 and f1; f2 ¼ ū; s=s̄; u and i ¼ 6, 7
with f1; f2 ¼ d̄s=s̄d, respectively. By the usual reduction
of Eq. (24) with the GAP equation considered so far (that is,
the one with the coupling constant of reference G0, which
eliminates the quadratic UV divergence), the following
forms for the pseudoscalar and scalar mesons, respectively,
are obtained:

ðP2− ðM�
f1
−M�

f2
Þ2ÞGijI

ij
2 ¼ Gij

2G0

�
mf1

M�
f1

þmf2

M�
f2

�
þ1−

Gij

G0

;

ðP2− ðM�
f1
þM�

f2
Þ2ÞGijI

ij
2 ¼ Gij

2G0

�
mf1

M�
f1

þmf2

M�
f2

�
þ1−

Gij

G0

;

ð25Þ

where the coupling constants become equal to G0 and this
equation reduces to the usual BSE with a unique coupling
constant [2,3]. The Goldstone theorem is straightforwardly
verified by considering the usual chiral limit for which the
effective quark masses are all equal. The integral Iij2 in
Eq. (25) is the UV logarithmic divergent and it was solved
with the same three-dimensional UV cutoff exhibited in
Table I. Besides that, the pole of the scalar quark-antiquark
bound state jP0j ¼ MS, where MS is the mass of the scalar
meson, might be located in the region of external momenta
larger than the sum of two quark effective masses,
P0 > ðM�

f1
þM�

f2
Þ, such that there might have additional

poles in the integrals Iij2 indicating instability of the bound
state. An IR cutoff [55], ΛIR ¼ 120 MeV, was used in this
case. Its contribution for the pseudoscalar meson masses
can be neglected as it usually is. The value of this cutoff is
somewhat smaller than values in the literature because these
larger values lead to too large a suppression of the
momentum integrations modifying the scalar meson
masses and their mass differences. It is also well known
that these integrals might be dependent on the regulariza-
tion method used [56]. However, it has been shown that the
regularization method usually does not modify the light
meson properties, preserving quite well the predictive
power of the model [57]. Besides that, if one is interested
in the influence of the flavor-dependent coupling constants
on the energy/mass of the quark-antiquark meson bound
state, i.e., in meson mass differences, the regularization
method should not produce leading order effect. Finally,
masslessness of pions and kaons is recovered in the chiral
limit as described above and in the literature [2].
In Table V, results for some of the light meson masses are

presented for the sets of parameters X and three effective
gluon propagators presented above (DI;2; DII;5, and DII;6).
The case for value of reference, G0, which is independent
of the gluon propagator is also considered. There are two
types of comparisons to be done for a given set X or Y
below. Firstly, by reading the lines of the Tables, one can
obtain the neutral-charged meson mass difference for the
pseudoscalar and scalar mesons. By reading the columns of
the Tables, always within a particular set of parameters X or
Y, it is possible to verify the role of the flavor-dependent
coupling constants (for each given effective gluon propa-
gator). Although the masses of neutral mesons were used to
choose the particular sets of parameters in Table I, the
charged meson masses are obtained as a consequence of the
choice of the sets of parameters, being, therefore, predic-
tions. It is important to emphasize again that one must be

TABLE V. Masses of pseudoscalar and scalar mesons states for the sets of parameters X and the corresponding coupling constants
given above without the electromagnetic mass corrections. For these sets X the bound state equation for scalars and pseudoscalars were
solved with the same coupling constant Gn

ij. In the last line there are experimental values from [16].

Set
Mπ0 Mπþ MK0 MKþ Ma0

0
=Ma�

0
Mκ0=Mκ�

MeV MeV MeV MeV MeV MeV

X20-DI;2 135.8 136.2 502 492 781=789 1009=999
X20-DII;5 135.9 136.2 501 492 780=789 1003=995
X20-DII;6 135.8 136.2 502 492 781=789 1009=999
X20-G0 135.9 136.2 496 488 781=789 1008=998

X21-DI;2 136.1 136.2 499 495 787=789 1006=1002
X21-DII;5 136.1 136.2 498 494 787=789 1006=1002
X21-DII;6 136.1 136.2 499 495 787=789 1006=1002
X21-G0 136.1 136.2 494 490 787=789 1006=1002

Experimental value 135 139.6a 497.6 493.7 980b 700b

aIt has an electromagnetic contribution (∼4 MeV).
bComparison is valid within the assumption for the scalar mesons quark flavor structure adopted in (22).
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concerned with the meson mass differences rather than the
absolute values of masses. This is because slightly different
absolute values for the masses are easily obtained whereas
the mass difference between neutral and charged mesons
are consequences of quark mass differences and also
specific values of Gij or Gij;s. Furthermore, and more
importantly, the comparison among the results from differ-
ent effective gluon propagators (DI;DII, and G0) within a
particular set of parameters X or Y indicates the contribu-
tion of varying specifically the flavor-dependent coupling
constants Gij or Gij;s. Lower values for the pion masses, of
the order of 135 or 136 MeV, were chosen for the fixed
cutoff, instead of larger values such as 140 MeV with larger
UV cutoffs, because an electromagnetic contribution for the
charged pion mass is also expected. Besides that, the mass
difference between neutral and charged pions due to strong
interaction is small and it depends, first of all, on the up and
down Lagrangian quark mass difference δud ¼ ðmd −muÞ.
Consequently, it is dependent on M�

d −M�
u, or, more

specifically, ðm2
π� −m2

π0
Þ ∼ ðM�

d −M�
uÞ2=ðM�

u þM�
dÞ2, as

expected [12]. The smaller δud from the set X21 induces
smaller neutral and charged pion mass difference. Besides
that, the smallness of δud also favors smaller charged and
neutral kaon mass differences. The neutral-charged pion
mass difference for X20 is around 0.3–0.4 MeV; slightly
larger than the mass obtained by other sets, such as X21. It
indicates that the up and down quark masses chosen for this
set are slightly larger than needed. The difference between
the coupling constants G11 and G33, however, is very small
(of the order of 10−3 GeV, not showed in the Tables above)
such that, usually, it does not cause meaningful change in
the pion masses. The exception was found for the set X20

(the one with larger u-d mass difference), for which the
shifts from the values obtained with G0 can be of the order
of 0.1 MeV, that is, slightly smaller than the mass difference
between the neutral and charged pions.
The mass difference between neutral and charged kaons

is also in considerably better agreement with expectations
for the X21 set of parameters than for the X20 set.
These mass differences are proportional to ðM�

f1
−M�

f2
Þ=

ðM�
f1
þM�

f2
Þ (where f1; f2 ¼ u, d or s) and are in agree-

ment with other works [12]. However, the most interesting
comparison to be noted is the fact that different values for
Gii, due to different effective gluon propagators for a given
set X20 or X21, lead to different shifts in the kaon masses.
The coupling constants G44 and G66 are smaller than the
constant value G0 for all the gluon propagators and there-
fore the kaon masses are shifted to larger values. These
shifts are around 4–6 MeV, although the resulting effect of
each effective gluon propagator considered might be
smaller, of the order of 1–5 MeV. The shifts in kaon
masses due to flavor-dependent coupling constants have
nearly the same modulus as the mass difference between
neutral and charged kaons. Theweak decay constant will be
calculated in the next section.

Concerning the scalar channel: the leading effect for the
scalar meson masses are the large quark effective masses.
The conditions for each of the scalar quark-antiquark (with
flavors f1 − f2) bound states (25) might be written approx-
imately as

M2
S;f1f2

∼M2
PS;f1f2

þðMf1 þMf2Þ2þO
�

1

G̃ijĨf1f2;S

�
; ð26Þ

where MS and MPS are the corresponding scalar and
pseudoscalar meson masses for that particular channel
(with quark-antiquark f1 − f2), G̃ij ¼ Gij or Gij;s, and
Ĩf1f2;S is the UV logarithmic divergent integral that depends
onM2

S;f1f2
. This approximate equation is in agreement with

particular limits of equations from other works [27]. The
largest contribution for the masses of the scalar mesons
masses come from the second term, i.e., the sum of the
quark and antiquark effective masses, and also the first term
for the K� with a quark structure analogous to the kaons.
Besides that, the IR cutoff in the integrals for the scalar
meson masses makes the integrals slightly suppressed with
respect to the values obtained in the pseudoscalar channel.
The contributions of the coupling constants of the last term
are usually smaller than the first two terms. The resulting
a0 − K� mass hierarchy, according to the structure of (22),
is inverted as it occurs in the simplest versions of the NJL
model [24]. It is possible to correctly fit their masses either
by introducing other Lagrangian interactions or by seeking
specific values of quark masses and coupling constants Gij

to fit the desired values. This second procedure, however, is
much too artificial from the physical point of view.
Therefore the entries in the tables allow for a limited
comparison that may be useful, mainly for the dependence
of the meson masses on each gluon propagator, or
conversely, on flavor-dependent coupling constants. It turns
out, however, that it is also an interesting comparison for
the mass differences of charged and neutral mesons. The
overall pattern of masses is similar to the one of the
pseudoscalar channel: the set of parameters X20 yields a
larger neutral-charged mass difference than the set of
parameters X21. However the mass difference is of the
order of 2 MeV for the a�0 − a00 isotriplet and around
4 MeV for the isoduplets K�

0; K
�
� in the set of parameters

X21. This is better than the set X20, which has mass
differences that are quite large. The shifts in the K� masses
due to the coupling constants are sizeable only for the set of
parameters X20. The experimental values for these neutral-
charged meson mass differences are seemingly slightly
smaller than for the case of the kaons, for example. Maybe
the flavor-dependent coupling constants for the scalar
channels should have the role of compensating the
quark-effective mass nondegeneracy effect on the neu-
tral-charged scalar meson mass differences. The effective
gluon propagators used in this work did not provide the
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corresponding Gij;s needed to reduce the neutral-charged
scalar meson mass differences.
In Table VI, the masses of pseudoscalar and scalar

mesons are presented for the sets of parameters Y14, Y18,
and Y19, with the different effective gluon propagators and
the corresponding coupling constants given above in
Tables III and IV. For these sets Y, the bound state equation
for scalars and pseudoscalars were solved with different
coupling constants: Gn

ij;s and Gn
ij, respectively.

In the pseudoscalar channel, the trends are very similar to
the previous table; results for the set of parameters Y18 are
the same as those for X20 in Table V, whereas the resulting
pattern of the set of parameters Y19 is very similar to the one
for X21. Therefore, similar conclusions apply. The effect of
the lowering of the coupling constants G44 and G66 is to
push the kaon masses to slightly larger values than the
masses obtained with G0. The effect of the change in the
coupling constants on the scalar meson masses is consid-
erably larger than this effect on the pseudoscalar masses.
This might be interesting for the correct complete descrip-
tion of the scalar structures. In addition to these sets, there is
a set of parameters Y14 for which mu ¼ md, and therefore
M�

u ¼ M�
d, that yields all pions and kaons with the same

masses, as expected. Nevertheless, the coupling constants
G44 and G66 are slightly, but sufficiently, different for the
different gluon propagators DI;2; DII;5, and DII;6 as much
as in the other Y sets.
The main tendency presented in the scalar meson masses

is in the larger meson masses. This is, on one hand, due to
the contribution of the quark effective masses in Eq. (26).
On the other hand, there is a nonleading effect which is the

fact that the scalar coupling constants Gn
ij;s are smaller than

Gn
ij. The largest shifts in the scalar masses appear in the K�

states because the relative changes in the values of G44;s −
G66;s are larger than changes in the values of G33;s − G11;s,
together with strange quark effective mass values. Besides
that, there is almost no unique trend for the shifts in the
scalar mesons masses. This is due to the very diverse values
obtained for the scalar channel coupling constants Gij;s in
Table IV. The resulting overall mass difference between the
a0 and K�, on average, might be as large as 320 MeV, for
example, for set Y14 −DI;2, or 218 MeV, for example, for
Y14 −DII;6. The neutral-charged scalar meson mass
differences are quite different for each set of parameters.
This suggests, again, that both the quark effective mass and
flavor-dependent coupling constants might contribute to a
fine-tuning of hadron spectra and interactions. The main
needed effect of inverting the mass hierarchy of a0 and K�

does not occur.

C. Leading effects on gap equations and other
observables

The effects of the flavor-dependent coupling constantsGij
of Table II, without the mixing couplings, on different
observables are presented in this section. To have a more
complete idea of these effects, observables were calculated
first by considering the NJL model with the coupling
constant of reference,G0 ¼ 10 GeV−2, and the usual result-
ing solutions from the gap equations shown in Table I, and
second, by recalculating effective quark masses from gap
equations with the coupling constants shown in Table II.

TABLE VI. Masses of pseudoscalar and scalar meson states for the sets of parameters Y and the corresponding
coupling constants given above without electromagnetic mass corrections. For these sets Y, the bound state
equations for scalars and pseudoscalars were solved with coupling constants Gn

ij;s and Gn
ij, respectively. In the last

line there are experimental values from [16].

Set
Mπ0 Mπþ MK0 MKþ Ma0

0
=Ma�

0
Mκ0=Mκ�

MeV MeV MeV MeV MeV MeV

Y14–DI;2 135.1 135.1 492 492 758=758 970=970
Y14 −DII;5 135.1 135.1 491 491 729=729 964=964
Y14–DII;6 135.1 135.1 492 492 740=740 978=978
Y14 − G0 135.1 135.1 487 487 725=725 946=946

Y18–DI;2 135.8 136.2 502 492 824=830 1068=1060
Y18–DII;5 135.9 136.2 501 492 788=793 1028=1017
Y18–DII;6 135.8 136.2 502 492 812=820 1067=1045
Y18 − G0 135.9 136.2 496 488 781=789 1009=998

Y19–DI;2 136.1 136.2 499 495 831=835 1037=1037
Y19–DII;5 136.1 136.2 498 494 792=793 1024=1020
Y19–DII;6 136.1 136.2 499 495 817=820 1048=1045
Y19 − G0 136.1 136.2 494 490 787=789 1006=1002

Experimental value 135 139.6a 498 494 980b 700b

aIt has an electromagnetic contribution (∼4 MeV).
bComparison is valid within the assumption for the scalar mesons quark flavor structure adopted in (22).
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First of all, the new or corrected gap equations in the
Euclidean momentum space are written as

M0
f
� −mf ¼ 4NcGff

Z
d4k
ð2πÞ4

M0
f
�

k2 þM0
f
�2 ; ð27Þ

where Gff were extracted from Eq. (17) in the absence of
both types of mixing interactions, Gi≠j and Gf1≠f2 . The
resulting values are presented in the first lines of Table VII
for the sets of parameters X and are compared to the initial
values for G0. The sets of parameters Y yields too small of
values for coupling constants Gij;s, which are not strong
enough to allow for the DChSB from Eq. (27). These too
low values of the coupling constants might be a conse-
quence of the common multiplicative normalization
adopted in Eq. (20), as discussed above. Therefore, because
this normalization has shown to be extremely appropriated
for the pseudoscalar channel, as discussed in the last
section, and because the scalar channel is not really
completely addressed in this work, this discussion will
be restricted to the sets of parameters X. The reduced
values, mainly of G00 and G88 (which, by the way, are

mostly dependent on the strange quark mass and which
provide smaller contributions for Gss than for Guu or Gdd),
lead to a reduced value of the strange effective quark mass
M0�. Since the self-consistent way of solving the model
presents some further complications, including instabilities
of the solutions, in the following we present results that
indicate the tendency of the observables when calculating
them with flavor-dependent coupling constants and cor-
rected effective masses. Observables predicted by the
model are exhibited in Table VII, by considering two
different ways of calculating them compared to experi-
mental or expected values (e.v.).
The up, down, and strange chiral scalar quark-antiquark

condensates are implicitly calculated in the gap equations
and they can be written as:

hðq̄qÞfi≡ −TrðS0;fðkÞÞ; ð28Þ

where S0;fðkÞ is the quark propagator. In Table VII, hq̄qiG
stands for the quark condensates calculated with flavor-
dependent coupling constants Gff from Table II, but with
the original quark effective masses M�

f. Due to the larger
reduction of Gss (f ¼ u, d and s) the strange quark

TABLE VII. Observables for non-self-consistent calculations by considering the sets of parameters X20 and X21

discussed above for frozen values of the mesons masses. (e.v.) corresponds to the experimental or expected values.
In the last lines the reduced chi-square is presented for three different calculations and for each of the sets of
parameters X20 and X21, by considering two fitted observables: Mπ0 and MK0 . Masses, decay constants, and the
chiral condensate hq̄qi13 are written in MeV, and the coupling constants, GMqq, θps, and χ2 are dimensionless.

XI;2
20 XII;5

20 XII;6
20 X20, G0 XI;2

21 XII;5
21 XII;6

21 X21, G0 (e.v.)

Mu
�ðG0Þ 389 389 389 389 392 392 392 392

M0
u
�ðGuuÞ 307 325 311 389 310 328 314 392

Md
�ðG0Þ 399 399 399 399 396 396 396 396

M0
d
�ðGddÞ 319 336 325 399 316 333 320 396

M0
s
�ðG0Þ 600 600 600 600 600 600 600 600

M0
s
�ðGssÞ 349 400 360 600 349 400 360 600

−hūui13G 348 346 348 338 349 347 348 338 240–260 [58,59]

−hūui13M0
322 326 322 338 322 326 323 338

−hd̄di13G 350 348 349 340 350 347 349 340 240–260 [58,59]

−hd̄di13M0
324 328 325 340 324 328 325 340

−hs̄si13G 424 407 420 363 424 407 420 363 290–300 [60]

−hs̄si13M0
331 340 333 363 331 340 333 363

GqqπðM0Þ 3.28 3.40 3.31 3.83 3.28 3.40 3.31 3.83
GqqKðM0Þ 3.38 3.61 3.43 4.59 3.39 3.63 3.44 4.59

fπðM0Þ 95.6 97.5 96.0 103.1 95.6 97.6 96.0 103.1 92 MeV
fKðM0Þ 97.8 100.8 98.5 107.3 97.6 100.7 98.3 107.2 111 MeV

θð0;8Þps ð0Þ −8.2° −6.5° −7.9° 0.0 −8.3° −6.5° −7.9° 0.0 −11°= − 24° [16]

χ2red;G 313 295 309 244 314 295 309 245

χ2red;M0 87 92 88 116 86 92 87 117

χ2red;M0 (no hq̄qi) 23 22 22 19 29 27 29 24
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condensate is increased. Second, the condensates calcu-
lated with the same flavor-dependent coupling constants
but with corrected effective masses M0

f
� are written as

hq̄qiM0 . Their values are improved with respect to all the
other values and get closer to lattice calculations. It is worth
stressing that lattice results had been calculated at the
energy scale of μ ∼ 1–2 GeV in the works quoted and the
others cited therein.
The quark couplings to pions and kaons,Gqq;π andGqq;K

were obtained as the residues of the poles of the BSE at the
Born level, Eq. (23) [2,3], are presented as calculated with
the initial quark effective masses and with the corrected
quark masses by means of the equation:

GqqPS ¼
�∂ΠijðP2Þ

∂P2
0

�−2

ðP0;P⃗Þ≡0

; ð29Þ

where the flavor indices are tied with the quantum numbers
of the meson PS as shown above. Please note that the set of
parameters G0 does not receive correction from the flavor-
dependent coupling constants and can be used for com-
parison. The effect of the corrected quark masses is to
reduce the difference between Gqqπ and GqqK because the
effective masses M0

f are closer to each other.
The charged pseudoscalar meson (pion and kaon) weak

decay constant was also calculated from [2,3]:

Fps ¼
NcGqqPS

4

Z
d4q
ð2πÞ4

×TrF;Dðγμγ5λiSf1ðqþP=2ÞλjSf2ðq−P=2ÞÞ; ð30Þ

where f1, f2 correspond to the quark/antiquark of the
meson and i, j are the associated flavor indices as discussed
in Eq. (25). In Table VII, they are presented for the flavor-
dependent coupling constants and corrected masses M0

f
�.

The values for the sets of parameters with G0 provide the
results for the case of flavor-dependent coupling constants.
Because the strange quark mass decreases with the use of
the flavor-dependent interaction, the kaon decay constant
has its value closer to the pion decay constant being the
only observable whose behavior is not the expected one.
Finally, the pseudoscalar meson mixing that is respon-

sible for the eta-eta0 mass difference will be shortly
addressed according to the following ansatz. The logics
of the auxiliary field method were adopted and the
pseudoscalar flavor quark current interactions can be
exchanged by auxiliary fields (Pi ∼ q̄iγ5λiq). Within the
auxiliary field method, the following identification, which
yields the correct dimensions of each of the fields, can be
done by implementing functional delta functions in the
generating functional [61,62]: δððq̄λiqÞ − Pi

G0
Þ. By consid-

ering effective masses for the adjoint representation aux-
iliary fields, M2

iiP
2
i , the following terms with mixings can

be written for the neutral mesons whose states are obtained
from the diagonal generators of the algebra:

Lmix ¼
M2

33

2
P2
3 þ

M2
88

2
P2
8 þ

M2
00

2
P2
0 þ

G08

G2
0

P0P8

þ G03

G2
0

P0P3 þ
G38

G2
0

P3P8; ð31Þ

where M2
ii include the contributions from Gi¼j derived

above. The mixing terms Gi≠j, however, are exclusively
obtained from the one-loop interactions (10). The neutral
pion (P3) mixings and mass are now neglected and by
performing the usual rotation to mass eigenstates η; η0 [16]
it can be written:

jηi ¼ cos θpsjP8i − sin θpsjP0i;
jη0i ¼ sin θpsjP8i þ cos θpsjP0i: ð32Þ

By calculating it and comparing it to the above 0–8 mixing,
the following η − η0 mixing angle is obtained:

sinð2θpsÞ ¼
2G08

G2
0ðM2

η −M2
η0 Þ

: ð33Þ

The values for θps are shown in Table VII and they are
smaller than the expected values. As remarked above, the
coupling constants G08 are basically the same for the two
different sets of parameters X20 and X21. This new
mechanism for meson mixings may not be sufficient for
describing the full mixing.
In the last lines of the Table, the reduced chi-square, χ2red,

is shown for the sets of parameters X for which ten
observables have been taken into account, two of which
are fitted parameters/observables (Mπ0 and MK0). The first
χ2red was done by using hq̄qiG, the second by using hq̄qiM0 ,
and the third without the predictions for the quark scalar
condensates. The reason is that the values for the chiral
quark condensates have large (and the largest) deviations
from the expected values obtained from lattice calculations,
and therefore their contributions for the χ2red are too large.
So the analysis of the reduced chi square can be done by
considering separately the behavior of hq̄qi. Results show
the tendency of χ2red when compared to the initial calcu-
lation, for G0, with the contribution of the flavor-dependent
coupling constants by means of the effective masses M0.
Besides that, note that the numerical difference between the
quark condensates calculated in lattices, LQCD, have a
large deviation from the NJL prediction. Another interest-
ing comparison of the χ2red that specifically shows the
effects of the flavor-dependent coupling constant in χ2red;M0

for the specific sets of parameters X, is between the set of
parameters G0 (with no flavor-dependent coupling con-
stants effects) and the other sets I; 2; II; 5, and II; 6.
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The same comparison between G0 and the other sets X for
the reduced chi-squared χ2red;G and χ2red;M0 (no hq̄qi) might
be misleading because the chiral condensates (whose
flavor-dependent corrections are larger) either are not
corrected by Gij or are not taken into account.

IV. FINAL REMARKS

In this work, flavor symmetry breaking corrections to the
NJL-type quark interactions were derived from a quark-
antiquark interaction mediated by dressed gluon exchange.
All resulting coupling constants are directly proportional to
the quark-gluon running coupling constant and they depend
on the quark and (effective) gluon propagators. Whereas
the coupling constants Gij, defined as almost chiral-
symmetric couplings, can be associated to the pseudoscalar
channel, the coupling constants Gij;s of the scalar channels
can be numerically quite smaller and they present stronger
dependence on the gluon propagator. Different sets of
coupling constants, Gij and Gij;s, were obtained from sets
of quark masses by employing different effective gluon
propagators. Different sets of parameters that were labeled
as X or Y correspond to different solutions of an NJL gap
equation for a coupling constant G0 ¼ 10 GeV−2 of
reference. Although the quark effective mass differences
induce the flavor-dependence of coupling constants
Gij; Gij;s, the effective gluon propagator also slightly
contributes to the determination of their relative strength.
The effects of the flavor-dependent coupling constants were
identified by comparing results obtained with them with the
results for the fixed reference value G0 in the tables. To
make possible a correct assessment of the effects of the
flavor-dependent coupling constants, a normalization for
Gij was proposed, which was defined to the pseudoscalar
channel and was therefore more reasonable for pseudosca-
lar interactions. The channels with strangeness develop
smaller values of Gij, i.e., larger deviations from G0, due to
the larger strange quark mass. The mixing type interactions
Gi≠j and Gi≠j;s were found to be, on average, small, being
proportional to the quark effective mass differences M�

s −
M�

u and/orM�
d −M�

u. One set of parameters,Y14, was defined
with mu ¼ md and the resulting coupling constants Gij and
meson masses calculated with it carry this information:
G0;3 ¼ G38 ¼ 0 and also mπ0 ¼ mπ� , and so on. These
mixings, Gi≠j, yield light meson mixings and, although the
mixing angle for the η − η0 mixing has been calculated, other
consequences will be investigated in another work.
The charged and neutral pion mass difference was found

to be very small and of the order of 0.1 MeV and it is
basically due to the small up and down quark mass
difference, in agreement with expectations. The effect of
the coupling constants G11, G33 is, however, still slightly
smaller and it was almost not identified except for a
particular set of parameters with slightly larger u-d quark
mass difference. The remaining part of the pion mass

difference comes from electromagnetic effects that were not
calculated in this work. The neutral-charged kaon mass
difference was obtained to be of the order of 4–10 MeV.
Both the quark mass difference and the flavor-dependent
couplings, however, yield kaon mass differences of the
same order of magnitude. The flavor-dependent coupling
constants G44 and G66 induce mass shifts of the order of
2–4 MeV but it could reach 6 MeV for some of the sets of
parameters. Both flavor dependencies should have to be
considered in the NJL model: the mass and coupling
constant flavor dependence. This goes along the very idea
of considering the NJL model to be an effective model
for QCD, being that the initial QCD-flavor dependence,
parametrized in the quark Lagrangian masses, would
have consequences for all the effective parameters of the
resulting effective model. This is analogous to the flavor-
breaking dependence of parameters in EFT, such as ChPT.
The effects of the flavor-dependent coupling constants

on some of the light scalar mesons, a0 and K� (or κ), follow
nearly the same patterns of the pseudoscalar mesons. The
shifts of the masses due to changes in the coupling
constants, however, might not be as large as the changes
in the quark effective masses. The largest effects due to
varying Gij;s were found to be of the order of 30–50 MeV.
The usual problem of inverted hierarchy of the scalar
mesons a0 and K� showed up because the pattern of the
values of the coupling constants does not correct it. Other
contributions for these scalar channel quark-antiquark
interactions are expected to correct this inverted mass
hierarchy [24,27]. Nevertheless, the K�ð890Þ meson
masses might be approximately obtained by the following
ad hoc set of parameters: mu ¼ 3 MeV, md ¼ 5 MeV,
ms¼143MeV, Λ¼840MeV, ΛIR¼120MeV, G44¼3.65,
and G66 ¼ 3.60, which yields values close to the exper-
imental ones: mK�

0
¼ 901 MeV and mK�

�
¼ 888 MeV. The

same type of fitting is possible for the a0ð980Þ mesons,
although the physical meaning or content is not clear. The
experimental values for these neutral-charged meson mass
differences, however, might be smaller than for the case of
the kaons, for example. The effective gluon propagators
used in this work, however, can provide the corresponding
needed Gij or Gij;s to reduce accordingly the neutral-
charged scalar meson mass differences. One might expect
that both nondegeneracy of quark masses values and flavor-
dependent coupling constants contribute to keeping the
correct experimental behavior of neutral-charge scalar mass
differences.
The resulting coupling constants found above define new

gap equations as presented in the last section. The corrected
effective mass provides observables, as calculated in
Sec. III C, that are on average in better agreement with
expected or experimental values. To conclude, note that the
cutoff and current quark masses were kept fixed in such a
way to show clearly the effects of the flavor-dependent
coupling constants. The main source of shifts of the values
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is the strange quark effective mass that decreases with the
reduction of the coupling constant Gss. The consequences
in the kaon decay constant and on the strange quark
condensate are clear. An interesting issue to note is the
new mechanism for the meson mixings by means of the
resulting coupling constants Gi≠j; Gi≠j;s, or equivalently
Gf1≠f2 . The values found, however, were not enough to
reproduce the complete η − η0 mass difference. Further
calculations are needed and they should help to constrain
further the corresponding components of the (effective)
quark-antiquark interactions. The reduced chi-square was
calculated for ten observables, two of them being fitted
observables. The sets of parameters with the flavor-depen-
dent coupling constants were shown to provide consider-
ably better results. The kaon decay constant is the only
observable to present worse values when receiving correc-
tions due to Gij, in the present calculation. On the other
hand, the values of scalar chiral condensates are largely
improved. These solutions for the corrected gap equations
induce further ambiguities to define either a new cutoff or
different values for Lagrangian quark masses. As such, a

fully self-consistent numerical calculation may be expected
for which the gap equations and the flavor-dependent
coupling constants are solved at once. In this program,
nonstable results easily appear since shifts in quark
effective masses might be reasonably large for fixed cutoff
and current quark masses. This problem may worsen if
weaker NJL coupling constants (G0 < 10 GeV−2) are
considered. This problem prevents a direct and immediate
self-consistent solution for the gap equations, coupling
constants, and, eventually, the BSE described above.
A more complete account of the mixing interaction con-
tributions for the light meson spectra and other observables
will be treated separately in another work.
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