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In this work, we find the light front densities for momentum and forces, including pressure and shear
forces, within hadrons. This is achieved by deriving relativistically correct expressions relating these
densities to the gravitational form factors AðtÞ and DðtÞ associated with the energy momentum tensor. The
derivation begins from the fundamental definition of density in a quantum field theory, namely the
expectation value of a local operator within a spatially localized state. We find that it is necessary to use
the light front formalism to define a density that corresponds to the internal hadron structure. When using
the instant form formalism, it is impossible to remove the spatial extent of the hadron wave function from
any density, and—even within instant form dynamics—one does not obtain a Breit frame Fourier transform
for a properly defined density. Within the front formalism, we derive new expressions for various
mechanical properties of hadrons, including the mechanical radius, as well as for stability conditions. The
multipole ansatz for the form factors is used as an example to illustrate all of these findings.
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I. INTRODUCTION

In the past few years, the energy momentum tensor
(EMT) has become a major focus of both theoretical and
experimental efforts in hadron physics. The proton mass
puzzle [1–6] and proton spin puzzle [7–9] are major
motivators for this focus. Matrix elements of the EMT
between plane wave states define gravitational form factors
[10], which provide information about both the quark-
gluon decomposition and the spatial distribution of energy,
momentum, and angular momentum. These form factors
are in principle accessible through high-energy reactions
such as deeply virtual Compton scattering [11–13] at
facilities such as Jefferson Lab [14–16] and the upcoming
Electron Ion Collider [17], as well as in γγ� → hadrons at
Belle [18].
Investigations into both the EMT and into deeply virtual

Compton scattering have led to the discovery [19] of an
additional form factorDðtÞ, called the “D-term” or “Druck-
term” [20], which does not encode a conserved current, but
instead contains information about the spatial distribution
of forces within the hadron [21,22]. The D-term has
attracted a lot of interest lately [22–29], and remains
largely experimentally unexplored.

Since EMT form factors such as the D-term encode
spatial densities within hadrons, it is important that the
relationship between the form factors and spatial densities
is properly derived and understood. The connection
between form factors and spatial densities has been
presented in terms of Fourier transforms [22,30–32].
Improvements [31–35] in the literature have been made
since the original work [30] that used three-dimensional
form factors. Specifically, three-dimensional Fourier trans-
forms at fixed (instant form) time have been shown to be
incorrect [35] because of the impossibility of localizing the
center of momentum in three dimensions [36]. Two-
dimensional Fourier transforms at fixed light front time
have been used as a correct alternative [31,33,34].
The improvements have been applied only to electro-

magnetic form factors and the associated charge densities,
but the same concerns are also present for the EMT form
factors and energy, spin, and force densities. It is thus
prudent to consider carefully how to properly associate
spatial densities in hadrons with the EMT. In this paper,
we derive—rather than postulate—a connection between
the EMT form factors on the one hand and spatial densities
of momentum and forces on the other. In particular, we
derive the two-dimensional light front Fourier transform as
providing this connection.
This work is organized as follows. In Sec. II, we derive

the connection between spatial densities associated with an
arbitrary local operator and its matrix elements between
plane wave states. This is done both at fixed (instant form)
time and at fixed light front time. We find only the latter can
define a density that depends only on internal hadron
structure, rather than on irremovable wave function spread.
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In Sec. III, we analyze the classical continuum EMTon the
light front in order to obtain associations between the EMT
form factors and specific properties of hadrons (specifically
stresses). In Sec. IV, we combine the results of the previous
sections to obtain results for the light front momentum
density and the light front stress tensor. Then, in Sec. V, we
illustrate our results with a few model examples, and we
conclude and provide an outlook in Sec. VI.

II. SPATIAL DENSITIES AND FOURIER
TRANSFORMS

Spatial densities in quantum field theories are given by
expectation values of local operators with physically
realizable states. Given a local operator ÔðxÞ—such as
the electromagnetic current or the energy-momentum
tensor—and a physically realizable one-hadron state jΨi,
the relevant density is given by hΨjÔðxÞjΨi.
Form factors are also associated with the local operator

ÔðxÞ through the matrix element between distinct one-
particle plane wave states, namely through hp0; λ0jÔð0Þ
jp; λi. It is common in the hadron physics literature to
associate the plane wave matrix element with spatial
densities using a Fourier transform, with spacelike com-
ponents of Δ ¼ p0 − p as the conjugate momentum var-
iable [22,30–32]. In particular, two varieties of Fourier
transform exist in the literature: a three-dimensional “Breit
frame” Fourier transform at fixed instant form time x0 ¼ 0
(see, e.g., Refs. [22,30,32]), and a two-dimensional Fourier

transform over transverse coordinates at fixed light front
time xþ ¼ 0 (see, e.g., Refs. [31,33,34]). The validity of the
Breit frame transform as a true spatial density has been
called into question [35,36].
In this section, we shall derive the correct association

between the matrix elements hp0; λ0jÔð0Þjp; λi and the
actual field-theoretic spatial densities hΨjÔðxÞjΨi for
one-hadron states, using both fixed light front time and
fixed instant form time. We will discuss under what
conditions the former can be simplified to an ordinary two-
dimensional Fourier transform over transverse momentum
transfer, and will demonstrate that the latter does not
become a “Breit frame” Fourier transform.

A. Using the front form

We shall begin with the light front case. The light front
coordinates are defined so that x� ¼ 1ffiffi

2
p ðx0 � x3Þ. The

density is defined at fixed light front time xþ ¼ 0, and the
null spatial coordinate x− will be integrated out, leaving a
two-dimensional spatial density over transverse coordi-
nates x⊥. To start, the following completeness relation for
one-hadron states:

X
λ

Z
dpþd2p⊥
2pþð2πÞ3 jp

þ;p; λihpþ;p⊥; λj ¼ 1 ð1Þ

is inserted twice into hΨjÔðxÞjΨi, giving

hΨjÔðxÞjΨi ¼
X
λλ0

Z
dpþd2p⊥
2pþð2πÞ3

Z
dp0þd2p0⊥
2p0þð2πÞ3 hΨjp

0þ;p0⊥; λ0ihp0þ;p0⊥; λ0jÔðxÞjpþ;p⊥; λihpþ;p⊥; λjΨi: ð2Þ

The spacetime dependence of the local operator ÔðxÞ is given by ÔðxÞ ¼ eiP̂·xÔð0Þe−iP̂·x, and the plane wave states
surrounding ÔðxÞ are eigenstates of P̂. Using light front coordinates at fixed xþ ¼ 0 gives P̂ · x ¼ P̂þx− − P̂⊥ · x⊥. If we
define a change of variables P ¼ 1

2
ðpþ p0Þ and Δ ¼ p0 − p, then we find that

hΨjÔðxþ ¼ 0; x−;x⊥ÞjΨi ¼
X
λλ0

Z
dPþd2P⊥
2ð2πÞ3

Z
dΔþd2Δ⊥
2ð2πÞ3

1

Pþ þ Δþ
2

1

Pþ − Δþ
2

× hΨjp0þ;p0⊥; λ0ihp0þ;p0⊥; λ0jÔð0Þjpþ;p⊥; λihpþ;p⊥; λjΨieiðΔþx−−Δ⊥·x⊥Þ: ð3Þ
In order to remove the dependence of the density on the state that the hadron is prepared in, it must be possible to factorize
the P and Δ dependence of the integrand. The factors ðPþ þ Δþ

2
Þ−1 and ðPþ − Δþ

2
Þ−1 impede this factorization unless

Δþ ¼ 0, which can be achieved by integrating out x−. Doing so gives us

Z
dx−hΨjÔðxþ ¼ 0; x−;x⊥ÞjΨi ¼

X
λλ0

Z
dPþd2P⊥
2Pþð2πÞ3

Z
d2Δ⊥
ð2πÞ2

× hΨjPþ;p0⊥; λ0i
hPþ;p0⊥; λ0jÔð0ÞjPþ;p⊥; λi

2Pþ hPþ;p⊥; λjΨie−iΔ⊥·x⊥ : ð4Þ

This is the general expression for an arbitrary hadron state jΨi. For such a general state, the density associated with ÔðxÞ
depends not only on the hadron’s internal structure but also on its wave function spread.
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To obtain a density depending only on internal structure,
a wave function that is completely localized at the origin
should be used. This must be done carefully, since absolute
position states do not exist in Hilbert space [37]. In
particular, localization is achieved by considering wave
packets with arbitrarily narrow width in the position
representation, though this width must be kept finite until
after all other calculations have been performed [35]. A
specific example—which is also a Pþ plane wave state, and
a state with definite light front helicity Λ—is given by

hpþ;p⊥;λjΨi¼
ffiffiffiffiffiffi
2π

p
ð2σÞe−σ2p2⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþð2πÞδϵðpþ−PþÞ

p
δλΛ;

ð5Þ

where δϵðxÞ is an arbitrary representation of the Dirac delta
function [such that δϵðxÞ → δðxÞ as ϵ → 0]. Ultimately, the
σ → 0 limit should not be taken until after all momentum
integrals have been performed, except in special cases such
as when the dominated convergence theorem allows the
limit to be commuted with integration.
Using the wave function of Eq. (5) in Eq. (4) gives

Z
dx−hΨjÔðxþ ¼ 0; x−;x⊥ÞjΨi

¼ ð2πÞð2σÞ2
Z

d2P⊥
ð2πÞ2 e

−2σ2P2⊥

×
Z

d2Δ⊥
ð2πÞ2

hPþ;p0⊥;ΛjÔð0ÞjPþ;p⊥;Λi
2Pþ e−iΔ⊥·x⊥e−

σ2

2
Δ2⊥ :

ð6Þ

This is the most general possible result for the x−-integrated
density at xþ ¼ 0. Whether it is possible to proceed from
here depends on the form of the specific matrix element
hPþ;p0⊥; λ0jÔð0ÞjPþ;p⊥; λi. In particular, the possibility of
proceeding depends on whether the Lorentz structures in
these matrix elements contain any factors of P⊥. If there are
no such factors, it is possible to do the P⊥ integration,
giving

Z
dx−hΨjÔðxþ ¼ 0; x−;x⊥ÞjΨi

¼
Z

d2Δ⊥
ð2πÞ2

hPþ;p0⊥;ΛjÔð0ÞjPþ;p⊥;Λi
2Pþ e−iΔ⊥·x⊥e−

σ2

2
Δ2⊥ ;

ð7Þ

which is the first major result of this section.
On the other hand, if there are additional factors of P⊥,

the resulting integral will contain a factor σ−1 or worse,
causing the result to diverge in the σ → 0 limit. This
essentially occurs because of complementarity: an observ-
able that depends on P⊥ cannot be well-defined in the limit
of the hadron’s transverse position being arbitrarily
well-known.
It is, of course, possible to calculate finite spatial

densities for any current, provided we avoid the limit of
arbitrary spatial localization. However, if we wish for our
densities to encode the internal structure of hadrons rather
than wave function spread, we are constrained to calculat-
ing spatial densities for currents that do not depend on P⊥.
As we shall see in Sec. III, the spatial components of the
energy momentum tensor are not suitable candidates for
defining such an internal spatial density. However, we will
also find that matrix elements of the pure stress tensor—
that is, the local values of the stress tensor in a comoving
frame, which encodes pressure and shear—do not depend
on P⊥, and therefore the stress tensor is a suitable candidate
for internal spatial densities.

B. Using the instant form

Let us next briefly consider spatial densities at a fixed
instant form time x0 ¼ 0. This time we use the complete-
ness relation

X
λ

Z
d3p

2Epð2πÞ3
jp; λihp; λj ¼ 1; ð8Þ

inserted twice into the expectation value hΨjÔðxÞjΨi
to find

hΨjÔðxÞjΨi ¼
X
λλ0

Z
d3p

2Epð2πÞ3
Z

d3p0

2E0
pð2πÞ3

hΨjp0; λ0ihp0; λ0jÔðxÞjp; λihp; λjΨi: ð9Þ

Using the change of variables P ¼ 1
2
ðpþ p0Þ and Δ ¼ p0 − p, and the spatial dependence ÔðxÞ ¼ eiP̂·xÔð0Þe−iP̂·x, at fixed

time x0 ¼ 0, we find

hΨjÔðx; x0 ¼ 0ÞjΨi ¼
X
λλ0

Z
d3P
ð2πÞ3

Z
d3Δ
ð2πÞ3

1

4EpE0
p
hΨjp0; λ0ihp0; λ0jÔð0Þjp; λihp; λjΨie−iΔ·x: ð10Þ

It is controversial whether spatial localization at fixed x0 is possible, and proposed localization methods typically redefine
the concept of localization to admit some wave function spread [38–40]. As a loose localization procedure in momentum
space, we can use the following wave function [36]:

FORCES WITHIN HADRONS ON THE LIGHT FRONT PHYS. REV. D 103, 094023 (2021)

094023-3



hp; λjΨi ¼ ffiffiffiffiffiffiffiffi
2Ep

p ð2πÞ3=4ð2σÞ3=2e−σ2p2

δλΛ: ð11Þ

Using this wave function, we find

hΨjÔðx; x0 ¼ 0ÞjΨi ¼ ð2πÞ3=2ð2σÞ3
Z

d3P
ð2πÞ3

Z
d3Δ
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4EpE0
p

s
e−2σ

2P2hp0;ΛjÔð0Þjp;Λie−σ2

2
Δ2

e−iΔ·x: ð12Þ

The energy factors Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðP − 1

2
ΔÞ2

q
and E0

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðPþ 1

2
ΔÞ2

q
do not factorize in their P and Δ

dependence. Factorizing the integrand into a P-dependent
piece and a Δ-dependent piece would require setting
Δ ¼ 0, which can be achieved by integrating out x.
However, this would preclude obtaining a density.
As previously found in Refs. [35,36], Eq. (12) tells us

that dependence on the hadron’s wave function cannot be
removed or even factored out of the spatial density when
using fixed instant form time. Moreover, the expression
obtained in Eq. (12) does not resemble the conventional
Breit frame Fourier transform at all. One would need to
eliminate the P integral while setting P ¼ 0 in order to
obtain the Breit frame transform, but such a procedure is
incompatible with the spatially localized state that was
used. States localized in momentum space—i.e., plane
waves—would need to be used to set P ¼ 0, but as found in
Ref. [35], such a state produces singular densities with
infinite radii since the state is completely delocalized.
Therefore, the Breit frame Fourier transform does not

give a spatial density. On the other hand, Eq. (12) does give
a valid spatial density, but this density does not correspond
strictly to the internal structure of the hadron. Wave
function spread will always be present in any density
defined at fixed x0. It is thus preferable to use the light front
density of Eq. (7) to describe the hadron structure, since
wave function spread can be factored out—and in some
cases eliminated entirely.

III. THE LIGHT FRONT STRESS TENSOR

Identifying classical mechanical concepts such as pres-
sure and shear forces in inherently quantum mechanical
systems such as hadrons is difficult. In practice, “pressure”
is identified within hadrons by comparing matrix elements
of the EMT for hadron states to a continuum EMT. The
matrix element is typically evaluated using plane wave
states in the Breit frame, with P ¼ 0, so that the stress
tensor—which is identified with the spatial components
of the EMT—does not depend on the bulk velocity of the
hadron.
However, we have established in Sec. II that there is no

connection between Breit frame matrix elements and actual
spatial densities. Moreover, a properly defined spatial
density involves an integral over all values of the transverse
momentum P⊥, meaning that the stress tensor contains

contributions from the bulk flow of energy and momentum,
rather than just forces internal to the hadron. It is necessary
to isolate the part of the stress tensor corresponding strictly
to internal forces, which we call the “pure stress tensor.”
We shall proceed to consider how this can be done.
Since the classical EMT is symmetric, we use the

symmetric, Belinfante-improved EMT [41] on the field
theoretic side of the comparison.

A. Continuum EMT on the light front

Since spatial densities encoding the internal structure of
hadrons can only be defined at equal light front time, with
x− integrated out, we shall begin by considering the general
properties of a classical EMT under these conditions. The
Poincaré group has a Galilean subgroup [42–44] that leaves
the foliation of spacetime into xþ slices invariant. Besides
the Hamiltonian P−, which generates xþ translations, the
remaining generators of the subgroup leave xþ ¼ fixed
invariant. Moreover, transformations in this Galilean sub-
group have the special property that the þ and transverse
components of transformed tensors do not depend on
the − components in the original frame.
It is therefore prudent to proceed considering only the

þ; 1; 2 components of the EMTand of other tensors.We thus
proceed with the inherently (2þ 1)-dimensional quantity:

Tμν
LFðxþ;x⊥Þ ¼

Z
dx−Tμνðxþ; x−;x⊥Þ; ∶μ; ν ¼ þ; 1; 2:

ð13Þ

TheEMTismadeupof twopieces: a flow tensorVμν
LFðxþ;x⊥Þ

that encodes the local motion of the continuum material,
and the pure stress tensor SμνLFðxþ;x⊥Þ that encodes mechani-
cal forces,

Tμν
LFðxþ;x⊥Þ ¼ Vμν

LFðxþ;x⊥Þ þ SμνLFðxþ;x⊥Þ: ð14Þ

The pure stress tensor evaluated at x⊥ is what the EMT
evaluates to in a frame that is comoving with the material at
x⊥ [45].
To better understand the flow and pure stress tensors, let

us first consider a small element of material at transverse
rest.1 By Noether’s theorem, the EMT components

1By “transverse rest,” we mean that once x− is integrated out,
the net momentum in the transverse plane is zero.
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Tþν
LFðxþ;x⊥Þ encode the densities of the momentum com-

ponents Pν, which for the material at transverse rest gives
Tþi
LF;restðxþ;x⊥Þ ¼ 0. On the other hand, the light front

momentum (Pþ) density is given by

εðxþ;x⊥Þ ¼ Tþþ
LF;restðxþ;x⊥Þ: ð15Þ

In this case, the flow tensor is defined by

Vμν
LF;restðxþ;x⊥Þ ¼

2
64
εðxþ;x⊥Þ 0 0

0 0 0

0 0 0

3
75: ð16Þ

The pure stress tensor SμνLFðxþ;x⊥Þ is defined through the
remaining spatial components of Tμν

LFðxþ;x⊥Þ and can be
written out in terms of components as

SμνLF;restðxþ;x⊥Þ ¼

2
64
0 0 0

0 S11ðxþ;x⊥Þ S12ðxþ;x⊥Þ
0 S21ðxþ;x⊥Þ S22ðxþ;x⊥Þ

3
75:

ð17Þ

The pure stress tensor has only spatial components in the
transverse rest frame of the material element, and under
transformations within the light front Galilean subgroup—
such as transverse boosts—this property remains invariant.
Thus Sþþ ¼ Sþi ¼ Siþ ¼ 0 is true in all frames.
On the other hand, Vμν

LFðxþ;x⊥Þ is not invariant under
transverse boosts, but instead has the generic form

Vμν
LFðxþ;x⊥Þ ¼ uμuνεðxþ;x⊥Þ; ð18Þ

where uμ is the light front velocity of the material element,
with uþ ¼ 1 and Pþu⊥ ¼ p⊥.
A general continuum material consists of many small

elements that may be in motion relative to each other. The
general form of the continuum EMT on the light front is
thus obtained by making the light front velocity a function
of space and time:

Tμν
LFðxþ;x⊥Þ ¼ uμðxþ;x⊥Þuνðxþ;x⊥Þεðxþ;x⊥Þ

þ SμνLFðxþ;x⊥Þ: ð19Þ

It is worth noting that rotational motion of the material can
also be encoded through the velocity field uμðxþ;x⊥Þ.
However, since this is a classical description, intrinsic
quark spin—which, in quantum field theories, is encoded in
the antisymmetric contribution to the EMT [9]—cannot be
accommodated by Eq. (19).
We shall now proceed to consider properties of

Tμν
LFðxþ;x⊥Þ, Vμν

LFðxþ;x⊥Þ, and SμνLFðxþ;x⊥Þ. First, the
unintegrated EMT obeys a continuity equation,

∂μTμνðxÞ ¼ 0; ð20Þ

as a consequence of Noether’s theorem. If the EMT
vanishes at spatial infinity, then the x−-integrated EMT
also obeys a continuity equation,

∂μT
μν
LFðxþ;x⊥Þ ¼ 0: ð21Þ

The pure stress tensors are subject to Cauchy’s first law of
mechanics [46],

∇iS
ij
LFðxþ;x⊥Þ ¼ −Fj

⊥ðxþ;x⊥Þ; ð22Þ

which can be seen to follow from Eq. (21) with the
definition

F⊥ðxþ;x⊥Þ ¼ ∂þ½εðxþ;x⊥Þu⊥ðxþ;x⊥Þ�; ð23Þ

which is effectively a statement of Newton’s second law: a
net force produces a change in momentum with time. Thus,
∇iS

ij
LFðxþ;x⊥Þ gives the local force acting on elements of

the material.
For a system in equilibrium—such as an isolated

hadron—the net force at all locations should be zero.2

Since Sþν ¼ 0, the equilibrium condition can also be
written as

∂μS
μν
LFðxþ;x⊥Þ ¼ 0; ð24Þ

which when combined with the continuity equation for the
EMT, also gives

∂μV
μν
LFðxþ;x⊥Þ ¼ 0: ð25Þ

This means that, besides the EMT as a whole, the flow
tensor and pure stress tensor are separately conserved
quantities in an equilibrium system.

B. Gravitational form factors

When using inherently classical formulas such as
Eq. (19) in a quantum mechanical context, the quantities
involved should be understood as expectation values using
physical states. As found in Sec. II, these expectation values
can be expressed as Fourier transforms of matrix elements
hp0; λjÔðxÞjp; λi between plane wave states.
The matrix elements hp0; λjTμνð0Þjp; λi in particular

define gravitational form factors. For spin-zero hadrons,
the standard decomposition is [22]

hp0jTμνð0Þjpi ¼ 2PμPνAðtÞ þ ΔμΔν − Δ2gμν

2
DðtÞ; ð26Þ

2The force on quarks and the force on gluons may each be
nonzero, but need to sum to zero.
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where t ¼ Δ2 is the Lorentz-invariant squared momentum transfer; while for spin-half particles

hp0; λjTμνð0Þjp; λi ¼ ūðp0; λÞ
�
PμPν

M
AðtÞ þ ΔμΔν − Δ2gμν

4M
DðtÞ þ iPfμσνgρΔρ

2M
JðtÞ

�
uðp; λÞ; ð27Þ

where the curly brackets fg signify symmetrization over
the indices between them (without a factor 1=2). Using the
Kogut-Soper spinors [47] and Δþ ¼ 0

3 (as happens to be
the case when evaluating spatial densities), we find through
explicit evaluation that the þ; 1; 2 components of the spin-
half matrix element can be rewritten:

hp0; λjTμνðx−Þjp; λi ¼ 2PμPνAðtÞ þ ΔμΔν − Δ2gμν

2
DðtÞ

− iλPfμϵνgρþΔρJðtÞ; ð28Þ

where the Levi-Civita symbol should be understood as a
three-dimensional quantity with ϵþ12 ¼ 1, and which we
emphasize is true only at Δþ ¼ 0.
A few pertinent properties of the flow and pure stress

tensors allow us to identify terms in Eqs. (26) and (28) with
Vμν
LFð0Þ and SμνLFð0Þ. First, since the hadron is in equilibrium,

the flow and pure stress tensors are separately conserved,
meaning the Lorentz structures associated with each should
contract with Δμ to zero. The Lorentz structures accom-
panying AðtÞ, DðtÞ, and JðtÞ each separately satisfy this
constraint already. In addition, the facts that Sþi ¼ Siþ ¼
Sþþ ¼ 0 and that Vij should vanish for the transverse rest
state P⊥ ¼ 0 allow us to uniquely identify

hp0; λjVμν
LFð0Þjp; λi

¼ ð2πÞδðΔþÞf2PμPνAðtÞ − iλPfμϵνgρþΔρJðtÞg; ð29aÞ

hp0; λjSμνLFð0Þjp; λi ¼ ð2πÞδðΔþÞ
�
ΔμΔν − Δ2gμν

2

�
DðtÞ;

ð29bÞ

where the JðtÞ term is absent for spin-zero hadrons. [Note
that Vμν

LFð0Þ and SμνLFð0Þ by definition already include an
integral over x−, which is why the factors of δðΔþÞ are
present.]
As explained in the discussion surrounding Eq. (7), one

cannot obtain an intrinsic spatial density (i.e., a density that
is finite for spatially localized states) from a matrix element
that involves factors of Pi⊥. The pure stress tensor is an

inherently good quantity for defining spatial densities, but
of the flow tensor, only Vþþ

LF ¼ Tþþ
LF gives a good spatial

density. This, of course, means that the spatial components
of the EMT—which constitute the entire stress tensor, as
conventionally defined (see Refs. [45,46,49])—do not
constitute a good intrinsic spatial density, but that the pure
stress tensor—which corresponds to how the stress tensor is
seen by a comoving observer at each point in the material,
and which corresponds to the DðtÞ form factor—does
constitute a good spatial density.

IV. SPATIAL DENSITIES OF THE EMT

As we have seen in Sec. II, it is only possible to define
spatial densities that encode the internal structure of
hadrons within the light front formalism. Moreover, such
densities can only be defined for operators whose matrix
elements between plane wave states do not depend on
the average transverse momentum between the states.
When these conditions are met, the spatial density is given
by Eq. (7).

A. Light front momentum density

It was found in Sec. III that TþþðxÞ is the only
component of the EMT that defines a good spatial density.
Using Eq. (7), along with either of the form factor
decompositions in Eqs. (26) and (28) gives

εðx⊥Þ≡
Z

dx−hΨjTþþðxÞjΨi

¼ Pþ
Z

d2Δ⊥
ð2πÞ2 AðtÞe

−iΔ⊥·x⊥e−
σ2

2
Δ2⊥ : ð30Þ

This is the light front momentum density for the
þcomponent.
As a momentum density, the integral of εðx⊥Þ over all

space should give the actual value of the momentum Pþ.
Since

Z
d2x⊥εðx⊥Þ ¼ PþAð0Þ; ð31Þ

this imposes the well-known momentum sum rule
Að0Þ ¼ 1.
The x2⊥-weighted integral of εðx⊥Þ, when the net

momentum Pþ is divided out, defines the square of a light
front momentum radius:

3Kogut-Soper spinors give the same results for matrix elements
as Brodsky-Lepage spinors [48]. Table II of Ref. [48] contains
various matrix elements of these spinors. Note that these matrix
elements may be different for spinors with canonical polarization,
but light front helicity spinors such as in Refs. [47,48] are more
natural to use in the light front formalism.
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hx2⊥imom ≡ 1

Pþ

Z
d2x⊥x2⊥εðx⊥Þ ¼ 4

dAðtÞ
dt

����
t¼0

: ð32Þ

Thus, the light front formalism provides a physical inter-
pretation for the slope of AðtÞ. It is worth remarking that the
pion “mass radius” extracted from Ref. [18] is actuallyffiffiffiffiffiffiffiffi
3=2

p
times the Pþ radius.

Although it describes a different quantity—energy rather
than momentum—the most conceptually adjacent concept
provided by the Breit frame formalism is its energy radius
[22,26]:

hr2iBreit ¼ 6
dAðtÞ
dt

����
t¼0

−
3

4M2
fAð0Þ − 2Jð0Þ þ 2Dð0Þg;

ð33Þ

where Jð0Þ ¼ 0 for spin-zero hadrons and Jð0Þ ¼ 1
2
for

spin-half hadrons. As a theoretical quantity for under-
standing hadron structure, the light front Pþ radius has
several virtues over the Breit frame energy radius. The most
obvious of these virtues should be that the light front
momentum radius is the radius of an actual spatial density.
However, there are several other peculiarities exhibited by
the Breit frame radius.
For a spin-zero point particle, one has Að0Þ ¼ 1 and

Dð0Þ ¼ −1 [50]. The Breit frame energy radius does not
vanish, but is instead given by hr2iBreit ¼ 3

4M2, while the
light front momentum radius vanishes as expected.
Additionally, for massless hadrons with either spin zero
or spin half, the Breit frame radius is infinite, while the light
front momentum radius remains finite.
Another minor benefit of the light front momentum

radius is that it is simply given by (a number times) the
slope of the form factor AðtÞ.

B. Light front pure stress tensor

As seen in Sec. III, the spatial components of the EMT
do not define a good spatial density, but the pure stress
tensor does define a good density. In particular, using
Eq. (29) in Eq. (7) gives

Sijðx⊥Þ ¼
1

4Pþ

Z
d2Δ⊥
ð2πÞ2 ðΔ

i⊥Δ
j
⊥ − Δ2⊥δijÞ

×DðtÞe−iΔ⊥·x⊥e−
σ2

2
Δ2⊥ : ð34Þ

The pure stress tensor, notably, vanishes in the infinite
momentum limit (i.e., as Pþ → ∞), but in any physically
realistic frame (in which Pþ is finite), the pure stress tensor
is finite. Because of the factor 1

Pþ, however, the pure
stress tensor is not invariant under longitudinal boosts,
and it is additionally not independent of state preparation.
Accordingly, any “forces” encoded in the pure stress tensor
are also frame- and state-dependent. On the other hand, by

multiplying by Pþ, one can obtain a frame- and state-
independent quantity:

S̃ijðx⊥Þ ¼ PþSijðx⊥Þ ¼
1

4

Z
d2Δ⊥
ð2πÞ2 ðΔ

i⊥Δ
j
⊥ − Δ2⊥δijÞ

×DðtÞe−iΔ⊥·x⊥e−
σ2

2
Δ2⊥ : ð35Þ

The physical meaning of this expression is explored below
through examples.
The pure stress tensor Sijðx⊥Þ is isotropic for spin-zero

and spin-half particles, as can be seen from examining
Eq. (34). This means that it can be parametrized by two
independent functions of x2⊥:

Sijðx⊥Þ ¼ δijpðx2⊥Þ þ
�
xi⊥x

j
⊥

x2⊥
−
1

2
δij

�
sðx2⊥Þ: ð36Þ

Here, pðx2⊥Þ is the light front static pressure, and the
remaining components—parametrized by the function
sðx2⊥Þ—give the stress deviator tensor [46], whose com-
ponents are shear stresses [45,46].
A few conceptual remarks are in order regarding the

physical meaning of the pressure and shear forces in
the light front stress tensor. With x− integrated out, the
description given by Sijðx⊥Þ is inherently (2þ 1)-
dimensional. Surfaces in two-dimensional space are one-
dimensional, and accordingly the light front pressure has
units of force/length rather than force/area [as can be
confirmed through a unit analysis on Eq. (34)].

1. Properties of pressure and shear functions

Although the Breit frame Fourier transform does not
actually give a spatial density, a significant amount of work
has been done using the Breit frame EMT. It is thus
instructive to construct analogies on the light front to results
that have already been obtained in literature using the Breit
frame. Reference [22] is especially helpful to compare to.
To begin, in analogy to Eq. (23) of Ref. [22], we find that

the pressure and shear functions can be written as

D̃ðx⊥Þ ¼
1

4Pþ

Z
d2Δ⊥
ð2πÞ2 DðtÞe−iΔ⊥·x⊥ ; ð37aÞ

pðx⊥Þ ¼
1

2x⊥
d

dx⊥
D̃ðx⊥Þ þ

1

2

d2

dx2⊥
D̃ðx⊥Þ

¼ 1

2x⊥
d

dx⊥

�
x⊥

d
dx⊥

D̃ðx⊥Þ
	
; ð37bÞ

sðx⊥Þ ¼
1

x⊥
d

dx⊥
D̃ðx⊥Þ −

d2

dx2⊥
D̃ðx⊥Þ

¼ −x⊥
d

dx⊥

�
1

x⊥
d

dx⊥
D̃ðx⊥Þ

	
: ð37cÞ
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The pressure in particular has another simple expression:

pðx⊥Þ ¼
1

2
δijSijðx⊥Þ ¼ −

1

8Pþ

Z
d2Δ⊥
ð2πÞ2Δ

2⊥DðtÞe−iΔ⊥·x⊥ :

ð38Þ

From this expression, it is clear that the von Laue stability
condition [22,51]

Z
d2x⊥pðx⊥Þ ¼ 0 ð39Þ

is automatically satisfied for any hadron.
Equations (37) show that pðx⊥Þ and sðx⊥Þ are not

independent functions. In analogy to the discussion around
Eq. (30) of Ref. [22], the nonindependence of these
functions can also be demonstrated through the equilibrium
condition ∇iS

ij
LFðx⊥Þ ¼ 0. This condition entails

p0ðx⊥Þ þ
1

2
s0ðx⊥Þ þ

1

x⊥
sðx⊥Þ ¼ 0; ð40Þ

which is the 2D light front analogy to Eq. (30) of Ref. [22].
Here we use p0ðx⊥Þ to denote differentiation with respect to
x⊥ ¼ jx⊥j, i.e.,

p0ðx⊥Þ ¼
dpðjx⊥jÞ
djx⊥j

:

Expressions for the light front pressure and shear
densities—as well as the normal and tangential force
distributions—were previously found in Sec. IV of
Ref. [32]. Equations (110) and (111) of Ref. [32] in
particular agree with Eqs. (37) of the current work, up
to the minor difference that M

Pþ was factored out of each of
these densities in Ref. [32]. This work and Ref. [32] arrive
at the same expressions for different reasons, however. The
stress tensor contains a velocity flow piece with factors of
P⊥ that blows up for spatially localized (R⊥ ¼ 0) states. In
this work, we identified pressure and shear by looking at
the “pure stress tensor,” in which the velocity flow piece is
removed. In Ref. [32], the EMT density was defined in
phase space using a Wigner function formalism, and the
condition P⊥ ¼ 0 was imposed throughout Sec. IV. This
removes exactly the same terms from the stress tensor as we
removed from the pure stress tensor, and since the
remaining terms have no P⊥ dependence, the results for
the densities are the same. We remark, however, that
integration over all P⊥ is needed to obtain a physical
density from a Wigner density, and the condition P⊥ ¼ 0
cannot be imposed while integrating over P⊥.

2. Stability conditions and mechanical radius

As described above, the von Laue condition—that the
integral of pressure over all space is zero—is automatically
satisfied for any hadron. Another important stability con-
dition is the Polyakov-Schweitzer negativity condition
[22], which stipulates that the x2⊥-weighted moment of
pressure should be negative for any mechanically stable
system. We find the relevant moment to beZ

d2x⊥x2⊥pðx⊥Þ ¼
1

2PþDð0Þ; ð41Þ

meaning the Polyakov-Schweitzer condition can be
written as

Dð0Þ ≤ 0: ð42Þ

This is identical to Eq. (40) of Ref. [22] [up to the
possibility that Dð0Þ ¼ 0, which is satisfied, for instance,
by free fermions]. Unlike the von Laue condition, satisfy-
ing the negativity condition is not trivial, and the require-
ment that Dð0Þ ≤ 0 can provide a useful sanity check for
model calculations of hadron structure.
A more general (nontrivial) stability condition can be

derived, following thediscussionaroundEq. (39)ofRef. [22].
The effective normal force density on a 1D surface—with
units force/length—is given by Sijðx⊥Þn̂i, where n̂ is a unit
vector normal to the surface.4 For a system centered at the
origin, the requirement that normal forces be directed strictly
outwards—a stability condition protecting against collapse—
requires that Sijðx⊥Þxi⊥ ≥¼ 0, which imposes

pðx⊥Þ þ
1

2
sðx⊥Þ ≥ 0; ð43Þ

which can be seen as a two-dimensional light front analog of
Eq. (39) fromRef. [22], and whichwas also previously found
in Eq. (128) of Ref. [32]. In terms of the function D̃ðx⊥Þ
defined in Eq. (37), this stability condition can be written as

1

x⊥
D̃0ðx⊥Þ ≥ 0; ð44Þ

which entails

Z
d2Δ⊥
ð2πÞ2

�
DðtÞ þ t

dDðtÞ
dt

�
e−iΔ⊥·x⊥ ≤ 0: ð45Þ

By integrating this condition over all space, one obtains
Eq. (42) as a special case. Equation (45) is, however, a stricter
condition.

4It is, in fact, the pure stress tensor—the local value of the
stress tensor as measured by a comoving observer—that corre-
sponds to the normal force density. See Chapter 12 of Ref. [45].
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As noted in Ref. [22], the normal force being positive
(directed outwards) means it can be used to define a mean
squared radius, which is called the mechanical radius in
Ref. [22]. Within the light front radius, we find the
mechanical radius to be

hx2⊥imech ¼
R
d2x⊥x2⊥½pðx⊥Þ þ 1

2
sðx⊥Þ�R

d2x⊥½pðx⊥Þ þ 1
2
sðx⊥Þ�

¼ 4Dð0ÞR
0
−∞ dtDðtÞ ;

ð46Þ
which is the light front analog of Eq. (41) from Ref. [22].

V. ILLUSTRATIONS WITH A DIPOLE
PARAMETRIZATION

Several phenomenological parametrizations and model
calculations of the gravitational form factors AðtÞ and DðtÞ
for various mesons and baryons exist in the literature (see
Refs. [26–29,52], for instance). Although it is not universal,
it is fairly common to use a multipole parametrization to
approximate the results of model calculations. The generic
multipole parametrizations take the form

AðtÞ ¼ 1

ð1 − t=Λ2Þn ; ð47aÞ

DðtÞ ¼ Dð0Þ
ð1 − t=Λ2Þn ; ð47bÞ

where n is the order of the multipole and Λ is the multipole
mass. n and Λ can be different for AðtÞ and DðtÞ, but to
reduce notational clutter we use the same notation for both.
We shall proceed to use these standard ansatzes for the
gravitational form factors to illustrate the light front
densities with the EMT.

A. General formulas using the multipole form

First, let us consider the light front momentum density,
which is given by Eq. (30). Using the multipole para-
metrization, we obtain

εðx⊥Þ ¼ Pþ
Z

d2Δ⊥
ð2πÞ2

e−iΔ⊥·x⊥

ð1þ Δ2⊥=Λ2Þn : ð48Þ

This integral can be approached by breaking Δ⊥ into a
component parallel to x⊥ and an orthogonal component,
and integrating out the latter. This gives

εðx⊥Þ ¼ Pþ Λ2n

4π2

ffiffiffi
π

p
Γðn − 1

2
Þ

ΓðnÞ
Z

∞

−∞
dk

e−ikx⊥

ðΛ2 þ k2Þn−1=2 : ð49Þ

Comparing to Basset’s integral [53] gives

εðx⊥Þ ¼ PþΛ2
ðΛx⊥Þn−1
2nπΓðnÞ Kn−1ðΛx⊥Þ; ð50Þ

where KnðxÞ is a modified Bessel function of the second
kind [53].
For the pure stress tensor, and the associated pressure

and shear functions, it is most straightforward to use D̃ðx⊥Þ
as defined in Eqs. (37). In the multipole parametrization

D̃ðx⊥Þ ¼
Dð0Þ
4Pþ

Z
d2Δ⊥
ð2πÞ2

e−iΔ⊥·x⊥

ð1þ Δ2⊥=Λ2Þn ; ð51Þ

which can be evaluated as

D̃ðx⊥Þ ¼
Dð0ÞΛ2

4Pþ
ðΛx⊥Þn−1
2nπΓðnÞ Kn−1ðΛx⊥Þ: ð52Þ

Using Eqs. (37) and recursion relations for the modified
Bessel functions [53], the pressure and shear functions are

pðx⊥Þ ¼
Dð0ÞΛ4

4Pþ
1

2nþ1πΓðnÞ fðΛx⊥Þ
n−1Kn−3ðΛx⊥Þ

− 2ðΛx⊥Þn−2Kn−2ðΛx⊥Þg; ð53aÞ

sðx⊥Þ ¼ −
Dð0ÞΛ4

4Pþ
1

2nπΓðnÞ ðΛx⊥Þ
n−1Kn−3ðΛx⊥Þ: ð53bÞ

Here, in the cases n ¼ 2 (dipole form) and n ¼ 1 (monop-
ole form), the modified Bessel functions with negative
index are equal to the same function with a positive index.
Interestingly, although the pressure can flip signs (and
must, in order to satisfy the von Laue condition), the shear
function is strictly positive, since Dð0Þ < 0 and since the
modified Bessel functions of the second kind are strictly
positive.
The normal force is given by the left-hand side of

Eq. (43), and in the dipole parametrization is

Fnðx⊥Þ ¼ pðx⊥Þ þ
1

2
sðx⊥Þ

¼ −
Dð0ÞΛ4

4Pþ
ðΛx⊥Þn−2
2nπΓðnÞ Kn−2ðΛx⊥Þ: ð54Þ

SinceDð0Þ < 0 and the modified Bessel function is positive,
Fnðx⊥Þ > 0, as expected of a system stable against collapse.
Using Eq. (32), the light front momentum radius in the

multipole parametrization is

hx2⊥imom ¼ 4n
Λ2

: ð55Þ

On the other hand, the mechanical radius for the multipole
form can be found using Eq. (46), giving

hx2⊥imech ¼
4ðn − 1Þ

Λ2
: ð56Þ
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B. Singular behavior for specific multipoles

For x ∼ 0, the modified Bessel functions of the second
kind have the following limited form for positive n [53]:

KnðxÞ ∼
1

2
ΓðnÞ

�
1

2
x

�
−n
: ð57Þ

By contrast, K0ðxÞ diverges logarithmically as x → 0.
When the monopole form (n ¼ 1) is used for AðtÞ, the

light front momentum density Eq. (50) is logarithmically
singular at the origin. This density remaining finite at the
origin has been stipulated as a stability condition, for
instance, in Ref. [32]. However, a density that is singular at
the origin seems to actually occur in QCD, in the case of the
pion transverse charge density [54]. It is worth noting that
while εðx⊥Þ is singular in the monopole case at x⊥ ¼ 0, the
integral of εðx⊥Þ over any finite region of space—even one
containing the origin—is strictly finite.
Whether a transverse density can be singular at the

origin remains an open question. However, lattice data
suggest a monopole form for the AðtÞ form factor of the

pion [55]. Thus, it seems prudent to not too hastily discard
the possibility of transverse densities that are singular at
the origin.
As noted in Ref. [32], using the dipole form (n ¼ 2) for

theDðtÞ form factor results in a shear function sðx⊥Þ that is
finite at x⊥ ¼ 0; it also results in a pressure function pðx⊥Þ
that is singular at the origin. These can be observed by
looking at Eqs. (53) and recalling that K−nðxÞ ¼ KnðxÞ in
these formulas. In particular, sð0Þ ≠ 0 would make the off-
diagonal components of SijLFð0Þ diverge, as can be seen
in Eq. (36).
The requirement that all components of SijLFð0Þ be finite

would thus rule out the dipole form for DðtÞ. However, we
do not see a fundamental reason why components of the
pure stress tensor must be finite at the origin. Indeed, as is
the case with εðx⊥Þ with the monopole form, the integral
of SijLFðx⊥Þ over any region of space—including one that
contains the origin—is finite. It seems prudent to not
discard the possibility of a dipole form for DðtÞ, though
the singular densities this would entail should be kept
in mind.

C. Numerical illustrations

We will now consider some specific values of the
multipole form to illustrate the properties of the light front
densities. As mentioned in Ref. [52], the meson dominance
hypothesis suggests the presence of an f2 pole in the
gravitational form factors. We thus use Λ ¼ 1.275 GeV
[56]. We consider n ¼ 1, 2, 3, 4 (monopole, dipole, tripole,
and quadrupole) forms. Note that Eq. (46) excludes the
monopole from consideration for DðtÞ, since it would
result in an infinite integral for Fnðx⊥Þ, and thus a zero
mechanical radius. For theDðtÞ form factor specifically, we
use Dð0Þ ¼ −1 for the purposes of illustration. It is
noteworthy that Dð0Þ ≈ −1 for the pion [22,26,57,58],
perhaps making these illustrations most illuminating for the
pion specifically.
First, we give numerical values for the light front and

mechanical radii in Table I. The monopole form gives a
zero mechanical radius because the associated “charge,” in

FIG. 1. Light front transverse densities associated with the EMT, for several multipole orders. Each density is weighted by 2πx⊥. The
Pþ density is divided by Pþ, while the pressure and shear are multiplied by Pþ, to remove the Pþ dependence.

FIG. 2. Light front transverse densities associated with the pure
stress tensor using the dipole (n ¼ 2) ansatz. Each density is
weighted by 2πx⊥ and multiplied by Pþ to remove the Pþ
dependence.
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the denominator of Eq. (46), is infinite for n ¼ 1. For the
dipole form, the radii are curiously equal; however, it may
turn out that AðtÞ and DðtÞ are multipoles of different
orders, or even that the effective multipole masses are
different, so one should not read too much into this
coincidence.
The momentum, pressure, and shear densities are plotted

in Fig. 1 for several different orders of the multipole ansatz.
The Pþ density, with Pþ divided out, integrates to 1—a fact
that is preserved by a conservation law. The main effect of
increasing the multipole order on this density is to make the
Pþ density more diffuse in the transverse plane, a fact that
is reflected in the increasing momentum radii in Table I. By
contrast, rather than merely becoming more diffuse, the
pressure and shear drop in magnitude when the multipole
order is increased.
The magnitude of forces within the hadron decreasing

with multipole order is also reflected in Table I, where the
normal force at the center of the hadron decreases with
increasing multipole order. Thus, knowing only Dð0Þ is
insufficient to know the magnitude of forces (such as
pressure) within a hadron; it is necessary to know the full
functional form of DðtÞ.
In Fig. 2, we plot the pressure, shear, and normal force

for the dipole (n ¼ 2) ansatz specifically. In contrast to
liquid drop models [22], the shear function is not confined
to a narrow region of space and is, in fact, quite broad,
exceeding the pressure and the net normal force in
magnitude. This finding was also observed for the multi-
pole ansatz in Ref. [32]. On the one hand, the broadness of
the shear function suggests that the hadron cannot be seen
as having a sharp boundary. On the other hand, the large
magnitude of the shear function suggests the hadron is
extremely viscous and cannot be interpreted as an ideal

fluid. Of course, these qualitative conclusions hold only if
the dipole ansatz for DðtÞ is, in fact, accurate.

VI. CONCLUSIONS AND OUTLOOK

In this work, we derived the relativistically correct
expression for a hadron’s transverse rest frame (“pure”)
stress tensor. The main result is given in Eq. (34), which
tells us how the D-term DðtÞ encodes the spatial distribu-
tion of forces in the transverse plane at fixed light front
time. Since the subgroup that keeps slices of fixed xþ is
Galilean, the pure stress tensor Sijðx⊥Þ has the same formal
properties as the classical, nonrelativistic stress tensor,
meaning that the classical laws of mechanics (such as
Cauchy’s laws [46]) can be applied.
Along the way, we obtained general expressions for

spatial densities within both the front form and instant form
formalisms. We found that in the instant form formalism,
one does not obtain a Breit frame Fourier transform.
Moreover, we reproduced the result of Ref. [36] that the
spatial extent of the hadron’s wave function cannot be
removed from the density in the instant form formalism.
It is worth stressing that the results we have obtained

were derived, with a fundamental field-theoretic quantity—
the expectation value of a local operator with a physically
realistic state—as the starting point. The spatial densities
we have obtained were not postulated nor defined by fiat,
and thus their interpretation is in clear and direct corre-
spondence with the actual spatial densities of hadrons.
In this work, we applied the formalism to spin-zero and

spin-half hadrons, and we did not explore the spatial
distribution of angular momentum. Future work remains
to be done on the distribution of angular momentum and
spin, as well as the application of this formalism to spin-one
particles, which can have quadrupole moments [59],
suggesting the stress tensor will not be isotropic.
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TABLE I. Values for the light front momentum and mechanical
radii using the multipole ansatz in Eq. (47), with Λ ¼ 1.275 GeV
and Dð0Þ ¼ −1, for several orders of multipole.

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2⊥imom

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2⊥imech

p
Fnð0Þ

1 0.310 fm 0 � � �
2 0.438 fm 0.219 fm ∞
3 0.536 fm 0.310 fm 0.338 GeV=fm2

4 0.619 fm 0.379 fm 0.113 GeV=fm2
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[32] C. Lorcé, H. Moutarde, and A. P. Trawiński, Eur. Phys. J. C
79, 89 (2019).

[33] M. Burkardt, Int. J. Mod. Phys. A 18, 173 (2003).
[34] G. A. Miller, Phys. Rev. Lett. 99, 112001 (2007).
[35] G. A. Miller, Phys. Rev. C 99, 035202 (2019).
[36] R. L. Jaffe, Phys. Rev. D 103, 016017 (2021) .
[37] J. von Neumann, Mathematical Foundations of Quantum

Mechanics (Princeton University Press, 1955).
[38] T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400

(1949).
[39] A. J. Kalnay and B. P. Toledo, Nuovo Cimento 48, 997

(1967).
[40] M. Pavšič, Mod. Phys. Lett. A 33, 1850114 (2018).
[41] F. J. Belinfante, Physica 6, 887 (1939).
[42] P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).
[43] L. Susskind, Phys. Rev. 165, 1535 (1968).
[44] S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Phys. Rep. 301,

299 (1998).
[45] A. L. Fetter and J. D. Walecka, Theoretical Mechanics of

Particles and Continua, International Series in Pure and
Applied Physics (McGraw-Hill, New York, NY, 1980).

[46] F. Irgens, Continuum Mechanics (Springer, Berlin,
Heidelberg, 2008).

[47] J. B. Kogut and D. E. Soper, Phys. Rev. D 1, 2901 (1970).
[48] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157

(1980).
[49] C. Batchelor and G. Batchelor, An Introduction to Fluid

Dynamics, Cambridge Mathematical Library (Cambridge
University Press, Cambridge, England, 2000).

[50] J. Hudson and P. Schweitzer, Phys. Rev. D 97, 056003
(2018).

[51] M. Laue, Ann. Phys. (Berlin) 340, 524 (1911).
[52] P. Masjuan, E. Ruiz Arriola, and W. Broniowski, Phys. Rev.

D 87, 014005 (2013).
[53] DLMF, in NIST Digital Library of Mathematical Functions,

http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15, edited by
F.W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I.
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V.
Saunders, H. S. Cohl, and M. A. McClain.

[54] G. A. Miller, Phys. Rev. C 79, 055204 (2009).
[55] D. Brommel, Pion structure from the lattice, Ph.D. thesis,

Regensburg U., 2007.
[56] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp.

Phys. (2020), 083C01.
[57] V. A. Novikov and M. A. Shifman, Z. Phys. C 8, 43 (1981).
[58] M. B. Voloshin and V. I. Zakharov, Phys. Rev. Lett. 45, 688

(1980).
[59] W. Cosyn, S. Cotogno, A. Freese, and C. Lorcé, Eur. Phys.
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